$$
468
$$



## I.R. AND RESISTIVITY SURVEYS

## ZEPHYR GROUP, MAJOR PROPERTY

## CARIB00 AREA $52^{\circ} 122^{\circ}$ S.E.

## PROVINCE OF BRITISH COLDMBIA

$$
93 B / 9 W
$$

## ABSTRACT

In September and early October about 18 line miles on the Major Property, Cariboo Area, British Columbia were investigated by induced polarization and resistivity surveys. Base lines and picket lines had been cut and chained previously in the period July 20 th to August 18th.

The geophysical results are shown on DWGS 2430 and 2431 and four areas are recommended for further work.

## Copartmont oi

Mines and Petroleum Resources A:
no. 468 MAP

## TABLE OF CONTENTS

Page Number
Introduction1
Property ..... 1
Location and Access ..... 1
Geology ..... 2
Geophysics ..... 2
Induced Polarization ..... 3
Recommendations and Conclusions ..... 5



DEG 2430
Induced Polarization Survey of Major
DEG $2431 \quad 2$
Resistivity Survey of Major Property

## INTRUDUCTION

Although an adit of approximately 120 feet had been driven on the Sunset showing and extensive diamond drilling carried near the showing apparently only surface prospecting had been done over the surrounding area. As this area is generally covered by overburden the present uwners decided that gepphysics would be neoessary to evaluate this Ground and that an I.P. survey and resistivity survey would have a goud chance of identifying any nearby mineralized areas.

This report covers the geophysical work done on this property.

EGOPERTY
The group of claims designated the Major Property consists of the Zephyr Group 1-16, the Pan Group 1-5, the H.C. Group 1-20 and Xaire 1 and 2 totalling 43 claims in all. The main part of the survey was done on the Zophyr Group of claims.

## LOCATIUN AND ACCASS

The group covers part of the west slope of Granite Mountain. The Sunset adit is on the lower part of Granite Creek at approximately 3,160 feet elevation, about one mile east of the north ond of Cuisson Lake. The claims can be reached by an extension of the Cuisson Lake road and is 7 miles by road from the Cariboo Highway at the north end of MoLeese Lake.

## GEOLOGY AND MINERALIZATION

The property lies on the west side of Granite Mountain. The intrusive varies from granite to diorite with granodiorite being predominant in the area of the claim group. Varying degrees of granitization are observed in the area with a decrease in intensity toward the south and west.

In the area of the "Sunset" showing some evidence of relict bedding is preserved and it is probable that the copper mineralization is primarily controlled by bedding with fracturing a secondary cause.

Mineralization includes pyrite, chalcopyrite, chalcocite and molybdenite in that order of abundance. Total sulphide content occasionally reaches ten percent. It is generally disseminated with rare seams or veinlets of massive sulphides.

## GEOPHYS ICS

Airborne magnetic results gave an almost featureless pattern over the area. Therefore, it was not considered worthwhile to do a ground magnetometer survey. As the known sulphides showings are below 10\% sulphides the Induced Polarity method was considered most applicable. Since resistivity readings can be calculated as a by-product of the I.P. readings a resistivity map has also been drawn up. The resistivity readings could be expected to show up areas of anomalous resistivity. Some causes of low resistivities are sulphides, shear zones and graphite. As graphite is not known in the general area and the copper mineralization appears to be generally associated with shearing, resistivity could indicate areas of copper mineralization.

## INDUCED POLAR IZATION

When a voltage is applied to a material a current flows through the material. The current may be carried by ions or by the movement of electrons. The movement of current through the rocks is chiefly by ions. In metallic ore minerals the conduction is chiefly by electrons.

If particles of electronic conductors are scat tered through rock, an applied voltage causes the electrons to move across the metallic particles and each particle becomes electrically polarized. This socalled Induced Polarization does not occur instantaneously but requires a short time to reach its steady value, the length of time increasing as the metallic concentration increases. If this polarizing effect can be measured the presence of metallic conductors may be detected.

If current is introduced into the ground by two electrodes, the potential between two other electrodes on surface may be measured. When a D.C. voltage is applied to the current electrodes the potential between the other electrodes soon reaches a steady value. When an A.C. current of the same value is introduced into the ground, the voltage between the two measuring electrodes does not have time to build up to as large a value as in the D.C. case before the current reverses. Hence the potential measured with A.C. will be equal to or less than that measured with D.C. The difference in the two values will depend on the concentration of the electronic conducting particles in the rock.

If Vo be the voltage measured with D.C. and $V$ be the voltage measured with A.C. then the so-called metal factor is given by

$$
m=\frac{V_{0}-V}{V_{0}} \times 1000
$$

The survey was conducted as follows: A base line was started at the adit and driven 1,200 feet in a $N 45^{\circ} \mathrm{W}$ direction and 4,400 feet in a $\mathrm{S}_{3} 5^{\circ} \mathrm{E}$ direction. Lines were turned off at right angles at 400 foot intervals and cut 4,500 feet tozthe north-east and 1,500 feet to the south-west. Secondary base lines were cut at $2,000 \mathrm{~N}, 4000 \mathrm{~N}$ and $1,500 \mathrm{~S}$.

One current electrode C2 was placed 4,000 NW of point $2,000 \mathrm{~N}$ on line $12+00 \mathrm{~W}$ and an insulated wire was strung along the $2,000 \mathrm{~N}$ secondary baseline. The generator was placed at the intersection of the 2000 foot baseline and the picket lines and a second current electrode Cl was placed 300 feet from the base line along the picket line. Two potential electrodes P1 and P2 were placed at 100 and 0 feet from the base line. A given current of 40 milliamps was caused to flow and the potential between P1 and P2 measured first with D.C. and second with 6 cycle A.C.

To eliminate the effect of spontaneous polarization, the selfpotential was measured at each station and the corrected D.C. voltage obtained by calculation.

The electrode system C1 P1 P2 was moved as a unit a distance of 1,000 feet north and south along each picket line from the base line 2,000 N. Similarily wires were stretched along base lines 400N. 0 and 1,500 5 and connected to $C 2$ and readings taken 1,000 feet out from these base lines.

The values for the metal factor were calculated from the formula $\frac{V_{0}-V}{V} \times 1000$ where $V_{0}$ and $V$ were the resistivities measured with D.C. and A.C. respectively and the values plotted at the mid-position of the potential probes. The results are shown on the I.P. map (DWG 2430).

The data from the A.C. values were used to calculate resistivities which were plotted at the same point as the metal factors but on a separate map (DWG 2431).

## dISCUSSION OF RESULTS

Work to date with this unit indicates that metal factor values of +500 over could be caused by sulphide concentrations. However, the results on this property were extremely erratic with large negative readings obtained in several areas (it is possible that the sheared and broken nature of the rocks were the cause of the erratic results) so that most of the isolated one or two reading anomalies were discounted. For the resistivity results the electrode spacing employed tends to emphasize close to surface changes in resistivity and the values are controlled in part by the changes in conductivity and amount of the overburden. However, it is thought that the best interpretation could be made by considering the I.P. and resistivity results together. With this in mind the most interesting areas for further work in their order of importance are (1) the anomaly cutting lines $24+00 \mathrm{E}$ and 20+00E at around 750 feet south of 0 base line. (2) the anomaly cutting lines $4+00 E$ and $8+00 E$ at around 300 feet north of 0 base line and perhaps the resistivity anomaly immediately to the south of it. (3) the anomaly cutting lines $16+00 \mathrm{E}$ and $20+00 \mathrm{E}$ at around 1,200 feet north of 0 base line (4) the two I.P. anomalies on line $8+00 \mathrm{w}$ at 850 and $1,150 \mathrm{~N}$.

RECOMENDATIONS AND CONCLDSIONS
Although results were quite erratic on this property the four areas mentioned previously deserve further work.

The presence of ore grade mineralization in the adit on the property enhances the values of nearby anomalies and it is reconmended that these anomalies be investigated by geochemical tests on soil samples.

Respectfully submitted,
GEOPHYSICAL ENGINEERING $\varepsilon$ SURVEYS LIMITED
a.R.clad/
a. s. clark. lee.

Toronto, Ontario.
January 2. 1963.

# GEOPHYSICAL ENGINEERING AND SURVEYS LIMITED 

 JOB NUMBER 583E
## STATEMENT OF COSTS:

Induced polarization and resistivity surveys on Major property, Cariboo Area, British Columbia.

## Salaries and Wages:

| (a) Line-cutting <br> (b) Surveys <br> (c) Plotting and <br> calculation | $\$ 1,990.45$ <br> $2,713.50$ |
| :--- | :--- |
| Transportation |  |
| Food and lodging |  |
| Supplies |  |

PROPERTY Zephyr Group－Major Property，Cariboo Area，British Columbia
TYPE OF SURVEY 1．Induced Polarization 2．Resistivity


PERSONNEL AND TIME DISTRIBUTION
NAME ADDRESS TYPE OF WORK PERIOD DAYS

A．Linecutting，Picketing，Chaining：

| Claude G．Lefferson | McLeese Lake | July 20－28 | 7 |
| :---: | :---: | :---: | :---: |
| Ron McBurnie | Vancouver | July 20－28 | 2 |
| Dan Ruskin | Quesnel | July 20－Aug． 18 | 17 |
| Leslie Dahl | Ouesnel | July 28－Aug 4 | 6 |
| Steve Smith | Quesnel | July 28－Aug． 4 | 2 |
| August Hofer | Quesnel | July 28－Aug． 4 | 1 |
| Scott Bond | McLeese Lake | July 28－Aug． 18 | 10 |
|  |  | Total Page 2 | $661 / 2$ |

B．Geophysical Survey：

| John Mayman | Toronto | Operator | Sept．13－0ct．3 | 21 |
| :--- | :--- | :--- | :--- | :--- |
| Angus McDonnell | North Bay | Operator | Sept．10－0ct．3 | 24 |
| Albert Bird | Quesnel | Helper | Sept．15－0ct．3 | 19 |
| William Bristow | Quesnel | Helper | Sept．15－0ct．3 | 19 |

C．Calculating，Plotting，Drafting，Report：

| A．R．Clark | Toronto | Geophysicist | Sept． $15 \cdots 0 c t .28$ | 6 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B．Morant | North Bay | Drafting | Oct． $22-28$ | 4 |  |
| H．$\quad$ Davison | North Bay | Drafting | Oct． $22-28$ | 4 |  |
| J．C．Frantz | Toronto | Interpret | Nov． 5 | 4 | 1 |



## APPENDIX TO REPORT NO.

PROPERTY

C. Calculating, Plotting, Drafting, Report:


| Name Of Clais |  | Tas <br> Number | Name OI Grova |  | ophysics | Arount <br> Claimed | Years Applied |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Zephyr | 1 | 217681 | M12 | 8 | 350 | \$ 200 | 2 |
|  | 3 | 277683 | MA - |  | 350 | 200 | 2 |
|  | 5 | 277085 | Min 1 |  | 350 | 200 | 2 |
|  | 7 | 277607 | MA : |  | 50 | 100 | 1 |
|  | 0 | 277088 | ma i |  | 350 | 100 | 1 |
| Pan | 1 | 310035 | MA 1 |  |  | 100 | 1 |
|  | 2 | 310030 | MA 1 |  |  | 100 | 1 |
|  | 3 | 310037 | in ${ }^{\text {a }} 1$ |  |  | 100 | 1 |
|  | 4 | 31000 | WiA L |  |  | 100 | 1 |
|  | 5 | 710039 | MA. ${ }^{\text {l }}$ |  |  | 100 | 1 |
| H.C. | 1 | 424011 | MA 1 |  |  | 100 | 1 |
|  | 2 | 424012 | MA 1 |  |  | 100 | 1 |
|  | 3 | 424013 | Wh i |  |  | 100 | 1 |
|  | 4 | 424014 | MA : |  |  | 100 | 1 |
| Zepnyr | 2 | 277682 | Min 2 | 5 | 350 | \$ 200 | 2 |
|  | 4 | 277084 | WA 2 |  | 350 | 200 | 2 |
|  | 0 | 277686 | MA 2 |  | 350 | 200 | 2 |
|  | 9 | 277689 | Wi 2 |  | 350 | 200 | 2 |
|  | 10 | 277690 | MA 2 |  | 350 | 100 | 1 |
| Xaire | 1 | 424257 | MA $<$ |  |  | 100 | 1 |
|  | 2 | 424258 | Wiz |  |  | 100 | 1 |
| H.C. | 5 | 424015 | MA 2 |  |  | 100 | 1 |
|  | 0 | 424016 | lik 2 |  |  | 100 | 1 |
|  | 7 | 424017 | MA 2 |  |  | 100 | 1 |
|  | 8 | 424016 | MA 2 |  |  | 100 | 1 |
|  | 10 | 424020 | MA 2 |  |  | 100 | 1 |
|  | 12 | 424022 | MA 2 |  |  | 100 | 1 |
| Zephyr | 11 | 277691 | MA 3 | \$ | 350 | \% 200 | 2 |
|  | 12 | 277092 | WA 3 |  | 350 | 200 | 2 |
|  | 13 | 277093 | MA 3 |  | 350 | 200 | 2 |
|  | 14 | 277694 | MA 3 |  | 350 | 200 | 2 |
|  | 19 | 277695 | MA 3 |  | 350 | 200 | 2 |
|  | 16 | 277096 | MA 3 |  | 350 | 100 | 1 |
| H.C. | 9 | 424019 | MA 3 |  |  | 100 | 1 |
|  | 11 | 424021 | MA 3 |  |  | 100 | 2 |
|  | 13 | 424023 | MA 3 |  |  | 100 | 2 |
|  | 14 | 424024 | MA 3 |  |  | 100 | 1 |
|  | 15 | 424025 | MA 3 |  |  | 100 | 1 |
|  | 16 | 424026 | MA 3 |  |  | 100 | 1 |
|  | 17 | 424027 | MA ${ }^{\text {\% }}$ |  |  | 100 | 1 |
|  | 18 | 424028 | MA 3 |  |  | 100 | 1 |
|  | 19 | 424029 | MA 3 |  |  | 100 | 1 |
|  | 20 | 424030 | MA. ${ }^{\text {a }}$ |  |  | 100 | 1 |




