

The University of British Columbia

In account with, Vancouver, B.C. KENNCO EXPLORATIONS (CANADA), LIMITED

Date: June 20, 1951

Invoice No.: 65-6000-503

Fothook

UC O P Y

> 24 analyses for copper and zinc @ \$1.25 \$30.00 Cheque received July 11/51

> > Date: July 4, 1951

Invoice No.: 65-6000-508

109 analyses for copper and zinc @ \$125 (51AB25 to 51AB133 inclusive) 136.25

Cheque received July 17/51

Date: September 15, 1951 Invoice No.:65-6000-000 114 analyses for copper and zinc @ \$1.25 (51 AB 134 to 51 AB 247 inclusive) 142.50

Cheque received October 3/51

THE UNIVERSITY OF BRITISH COLUMBIA

Expenses incurred by KENNCO EXPLORATIONS, (CANADA) LTD.

in making Biogeochemical Survey of Afton Claims (Pothook)

A. Salary (collecting, mapping)

	J. Greenaway l week Oscar Schmidt "" E. Persson "" J. Noel (E.I.T.) 10 days D. Barr (E.I.T.) 10 days A. Berglund 10 days	\$50.00 60.00 60.00 100.00 66.67 83.33
		\$420.00
B.	Cost of Assaying	
	247 samples at \$1.25 a sample	309.00
С.	Supervision (H.V. Warren) 3 days at \$35.00	105.00
		\$834.00

Determination of copper and zinc in plants

1

Use at least one gram; for zinc only, 0.2 gram may be enough. If dry or rainy conditions are expected to be the same during collection of the whole batch of samples, it is possible to weigh the sample just as it comes from the tree; take a double weight (2 or 0.4 gram) and weigh within a few hours of collection. A safe way is to weigh at the same time two series of samples, as identical as possible, and keep one to dry leisurely, for calculating the ratio between fresh and dry weights.

<u>Drying</u> proceeds easily in a few hours around 200°F. in a drying oven, or in a few weeks in a warm dry place; samples dry well in paper bags, if they are loosely packed. Drying quickly in the field is the trickiest operation of the procedure. The weighed samples (approximately double weight, 2 grams or 0.4 gram) are packed separately in filter or towel paper; the small bundles are placed vertically in a glassbeaker, and heated gently on a corner of the camp stove, or on a piece of asbestos board, with a very small flame. The beaker must be hot enough, above 150°F., for the samples to dry in one hour or so; it must be too hot to be held in the hand. But the samples must only lose their humidity; any charred parts must be discarded; the paper usually warns by turning brown.

<u>Ashing</u> must proceed as far as possible at a dull red temperature, though the loss of copper or zinc is negligible at bright red heat. To prevent undue flaming, it is best to distill first most of the organic material on a small flame, or on a less hot region of the heating device. A mica sheet can be placed on top. Still, flaming has no significance when only the volatile constituents distilled from the samples burn at the mouth of the crucible.

In order to expose in succession all the parts of the sample to the direct influx of air, rotate slightly the crucible from time to time, holding it in the forceps. When this is being done, particles brought into contact with a richer atmosphere glower; when this phenomenon stops, it means usually that ashing is completed.

For copper and zinc, or copper alone:

Transfer the ash to a small beaker, 10 or 20 ml, moisten with water, attack with one half ml per gram of dry material of 3N hydrochloric acid, heating very gently, so that it takes about 30 minutes to evaporate just to dryness. Add two or three drops of 3N hydrochloric and two or three ml of water; leave a few minutes so that everything soluble is dissolved. Pass into a 50 ml graduated cylinder, with a ground stopper (preferably standard taper); rinse two times the beaker with 2 ml about each time. It is immaterial whether the silica precipitate goes into the cylinder or remains in the beaker. The solution must be strongly acid, between pH 4 and 2-3% hydrochloric, so that only precious metals and bismuth could be extracted with the copper. If the copper seems abnormally high on titrating, check the acidity at once, and unless it is very high, make sure by adding one drop of 3N hydrochloric. Before titrating, the <u>solution must be adjusted to a known</u> <u>volume</u>, in order to take eventually an aliquot, if copper is very high, or to titrate the zinc on an aliquot.

For titration, add one ml of dithizone solution (60 milligrams per litre) into the cylinder, and shake strongly. The green solution usually darkens, then turns to a more or less dark shade of purple. If it remained green, it would mean too much acid or too little copper. Test the pH with the paper, and try to raise it by adding acetate buffer <u>drop by drop</u>; if there is not enough copper, the sample was too small or too poor. Poor samples have no interest in prospecting applications. If they indicate a certain rock, they can just as well be listed as "poor".

Page two: Cu & 2n in plants.

If the dithizone solution turns purple, add more of it, gradually, and shaking gently a few seconds between each addition, until it is grey, neither green, nor purple. Then shake very strongly. Usually, it turns purple again, because all the copper had not been extracted. It is made grey again, and shaken strongly. By alterating additions of reagent and shaking, a moment comes when the dithizone solution remains grey on shaking. This nearly neutral grey color, neither greenish, nor purplish, just a little bluish if no oxidations products are present corresponds to the end-points of ordinary, one liquid titrimetry. The dithizone solution is standardized, using a known solution containing 0.1 milligram per ml, which is diluted before using to 0.004 milligram per ml. In our common experience, one ml of 60 milligram per litre dithizone solution is equivalent to about 0.004 mgr Cu or 0.002 mgr Zn with this end-point.

If there is oxidation of dithizone, the green reagent is transformed into a yellow compound, which will not turn the purple complex to grey, but to purplish brown. When making grey before shaking, the color is yellowish. The best thing to do is to ash again. Oxidation is due to a greater amount of iron than usual, or to calytic action of unburned carbon in the ash. For a few spots of charcoal, or iron, it is usually enough to add one decigram of hydroxylamine hydrochloride when evaporating after the attack. If there is much charcoal, filter, remembering to add each of the successive rinsings of the beaker, only when the preceding one has passed through.

For <u>estimation of zinc</u>, take an aliquot of the solution from which copper has been extracted. Add about the same volume of acetate buffer and titrate with dithizone as for copper. Extraction proceeds much more quickly, and shaking need not be so strong. But reagent must be added much more cautiously, as all zinc is often extracted after the first shaking; the beginner will do wisely to record each reading of the burette.

For <u>zinc only</u>, the whole amount of ash can be treated in the cylinder in the cold, by hydrochloric acid; add acetate buffer, about 4 times the volume of the 3 N hydrochloric acid used, thiosulfate solution, about one tenth of the total volume (to prevent copper from interfering). It works sometimes better to attack the ash as for copper, and treat an aliquot by its volume of acetate buffer and thiosulfate, one tenth of the volume titrated.

Practical details. Always close the cylinder with a wet stopper, otherwise, the carbon tetrachloride solution, which has a low surfact tension, would leak through it. If distilled water is scarce, the same cylinder may be used for zinc determinations without rinsing, as no more zinc is left in the solution when it is titrated. But never use it for copper without rinsing thoroughly, as small amounts of buffer would cause zinc to be extracted as copper. The same applies to thiosulfate solution: small amounts, insufficient to cause complete fixation of copper as complex, can decrease considerably the extraction of copper, and cause important errors, if the cylinder has not been thoroughly rinsed after use. The pipette used to take an aliquot of the solution for zinc extraction need not be rinsed with distilled water, unless an exceptionally high content is met. Otherwise, it is enough to shake it, wipe it outside, and rinse with a little of the solution to be pipetted, which should be done anyhow. Of course rinse everything when the work is finished, or before interrupting overnight. Do not use a brush to pass ash into the beakers, a strip of sized paper, as from a writing pad, will do; discard after using once. Crucible should just be wiped with towel or filter paper. Clean with hydrochloric after using ten times, or finding extremely rich (5-10 times the normal content) material.

Determination of copper and zinc in plants

Use at least one gram; for zinc only, 0.2 gram may be enough. If dry or rainy conditions are expected to be the same during collection of the whole batch of samples, it is possible to weigh the sample just as it comes from the tree; take a double weight (2 or 0.4 gram) and weigh within a few hours of collection. A safe way is to weigh at the same time two series of samples, as identical as possible, and keep one to dry leisurely, for calculating the ratio between fresh and dry weights.

Drying proceeds easily in a few hours around 200°F. in a drying oven, or in a few weeks in a warm dry place; samples dry well in paper bags, if they are loosely packed. Drying quickly in the field is the trickiest operation of the procedure. The weighed samples (approximately double weight, 2 grams or 0.4 gram) are packed separately in filter or towel paper; the small bundles are placed vertically in a glassbeaker, and heated gently on a corner of the camp stove, or on a piece of asbestos board, with a very small flame. The beaker must be hot enough, above 150°F., for the samples to dry in one hour or so; it must be too hot to be held in the hand. But the samples must only lose their humidity; any charred parts must be discarded; the paper usually warns by turning brown.

Ashing must proceed as far as possible at a dull red temperature, though the loss of copper or zinc is negligible at bright red heat. To prevent undue flaming, it is best to distill first most of the organic material on a small flame, or on a less hot region of the heating device. A mica sheet can be placed on top. Still, flaming has no significance when only the volatile constituents distilled from the samples burn at the mouth of the crucible.

In order to expose in succession all the parts of the sample to the direct influx of air, rotate slightly the crucible from time to time, holding it in the forceps. When this is being done, particles brought into contact with a richer atmosphere glower; when this phenomenon stops, it means usually that ashing is completed.

For copper and zinc, or copper alone:

Transfer the ash to a small beaker, 10 or 20 ml, moisten with water, attack with one half ml per gram of dry material of 3N hydrochloric acid, heating very gently, so that it takes about 30 minutes to evaporate just to dryness. Add two or three drops of 3N hydrochloric and two or three ml of water; leave a few minutes so that everything soluble is dissolved. Pass into a 50 ml graduated cylinder, with a ground stopper (preferably standard taper); rinse two times the becker with 2 ml about each time. It is immaterial whether the silica precipitate goes into the cylinder or remains in the beaker. The solution must be strongly acid, between pH 4 and 2-3% hydrochloric, so that only precious metals and bismuth could be extracted with the copper. If the copper seems abnormally high on titrating, check the acidity at once, and unless it is very high, make sure by adding one drop of 3N hydrochloric. Before titrating, the <u>solution must be adjusted to a known</u> <u>volume</u>, in order to take eventually an aliquot, if copper is very high, or to titrate the zinc on an aliquot.

For titration, add one ml of dithizone solution (60 milligrams per litre) into the cylinder, and shake strongly. The green solution usually darkens, then turns to a more or less dark shade of purple. If it remained green, it would mean too much acid or too little copper. Test the pH with the paper, and try to raise it by adding acetate buffer <u>drop by drop</u>; if there is not enough copper, the sample was too small or too poor. Poor samples have no interest in prospecting applications. If they indicate a certain rock, they can just as well be listed as "poor".

Page two: Cu & 2n in plants.

1

If the dithizone solution turns purple, add more of it, gradually, and shaking gently a few seconds between each addition, until it is grey, neither green, nor purple. Then shake very strongly. Usually, it turns purple again, because all the copper had not been extracted. It is made grey again, and shaken strongly. By alterating additions of reagent and shaking, a moment comes when the dithizone solution remains grey on shaking. This nearly neutral grey color, neither greenish, nor purplish, just a little bluish if no oxidations products are present corresponds to the end-points of ordinary, one liquid titrimetry. The dithizone solution is standardized, using a known solution containing 0.1 milligram per ml, which is diluted before using to 0.004 milligram per ml. In our common experience, one ml of 60 milligram per litre dithizone solution is equivalent to about 0.004 mgr Cu or 0.002 mgr Zn with this end-point.

If there is oxidation of dithizone, the green reagent is transformed into a yellow compound, which will not turn the purple complex to grey, but to purplish brown. When making grey before shaking, the color is yellowish. The best thing to do is to ash again. Oxidation is due to a greater amount of iron than usual, or to calytic action of unburned carbon in the ash. For a few spots of charcoal, or iron, it is usually enough to add one decigram of hydroxylamine hydrochloride when evaporating after the attack. If there is much charcoal, filter, remembering to add each of the successive rinsings of the beaker, only when the preceding one has passed through.

For <u>estimation of zinc</u>, take an aliquot of the solution from which copper has been extracted. Add about the same volume of acetate buffer and titrate with dithizone as for copper. Extraction proceeds much more quickly, and shaking need not be so strong. But reagent must be added much more cautiously, as all zinc is often extracted after the first shaking; the beginner will do wisely to record each reading of the burette.

For <u>zinc only</u>, the whole amount of ash can be treated in the cylinder in the cold, by hydrochloric acid; add acetate buffer, about 4 times the volume of the 3 N hydrochloric acid used, thiosulfate solution, about one tenth of the total volume (to prevent copper from interfering). It works sometimes better to attack the ash as for copper, and treat an aliquot by its volume of acetate buffer and thiosulfate, one tenth of the volume titrated.

Practical details. Always close the cylinder with a wet stopper, otherwise, the carbon tetrachloride solution, which has a low surfact tension, would leak through it. If distilled water is scarce, the same cylinder may be used for zinc determinations without rinsing, as no more zinc is left in the solution when it is titrated. But never use it for copper without rinsing thoroughly, as small amounts of buffer would cause zinc to be extracted as copper. The same applies to thiosulfate solution: small amounts, insufficient to cause complete fixation of copper as complex, can decrease considerably the extraction of copper, and cause important errors, if the cylinder has not been thoroughly rinsed after use. The pipette used to take an aliquot of the solution for zinc extraction need not be rinsed with distilled water, unless an exceptionally high content is met. Otherwise, it is enough to shake it, wipe it outside, and rinse with a little of the solution to be pipetted, which should be done anyhow. Of course rinse everything when the work is finished, or before interrupting overnight. Do not use a brush to pass ash into the beakers, a strip of sized paper, as from a writing pad, will do; discard after using once. Crucible should just be wiped with towel or filter paper. Clean with hydrochloric after using ten times, or finding extremely rich (5-10 times the normal content) material.

Samples reasived from D.A. Barr. Kanloops. B.C.

(Artemisia Pridentata, 2nd year twigs) Cu/2n 🐔 Zn S of 🐔 Cu PPM SAMPLE PP retio ash in ash 20 in ash Ĉu .059 .79 3.2 51AB1 15 .047 19 8 3.2 .025 17 .053 .47 51AD2 .033 .50 4.3 7 .015 14 51AB3 -026 .042 .66 3.0 8 12 51 ABL 9 .028 12 .039 .75 3.1 51 AB5 9 .025 1.0 3.4 51AB6 .025 9 2.9 8 .027 14 .050 .57 51AB7 .62 8 13 .044 3.0 .025 51 AB8 .052 .61 2.8 9 .031 14 51AB9 3.3 13 .81 11 .032 .039 51 AB10 3.3 51A811 10 .029 13 .039 ...77 2.6 11 .041 12 .044 .95 51AB12 9 .023 1.1 3.7 51AB13 10 .027 .95 2.9 51AB14 10 .035 11 .037 2.6 17 .059 .53 9 .031 51AB15 .036 1.1 2.6 51 AB16 11 .040 10 .059 .79 2.6 12 -016 15 51AB17 9 .031 1.3 2.0 51AB18 12 .042 .038 .031 1.2 3.1 12 10 51AB19 .039 1.1 3.2 51AB20 14 .043 12 .039 .75 2.9 514821 9 .031 12 .65 3,2 11 .034 17 .052 51AB22 .00 .053 2.8 51AB23 12 .043 15 .030 1.1 3.3 11 .032 10 51 AD24

÷.

Samples received from D.A. Barr. Kamloops. B.C.

(Artemisia Tridentata, 2nd year twigs)

The second s

SAMPLE (1951)	PPM Cu	% Cu in Ash	PPM Zn	% Zn in Ash	Ratio Cu/Zn	% of Ash	Color of Ash	PPM Fe	PPM (Mn)
AB25	10	.025	12	.030	.83	4.1			
AB26	17	•039	12	.028	1.36	4.4			
AB 27	10	.029	15	.045	.65	3•4			
AB28	11	.030	18	.049	<u>.</u> 61	3.7			
AB2 9	12	•036	14	.041	.86	3.5			
AB30	9	.027	18	.051	•53	3.5			
AB 31	13	•036	13	•037	•96	3.6			
AB 32	18	.048	13	.0 35	1.4	3.8			
AB 33	12	.038	14	•045	.83	3.2			
AB34	13	• 038 • 093 ?	14	041 .101	•93	3.4 1.4?			
AB35	18	•050	12	.033	1.5	3.7			
AB36	17	.050	14	.041	1.2	3.4			
AB 37	18	.055	17	.952	jI	3.2			
AB 38	14	.045	13	.041	1.1	3.2			
AB 3 9	15	.044	10	•030	1.5	3.5		į	
AB 40	14	•046	7	.023	2.0	3.0			
AB 41	12	•050	4	.016	3.1	2.5			
AB42	13	.038	14	.043	.90	3.4			
AB43 -	16	.048	18	•05 6	.87	3.3			
AB44	16	.042	17	•04 6	.91	3.7			
AB45	13	.041	14	.044	•93	3.0			
лв46	13	.048	14	.052	•93	2.8			
AB47	14	.045	15	.04 ઈ	•93	3.1			
AB48	12	.043	8	.029	1.5	2.8			
AB49	11	.034	12	.037	.92	3.3			

SAMPLE (1951)	PFM Cu	% Cu in Ash	PPM Zn	% Zn in Ash	Ratio Cu/Zn	% of A s h	Co lor of Ash	PPM Fe	PPM (Mn)
AB50	12	,046	16	.059	.78	2.7			
AB51	12	.042	10	.035	1.2	2.9			
AB5 2	10	.04 0	9	• 03 8	1.1	2.6			
AB53	8	.027	8	.027	1.0	3.1			
AB54	11	.030	18	•050	.60	3.7			
AB55	11	.034	19	• 05 8	•58	3.3			
AB56	15	.032	19	•041	•79	4.6			
AB57	16	• 943 • 060	14	•053	1.1	2.7			
AB 58	11	.034	13	•039	.88	3.3			
AB59	11	.037	12	.039	• 96	3,2			
AB60	14	.035	10	.026	1.3	4.0			
AB61	14	.038	13	.035	1,1	3.7			
AB62	10	.046	8	.039	1.2	2,2			
AB 63	13	.041	13 13	.034	1.2	3,2			
AB64	12	.034	10	,03 0	1.1	3.5			
AB65	8	.028	13	,046	.62	2.9			
AB66	7	.023	11	.03 5	.65	3.3			
AB67	14	•033	16	•03 8	.88	4.4			
AB68	13	.038	8	.025	1.5	3.4			
AB69	13	.037	21	.061	.60	3.5			
AB 70	11	.034	13	.03 9	. 88	3.3			
AB 71	10	.030	13	. 039	•77	3.3			
AB 72	11	.026	10	.025	1.05	4.2			
AB73	13	.039	9	. 026	1.5	3.5			

•

SAMPLES RECEIVED FROM GERRY NOEL. KAMLOOPS. B.C.

rtemisia tridentat SAMPLE (1951)	PPM Cu	% Cu IN ASH	PPM Zn	% Zn IN ASH	Ratio Cu/Zn	to % Hea
AB 74	16	•036	14	.031	1.1	4+5
AB 75	15	.039	13	.033	1.1	3.9
AB 76	14	.05	17	.061	.82	2.8
AB 77	10	.035	18	.061	• 55	2.9
AB 78	14	.048	17	.057	.82	2.9
AB 79	16	.051	11	.037	1.5	3.0
AB 80	16	.050	15	.047	1.1	3.1
AB 81	14	.047	16	.053	.87	3.0
AB 82	13	•054	19	.078	.68	2.4
AB 83	18	.057	17	.054	1.1	2.1
AB 84	10	.043	13	.054	.80	2.3
AB 85	11	.046	12	.047	•95	2.4
AB 86	11	.039	12	.046	.82	2.7
AB 87	15	.046	14	.043	1.1	3.2
AB 88	14	.048	19	.065	•74	2.9
AB_89_/	12	.49.040	18	.058	.69	3.0

.

•

SAMPLE			PPM Cu	% Cu in Ash	PPM Zn	% Zn in Ash	Ratio Cu/Zn	% of Ash
51AB43	Artemisia	tridentata			checke	d well		
51 AB44	**	Ħ			Ħ	Ħ		
51AB56	tt	11		· · ·	Ħ	# 🖌		
51AB57	11	17	12	.043	14	.053	.82	2.7
51 AB60	11	Ħ			check	ed well		
51AB61	4	71			1Ŧ	11	,	
51AB63	材	Ħ	10	.029	13	.038	•77	3.5
51 AB65	种	11			check	ed well		
51AB67	11	TT			Ħ	**	14 -1	*
51AB74	ff	Ħ	13	.027	12	.024	1,1	4.9
51AB75	11	11	11	.020	14	.026	•79	5.4
51AB76	Ħ	F T	7	.019	16	.042	+47	3.8
51AB77	Ħ	77	7	.019	15	.039	.50	3.8
51AB 78	\$7	ក្រ	8	•020	17	.045	•46	3.9
51AB79	11	17	8	.021	10	.026	.80	3.8
51AB80	11	17	10	.024	15	.035	.69	4.2
51AB 81	ŤŤ	19	12	•024	19	.034	.86	4.1
51AB82	FF	99 99	10	.027	16	•044	.63	3.6
51AB83	11	14	9	.023	20	.052	•45	3.8
51AB84	11	11	6	.021	15	.051	.41	2.8
51AB 85	78	Ħ	9	.026	16	.048	•53	3.1
51AB86	78	81	7	.021	14	.041	.50	3.4
51AB87	n	17	· 9	.022	13	.030	.72	4.1
51AB88	\$\$	1	10	.032	15	.048	.67	3.1
51AB89	17	17	9	.023	16	•0 3 9	•58	4.0
51AB90	17	¥t	10	.033	14	.045	•74	3.0
51AB91	*1	11	14	.054	10	.040	1.35	2.5
51AB92	Ħ	11			check	ed well		
51AB93	17	*1	11	.037	13	•044	.85	3.0

-

4.

SAMPLE		PPM Cu	% Cu in Ash	PPM Zn	% Zn <u>in Ash</u>	Retio Cu/2n	% o. Ash
51AB94 Artemisi	la tridentata	9	.029	13	•038	.76	3.2
51AB94a Pinus	ponderosa			check	ed well		
51AB95 Artemisi	a tridentata	14	.037	11	.029	1.29	3.6
51AB96 "	11	15	.060	11	.044	1.36	2.5
51AB97 "	n	17	.067	14	.053	1.26	2.6
51AB98 "	11	7	.026	12	.046	•56	2.7
51AB99 "	FI	15	.050	12	.042	1.20	3.0
51AB100 "	17	16	.055	17	.059	.94	2.8
51AB101 "	88	17	.0 58	21	.072	.81	2.9
51AB 102 "	释	16	.057	13	.045	1.28	2.8
51AB103 "	11	S	.027	11	.038	•70	3.0
51AB104 "	Ŧ	10	.031	13	.041	.77	3.2
51AB105 "	15	14	.048	14	.048	1.0	2.9
51AB106 "	17	13	.038	6	.017	2.2	3.5
51AB 107 "	Ħ	11	.037	19	.068	•55	2.8
51AB108 "	tt	13	,036	15	.042	.86	3.5
51AB109 "	77		·	check	ed well		
51AB 109 a Pinus	ponde rosa			11	17		
51ABLIO ARMEMI	SIN TRADERIAT	A		Ħ			
51AB111 "	12			**	- 11		
51AB112 "	Ħ			11			
51AB113 "	11	? 16	.046	12	.035	1.33	3.5
51AB114 "	11	12	.040	14	.047	.86	3.0
51AB115 "	ņ	? 19	.058	15	•044	1.31	3.3
51AB116 "	17	7 16	•059	10	.037	1.6	2.7
51AB117 "	17	? 17	.059	13	.043	1.36	2.9
51AB118 "	17	? 17	.0 65	10	.037	1.95	2.6
51AB119 "	n	? 21	.074	8	.026	2.80	2.9
51AB120 "	11	? 19	.069	9	.026	2.1	3.0

. 5.

SAMPLE	an a		PPM Cu	S Cu in Ash	Zn	% Zn in Ash	Ratio Cu/Zn	S. Aj
51AB121	Pinus	ponderosa	9	•026	15	•043	.60	3
51AB 122	tt	ड्रा इर	14	.046	14	.046	1.0	3
51AB123	n	tt i	1 6	.043	17	.047	.90	3
51 AB124	Artem	isia t ri dentata	9	.026	22	.061	•24 ×	3
51AB 12 5	Ħ	**	9	.032	15	.051	.63	3
51AB126	**	**	14	•044	16	.052	.85	3
51AB 127	17	11	10	.035	11	+037	•95	3
51AB128	11	17	15	.040	14	.037	1.1	3
51AB 129	11	**	15	.036	13	.031	1.1	4
51AB 130	Ħ	99	13	•043	12	.038	1.1	3
51AB 131	Ħ	**	13	•036	17	.049	.74	3
51AB132	Ħ	17	15	•045	10	.030	1.53	3
51AB133	î	**			check	ed well		
51AC3	Pseudot	tsuga ta xifolia			11	- - 91		
51AC4		51 II			拜	· **		
51AC6		#			n	11		
51 AC8		tr tr			Ħ	Ħ		
51AC10	Pinus	p o nd er osa			11	Ħ		
51AC15	Ħ	n			11	Ħ		
						i		

6.

-

Apparently some of the copper results previously sent were high, perhaps owing to some alight changes in the asking procedure necessitated by mass production. Samples repeated at the same time checked fairly well, but were lower when repeated recently.

Results on the present list checked well when repeated several times recently, and also conform better with results obtained for similar plants in previous years. Therefore I feel these are much more reliable. Any figures on this repeat list are to be used instead of those formerly sent.

As the trouble occurred mainly in groups of ashings it is safe to assume that if all the samples repeated from one ashing agree, the first results from the entire ashing are correct.

The sage samples, especially above AB150, are also presenting difficulties as it is almost impossible to tell which years growth we are dealing with. The trace element content of sage, especially in a positive area, would likely be affected by the seasons rainfall more than that of trees such as pine or fir, because the sage roots might not penetrate as deeply. Results for any one year would be comparable with each other, but not with those of different years.

A few corrections on O.D.E. samples will follow. All W samples have checked very well for both copper and zinc.

SAMPLES RECEIVED FROM GERRY NOEL, KANLOOPS, B.C.

	PLE (1		ARTEMISIA TRI	PPM Cu	% Cu in Ash	PPM Zn	% Zn in Ash	Ratio Cu/Zn	% of Ash
- 51-	AB90	A.Trid	entata	25	.1	10	.04	2.5	2.5
	/ 91	11	Ħ	17	.072	10	.043	1.65	2.3
	92	# 3 E.	TT	15	•07	10	+046	1.5	2.2
	93	Ħ	††	23	.09	11	,043	2.1	2.6
	94	17	tt	25	، 079	10	.032	2.5	3.2
	94(a)Pinus	Pondero sa	72	.033	82	.038	88.	2.3
	95	A. Tri	dentata	22	•075	10	.033	2.3	2.9
	96	H	11	24	.096	9	.037	2.6	2.5
	97	π	Ħ	21	.093	13	.057	1.6	2.2
Y'm-	98	11	11	30	.11	14	.049	2.2	2.8
ametin	99	††	1 2	24	.102	8	.035	2.9	2.3
Д	100	Ħ	¥Ť	27	.106	14	.056	1.9	2.5
-	101	Ħ	Ħ	20	•07	13	.046	1.5	2.9
j.	102	Ħ	PT	19	.073	9	.035	2.1	2.6
	103	Ħ	#	12	.040	8	.028	1.4	2.9
	104	M	拧	16	.058	8	.029	2.0	2,8
) ; 1	105	77	12	14	.051	9	.033	1.6	2.8
	106	Ħ-	π	16	.059	5/	.019	3.1	2.7
	107	Ħ	11	18	.070	11	.042	1.7	2.5
	108	* #	群	17	.067	12	.045	1.5	2.6
	109	# OK.	**	12	.032	17	.046	.71	3.7
	109(a) Pinu	s Ponderosa	72	.033	19	.080	.41	2.3
·	110	A. Tri	dentata 🔗	12	.043	14	.053	.82	2.7
	111	tt		15	.045	16	.050	.91	3.2
	112	Ħ	Ħ	82	.032	10	.038	.85	2.7
	113	Ħ	Ħ	22	•069	14	.044	1.6	3.2
	114	Ħ	17	26	.093	12	.043	2.2	2.8

27 23 25 18 25 23 14	.090 .090 .086 .069 .089 .072	14 11 15 11 9	.047 .043 .053 .042 .033	1.9 2.1 1.6 1.6	3.0 2.6 2.9 2.6
25 18 25 23	.086 .069 .089	15 11 9	.053 .042	1.6	2.9
18 25 23	.069 .089	11 9	.042	•	
25 23	.089	9		1.6	2.6
23	•		.033	e	15 Q V
	.072			2.7	2.8
14 7		10	.031	2.3	3.2
. /	.041	13	.038	1.1	3.4
16	.055	n	.038	1.5	2.9
21	.070	20	.068	1.0	3.0
18	.059	20	.068	0.87	3.0
15	.049	142	.048	1.0	3.1
18	.056	17	.053	1.1	3.1
16	.056	11	.039	1.5	2.9
21	.056	15	.039	1.5	3.8
16	.042	12	.033	1.3	3.7
16	.051	15	.045	1.1	3.3
15	.045	16	.046	•97	3.4
20	.067	11	.038	1.8	2.9
10	.030	17	.051	•59	3.4
		•			
	18 15 18 16 21 16 16 15 20	18 .059 15 .049 18 .056 16 .056 21 .056 16 .042 16 .042 16 .051 15 .045 20 .067	18 $.059$ 20 15 $.049$ $14\frac{1}{2}$ 18 $.056$ 17 16 $.056$ 11 21 $.056$ 15 16 $.042$ 12 16 $.051$ 15 16 $.051$ 15 16 $.051$ 15 15 $.045$ 16 20 $.067$ 11	18 $.059$ 20 $.068$ 15 $.049$ $14\frac{1}{2}$ $.048$ 18 $.056$ 17 $.053$ 16 $.056$ 11 $.039$ 21 $.056$ 15 $.039$ 16 $.042$ 12 $.033$ 16 $.051$ 15 $.045$ 15 $.045$ 16 $.046$ 20 $.067$ 11 $.038$	18 $.059$ 20 $.068$ 0.87 15 $.049$ 142 $.048$ 1.0 18 $.056$ 17 $.053$ 1.1 16 $.056$ 11 $.039$ 1.5 21 $.056$ 15 $.039$ 1.5 16 $.042$ 12 $.033$ 1.3 16 $.051$ 15 $.045$ 1.1 15 $.045$ 16 $.046$ $.97$ 20 $.067$ 11 $.038$ 1.8

SAMPLE(195	SAMPLES RECEI 1)	PPM Cu	% Cu in ash	PPM Zn	% Zn in ash	Ratio Cu/Zn	% o: ash
51-AB-134	Artemi sia tri d	entata 12	.038	.14	.043	•90	3.2
135	19	11	.040	12	.044	.92	2,8
13 6	择	14	.041	15	.044	•93	3•4
137	£3-	• 11	•036	10	.032	1.1	3.1
138	28	11	.036	15	.047	•77	3.2
139	FT	14	•0 <i>l</i> ₁ 2	14	.041	1.0	3+4
140	¥9	17	.050	26	•074	.67	3.5
141	¥#	11	.028	14	.034	•82	4.1
142	11	13	.038	19	.055	.69	3.4
143	F ₹	11	.033	16	.046	•72	3.5
144	28	12	.036	16	.048	•75	3.3
145	15	5	.014	21	.058	.24	3.6
146	F1	9	.025	16	.046	•54	3.4
147	\$\$	9	.027	21	•068	• 41	3.1
148	Tİ	10	•022	19	•042	.51	4.4
149	24	10	.024	19	•044	•54	4.2
150	38	12	.033	15	.042	.80	3.6
151	**	9	.025	16	•043	•5 9	3.7
152	ŤŤ	12	.033	18	•054	.62	3.5
153	77	9	.032	16	•052	.61	3.0
154	. 17	10	.031	15	.043	.70	3.5
155	tt	13	.031	8	.019	1.62	4.1
156	**	10	.029	16	•047	.63	3.4
157	ŧţ	11	.036	18	•057	.63	3.1
158	**	12	.036	19	•057	.63	3.4
159	**	14	.043	17	.052	.82	3.3
160	17	14	.047	18	•060	.78	3.0

*

a ANTOT TO I T AM	• •		PPM	% Cu in Ash	PPM Zn	% Zn in ash	Ratio Gu/2n	% of ash
SAMPLE(195	· .		Cu					
51-AB-161	Ar temisia	tridentata	17	.048	18	•049	•97	3.6
162	ŧt		16	. 056	17	•058	•97	3.0
163	77		16	•045	18	.051	.89	3.5
164	92		11	.029	15	.039	•73	3.8
165			18	.051	14	.040	1.28	3.5
166	**		13	•037	20	•059	•63	3.4
167	Ħ		13	.040	18	.0 56	.71	3.2
168	63		14	•040	15	.045	•90	3.4
169	F \$		12	.033	21	.058	•57	3.7
¥F	Ħ		12	•030 [?]	16	.042	•72	3.8
170	**		11	.032	15	•046	.70	3.3
171	. ††		15	.045	16	.049	.91	3.3
172	11		12	.032	18	.047	.67	3.8
173			14	.037	16	.042	.88	3.8
174	17		15	.039	14	.038	1.04	3.7
175	11		13	.037	14	.039	.93	3.5
176	18		12	.035	14	.041	.86	3.4
177	Ħ		14	.033	17	.043	•77	4.0
178	11		12	.035	19	•054	.65	3.4
179	Ħ		12	.038	11	.033	1.10	3.3
160	FF		12	.033	15	+043	.77	3.7
181	17		10	.027	18	.044	•56	3.7
182	11		11	.033	15	.044	.74	3.5
183	11		12	.031	11	.030	1.04	3.8
184	17		12	.030	15	.035	.86	4.2
185	11		8	.023	15	.042	•53	3.5
186	**		10	.027	17	.044	.62	3.8

SAMPLE (195	1)	PPM Cu	% Cu in Ash	PPM Zn	% Zn in ash	Ratio Cu/Zn	∛ of _ash
					-		
51-AB-187	Artomisia tridentata	8	.021	17	.045	-47	3.7
188	**	8	.024	18	.051	•47	3.5
189	11	9	.023	22	.054	+42	3.1
190	" 1	8	.023	22	.061	•37	3.5
191	TT	8	.023	18	.051	•44	3.5
192		7	.020	18	.049	•40	3.6
193	tt.	9	.025	14	.038	•64	3.6
194	17	11	•026	13	.031	•84	4.0
195	73	9	.024	14	.037	.64	3.8
196	\$ 7	72	.021	20	.056	•37	3.6
197	**	9	.021	20	•046	•46	4.2
198	1 1	9	.020	18	•038	•51	4.5
19 9	11	10	•026	16	.042	.63	3.8
200	ŦŦ	. 9	.023	15	+039	•60	3.8
201	n	12	.034	24	.069	• 50	3.5
202	f\$	11	.031	16	•046	•69	3.5
203	Ħ	9	.023	16	.040	•59	4.0
204	17	10	.029	16	.046	.63	3.5
205	**	11	.030	20	.052	+57	3.8
20 6	Π	9	.024	15	.040	.60	3.8
207	11	8	,019	16	.039	•47	4.1
208	Ħ	10	.032	11	.035	.91	3.1
20 9	\$ \$	10	•031	15	•046	.67	3.2
210	**	13	.041	15	.045	.90	3.2
211	11	12	.040	15	.048	.83	3.1
212	\$7	12	.041	14	.048	.86	2.9
213	71	11	.03	11	.03	1.0	3.7
214	5 2	15	.046	15	.047	•99	3.2

3.

,

.

	SAMPLES RECEIVED FRO	PPN	% Cu	PPM	🎋 Zn	Ratio	% of
SAMPLES (1	951)	Cu	<u>in Ash</u>	Zn	1n ash	Cu/Zn	ash
51-AB-215	Artemisia tridentata	15	.038	10	.026	1.50	3.8
216	13	13	•034	20	,051	.67	3.8
217	89	12	.035	16	.046	•75	3.5
218	îf	14	.036	17	.045	.80	3.7
219	f 1	11	,032	11	.032	1.0	3.5
220	Ħ	11	.029	13	.035	.60	3+5
221	Ħ	14	•044	10	.033	1.40	3.2
222	**	16	.043	25	.067	. 65	3•7
223	\$ 1	15	.045	24	.071	.62	3.4
224	FT	12	.038	10	.032	1.20	3.0
225	11	16	.049	13	.039	1.20	3.3
226	ft	15	.043	11	.032	1.30	3•4
227	TT	20	.047	19	.045	1.05	4.2
228	**	15	.044	17	•047	•91	3.6
229	17	15	.042	18	.051	.83	3.6
230	11	16	, 06 9	14	.052	1.20	2.6
231	章	17	.052	19	•059	•90	3.2
232	1 7	17	.046	20	•054	.85	3.6
233	11	18	.052	15	.044	1.20	3.5
234	11	20	.061	14	.044	1.4	3.2
235	F	20	.059	17	.050	1.2	3.5
236	11	12	.041	7	.023	1.8	3.1
237	ft	20	.049	15	.038	1.3	4.0
238	fi .	17	.046	18	.051	•95	3+5
239	Pseud. taxifolia	12	.029	54	.13	.22	4.1
240	Populus premuloids	15	.043	42	.12	.36	3.5
241	Pseudo. taxifolia	10	.039	31	.15	•34	2.7
2 39 240	Populus premuloids	12 15	•029 •043	54 42	.13 .12	•22 •36	

4.

•

SAMPLES RECEIVED FROM G. SAMPLE(1951)	NOEL. PPM Cu	KAMLOOF % Cu in ash	S. B. PPM Zn	C. % Zn 1n ash	Ratio Cu/Zn	🖇 of ash
51-AB-242 Pinus ponderosa	5	.027	29	.14	.19	2.0
243 Amel. alnifolia	12	.045	53	.10	• 45	2.7
244 Pinus ponderosa	9	.037	41	.18	.21	2.3
245 Pseud. taxifolia	15	.063	59	.26	.25	2.3
246 Populus tremuloids	7	.023	17	.059	.39	2.8
247 Amel. alnifolia	9	.039	20	.089	.43	2.3
51AB Dean 2						
Pseudotsuga taxifolia 🗴	10	.040	29	.12	•35	2.5

* This sample was repeated. Both copper and zinc checked well.

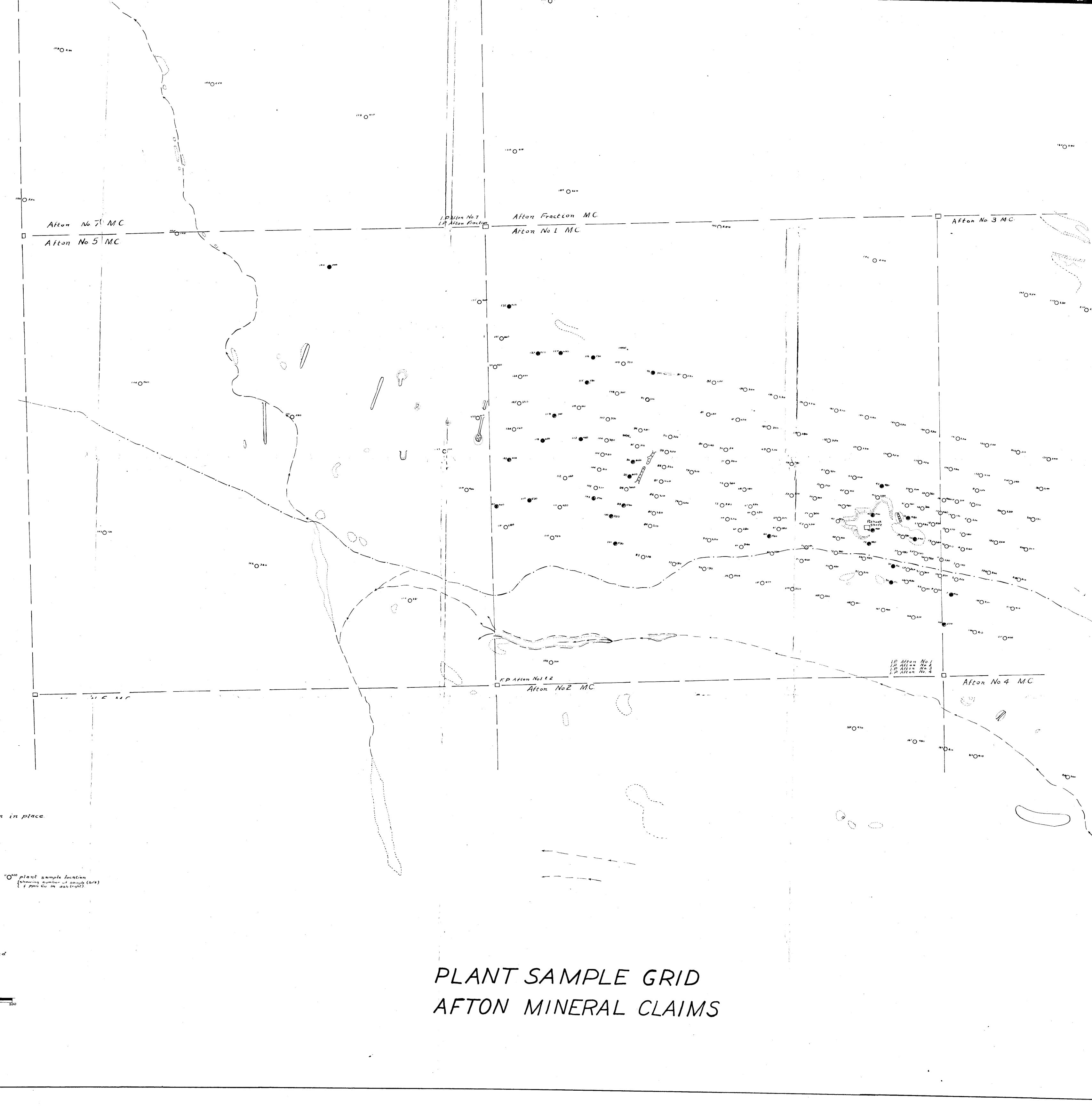
^{/58}O × #

151 O Psr

· •2 🔿 3 3 8 0

LEGEND

xxx Copper mineralization in place C Granitic outerops TIMAN Magnetite = Trench V Cut "O⁴²⁰ plant sample location [showing number uf soinple (left) { f ppm Cu in ash (right). Pit Clar E Dump - Road Centre line - side road --- Creek Scale in feet


100 50 0 100 200

146 C 2 50

140 **6**.59

^{14 z} O ^{34 o}

(***O ***



² • 4

³′€ () ³90

AL2 (734

