

813

CHANBROOK, B.C. MINING RECORDER

KENNCO EXPLORATIONS, (WESTERN) LIMITED

REPORT

ON

GEOCHEMICAL SURVEY

STONEY #1 CLAIM GROUP (Stoney Mining Claims Nos. 1 to 15)

<u>Stone Creek,</u> Fort Steele Mining Division, <u>British Columbia</u>

Lat. 49°12'N Long. 115°55'W

<u>By</u>

K.E. Northcote July 3rd to 6th, 1966

J.A. Gower, P. Eng.

TABLE OF CONTENTS

	Page
DISTRIBUTION OF WORK	I
INTRODUCTION	2
LOCATION & ACCESS	2
FIELD PROCEDURES Control Survey Lines Geochemical Survey	3 3 3
INTERPRETATION	4

APPENDIX I - Geochemical Results

PLATES

1Ö	Plate 1	1	Geochemical Survey Sample Sites	
, -			(Pace & Compass)	1" = 500"
1	Plate 2	2	Geochemical Survey PPM Copper in Soil	1" = 500'
12	Plate S	3	Geochemical Survey PPM Lead in Soil	1" = 500"
13	Plate 4	4	Geochemical Survey PPM Zinc in Soil	1" = 500"

DISTRIBUTION OF WORK

Claim Group No.	Claim 1	∛o.	Record No.	Distribution of Geochemical Work	Years Work <u>Claimed</u>
Stoney	Stoney	1	4856	\$ 180. 00	1
#1	<i>[</i>]	2	4855	154.30	1
	a	3	4869	192.88	1
	11	4	4870	167.16	1
	a -	5	4871	37 . 75	1
	<i>i</i> 1	6	4872	-	1
	11	7	4873	26.28	1
	Ft	8	4874	-	1
	58	9	4875	167 .1 6	1
	.,	10	4876	180.00	1
	"	11	4877	26.28	1
	11	12	4878	-	1
	11	13	4920	26.28	
	"	14	4921	37.75	
	11	15	4922	90.00	+
				\$1,285.84	12

i.

I

;

.

-1-

.

INTRODUCTION

The claim group discussed in this report is west of Stone Creek in the Fort Steele Mining Division of British Columbia. The claims are owned by J. Van Koughnett and J.E. Sanderson of Cranbrook, B. C. The work described in this report was done during the period July 3rd to July 6th, 1966 and consisted of a soil goechemical survey.

The soil samples were collected by S.C. Gower, P. Hutzkal, G. Davies, J.S. Northcote and K.E. Northcote. The work was supervised by K.E. Northcote.

The soil samples were analysed July 22, 1966 by colorimetric methods under the supervision of J. Barakso in Kennco Explorations (Western) Limited's laboratory.

LOCATION & ACCESS

The property is located at Latitude 49°12'N, Longitude 115°55'W, 6 miles southwest of Moyie Lake on the west side of Stone Creek. The elevation ranges from 3500 feet to 5500 feet. The claim location lines, run by pace and compass, run northerly along the flank of the ridge which slopes east to Stone Creek. The average slope is approximately 20°.

Vegetation consists of pine and larch with some fir. Alder is found in swampy areas and near streams. The forest growth is light at higher elevations on the claims but becomes very dense at lower elevations, in swampy areas and in stream courses. The claim area can be reached by following Stone Creek from a natural gas pipeline access road on the southeast side of Moyie River Valley. In order to do this work, however, the crew and equipment was flown in by helicopter to a cleared area in Stone Creek.

FIELD PROCEDURES

Control Survey Lines

The claim location lines were run earlier by pace and compass and were used as reference lines for soil sampling. Intermediate lines for soil sampling were also run by pace and compass. All lines were run with sufficient control and accuracy to show existence and location of anomalous areas. The sample positions are shown on a base map prepared on a scale of 1'' = 500'. (See Plate 1).

Geochemical Survey

The geochemical survey consisted of a careful soil sampling survey. Soil samples were collected at 200-foot intervals north-south along the east facing flank of Stone Creek Valley and at 500-foot intervals east-west down-slope. Sample locations were flagged and numbered. The soil profile development was good. Samples were taken from a "B" soil horizon at all sample sites. The samples were analysed for total copper, total lead, total zinc and total molybdenum by colorimetric methods at Kennco Explorations (Western) Limited's geochemical laboratory in North Vancouver. The results are plotted on Plates 2 to 4 on a scale of 1" = 500".

INTERPRETATION

Good soil samples representative of the "B" horizon were obtained over the entire area except at a few locations on talus slopes. The claim area is considered to be suitable for geochemical soil sampling methods of exploration. The depth to bedrock in general is shallow as is indicated by hillside contours, presence of numerous scattered outcrops on the hillside and in stream beds. Although the depth of overburden was not everywhere known, it is improbable that differences in depth to bedrock in the claim area would seriously affect the results of this survey. The samples were analysed for total copper, total lead, total zinc and total molybdenum. The results are discussed separately.

The total copper results are plotted on Plate 2. Background values are fairly uniform in the range of 10 to 30 ppm. Except for a few scattered values of 40 to 50 ppm, the only continuous high values partially coincides with a probable structurally controlled stream which crosses the hillside diagonally through claims 3, 4, 2 and 15. An anomalous area is indicated by an elongate pattern of contours around a single high value of 150 ppm. This anomaly presumably indicates copper mineralization. Additional work is necessary to explain this anomaly.

The total lead results are plotted on Plate 3. The results are almost entirely negative. The lead values are fairly uniform with most values between 10 to 20 ppm. Two slightly higher values occur adjacent to Stone Creek at the boundaries of claims 14 and 15. These values of 30 and 41 ppm lead are not considered to be of economic significance.

The total zinc results are plotted on Plate 4. Geochemically, zinc is best used to confirm results of other metal patterns. In this case, scattered irregular-shaped high patterns occur which do not closely correspond to the copper pattern. A weak high, however, corresponds to the weak lead high at Stone Creek between claims 14 and 15. Other highs are found in the southern part of claim 2 and the north half of claim 9. These values, with a maximum of 357 ppm, are not considered to be of economic significance.

The total molybdenum results were completely negative. The highest values obtained were 2 ppm Mo.

Vancouver, B. C. August 26, 1966

K. E. Northcote

Gower, Eng. Α. Ρ.

APPENDIX I - Geochemical Results

J.E. Fondyson -J. Van Koughnitt

	GEO		AL RES	ULTS :- SI	DIMENT	S July 22r	nd, 1966
Sample No.	Mo ppm	Cu ppm	Zn ppm	Pb ppm			
82064	0	21	128	13			
65	0	53	155	17			
66	0	23	93	10]		
67	0	14	120	16	}		
68	0	23	143	23			
69	0	33	143	23			
70	0	41	137	16			
71	0	14	123	16		ĺ	[
72	0	23	155	14			
73	0	21	303	10			
74	l a	21	147	11	Į		ļ
75	ů ů	12	125	16	1		
76		14	265	14	E		
10 777	0	14	117	0			
11		20	104	17	1		}
70		12	190				
(9		12	95			i	
80	0	25	110				
81	U		105				
82	0	39	163	18			
83	0	25	120	11			
84	0	33	143	15		1	
85	0	14	133	10			
86 -	1	16	117	10			
87	0	16	245	14			
88	0	23	233	22	1	1	
89	1	21	310	17			
90	1	23	143	16			
91	0	21	125	14	1		}
9 2 .	0	18	128	20			
93	1	28	218	15		1	
94	0	14	117	10			1
95	0	16	100	12			
96	0	18	112	9			1
97	1	14	95	12			
98	0	14	112	11			
99		21	105	17		1	
82100	i ī	23	103	10			
01		25	95	14			
0.2		35	57	13		}	1
02		28	80	10	1		
03	1	-29	125	25			
		16	67	16			
05		21	100	1.4		l	
00			100				
07	1	16	108	18			

	GEO	OCHEMIC	AL RES	JLTS : - SI	EDIMENTS	5 July 22n	d, 1966
Sample No.	Mo ppm	Си ррт	Zn ppm	Pb ppm			
82108	0	23	95	8			
09	0	21	150	10			
10	0	18	170	15			
11	0	25	208	12			
12	0	21	208	12			
13	0	41	240	17			
14	0	37	188	19			
15	0	14	290	12			
16	0	23	228	10			
17	1	21	240	17			
18	1	18	137	16			
19	0	21	213	10		1	
20	1	23	192	15			
21	0	21	137	10			
22	0	23	150	15			
23	0	21	130	14			
-5 24	1	53	274	11			
25		39	310	10		ĺ	
26	0	35	170	15			
27	1	21	143	12		1	
28		18	208	11		-	
29		21	137	9			
30	, o	14	63	io			
31	ů ů	23	143	10			
32		16	73	14			
33	i i i	7	68	8			
34		12	75	14			
35	ň	16	196	4			
36		21	310	8	}	}	
37		23	188	10		·	
38	ů ů	18	240	8			
30	l õ	21	103	17			
40		18	98	14			· .
4 0 41		16	282	10			
42		23	120	14		ļ	
		25	52	12		1	
		25	137	5			
45		18	337	18			
46		14	357	41			
±0 ⊿⊅	n n	21	242	25	1]	}
₹ Γ 4Ω		35	245	30			
1 01			640	50			
		1					
		1					

 \bigcirc

	GE	OCHEMIC	AL RES	ULTS : - SI	EDIMENT	5 J uly 22n	d, 1966
Sample No.	Мо ррт	Cu ppm	Zn ppm	РЬ ррт			
82501	1	21	218	9			
02	0	18	150	11			
03	0	23	110	12			
04	0	25	192	12			
05	0	18	310	6		į	
06	0	43	213	14			
07	0	30	240	14			
08	1	50	357	16			
09	0	18	357	11			
10	0	25	245	10			
11	0	23	200	16			
12		18	192	8			
13	Ŏ	28	167	10			
13	0	29	257				
14	0	20	251				· ·
17		21	250		•		
17		21	250	0			1
18		10	170	9			1
19		23	270	10			
20		41	350	20			
21	0	23	175	16			
22	0	25	100	14			
23	0	21	155	10			
24	1	23	147	12	1		{ ·
25		18	125	10			
26		23	140	14			
27	1	30	297	16			
28	0	30	163	14			
29	0	16	105	14	.		
30	1	18	120	10	1		[
31	0 ·	14	140	12			
32	0	10	103	16			
33	1	12	93	13			
34	0	16	100	11			· ·
35	0	14	80	16			1
36	1	21	71	10			
37	1	23	140	18		1	
38	1	35	196	18			
39	o	18	274	15			.
40	0	16	137	16			
41		21	128	8]	}	
42		18	115	12			1
42	Ň	14	160	14			
LE 1 A		16	106	0			
*** A E	2	20	110			1	
45	L C	28	110	0			

()

. t

1

ţ

	GEO	OCHEMIC	AL RESI	JLTS : - SE	EDIMENT	5 July 22	nd, 1966
Sample No.	Мо ррт	Cu ppm	Zn ppm	Pb ppm			
82546	0	28	123	18			
47	0	18	143	15			
48	0	18	147	14			
49	0	18	118	13			
50	0	16	163	10			
51	0	150	303	24		1	
52	1	21	140	16			
53	0	18	223	16			
54	0	18	330	16			
55	0	14	128	10			
56	0	18	400	13			
57	l û	14	113	26		1	
58		21	103	16			
50		19	123	14			
57		10	257	14			
60		14	04	19	·		
61		14	00	10			
62	0	18	357	19	{		
63	0	18	357	10			
64	0	21	240	15			
65	Sample	Missing					
66	0	14	400	16			
67	0	18	108	16			
68	0	14	71	17	1	[
69	1	18	297	11			
70	0	18	297	26			
71	0	21	110	12			
72	0	12	86	9			
73	0	10	54	10			
74	0	16	265	12	[ĺ
75	0	16	240	14			
76	0	18	163	14			
78	1	30	120	18			l
79	ļ	21	115	11	ļ	ļ]
80	0	18	143	14	1		
81		23	170	14			
82		12	218	9			1
82		21	123	16			1
Q /		21	115	12			1
0-± 0 c		14	222	10			
03		14	125	14			
00		14	70	10			
87		12	(0 E2	13		1	
88		14	54				
89	1	18	59	14			

E .

i t

i

 \bigcirc

		82090	32523	82089	82522	82566	e
		82091	€ 8252A	C 82038	92521	0 82565	(
		ez 092	0.000	0 \$2087	82520	0 \$2564	I
		\$ \$2.053	0 825-23	0 82086		0 82568	(
12	• 11	¢ \$2094	° <i>315</i> 26	0 820 85	() <i>02.0 / y</i>	91561	(
		\$2095	0 82527	0 \$2084	0 82518	0	
			0 82528	0 82033	22517	0 \$2541	(
			○ 84620	0 \$2082	0 \$2 516	0 32560	(
		\$ <i>810 97</i>		0 82081	83515	0 82554	
		Ф <i>82 0 98</i>	0 \$2 5 80	0 32080		0 825 58	,
		¢ 32039	0 \$25.31	0 82079	0 82 5/4	0 825 37	(
		\$ \$2100	0 82532	0 82078	Ø #25 is	0 41 3554	(
	7	• 82101	1	0 #2 077	0 82512		(
ð		82102	0 82533	0 \$2076	0 82511	ک ۳۰۰	¢
ι Ι		82103	0 82634	0 82075	0 82510	0 82,554	C
		\$ \$2104	0 81535	0 \$2074		0 82553	c
		82105	0 \$2536	0 82073		082532	(
	· ·	C 82105		0 82072	81 508	002551	
		82107	0 8277	0 \$207/	\$ 82 F 0 7	0 \$2550	(
		80168	0 82538	0 \$2070	82366	082549	
		82109	0 \$23.39	0 \$2069		0.00548	(
6	5	\$2110	° 31 5413	O \$2068		4	(
		a Belli	0 88 541	0 \$2047	0 \$2504	0 025 47	(
		0 8211 2		O Store	62503	082546	(
		\$2/12	0 82541	0 82085	0 82502	0 82545	(
L		82/14		BLOCH	82 501	82544	

1

82138 82567 82/39 82137 0 82140 82568 82136 \$ 82569 0 82141 82135 0 82/42 \$ 82570 0 02/03 35 82134 82571 82133 002144 \$ 81572 82152 0 82/45 \$ 826 73 82/51 0 82146 \$ 82574 \$2150 0 82147 82575 82129 0 82 148 82576 82128 82577 82 12 7 14 \$ 82578 82/25 \$ 82579 82185 \$ 825 80 V 82124 \$ #2 581 62123 \$2592 82 122 \$ 82583 82121 325 84 \$21 20 0 32585 13 22199 0825 BC 82/18 A 82587 5247 0 81 580 8216 32115 \$1589 KENNCO EXPLORATIONS (WESTERN) LIMITED STONEY CREEK GROUP" PLATE NO - GEOCHEMISTRY -Sample Sites DATE AUC SI . 66 UNDER BY H. C. M .. Department of F.W. & (To) Mines and Petroleum Resources 1"= 500' ASSESSMENT REPORT (MI NO. 813 MAP # 10

	Department of
	Mines and Petroleum Resources ASSESSMENT REPORT
-	NO. 813 MAP # 11

