

206

MAGNETOMETER SURVEY

PL 1 - 48 CLAINS

NICOLA M. D.

MERRITT, B. C.

By

Alfred R. Allen

July 1958

CON TEN TS

	Page
INTRODUCTION	1
LOCATION AND ACCESSIBILITY	2
PROPERTY	3
TOPOGRAPHY	3
GEOLOGY	h
MAGNETOMETER SURVEY	5
SURVEY RESULTS	7
CONCLUSIONS AND RECOMMENDATIONS	9
REFERENCES	
MAPS. $\frac{1}{1}$ PLAN, MAGNETOMETER SURVEY, PL 1 - 48 50° - 120° S.W.	
#22. ANOMALY NO. 1	

. . . .

77-33. ANOMALY NO. 2

774 4. ANOMALY NO. 3

715 5. ANOMALY NO. 4

THE 6. ANOMALY NO. 5

THE PL GROUP

MAGNETOMETER SURVEY

NICOLA M.D. MERRITT, B. C.

. . . .

INTRODUCTION

From May 12 to July 16, 1958 a magnetometer survey was conducted over the PL group of mineral claims under the direction of the writer. The field party consisted of the writer, Shigeo Saimoto, P. Eng. (Engineering Physics), H. Shuttleworth, J. Tofin, W. Sommerville, J. Young, A. Bara, and P. Allen.

A camp was set up on Petit Creek and later moved to the Peters: farm at Lower Nicola.

Along with the necessary camp and field equipment a Wilde transit was used, a Sharpe D-1-M magnetometer, and a Radar magne- $\mathbb{H}_{2} \leq \mathbb{C}$ tometer. The claims area is traversed by the highway and numerous logging roads, hence it is possible to travel by truck over the property, and a Land Rover and Jeep Station Wagon were used for this purpose.

The object of the survey was to investigate the property systematically with a magnetometer in order that any variance from the normal magnetic field could be detected and mapped. Such anomalous somes indicate the presence of magnetic iron mineralisation, and in the Merritt area are known to contain copper and other valuable metals.

LOCATION AND ACCESSIBILITY

The PL group is located seven miles west of Merritt in south central British Columbia. The Spences Bridge - Merritt highway passes over the southern portion of the property. Canford is located near the southwest corner and Lower Nicola near the southeast corner of the claims group. The Kettle Valley branch of the G.P.R. traverses the Micola Valley along the south boundary of the property. It is a six to seven hour drive from Vancouver to Merritt. Numerous secondary roads extend from the main highway over the property, many having been constructed by the Canford Sawmills Company who have logged the area. 2.

PROPERTY

The PL group is composed of the following mineral claims located in accordance with the Mineral Act of British Columbia, and are shown on B.C. Department of Mines Mineral Claims Map 6 AN 3:

PL 1 - 16 inclusive Recorded July 17, 1957

PL 17 -	24	n	Ħ	July	28,	1957
PL 25 -	32	Ħ	Ħ	July	25,	1957
PL 33 -	40	n	W	July	26,	1957
PL 41 -	48	Ħ	Ħ	July	25,	1957

The PL 1 - 48 mineral claims are registered in the name of Georgia Leaseholds, Ltd. of 569 Howe Street, Vancouver, B. C.

TOPOGRAPHY

The topography is typical of the Interior Plateau region of south-central British Columbia. The hills are rounded and covered with patchy stands of timber. Large areas are open rolling, grass - and sagebrush - covered hills. Numerous farms are located throughout the area.

The PL group extends from the broad valley of the Nicola River northerly up and onto the southeast flank of the Promontory Hills. The Nicola Valley is 2000 feet above sea level, and the highest point on the PL claims near the north boundary is 3000 feet above sea level. Near the northeast corner of the property the south side of a prominent hill is composed of steep inaccessible rock bluffs. Similar nearly vertical rock bluffs are located near the southwest corner of the claims area along the north bank of the Nicola River. Elsewhere the property is park-like, and broken only in a few places by small gullies, one of which is occupied by a small creek. Exposures of bedrock are numerous, and overburden thin, over most of the area.

GEOLOGY

Granitic rocks of the Guichon Creek batholith predominate on the PL claims area. These lower Jurassic intrusions are overlain by andesitic, tuffaceous and agglomeratic rocks of the Upper Triassic Nicola group, which near the east boundary of the property are in turn overlain by basaltic and tuffaceous rocks of the Lower Cretaceous Kingsvale group.

The granitic rocks of the Guichon Creek batholith are chiefly quarts diorite and granodiorite on the map area. Altered and brecciated zones contain noticeably more pink feldspar and abundant epidote. Numerous aplitic dykes intrude the older rock.

The Nicola group rock in the area is wholly dark green andesite, in places amygdaloidal. The sheared and brecciated sones are characterized by abundance of micaceous minerals and brown weathering. The western part of the property is underlain mostly by Nicola andesite. The Kingsvale volcanic rocks are characterized by the light colour and rough weathering. Near the southeast corner of the property, on the highway, cliffs of Kingsvale tuffaceous rock are conspicuously displayed.

Except for local sheared and brecciated sones there is little structure evident on the property. Anomaly number one appears to be located on a strong and continuous shear sone in Nicols andesite, however, and this zone appears to be the southwesterly extension of a similar one located on claims adjoining the PL group on the north.

One highly sheared zone near the southwast corner of the property weathers light brown. Iron stain and minor copper stain are evident, and one small open cut has been excavated thereon. Anomalous magnetic zones have been indicated by the magnetometer. It is known that these contain magnetic iron minerals, and it is possible that other valuable minerals may be found associated with the iron mineralization.

MAGNETOMETER SURVEY

The magnetometer survey was carried out on a grid pattern tied to a base line which was tied to surveyed corner posts of Land Lots. The base line was accurately laid out by chain and transit in an east-west direction near the southerly location line, not far 5.

distant north of the highway. As well as station hubs, stakes were placed at 200-foot intervals along the base line. Grid lines were surveyed by chain and Brunton compass true north-south from each 200-foot station on the base line to the boundaries of the property. All hubs and stations were marked by the placing of a stake, made from cedar lathing, upon which was scribed a designated letter and number as shown on the map accompanying this report. Magnetometer readings were observed and recorded at all hubs and stations.

The D.I.-M Sharpe magnetometer was used for most of the survey. The Radar magnetometer was used for completion of intermediate lines and detailed work. Each instrument was checked over known magnetic anomalies in the Merritt and Kamloops areas, a constant for conversion from one to the other readings was established, and diurnal variation of each noted and corrected daily.

On the 200-foot grid survey, where high or low readings were recorded on the magnetometer, a smaller grid pattern was set up and the area checked. By this method five magnetic anomalies were outlined.

Using the Sharpe D-1-M instrument as a standard the normal $\frac{1}{12} 2 \le 2$ magnetic force was found to be 2000 to 2500 gammas. Anomalous somes were indicated where readings ranged from 2500 to 3000 gammas. The cores of the anomalies were evidenced by readings between 4000 and

6.

6000 gammas and in each, by accompanying abnormally low readings.

The survey is recorded on the accompanying master plan map on a scale of 400 feet per inch, and five plans of anomalies on a scale of 100 feet per inch.

SURVEY RESULTS

The anomalies recorded are as follows: Anomaly Number 1.

Location;	on the PL 37, PL 38, and PL 39 claims.
Length:	2000 feet, 25 degrees east of north.
Width:	250 to 600 feet.
Maximum in	tensity: 6075 gammas.
Geology:	Contorted and sheared Nicola andesite.
	Some iron staining.
Note:	Appears to be on the same sheared zone as
	anomalies of similar intensity reportedly
	occurring on adjoining properties to the
	north of PL group.

Anomaly Number 2.

Location: PL 49 Fr., PL 50 Fr., PL 3 and PL 4. Dimensions: 1200 feet long and 500 feet wide. Direction North 60 degrees east. Intensity: High 3400 gammas to a low of 620 gammas. Note: This anomaly lies across the lower end of Forestry road and gravel pit.

Anomaly Number 3.

Location: PL hl, PL h2, PL 56 Fr. Dimensions: 1600 feet long and 200 to 500 feet wide. Direction: North 35° east. Intensity: High 5000 gammas. Note: This anomaly has three separate high somes.

Anomaly Number 4.

	Valley.
Note:	This anomaly extends into the Nicola River
Intensity:	3500 gammas.
Direction:	North 60° east.
Dimensions:	500 feet long and 250 feet wide.
Locations	PL 3, PL 62 Fr. Crossing highway.

Anomaly Number 5.

Location:	Extends into PL 18.
Dimensions:	400 feet long and 150 feet wide.
Direction:	East-vest.
Intensity:	High 6000 gammas and a low of 600 gammas.
Note:	This appears to be a small but strong
	anomaly.

_

CONCLUSIONS AND RECOMPLENDATIONS

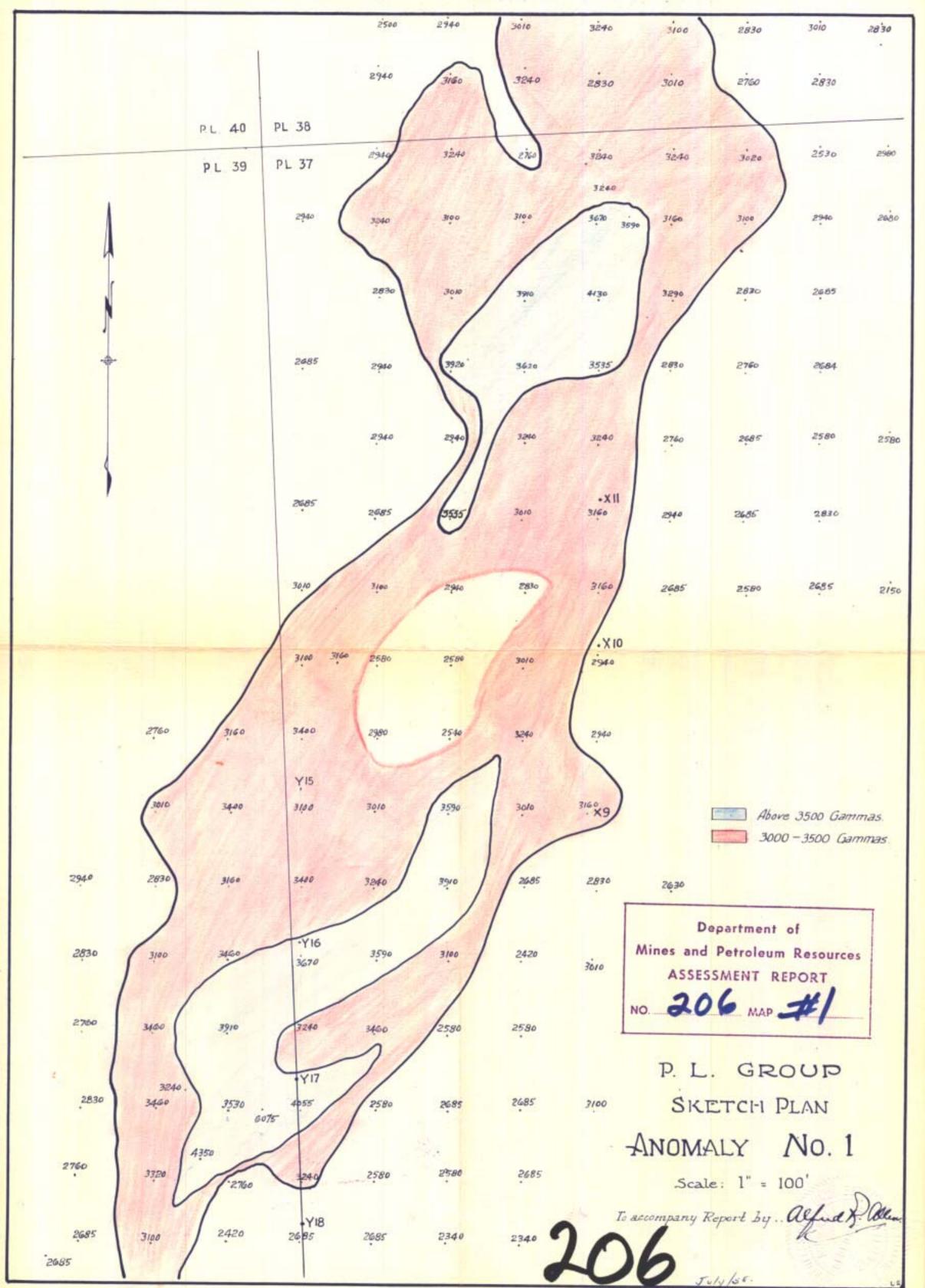
Five distinct magnetic anomalies have been outlined by the magnetometer survey of the PL 1 - 48 mineral claims area. The number one anomaly occurs in a sone of highly sheared andesite not far from contact with underlying granitic rocks of the Guichon Creek batholith. This sheared sone appears to be the southwesterly extension of a similarly mineralized zone on adjoining properties to the north. It is concluded that, since some magnetic deposits are known in the immediate area to contain important copper mineralisation, all anomalies on the PL group should be investigated by additional exploratory work.

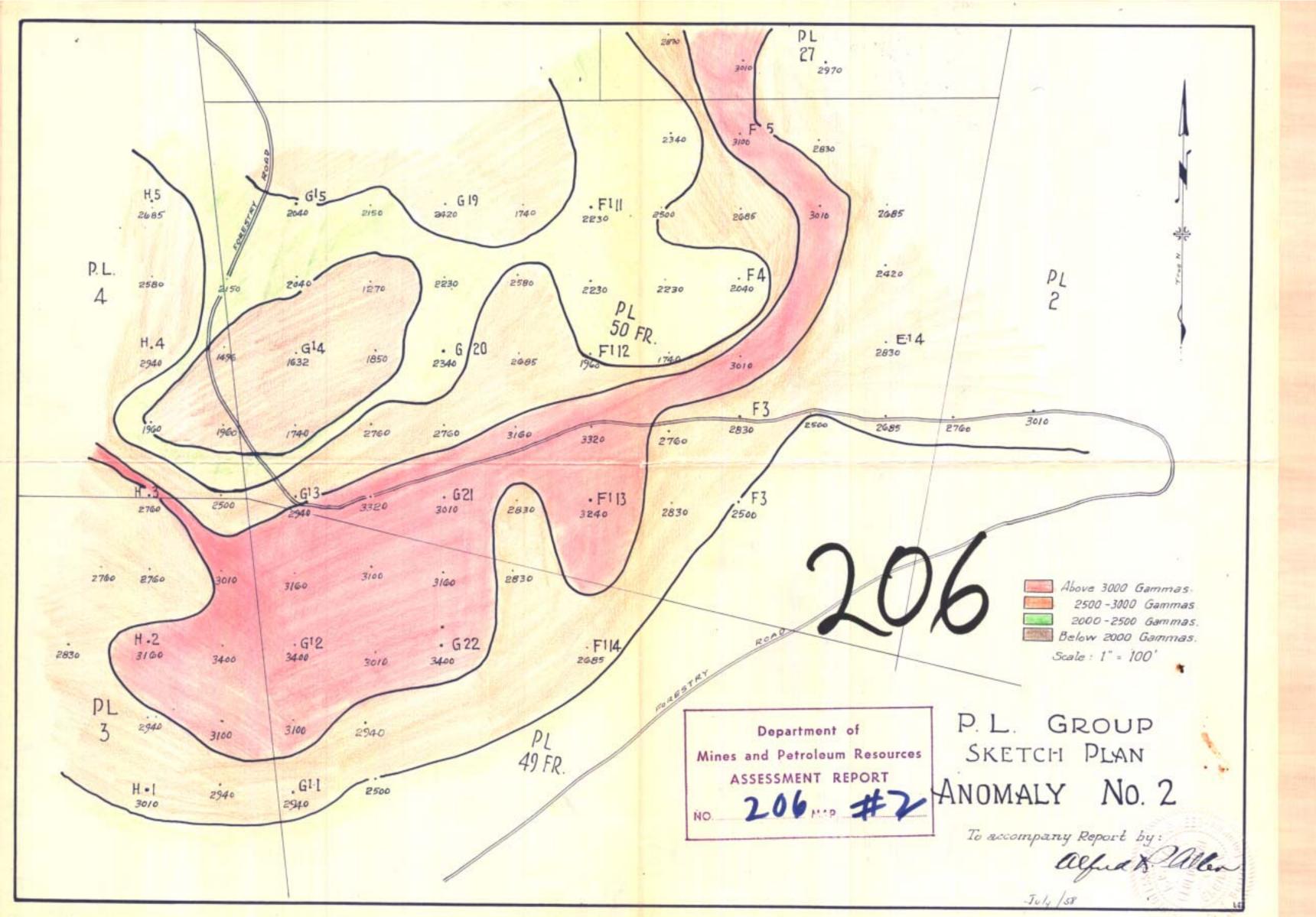
It is herewith recommended that the following exploratory program be carried out on the PL group:

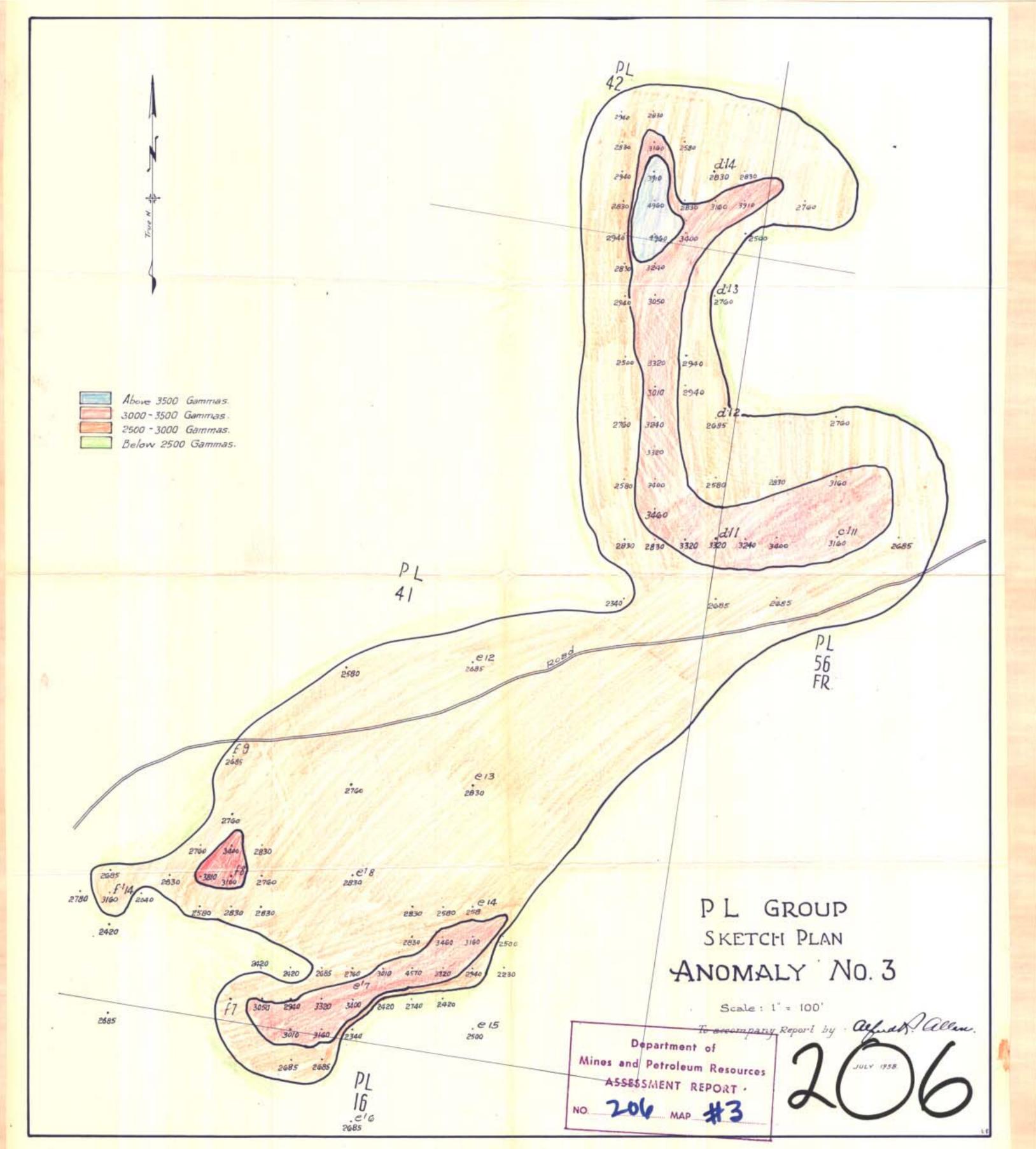
- 1. Anomaly number 1 diamond drilled to test the sone for copper and other valuable mineral content.
- 2. Anomalies 2, 3 and 4 be explored by whatever means are deemed suitable after completion of diamond drilling on anomaly number 1.

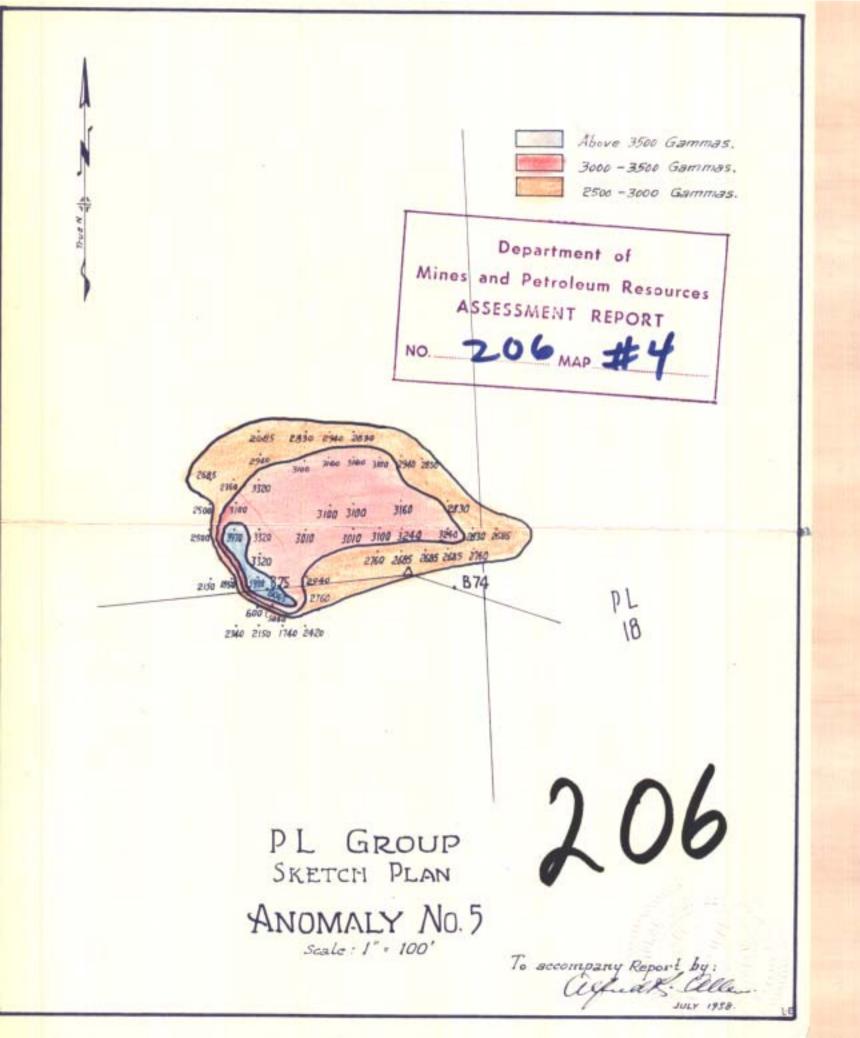
Respectfully submitted,

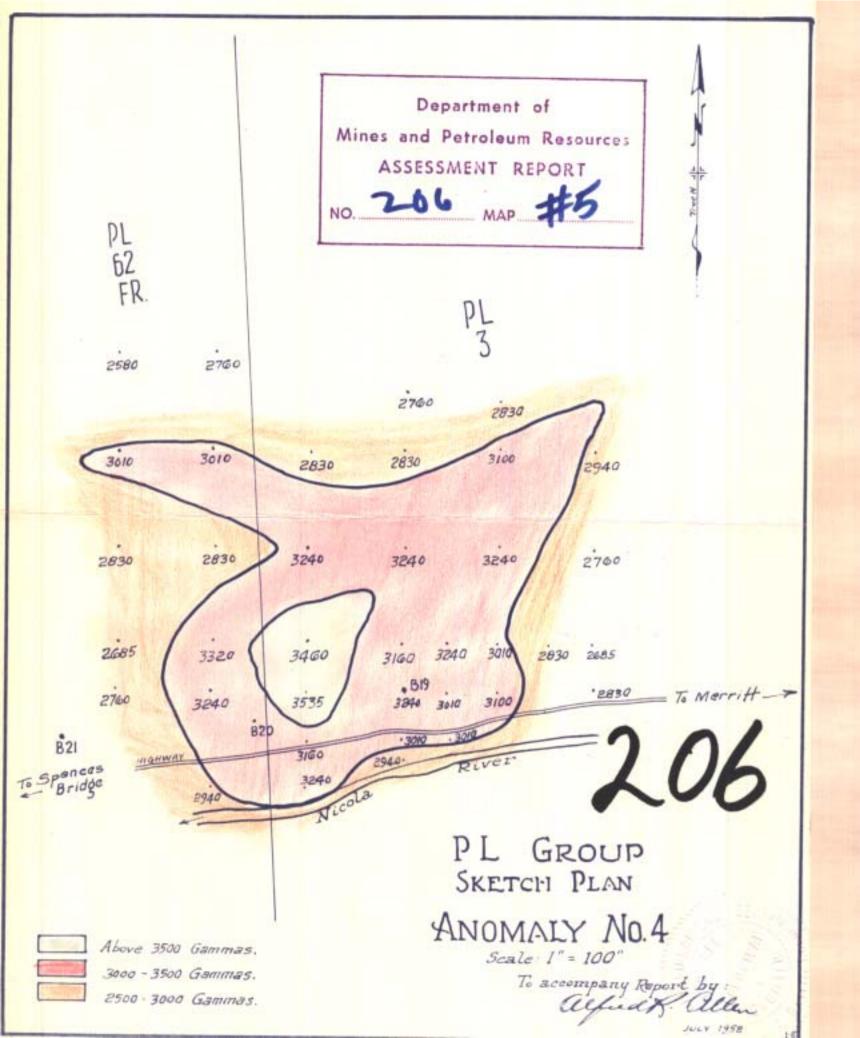
afred alla


Alfred R. Allen, P. Eng.


Merritt, B. C. July 16, 1958.


REFERENCES


- Memoir 249, Geology and Mineral Deposits of Nicola Map-Area, British Columbia.
 W. E. Gockfield.
- 2. Memoir 262, Ashcroft Map-Area, British Columbia. S. Duffell and K. C. McTaggart.
- 3. Reports of Minister of Mines of British Columbia.


• • - • •

	E S r q1 q p1 p 01 0 n1 n m inne the form of the form	m li l kik ji j i i i hi h ĝi ĝ fi f m li l kik ji j i i i i hi h ĝi ĝ fi f m li l kik ji j i i i i h h h ĝi ĝ m li l kik ji j i i i i k h h h ĝi ĝ m li l kik ji j i i i i k h h h ĝi ĝ m li l kik ji j i i i i k h h h ĝi ĝ m li l kik ji j i i i i k h h h h ĝi ĝ m li kik ji j i i i i k h h h h h ĝi ĝ m li kik ji j i j i i i k h h h h h h h h h h h h h h h h	ei e di d ci c bi b ali a zi z yi y yi y xi x i i i i i i i i i i i i i i i i i i i
To PARTICLE BRIDGE	2 2 2 2 2 2 4 4 2 4 4 2 4 4 2 4 <th></th> <th>$\frac{1}{100}$</th>		$\frac{1}{100}$

TA/-1 1		VI	F1 [[T-I	т	5-1	S	R-1	R	Q-1	D	p-1	р	0-1	0	N-1	N	M-1	М	Ŀ1	L	K-1	K	J·1	J	ŀ1	I	1-1-1
					İ		Ī		Î						Ĩ			1										
10	6,25 80 842	, ²³	8. 25	80 Barto	23 *2830		2005	°2760	257 2530	1					2580	2685	24 2685			1685	23		2085	ion the	16 2685 15	8.50	0 2580	2500
24	°2340	28 2940 21 2501	2500 2	to the set	22 2940 21		3 2685		23 2005	ògia	11 0 2400	8,42	923 2580	****** ****	2580 2580	10240	2740	20.20	2428 92830	102210	22 02580	G	02760 3 2580	3.50	14 14 12580	200420	3 2485	"On the
100 0.500	4 toght	1 100 A	2580 4 2580 4	to the gate	2765 2685	10 ave	4 *2140		22 2685 81	8,00	13 2420	and	2580 21 2500	10.5°	6 ⁴ 8760	`0.0M	27 ⁰ 2584	C. C	0 ³ 2580	202450	21 2485 20	a	°2580	No.12.99	13 2760	Carpe Carpe	0.2760	10,10°
20 34P	5.000 "0 10"	18 18 18	16 ⁴⁹ - <u>5</u> 6	20 "0,00° 36	19 8760 18	802190 2000	2764 6 2685	60	20 20 26 2685	12 00 00 00 00 00 00 00 00 00 00 00 00 00	14	1 2 2 50° 31	1 20 2420	to get	95 2685 8 3100	* 0,000	020 01 19 02550	1002000 Hogens	92760 92580	·° 2750	2°2500 19 °2420	Serte Contro	92685 92685	"out	2485 11 2685	100 2 5 5 40 O	8-760 8-760	10 - AP
38 4	3010 °V	17 2540 W	8 28 8 20	15 SUP	"£940 17 27Ge	144°	9 2760	Fi Fi	19 2760 18	Sealer Sealer	15 2680 16	Bart B	18 1500	3,550	°2760	10°40	FR. "2800	12 gaso	0 2580	180 A.S.	•18 •2760	~e150	97 9580	10,100	,10 2780	52580 10 085	7 2,830	*00710
600 8,000 T	B-2010 - 50	2830 1 15	2.0° 20	15 Hayse	16 2685 16	200	69 2085	:0.89°	2500	1020	17 92685	^c apost	(7 3485 16	8.02580	°2944	19,00 10,00	2760	1 of the	°2685 °2685 °2685	1602180	°2685	102700 200718P	°8 2760 °760	8029°	9 2700	6 20	09 2580	100150 D.090
500 B2580	2760 0 00 1 1 2830 0 00 1	2085 14 0 <u>0420</u>	99 23 99 23	185 00000	6 2550 14 2160	*0.68°	010 2485	20,00	015 2760	9	18 2585 19	00,000 M	02500 02500	0. ja	0 ¹⁰ 2500	"ajk"	15	10,50	2085	10216°	65 2685	"ogta ⁰	6 ₂₇₆₀	600 C	97 3100	5.00 C	0 ¹⁰ 2760	90000
3 200	2580 000	and a second	2.00°	50 50 100 000	13 2760 12	0.000	11 20685 JE 2830	1.000	2760 924 2565	e las	23 6 [580	Sept	92340	Cales .	12	10.00°	13	· · ·	11 02830	10,180	0/3 2485	5. 40	2580 2580	**.5 ^{8*}	5 2480	8250	0" 2580 12 2685	*0,00°
a gase of	13 2580 8 pt	11		140 °C'	2830 11 3010	*025 ⁰	0 ¹⁹ 2830	10,00°		in and	22 22	**************************************	3 2 AZU	-Q.			13 276 12 2764							017			0/8 2740	1202280
37 /	2580 8 ft 2580 8 ft 2150 8 gt	2005 2005	code of	50 8 g	10 J. 2580	1 28 10 L	2085 2740	* 0,5 ⁵⁰	0	1000	20 8 2764	10000 P	8 2500	-90-	15	1	2085	e 40	-14	10,00	10 95.80	N D	015	o dage	2	8220	0/5	- dha.
40, 44	15 % 60 2040 % 60 2/6 % 60 2580	2580		160	2760				10 76	200 00 00 00 00 00 00 00 00 00 00 00 00	2685	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2769	Color and	92764	- * 50°	-09 -2685		2704	- az 10	-2258	2.8	° 10 E940	1400 1400	- 2005-	- 82020 1	016	
10,00	\$500 °	2580	o da o	7 1021P	92940		1	*02160 221	8 2760	2000	3 28%	354	0 ⁸ 2834	20,00	17 2580	6.20	8 278 07	, 00,90 10,90	17 *258		9 2500	40 04	018	1.00	17 2508 18 2470	1 0200 82500	0 ¹⁷ 2780	*0
	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 10 3	94.08	6 0	5	مي ج. مي	2940	22.40	92688	20.00 B	4 8740		2760		- 19		00	a a	0 ¹⁸ 251	10 2:140 ON	.de Perce	0/10	0 ¹⁹ 2580	P. 420	19 02500	3,50	019 2685	10,14
	20 10	1000 4	A E	0 1000	o4	to 800															5 8685 4 2760	5000 P	20 2580	Vogse	20 02500 21	Sease	0 ²⁰ 2485	80 p10
10 10 100 100	D 2500 %	2940 2940 0 2420	6 210 02	200 840 200 840	02 2830 2830	0 20 28 44	3104	and a	°2830	Topso	- ² 2944	200	258	10200	0 ²² 276	0 10 24H	200 9 1 248	5 060	21 0250	· *****	62 F	10.25°	2740 22 2340	2'a Caro	02340	e ger	92.230	Vera
100 Bygg	23 2485 0.5	8 2005 2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0,0	" 8760	te ore	2830 2830	30,500	2 2580		2834 9 2764	. 18.9°	2 2 2081	F 60,080	23 258	0 10,000	02784	10.00 C	022 268 268	5 0 2 40	02685	200 C	23 2700 24	12.00	23 2685	3 B16	028 2830 80 2940	B LA
4 345 30 E760	2580 200 224 000	2760 £	10 2140 02	4 8000	30 2760 30 2830	Pieres Cont	SHOETEN B	0,990	o záste	14 opcas	53.0 FR.	2000 B	0 2830 80 B	29 3	258 28 0251 160 28	27 B	5 250 26 B	25 B2 340 33	HIGT	23 BE	2 Bi			2 200	07.5 07.5 07.5 07.5 07.5 07.5 07.5 07.5	8214	24 2685 25	509 50 A
2940 V	25 0 0 0	9 29 3340	and a store	50 20 21 14	29 3240 28	\$ 258°	26 26	10 27 27	24	23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26.85	100 m	40 0.42	- ch ngt	2G 3196	= \$.5°	9130 2130	10 00 00 00 00 00 00 00 00 00 00 00 00 0	025 268	2085	24 0 2580	2000	Sino 2 BLC	349		25010	2500 026 2500	the state
B 000	2540 000 2540 000 27 000	27 3100	2 4 2	7 100 P295	3240	10,00	3100 28 3010	20000	27	20100	258	10 400 00 00	25	2000 and 1000	3130 028 3130	****	3110 27 3110	F			1	/st	/		~	80,100	- 9 <u>27</u> 250	0000
1740 6 Po f	20 2000	24 2940 25	10 00 00 00 00 00 00 00 00 00 00 00 00 0	20 2000	26	200	29 2085	2000 CO	2580	26,480	210	0	250	2021a	29	\$. 2810	0512	/	ļ	/	14	/					-	-
2240 20 10°	3000 10 10	2940	Ser 3	100 000 000 000 000 000 000 000 0000 0	2800	o the state	2685								//	/	/		1	20/	/							1
1.= 1	35	64.0-1			1					L	. 1	34	. /	/	/			/	12	/				L	1	58		1
					1							/	/			(- /	1	/						5			1
																: 4)												-
																	*											

.

GIGFIFEIE DIDCICAIA °2760 8 2420 8 2420 022 2420 2420 03 1960 02% 02540 2485 2230 0200 020 2230 2580 9900 01900 1900 °2420 0 2580 2040 018 ph 02150 9700 01740 01750 6° °2580 Rock 2500 0100 023 de 9 0¹⁵0 0¹⁵2340 2230 0 1960 0 1960 0 2230 02230 000 02420 300 250 26° 6230 2340 0 242 0 2420 2500 2340 320 9450 200 200 29 2700 010 02420 00 2420 00 2230 00 2150 2340 64 2500 ct 2500 at 2500 at 2500 at 2500 90,00 07000 80 40 2420 0820 000 000 2420 000 2150 000 Endo 000 02085 BAR 2500 900 21 917 0700 02740 2750 02 00 04 645 0 0 2000 2000 2000 00 2000 18 8500 80 4 00 2500 $\frac{500}{500} \frac{5}{50} \frac{5}{50$ 2585 X 40 3 2 1850 3 4 1550 6 2830 9 Pro 58 37 00 2580 2580 2830 3885 17 Sager 21 Sager 25 18 3000 022 300 02230 00 1 -LEGEND 2420 2 6 2400 000 21 000 019 000 000 20 000 20 000 2500 Base Line. Transit Station. Magnetometer Readings in Gammas (Shorpe D-1-M) <u>۵</u> 26________ 2000 - Jagie 20 Pagie 3000 24 20 2340 0 2750 Grid Lines. A A1, a, al Mineral Claim Boundary. 16.6° 2500 Land Lot Boundary 20,50 02655 °0 - Highway. Mineral Claims of P.L Group. 50, 57 FR. Anomaly. 23 L. 132 PL GROUP NICOLA MININĠ DIVISION, B.C. Plan of MAGNETOMETER SURVEY Showing ANOMALIES alfred B. allen May - July 1958.