

REPORT
on the

GEOCHEMICAL SURVEY
of the

AX \& BX CLAIMS

NEW INDIAN MINES LTD.

ENDAKO, B.C.

August, 1964.
F.J. Hemaworth, P. Eng., Consulting Mining Engineer.

$$
\begin{gathered}
54^{\circ} 125^{\circ} \text { SE } \\
93 k / 3 E
\end{gathered}
$$

TABLE OF COMTENTS

Subject Page
INTRODUCTION. 1
LOCATION AND PROPERTY 2
GENERAL 3
TOPOGRAPHY 3
GEOLOCY 4
GEOCHEMICAL SURVEY
-Survey of Grid 4
-Soil Sarmpling Mothod. 4
-Analyses. 4
INTERPRETATION OF RESULTS 5
LIST OF SAMPLES AND ASSAYS Appendix
geOchemical surver plan Envelope

Department of Mines and Petroleum Resources ASSESSMENT REPORT $\text { No. } 5.55$ MAP \qquad

Fred J. Hemsworth
 MINING ENGINEER

> REPORT
> on the

GEOCHEMCAL SURVEY
of the
AX \& BX CLATMS
NEW INDIAN MINES LTD.
ENDARO, B.C.

INTRODUCTION
A geochemical survey for molybdenum was carried out on the AX \& BX group of mineral claims, Endako, B.C., for New Indian Mines Limited, during June and July of 1964. Geochemigtry, or soll testing, was done as part of an exploration program aimed at finding bodies of molybdenite mineralization. Soll samples were tested at a laboratory at the University of British Columbia, and the results reported in parts per million of molybdenum.

This report on the soil testing surver and the accompanying map are submitted in compliance with the Mineral Act olaiming geochemical work for assesament purposes on the group of claims outlined in the text of the report.

LOCATION AND PROPERTY

The AX \& BX claims are situated in the Onineca Mining Diviaion, adjacent to Highway No. 16, seven miles west of Endako, B. C. The geographical position is latitude $N 54^{\circ} 08^{\prime}$, longitude W $125^{\circ} 07^{\prime}$.

The AX 1-10 \& BX 1-8 clains were ataked in 1962 by hurray Suetz of Vancouver, B.C. Particulars of the claims are as follows:-

Name	Tex Ho.	Record NO	Hecord Date
AX \#1	447493	16352	Sept. 27, 1962
AX \# $\# 2$	447494	16353	Sept. 27, 1962
AX 73	447495	16354	Sept. 27, 1962
AX \#4	447496	16355	Sept. 27, 1962
Ax ${ }^{1 / 5}$	447497	16356	Sept. 27, 1962
AX \#6	447498	16357	Sept. 27, 1962
AX \#7	447499	16358	Sept. 27, 1962
AX \#8	447500	16359	Sept. 27, 1962
Ax 79	447641	16360	Sept. 27, 1962
AX \#10	447642	16361	Sept. 27, 1962
BX \#1	453982	16344	Sept. 26, 1962
BX \#2	453983	16345	Sept. 26, 1962
BX / $/ 3$	453984	16346	Sept. 26, 1962
BX. 44	453985	16347	Sept. 26, 1962
BX 75	453986	16348	Sept. 26, 1962
BX \#6	453987	16349	Sept. 26, 1962
BX \#7	458304	16350	Sept. 26, 1962
BX 88	458305	16351	Sept. 26, 1962
AB Fraction	540924		July 13, 1964
The preliminary survey of the claims/indice			
la fraotion between the two groups. The AB Fraction was			
\|staked by Douglas R. Foater on July 2, 1964, and recorded			

GeNERAL

In the spring of 1962, interest in molybdenum In the Endako area was aparked by the Pavorable resulta of diamond drilling, carried out on the old Stella molybdenite property, by Endako Mines Litd. The drilling showed that the surface values had been impoverished by weathering, and that better grades could be expeoted at depth. Canadian Exploration Company concluded a Pinancing arrangement with Endako Mines, whereby the funds were provided for exploration and production. During the last two years Canex has been engaged in intensive development of the property. Diamond drilling, surface stripping, and underground work has proved a multi-miliion ton deposit of molybdenite of low but conaistent grade. Production on a basis of 10,000 tons per day is scheduled for mid-summer of 1965.

The AX \& BX group is three miles west of the Endako Mines property.

TOPOGRAPHY

The most northerly claims, $A X 1-4$ \& BX 1 \& 2 are situated on the north side of the Endako River velley, and consist of flat-lying grazing land. In these gections there are several large gravel deposits. The depth of overburden is Indeterminate. Soil sampling is assumed to be effective to a depth of 30 foet of overburden. In places the depth of overburden in the valley floor may be greater, making soil aampling ineffective in these areas. The remaining southerly olaims are on the hillaide, were the depth of overburden is ahallow.

Watkins Creek flows in a north-eastern direction through the eaatern portion of the BX olaims, and joins the Endako River southuest of Savory station. The upper reaches of the creek flow through a steep-sided canyon.

Elevations on the claims vary from 2,500 feet at the roed to 3,200 feet at the south end.

GEOLOGX

The government geologiaal survey map 631A shows the $A X$ \& BX claina to be underlain by Topley granite. The Topley intrusives are acidic granitic rocks of probable Jurassic age. These are the host rocka for molybdenite in the Endako area.

Rock outorops constitute about 38 of the area of the claims. The rook exposed is a granitic rock, grey to pink in color, and made up of pink and white feldspar, quarta, biotite, and hornblende.

GEOCHEMICAL SURVEY

Surver of Grid

The location lines of the alaims, which run in a southerly direction, vere surveyed by Branton compass and chain, and used as baselines, Stations were marked at 400-foot intervals along the baselines. From these stations, lines were run east and west to the claim boundaries. Soil samples were teken at $200-$ foot intervals along these cast-west sidelines. The grid thus formed was at 400-200 loot intervale as ahown on the attached plan.

Soil Sampling Mothod

The field orew consisted of two men. At the sample intervals, (200 feet), a shallow hole was dug with a garden trowel. The hole was deep enough to get below the surface humus. The soil samples were taken at a depth of about six inches, from the (A3 horison). About 200 grams of soil vere placed in a smali plastic bag, labelled, rolled up, and secured with an elastic band. Samples were carried back to camp in a small packsack.

Analyseas

The samples were shipped to the University of British Columbia where they were analysed for parts per million of molybdenum. The procedure used was the thiocyanate, stannous chloride method. The results of the analyses of the 443 samples are shown on the plan and are listed in the appendix.

The normal background varies from 0.8 to 9 parts per million. Samples running $10-19$ parts per million are marked in orange on the plan. Samples containing 20 or greater parts per million of molybdenum are marked red on the plan and are considered anomalous.

A large anomaly is indicated on BX 1-4 olaima. This is on the low-lying area, where gravel deposits indicate that Watkina Creak has overflowad its banks and changed its course many times. It is belleved that the molybdenum has been carried down the creek from the higher elevations, and accumplated in the valley. In any aase it is very diffioult to investigate this area as the bedrock may be covered by several hundred feet of overburden. The same situation applies to the flat-lying AX 1-4 claims.'

An anomalous area is indicated on the hillside, and stripping and trenching is recommended east from station M and station N, apd some work near station G and east of station H. The reisults of this stripping will determine whether diamond drilling is merited.

Respectfully subaitted,

Auguat, 1964.

University of British Columbia - Hut M-12

Soil Samples Received from New Indian Mines Ltd.
Analysia for Mo in parts per million
Hot $\mathrm{H}_{2} \mathrm{SO}_{4}$ Attack
Sample No. Mo(ppm) Sample No. Mo (ppm) Sample No. Mo (ppm)

N1235	4.0	N1274	10.0	N1313		20.0
N1236	2.0	N1275	12.0	\$1314		10.0
N1237	$f 0.8$	N1276	4.0	N1315	1	8.0
N1238	$+0.8$	N1277	20.0	N1316		20.0
N1239	2.0	N1278	2.0	01317		4.0
N1240	0.8	N1279	18.0	W1318		26.0
N1241	0.8	N1280	8.0	N1319		22.0
N1242	0.8	N1281	24.0	N1320		20.0
N1243	18.0	N1282	24.0	W1321		12.0
N1244	16.0	N1283	28.0	N1322		16.0
N1245	10.0	N1284	28.0	N1323		16.0
N1246	28.0	N1285	20.0	W1324		20.0
N1247	4.0	N1286	20.0	N1325		8.0
N1248	28.0	N1287	28.0	N1326		10.0
11249	40.0	N1288	8.0	N1327		16.0
N1250	22.0	N1289	26.0	N1328		20.0
N1251	24.0	N1290	26.0	N1329		68.0
N1252	8.0	N1291	18.0	N1330		12.0
N1253	10.0	N1292	24.0	N1331		16.0
N1254	10.0	N1293	50.0	N1332		16.0
N1255	0.8	121294	12.0	N1333		4.0
N1256	$t 0.8$	N1295	22.0	N1334		20.0
N1257	+0.8	N1296	6.0	N1335		4.0
N1258	24.0	N1297	0.8	N1336		10.0
N1259	20.0	N1298	8.0	N1337		4.0
W1260	28.0	N1299	10.0	N1338		6.0
61261	+0.8	N1300	10.0	N1339		4.0
11262	0.8	N1301	0.8	N1340		10.0
N1263	20.0	N1302	4.0	N1341		6.0
N1264	0.8	N1303	28.0	N1342		12.0
N1265	6.0	N1304	22.0	N1343		8.0
N1266	8.0	N1305	16.0	N1344		4.0
H1267	14.0	N1306	22.0	N1345		2.0
N1268	0.8	N1307	60.0	N1346		2.0
N1269	0.8	11308	26.0	N1346		12.0
N1270	0.8	N1309	26.0	N1347		4.0
N1271	12.0	N1310	24.0	N1348		12.0
N1272	0.8	N1311	4.0	N1349		2.0
N1273	12.0	N1312	6.0	N1350		20.0

f less than

N1351	6.0	N1399	2.0	N1447	0.8
N1352	6.0	N1400	0.9	N 1448	2.0
N1353	4.0	N1401	0.8	N1449	0.8
N1354	4.0	N1402	6.0	N1450	2.0
N1355	5.0	N1403	4.0	N1451	10.0
N1356	5.0	N1404	6.0	N1452	8.0
N1357	7.0	N1405	20.0	N1453	0.8
N1358	4.0	N1406	20.0	N1454	4.0
N1359	0.9	N1407	6.0	N1455	2.0
N1360	0.8	N1408	6.0	N1456	8.0
\$1361	2.0	N1409	9.0	W1457	18.0
N1362	2.0	N1410	12.0	N1458	14.0
N1363	10.0	N1412	4.0	N1459	14.0
N1364	0.8	N1422	4.0	N1460	12.0
N1365	8.0	N1413	4.0	N1461	0.8
N1366	7.0	N1414	4.0	N1462	0.8
N1367	7.0	W2415	4.0	N1463	0.8
N1368	6.0	N1416	4.0	N1464	2.0
N1369	5.0	N1417	4.0	N1465	6.0
N1370	7.0	N 1418	4.0	N1.466	8.0
N1371	4.0	N1419	4.0	N1467	4.0
N1372	4.0	N1420	2.0	N1468	22.0
N1373	4.0	N1421	2.0	N1469	2.0
N1374	6.0	N1422	+0.8	N1470	4.0
N2375	8.0	N1423	2.0	N1471	4.0
11376	6.0	N1424	4.0	N1472	12.0
N1377	10.0	N1425	0.8	N1473	2.0
N1378	6.0	N1426	2.0	N1474	12.0
N1379	5.0	N1427	5.0	N1475	140.0
\$1380	5.0	11428	2.0	N1476	32.0
H1381	1.0	11429	5.0	N1477	14.0
+1382	2.0	N1430	2.0	N 1478	20.0
11383	7.0	N1431	2.0	N1479	10.0
\$1384	7.0	N1432	3.0	M1.480	12.0
W1385	6.0	N1433	5.0	N1481	0.8
N1386	5.0	N1434	7.0	N 1482	0.8
N1387	2.0	N1435	5.0	N1483	10.0
N1388	0.9	W1436	11.0	N2484	30.0
W1389	0.9	N1437	7.0	N1485	4.0
N1390	2.0	N1438	2.0	W1486	0.8
N1391	2.0	N1439	4.0	N1487	2.0
N1392	0.9	W1440	2.0	N 1488	0.8
N1393	9.0	N2441	0.8	N11489	4.0
N1394	23.0	N1442	4.0	N1490	6.0
N1395	20.0	111443	0.8	N1491	6.0
N1396	12.0	N1444	4.0	N1492	0.8
N1397	2.0	N1445	6.0	11493	8.0
in1398	5.0	N1446	2.0	N1494	6.0

Sample No, Mo (ppm) Sample No. Mo (ppm) Sample No. Mo. (ppm)

N1495	0.8	N1543	2.0	W1591	8.0
N1496	6.0	N1544	6.0	N1592	8.0
N1497	6.0	N1545	4.0	W1593	6.0
0.1498	2.0	N1546	0.8	N1594	6.0
N1499	2.0	N1547	6.0	N1595	10.0
N1500	2.0	N1548	6.0	N1596	8.0
N1501	2.0	N1549	0.8	N1597	8.0
N1502	6.0	N1550	2.0	N1598	12.0
N1503	4.0	N1551	6.0	N1599	2.0
W1504	6.0	W1552	4.0	N1600	4.0
N1505	10.0	N1553	2.0	N1601	4.0
N1506	8.0	11554	6.0	N1602	2.0
N1507	4.0	N1555	2.0	N1603	20.0
N1508	6.0	N1556	4.0	111604	4.0
W1509	2.0	N1557	6.0	N1605	2.0
N1510	4.0	N1558	6.0	N1606	2.0
N1511	0.8	N1559	28.0	N1607	10.0
W1512	8.0	N1560	6.0	N1608	12.0
N1513	10.0	N1561	4.0	N1609	12.0
N1514	4.0	N1562	4.0	N1610	12.0
N1515	8.0	W1563	2.0	N1649	8.0
N1516	6.0	N1564	2.0	N1650	8.0
M1517	4.0	N1565	0.8	N1651	10.0
N2518	0.8	N1.566	4.0	N1652	8.0
N1519	0.8	N1567	6.0	N1653	10.0
N1520	8.0	N1568	6.0	N1654	8.0
N1521	8.0	N1569	8.0	N1655	8.0
N1522	4.0	N2570	2.0	N1656	10.0
N1523	4.0	N1571	2.0	N1657	10.0
N1524	1.0	N1572	8.0	N1658	6.0
N1525	6.0	N1573	16.0	N1659	10.0
N1526	4.0	N1574	2.0	N1660	8.0
N1527	6.0	11575	4.0	N1661	8.0
N1528	4.0	N1576	16.0	N1662	6.0
N1529	6.0	N1577	4.0	11663	6.0
N1530	8.0	N1578	8.0	N1664	8.0
N1531	4.0	N1579	8.0	N1665	10.0
N1532	6.0	W1580	4.0	N1666	8.0
N1533	0.8	N1581	6.0	N1667	12.0
N1534	0.8	N1582	8.0	N1668	12.0
N1535	4.0	N1583	0.8	N1669	10.0
N1536	6.0	N1584	4.0	N1670	8.0
W1537	8.0	N1585	2.0	N1671	6.0
11538	8.0	W1586	8.0	N1672	10.0
+1539	2.0	N1587	8.0	$N 1673$	16.0
N1540	2.0	N1.588	4.0	N1674	6.0
01541	2.0	N1589	2.0	N1675	8.0
N1542	2.0	N1590	6.0	N1676	8.0

$\left.\begin{array}{c}\text { DOMINION OF CANADA: } \\ \text { Province of British Columbia. } \\ \text { To Wit: }\end{array}\right\}$

1, Fred J. Hemsworth,
of
616-850 Hest Hastings St., VANCOUVER 1, B.C.
in the Province of British Columbia, do solemnly declare that the follouing is, a true atatement of expenditures on the above geochemical survey.
$\mathfrak{I n}$ the $\mathfrak{A l t a t t e r} \mathfrak{n f}$
Geochemical Survey of the AX \& BX Group of Mineral Claims

AU 13 1964
N.P. 范 \$................. VANCOUMER, B.C.

And I make this solemn declaration conscientiously believing it to be true, and knowing that it is of the same force and effect as if made under oath and by virtue of the "Canada Evidence Act."
Declared before me at the City
of Vancouver
Province of British Columbia, this 13 th
day of $\quad \cdots$ August, 1964.

Sample No.	Mo (ppm)	Sample No	Mo (ppm)	Sample HO_{4}	Mo (pma)
112677	6.0	W1690	12.0	N1703	6.0
111678	10.0	\$1691	10.0	11704	12.0
N1679	30.0	N1692	2.0	N1705	32.0
N1680	14.0	N1693	6.0	N1706	12.0
N1681	10.0	N1694	14.0	N1707	16.0
W1682	12.0	N1695	12.0	N1708	16.0
11683	18.0	12696	16.0	N1709	8.0
N1684	8.0	M1697	32.0	12710	6.0
N1685	12.0	\$1698	20.0	11711	12.0
N1686	8.0	M1699	20.0	N1712	18.0
W1687	12.0	N1700	4.0	$N 1713$	8.0
N1688	20.0	$\$ 1701$	8.0	N 1714	12.0
N1689	10.0	N1702	8.0	11715	16.0

