138

GEOCHEMICAL REPORT

on the Bay 56 - 59 Claims

located

Bight miles south of Port Hardy

50°, 127° N.W.

Nanaimo Mining Division

by

G.A. Noel, P. Eng., Geologist Utah Construction & Mining Co.

Feb. 7 - 23, 1966

Mon

TABLE OF CONTENTS

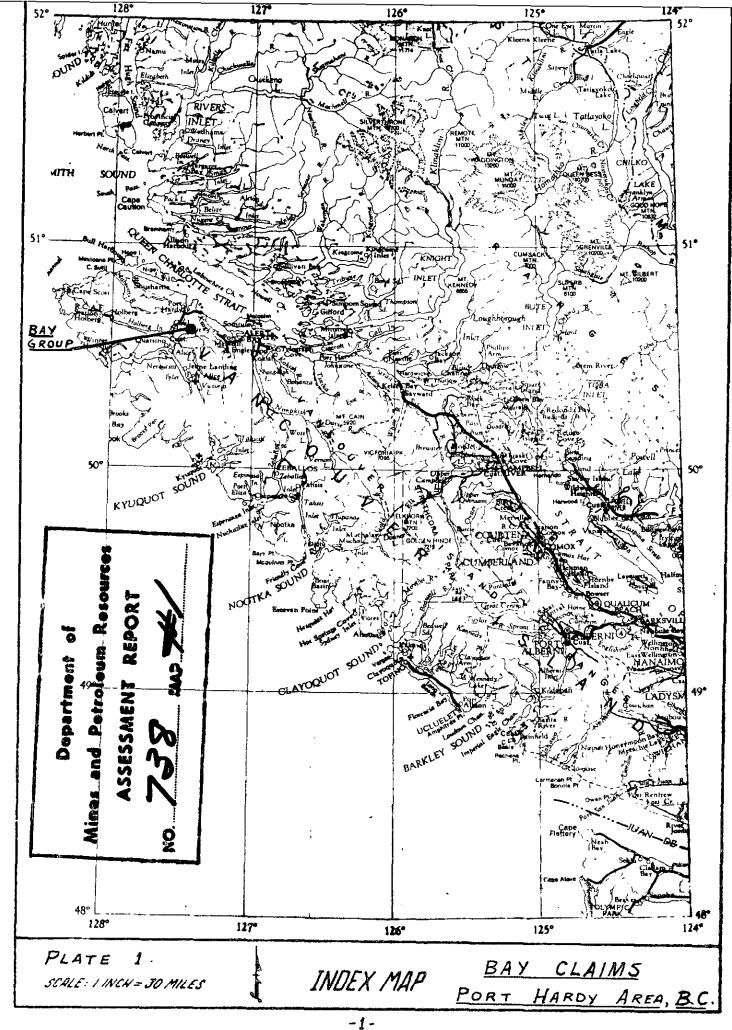

	PAGE
Summary	2
Introduction	3
Pieldwork	3
General Geology	3 & 4
Geochemical Results	4
Conclusions	5
Appendix A Soil Assays	6-10
Appendix B Statement of Qualifications	11-12
Appendix C Statement of Costs	13-14
MAPS.	
	Page
Plate 1 #/ Index Map	
Scale: 1 in = 30 mi	1
Plate 2 #2 Geology and Topography	
Gasta, 1 da - 1290 66	Man nockat

Plate 3 #3 Soil Geochemical Map

Scale: 1 in = 200 ft.

Man

Map pocket

SUMMARY

A soil geochemical survey was conducted from February 7-12, 1966 over the Bay 56-59 claims by a crew of seven men employed by Utah Construction & Mining Co. These claims are about seven miles south of Port Hardy on the north side of Rupert Inlet. The claims are underlain by pyroclastics and flows of the upper Triassic Bonanza group which is intruded by pink granite porphyry in the eastern half of the claim block. Low-grade copper-molybdenite mineralization is exposed in fractured andesite flows near the common boundary between the Bay 56 and the Bay 59 claims. A total copper soil anomaly trending N 70 W across the common boundary between the Bay 56 and the Bay 59 claims probably is a reflection of the fracture-controlled copper mineralization in the underlying volcanic rocks.

you

A P P R N D I X A

INTRODUCTION

A soil geochemical survey was completed between February 7 and February 12, 1966 on the Bay 56 through 59 claims in the Port Hardy area, by a field crew of seven men employed by Utah Construction & Mining Co. These claims are in the northwest corner of a block of 112 claims located by Gordon Milbourne between 1963 and 1965, along the north side of Rupert Inlet, about eight miles south of Port Hardy near the north end of Vancouver Island.

This claim block lies along the west side of the Alice Lake Logging Co's main logging road south of Port Hardy. Access to the claims from Port Hardy provided by three miles of paved highway and five miles of the gravel logging road. A permit for use of this logging road must be obtained from the MacMillan, Bloedel and Powell River Co. office at Port Hardy. The Port Hardy Coal Harbor highway cuts across the northwest corner of Bay 36 claim.

The area covered by the four claims slopes gently to the east-southeast with maximum relief of the order of 100 to 200 feet. The area is fairly well timbered except for the extreme south and east sides which are occupied by swamp and beaver ponds.

FIRLD WORK

The soil geochemical survey on the Bay 56 through 59 claims was done by M.J. Young, G.I. Mac Innis, and C.A. Aird, geologists; T. Samoil, geophysical technician; and L. Keown, E. Mikolasek, and A. Poole, field assistants. Control for this survey was provided by a closed compass and tape survey along the Coal Harbor road, Alice Lake Logging Co. main haul road, and logging sideroads.

Six traverse lines spaced at roughly 500 foot intervals were run across the claim block at a bearing of N 20° E. These lines were tied to the control traverse at one end and to each adjoining line at the other end. The six traverse lines ranged from 2700 to 3500 feet in length due to swamp or beaver ponds and aggregated 19,400 feet.

Soil samples were taken where possible at 100-foot stations along the traverse lines. The soil sample was taken from a rusty colored silt layer directly below the organic cover at depths ranging from six inches to over 20 inches. Over 10% of the soil samples had to be omitted due to thick organic cover or swampy ground. The soil samples were analyzed spectrographically for total copper and these results were plotted and contoured on a 200 feet to one inch base map of the claims. The soil geochemical map is included in the map envelope at the back of this report.

GENERAL GEOLOGY

The Bay 56 through 59 claims are underlain by flows, pyroclastics, and sediments of the Bonanza group of upper Triassic age. These rocks are underlain by limestone of the Quatsino formation about one-half mile northwest of this

Mon

claim block and the bedding in this limestone is east-west with dips ranging from 40 to 60 degrees to the south. The Quateino limestone section in this area is relatively thin and is in turn underlain to the north by a thick section of Easynteen flows.

The Bonance group in this area is believed to form the morth limb of a broad synclinel structure with an east west axis. The Bonance rocks have been intruded by quarts diorite just beyond the northeast corner of the claim block. This intrudive contest transe H 45° W and represents the contest wargin of an element stock about two miles long (NG-GE) by one mile wide.

The only known exposure of bedrock on the May 56-59 claims is along the south bank of a small creek which flows in an easterly direction across the May 56 and 59 claims, near their common boundary. Here, felsite and andesite tuffs of the Homense group apparently strike east-west with a moderate dip to the north. These tuffs are mineralized in places with disseminated pyrite and a little chalcopyrice. Malybdenite is also present as a thin coating along certain fractures.

GEOGRATICAL RESULTS

The total copper analyses for the 114 soil samples have been plotted and contoured at an interval of 10 parts per million in the range of 20 to 100 parts per million. Above 100 parts per million, the contouring is on an interval of 50 parts per million. The background value for the soil samples on the four claims is roughly 30 parts per million in copper. This background is considered to be about normal for soils overlying flows and tuffs of the Bonanza group.

Several weakly anomalous zones on the Bay 56-59 claims have been indicated by the soil geochemical survey. The maximum values of these zones are in the range of 60-90 ppm copper, which are two to three times background. One soil sample taken in the area west of the Bay 57 claim showed 150 ppm copper. This anomaly is not considered to be significant, since it is based upon a single high reading.

The trend of the weakly anomalous zones delineated by the soil-sampling survey appear to be N 70-80 W. These trends approximately parallel the regional bedding trends of the Bonanza volcanic flows. The geochemical anomalies are believed to be due to weak copper-molybdenite mineralization present in the underlying Bonanza group flows, pyroclastics and sedimentary rocks.

My

CONCLUSIONS

Low-grade copper-molybdenite mineralization occurring in the volcanic and sedimentary rocks of the Bonanza group probably has caused the several low-intensity total copper anomalies obtained in the soil geochemical survey on the Bay 56-59 claims. The west-north-west trend of the anomalies is approximately parallel with the regional bedding trends of the Bonanza group rocks. The rather insignificant copper anomalies indicated from the soil geochemical survey may represent minor concentrations of copper mineralization within selected bedding units of the Bonanza group rocks.

G.A. Noel

COAST ELDRIDGE

ENGINEERS & CHEMISTS LTD.

125 EAST 4TH AVE., VANCOUVER 10, B.C. TELEPHONE: 876-4111

REPORT OF: Spectrographic Analysis

FILE No. C.3.U.3-66 (22706)

Vancower Laboratory

DATE March 3, 1966

PROJECT:

Soil Samples

REPORT NO.

REPORTED TO: Utah Construction & Mining Ltd. Room 718 - 510 W. Hastings St.

Vancouver, B.C.

ORDER No.

We have tested 19 samples of soil submitted by you on February 16, 1966, and report as hereunder:

RESULTS

Sample No.	Copper (ppm)	
305 - 124	40	
125	35	
126	35	
127	35	
128	45	
129	30	
130	35	
131	40	
132	20	
133	35	
134	25	
310 - 121	40	_
123	30	
124	20	
125	50	- 6. C. L. 1966
126	45	R MAR-
127	25	N. C.
128	30	ard
132	70	RECEIVED Ansid.

COASTELDRIDGE

ð. G. Smith CHIEF CHEMIST

-7-

/1g

COAST ELDRIDGE

ENGINEERS & CHEMISTS LTD.

125 EAST 4TH AVE., VANCOUVER 10, B.C.

TELEPHONE: 876-4111

REPORT OF: Spectrographic Analysis

FILE No. C.3.U.3-66 22706

ΑТ

Vancouver Laboratory

March 3, 1966

PROJECT: Soil Samples

REPORT No.

REPORTED TOUTAH Construction & Mining Ltd.

Room 718 - 510 W. Hastings St.

Vancouver, B.C.

ORDER No.

We have tested 163 samples of soil submitted by you on February 14, 1966 and report as hereunder:

RESULTS

Sample No.	Copper (ppm)	Sample No.	Copper (ppm)
305 - 106	25	, 117	35
108	30	118	30
109	35	119	35
112	40	120	45
113	40	121	35
114	45	122	25
115	30	124	25
116	30	125	60
117	25	290 - 102	50
118	45	103	40
119	40	104	60
120	50	106	70
121	40	107	90
122	30	112	25
123	40	114	40
124	60	120	50
125	50	121	40
126	40	123	50
127	30	124	65
128	60	126	60
310 - 105	40	128	40
106	50	130	30
107	20	131	30
108	30	133	40
109	40	134	40
110	45	135	45
111	50	142	40
112	45		
113	30	315 - 102	60
114	30	103	65
115	40	105	65
116	35 8	3- 106	70 /2

G 5

Utah Construction & Mining Co.

Page 2

C.3.U.3-66 22706

Sample No.s	Copper (ppm)	Sample No.	Copper (ppm)
107	20	116	30
108	150	117	60
109	30	118	25
110	20	129	40
111	35	130	60
112	40	131	60
113	30	132	50
114	35	133	40
115	20	133	To d
116	25	134	80
117	35	152	68
118	26	155	60
119	30	156	65
		3.00	
120	28	197	70
305 -110	30	158	100
111	30	159	120
285 -100	40	160	70
101	30	119	25
102	40	120	20
103	30	121	28
		123	35
104 105	30 40	123	40
	40	124	20
106		125	50
107	50	126	25
108	30	127	26
109	40	300- 102	90
110	30		30
111	50	103	45
112	30	104	35
113	30	105	35
		106	30
114	40	107	25
117	30	108	30
126	50	109	28
128	50	110	35
129	40	111	30
132	30	112	28
133	50	113	45
133	50	114	50
296- 102	30	115	50
103	25	116	65
114	25	117	30
115	50	118	40
		119	40
		120	
)		121	50
∕		121	30

Utah Construction & Mining Co. Ltd.

Page 3

C.3.U.3-66 22706

Sample No.	Copper (ppm)	
122	20	
123	40	
124	45	
125	80	
126	35	
127	30	
128	25	
129	40	
130	35	
131	98	
132	30	
133	28	
151	35	
155	40	

COAST ELDRIDGE

/1g

L. G. Smith CHIEF CHEMIST

APPENDIX B

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

The fieldwork for this report was done by M.J. Young, G.I. Mac Innis, C.A. Aird, and T.S. Samoil whose qualifications are outlined below:

- 1. M. J. Young , geologist for Utah Construction and Mining Co.,

 Vancouver, B.C.

 completed BSc (Geology) at University of B.C. in 1961;

 Employed by Howe Sound Co. from 1952 to 1957 as assistant

 geologist and underground geologist, at Snow Lake, Manitoba

 under N. Hogg, P. Eng. Summer seasons 1958 to 1960

 worked for Utah Construction and Mining Co. in Alaska

 mineral exploration.

 Permanently employed by Utah Construction & Mining Co.

 in 1961 and worked as a geologist and senior geologist

 under G.A. Noel, P. Eng., and E.S. Rugg, P. Eng.
- 2. G.I. Mac Innis, geologist for Utah Construction & Mining Co., Vancouver,
 B.C.;
 completed B. Sc. (Honors Geology) at University of Western Ontario
 in 1951; employed by Ontario Dept. of Mines from June 1951 through
 October 1951 as a junior geologist under Dr. E.W. Nuffield; employed
 by Kennco Explorations (Canad) Limited from January, 1952 through
 September 1956 as a field geologist in Ontario, Manitoba, Saskatchewan,
 Alberta, and Northwest Territories under the supervision of H.W.
 Fleming & W.J. Dean; employed by Utah Construction & Mining Co.
 since September, 1956 as a geologist in southwestern U.S., B.C. and
 Alaska under L.C. Clark, H.G. Peacock, G.A. Noel, and E.S. Rugg.
- 3. C.A. Aird, geologist for Utah Construction & Mining Co., Vancouver, B.C. completed B. Sc. (&Geology & Mathematics) at University of B.C. in 1959 and spent one additional year at the same University studying geology and geophysics; employed as a junior field geologist for MacKenzie Syndicate during the summers of 1958 and 1959 in the Yukon, B.C. & N.W.T. under supervision of L.G. White, P. Eng; employed as a project geologist by Canada Tungsten Mining Corporation in 1960 in the N.W.T. under the supervision of C.J. Brown; employed as a project geologist by Utah Construction & Mining Co. from 1960 to the present in Alaska and B.C. under the supervision of H.G. Peacock, E.S. Rugg, P. Eng. and G.A. Noel, P. Eng.
- 4. T.S. Samoil, survey-draftsman for Utah Construction & Mining Co.,

 Vancouver, B.C; completed two years of University (University of

 Alberta and U.B.C.); 1951-1952, employed as instrumentmen on road

 surveys by Alberta Dept. of Highways; 1952-1953 employed as instrument
 man on highway construction by Hislop Construction Co. Ltd; 1953-1954

 employed as instrumentman on quantity surveys at Kitimat by N.W.

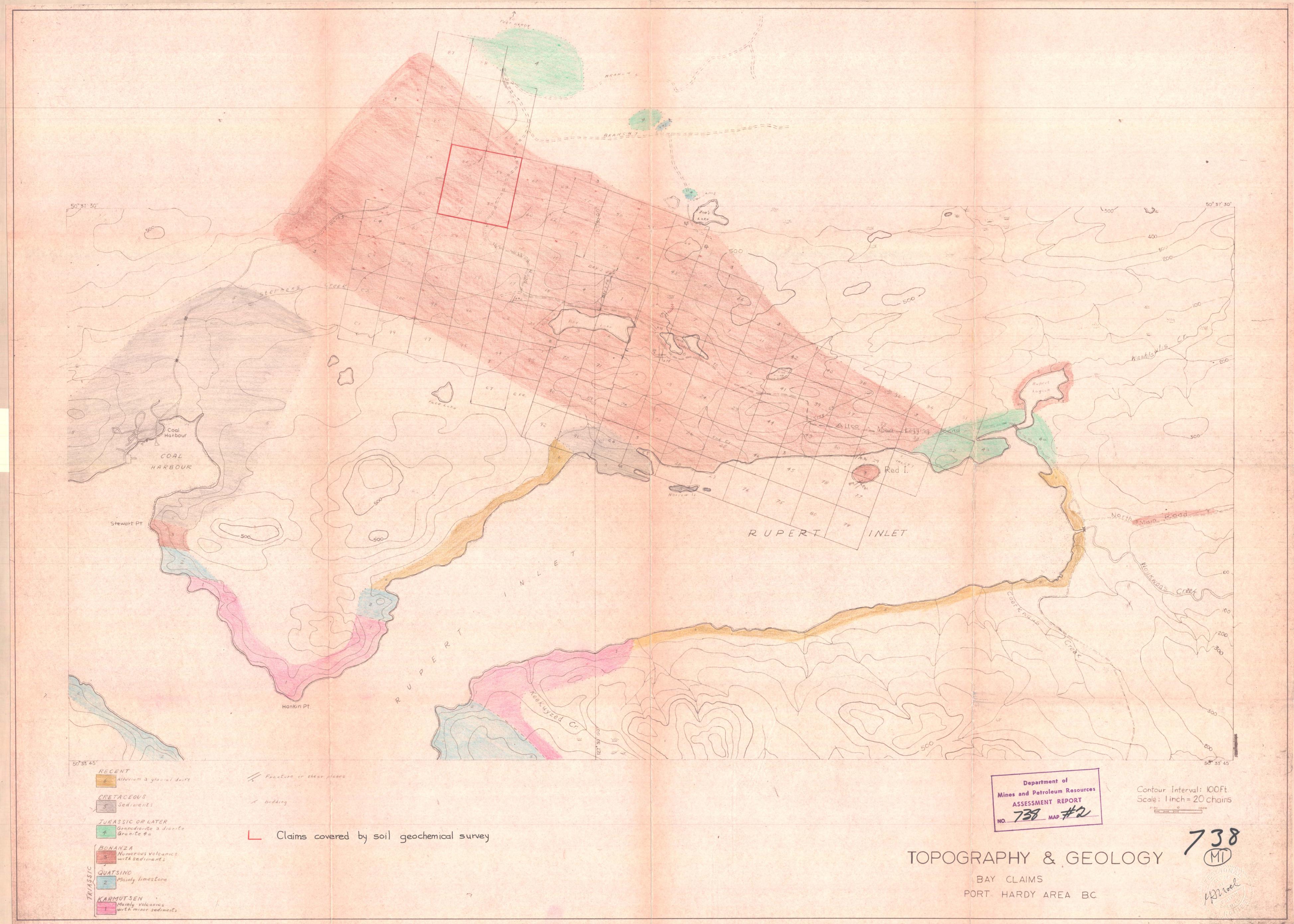
 Mullah Construction Co. Ltd; 1956-present employed by Utah Construction

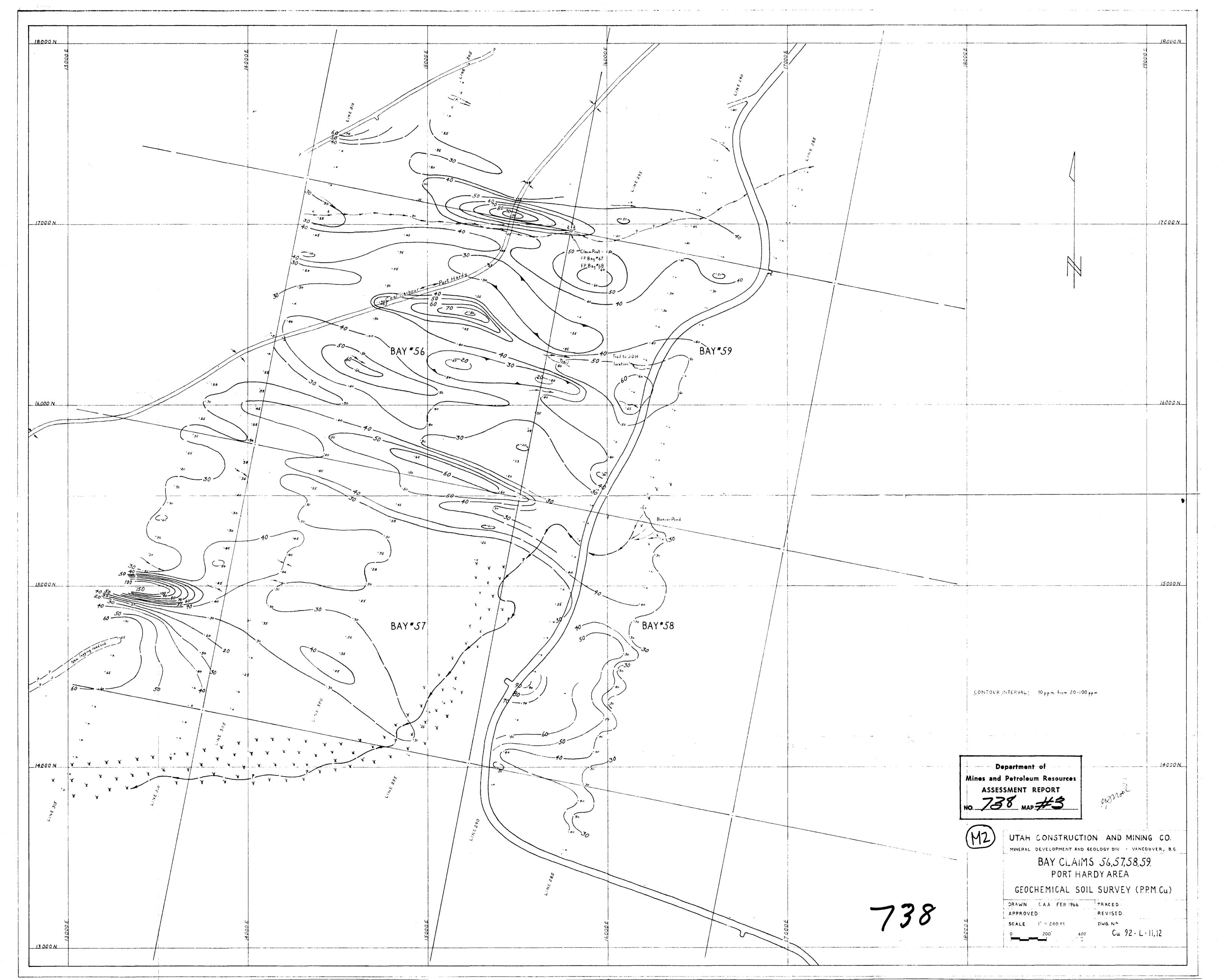
 & Mining Co. as surveyor-draftsman on exploration project in B.C. and

 Alaska--work included running topographic and geophysical surveys

 as well as all forms of drafting.

/pn


APPEEDIX C


STATISTICS OF COSTS

STATEMENT OF COSTS

ARIES:	(25 working days/month)	
G.A. Noel	1 office day at \$1160/month Feb. 21, 1966	\$ 46.00
M.J. Young	4 days at \$705/month 2 days in field Feb. 7 & 9, 1966 2 days in office Feb. 21-22, 1966	114.00
G.I. Mac Innis	2 field days at \$840/month Feb. 8-9, 1966	67,00
C.A. Aird	4 field days at \$705/month Feb. 7-9 & 12, 1966	114.00
T.S. Samoil	1 field day at \$555/month Feb. 8, 1966	22,00
L, Keom	2 field days at \$400/month Feb. 8 & 12, 1966	32.00
E. Mikolasek	1 field day at \$400/month Feb. 8, 1966	16.00
A. Poole	2 field days at \$400/month Feb. 8-9, 1966	32.00
TOTAL SALARIES		\$ 443.00
PIELD EXPENSES:	(14 man/days at \$7.75/day)	\$ 108.00
ANALYSIS OF SOIL	SAMPLES: (114 at \$1.50)	171.00
HISCELLANEOUS:	(maps, secretarial and etc.)	20.00
TOTAL COSTS:		\$ 742,00

Mode G.A. Noel, P. Eng.

