$$
435
$$

REPORT OF GEOPHYSICAL SURVEY
CC \#50 ARD $\mathrm{J}_{6} \mathrm{~L}_{\mathrm{e}}$ \# 200
CLAM GROUPS

LIARD MINING DIVISION
By G.W.H. Norman, P. Eng.
July and August, 1962

$$
1049 / 3 w
$$

CONTENTS

INTRODUCTION ...
LOCATION ... 1
DESCRIPTION OF INSTRUMENT 1
WORK PERFORMED ... 3
WORK PROCEDURES .. 4
RESULTS .. 5

1-8 PROFILES 1-4, 6-9 inclusive In Polder
9 ISOGAM CONTOUR MAP 1,000 feet to the inch In Folder

Department of

Profile n	
$2 W$	$1 E$
$4 W$	$3 E$
$6 W$	$7 E$
$8 W$	$9 E$

Mines and Petroleum Resources ASSESSMENT REPORT

NO. \qquad MAP \qquad

CC \#50 AND J.L. \#100

CLAIM GROUTPS

LIARD MINIMG DIVISION

By G.W.H. Norman, P. Eng.,
July 1st to August 21st, 1962.

IHTREDUCTION

This report presents the results of an Airborne Magnetometer Survey carried out on the CC \#50 and J.L. \#100 claim groups during July and August, 1962, The magnetometer used for the airborne work was a Varian type developed at Palo Alto, Galifornia. Poor flying weather during execution of the work added considerably to the cost.

LOCARION

The CC \#50 and J.L. \#100 claim groups are located at the headuaters of Galore Creak, a tributary of the Soud River. The Soud River flows northwest into Stikine River about 50 miles north of the B. C. Alaska boundery. The claim groups are 24 miles southeast of the Scud-Stikine river function.

DESCRIPTION OF IASTRUUTRNX

The instrumentation of the Varian magnetometer is based on the effect of the earth's magnetic field on atomic nuclei.

The atomic nuclei are protons or combinations of protons of which the simplest are the protons of hydrogen atoms. Kerosene provides an adequate source of hydrogen atoms with advantages for Varian type magnetometers over other materials containing hydrogen. The kerosene is placed in a cylindrical container and towed 50 to 100 feet below the alroraft. It is thus removed from local disturbing forces In the airoraft. The container is surrounded by a coll through which at one second intervals a current is forced to flow. When the current in the coil is cut off the hydrogen protons are oriented in apace by the controlling forces of the earth's magnetic field. When the current flows through the coil a strong local magnetic field is set up to act on the hydrogen nueloi. This locel field is sufficient to completely counteract the earth's magnetic field. The effect on the protona when the current is cut off and they reconform to the earth's magnetic field provides means, with appropriate electronic instrumentation of measuring the strength of the earth's magnetic field.

The instrument is coupled with a continuous recording device provided with a metric chart about 6 inches wide travelling either one or four feet per second as required. Readings are taken by the instrunent at intervals one second apart when the current in the coil is cut off. In an aircraft travelling 60 miles per hour, successive readings would be 88 feet apart. With a helicopter traveliling 45 miles per hour the readings would be 66 feet apart.

The acale of the metrio chart is 50 gammas per centimeter which allows for changes of 600 gammes across the width of the chart. When the differences in reading exceed 600 gammas the recordex automatically steps up or down to change the datum or centre line of the chart by 250 gammas.

The Instrument meagures the total intensity of the earth's field in gamas. The average total field is approximately 57,000 gamas: The settings of the instrument pro. vide a course setting with 5,000 gamm intervals starting at 45,000 gammas, and aele switching setting from 0 to 5,000 gamas. Ths instrument has, therefore, an automatic range of 5,000 gammas before manual changes to other settinge are required.

WORK PERFORNED

The airborne survey was carried out by a Varian type proton precession magnetometer monnted in a Bell 62 Helicopter. The helicopter was under charter from Paoific Helicopters Ltd. of Vancouver. The work was auperviaed by G. W. H. Norman for Newmont Mining Corporation acting under an egreement with Southwest Potash Corporation, owner of the claims.

Installation of the magnotometer in the helicopter was carried out by George Melaughlin, formerly electronic specialLet and engineer for MePhar Geophysios Limited of Ontario and now on the staff of Newmont Exploration Limited.

Mr. MoLaughin spent the period June 29th to July 7th, 1962, on the magnetometer survey. Charles Elliot, geophysicist on the staff of Neumont Exploration Limited, worked on the project during the period August 7th to August 12th, 1962. G. W. H. Noman supervised and planned the survey and processed the charts for the preparation of a isogam contoured map to illuatrate the reaulta of the work, which totalled 18 days from July lat to 7th, August 7th to 12 and August 17th to 21st, 1962.

WORK PROCEDURES

The claims cover a strip of glacier, at the headwatexs of Galore Creek, and the adjoining valley sides from the ice at 2500 feet to 6000 feet above sea level. Due to the steepness of the valley sides and irregularities of the surface due to the minor valleys and canyons cut by side streams, straight filight lines could not be flown.

The first nine lines on July 3rd were flown at definite contour intervals with the pilot of the helicopter flying at a constant elevation. These lines were flown with George MoLaughlin as operator of the magnetometer and navigator. Por navigational purposes a contoured map of the claims on about 2000 feet to the inch was used. In order to plot the filght lines on the contoured map, all streams and stream junations were marked on the chart by a manually operated fiducial marker. A small bellows, held in the hand of the operator, makes small ticks when pressed on an otherwise straight red ink line on the right side of the chart.

One or more ticks can be made with the marker to identify any spadial point along the line. The start and finish of each line were indicated by ticks of certain lengths.

The instrument was flown approzimately 200 feet above the ground. The cable of the instrument bird had a length of 50 feet which positioned the helicopter 250 feet above ground. A check of the altimeter in the helicopter on the ground provided a means of plotting the line on the contoured map. This method proved adequate for the internal part of the lines but difficulties were encountered in determining the exact start and ends of the lines.

On august 12 th, the lines were reflown using aerial photographs on a scale of about 4000 feet to the inch. Due to the almost identical appearance and shape of anow banks on the photos and on the ground, navigation and location of the lines on the photographs proved to be simple and quite accurate. Six lines were Elown on August 12th by G. W. H. Norman.

The lines flown ranged from 500 to 1500 feet apart which would give an average of 1000 feet apart.

RESULTS

The firbt nine lines by Mclaughlin as indicated in attsehed profiles 1-4, 6-9 inclusive (end pocket), show a definite magnetio high peaking (maximum 1250 gamas) in the general vicinity of Copper Canyon Creek. Profile 2 ia a line down the centre of the glacier and the high is clearly indicated even on this line.

The general feature of this high is a gradual inexease westward in the magnetic readings to the high point of the profile and a more abrupt decrease on the west side of the high. This type of curve suggests a ateeply east dipping zone and is in agreement with the general east dip of the rooks at the north side of the glacier.

The ends of six lines by Norman could be located more precisely than those by MoLaughlin and an isogam contour map was constructed from these lines (see map and pocket). The contour map agrees with the profiles in ahowing a magnetic high extending east of south from the upper part of Doghouze Creek across the central part of Copper Canyon Creak. The contoured high has a more gracual build up on the east sida indicative of a steep east dip.

The high on the contour map is approximately 1000 gammas. The difference between this peak and the highest peak 1250 gamas on the proftles may be due to a difference in altitude of the magnetometer or the lines for the contour map did not cut across the highest part of the anomaly.

The magnetic high lies over a syenite mineralized with magnetite, pyrite and chaloopyrite. The syenite ends against an east dipping fault. The magnetio high is produced by the syenite mass and the east dipping fault apparently explains the shape of the magnetic profiles.

Purther work will be required to find out any relationship of the high to the intensity of mineralization.

August 22nd, 1962.

DOMINION OF CANADA:
 Province of British Columbia.

To WIT:

In the flatter pf costs and oharges incurred in the alrborne magnetometer coverage of the CC \#50 and JL 100 claim groups at the headwaters of Galore Creek, Liard Mining Division

1. G. W. H. Norman, P. Eng..
of
604-744 West Hastings Street, Vancouver 1,
MRE. \qquad . 8 VANCOUVEr, B.C
in the Province of British Columbia, do solemnly declare that the costs, charges and related expenses of the magnetometer survey were as follows:

Newmont Exploration Limited, Charges:

Serviaes of geophysical engineers (electronic experts)
George MoLaughlin 9 days and Charles Elliot 5 days
$\$ 1,000.00$
Varian type magnetometer 2 weeks © 400 per month
200.00

Pacific Helicopters Limlted, Charges:
gis hours $\$ 108.00$ per hour
945.00

Neurant Mining Eorporation of Canada Limited, Charges:
G.W.H. Norman, project engineer, 18 days $\quad 1,000.00$

Food and camping facilities
300.00
$\$ 3.445 .00$

And I make this solemn declaration conscientiously believing it to be true, and ,knowing that it is of the same force and effect as if made under oath and by virtue of the "Canada Evidence Act."

Sub-mining Recoriter

58250-

$$
435
$$

$$
435
$$

