GBOPHYSICAL REPORT

MAGNETOMETER SURVEY COVERING

Jeep 1 to 10, Dan 1 to 4, Alf 1 to 6, And Kimberly, Last Chance, Charlotte, Morning Star, Keystone and Stemwinder Claims

Kamloops Area, B.C. $50^{\circ}, 120^{\circ}$ N.E.

Performed July and August, 1966 for KIMBERLY COPPER MINES LTD., N.P.L. by

[^0]Page
Introduction 1
Property 1
Geology 1
Work Done 2
Discussion of Results 2
Conclusions and Recommendations 3
Addendum 4
4 / Plan of Magnetometer Surv attached in envelope
\# 2 lain Map.

REPCRY ON

A MACMETOMETER SURVEY OP
THE KAMIOOPS PROPEPTY
PERPCRMRD PCR

KIMPERLI COPPER MINES LMITED

Kimorly Copper Mines Lisited holds under option a group of alaime In the Kemloops area of Britim Columbia. Duping the sumar of 1966, a magnotomoter surver was carried out over this property under the writer's superviaion. The following is a resume of observations.

PROPERTY

The property comprises approxdmately 1,000 acres. It includes six crown-granted claimg - Kimberly, Last Chance, Charlotte, Morning Star, Keyetone and Stemwinder - and twonty claime of record - Jeep 1 to 10 incluaive, Dan 1 to 4 incluaive, and Alf 1 to 6 inclusive. The ground is situated three to four wiles south of Kamloops and is acceasible from there by dirt road fron the Kamloops - Merritt Highway.

CEOLOGY

The Iron Mask batholith, an elongate series of syenite, monsonite, diorite and gabbroic rocks of Mesosoic age, intrudes Triascic Nicola Group basic volcanics and sediments.

Geological mapping of the proporty indicates the Kimberly ground is undorlain in large part by the Iron Mask intruaives, consisting principally of diorite and gabbro, but with a central core of monzonite. The contact of these intrusives with Nicola voleanies trends diagonally aeross the northerIf part of the group while a small area of Tertiary volcenics is found in the extreme north, just off the property.

Copper minoralisation, principally as disseminated chalcopyrite in fracture sones in the intrusives, is widespread throughout the ares and several occurrances are known within the property, particularly on the crowngranted Kimberly et al group. WQaK DONE

A 400 foot line grid was cut over the entire property. Stations were chained at 100 foot interval on all lines. Total length of line cut was 30 miles.

Using this line grid for control a magnotometor survey was carried out, with readinge taken at all stations and at intermediate points where better definition was required. Instrument used was a Sharpe M.F.I. Pluxgate type magotometor with sensitivity of 20 gamas per scale division.

Results, corrected for diurnal variation, are plotted and contoured on the accompanying one inch to 200 foot plan. DISCUSSTON OP RESULTS

Magnetic relief is great; variations of 8,000 gamas were noted. In general results reflect quite closely the knovn geology. The Nicola volcanics appear as a magnetic low area ($-1,000$ gamas) with a higher area around the intrusive contact indicating the dip of the intruaive beneath the volcanics.

The area occupied by the intrusive diorite and gabbro appears as a moderate high (2,000 gamas +) with an internediate area ($1,000-2,000$ gasmas) conforming with the monzonite intrusive.

Within the diorite-gabbro area there are soveral irregular and extreme highs (3,000 to 8,000 gamas). These occur in three sones - in an overburdened area in the southwest comer of the property along the intruaive volcanic contact, along the east side of the monsonite differentiate, and along the diorite-volcanic contact.

Such variations could be, and probably are at least in part, caused merely by variations in the composition and ragnetite content of the gabbro. However no such variations were noted in the geological mapping. On the other hand magnetite is a comon accessory mineral in the alteration that accompanies the copper mineralisation of the area; two of the highs near the east boundary coincide roughly with known copper mineralimation; the broad high in the southwest corner of the property is in an overburdened area, but coincides fairly well with a broad geochenical high in the same area; elsewhere on the property there are several instances where magnetic highs coincide with some known copper occurrence and/or geochenical anomaly. It is considered probable that at least some of the various magnetic highs are caused by magnetite mineralisation directly associated with copper deposition.

CONCLUSTONS AND RECOMMENDATIONS

The magnetic results show a close relationship to known geology and are of assistance in outlining the arious rock types. There is also good evidence to suggest the magnetic highs are related to copper mineralization. hence shouit be investigated more closely.

In order to outline drilling targets more exactiy, induced polarienti: tion surveys are recoknended over selected portions of the ground, to be followed firtt by a limited anount of core drilling, then by broad scale sampling by percussion drill, if and where warranted.

About four niles of 1.P. Ins have been laid out, to be followed by detailing where warranted. Cost is expected to be $\$ 2,000$ to $\$ 3,000$. The quantity of drilling to be done will be detemined by results obtained.

Toronto, Ontario 28 October, 1966

ADDENDUM:

The survey also covered an area between the Jeep and Crown Granted claims, since staked on behalf of Kimberly as Kim 1 to 5 claims and shown on the accompanying plan.

Work was undertaken as a contract by L. G. Phelan.
Contract price was $\$ 3,290.00$.
Field work was done by R. Liard, P.Eng., a mining engineer, graduate of the University of Toronto, registered with the Association of Professional Engineers of Ontario, with fifteen years experience in geological and geophysical exploration.

Supervision and report were by L. G. Phelan, M.A.Sc., P.Eng., consulting geologist registered with the Association of Ontario, Manitoba, and British Columbia.

Work was done during July and August, 1966.

Toronto, Ontario 28 October, 1966

$$
\text { Fl/MM AS TEXT }{ }^{993}
$$

KIMBERI Y COPY WINES LIMITED
KAMLOOPS, BIC.

Hole No. 1

| No. 353 | From | 10.0 | To 16.0 | Width | 6.0 | \& Cu. 0.26 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 354 | 16.0 | 24.0 | | 8.0 | 0.59 | | |
| 355 | 24.0 | 32.0 | 8.0 | $0.40 .50 / 24$ | $0.41 / 561$ | | |
| 356 | | 32.0 | 40.0 | 8.0 | 0.51 | | |
| 357 | 40.0 | 48.0 | 8.0 | 0.26 | | | |
| 358 | 48.0 | 56.0 | 8.0 | 0.38 | | | |

Hole No. 2 100E.

359	16.0	24.0
360	24.0	32.0
361	32.0	40.0
362	40.0	48.0
363	48.0	56.0
364	56.0	64.0
365	64.0	72.0
366	72.0	80.0
367	80.0	90.0
368	90.0	100.0

8.0	0.04
8.0	0.03
8.0	0.10
8.0	0.07
8.0	0.06
8.0	0.06
8.0	0.05
8.0	0.05
10.0	0.06
10.0	0.04

Hole No. 370%

369	15.0
370	22.0
371	30.0
372	40.0
373	50.0
374	60.0
375	70.0
376	80.0

22.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

7.0	0.15
8.0	0.21
10.0	0.12
10.0	0.11
10.0	0.21
10.0	0.34
10.0	0.12
10.0	0.19

Hole No. 4

NO. 377	From 13.0
378	20.0
379	30.0
380	40.0
381	50.0
382	60.0
383	70.0
384	80.0
385	90.0

Hole No. 5

386	13.0	20.0
387	20.0	30.0
388	30.0	40.0
389	40.0	50.0
390	50.0	60.0
391	60.0	70.0
392	70.0	80.0
393	80.0	90.0

7.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

$$
\begin{array}{r}
0.05 \\
.03 \\
.04 \\
.03 \\
.02 \\
.03 \\
.06 \\
.05
\end{array}
$$

Hole No. 6

394	10.0	20.0	10.0	0.03
395	20.0	30.0	10.0	.03
396	30.0	40.0	10.0	.02
397	40.0	50.0	10.0	.02
398	50.0	60.0	10.0	.03
399	60.0	70.0	10.0	.03
400	70.0	80.0	10.0	.05
401	80.0	90.0	10.0	.08
402	90.0	100.0	10.0	.03
403	110.0	110.0	10.0	.05
404	110.0	115.0	15.0	.03

KIMBERIFY COPPER MINES ITMISZD,

Hole No. 7

406
407
408
409
410 411

Hole No. 8
412
413
414
415
416
417
Fole No. 9
418
419
420
421
422

No. | 405 |
| ---: |
| 406 |
| 407 |
| 408 |
| 409 |
| 410 |
| 411 |

From
10.0
20.0
30.0
40.0
50.0
60.0
70.0

To
1020.0
30.0
40.0
50.0
60.0
70.0
80.0

KAITLOOPS, B.C.
Feb. 6, 1967
10.0
20.0
30.0
50.0
50.0
60.0
20.0
30.0
50.0
50.0
60.0
70.0
10.0
20.0
30.0
40.0
50.0
20.0
30.0
40.0
50.0
60.0

10.0
10.0
10.0
10.0
10.0
10.0

10.0	0.18
10.0	$1 / 6$
10.0	-09
10.0	.05
10.0	.06
10.0	.04

$10.0 \quad 0.05$
$10.0 \quad .06$
$10.0 \quad \cdot 1$
10.0
20.0
.03
.04

KIMBERLY COPPER MINES LIMITED.

Hole No. 10

No. | 423 | From | 13.0 |
| ---: | ---: | ---: |
| 424 | 20.0 | To |
| 425 | 30.0 | |
| 426 | | 30.0 |
| 427 | 50.0 | 40.0 |
| 428 | 60.0 | 50.0 |
| 429 | 70.0 | 60.0 |
| 430 | 80.0 | 70.0 |
| 431 | 90.0 | 80.0 |
| 432 | 100.0 | 90.0 |
| 433 | 110.0 | 100.0 |
| | | 120.0 |
| | | 120.0 |

Hole No. 11

434	10.0	20.0
435	20.0	30.0
436	30.0	40.0
437	40.0	50.0
438	50.0	60.0
439	60.0	70.0
440	70.0	80.0
441	80.0	90.0
442	90.0	100.0
443	100.0	110.0
444	110.0	120.0
445	120.0	130.0

Hole NO. 12.

446	13.0	30.0	17.0	.02
447	30.0	40.0	10.0	.03
448	40.0	50.0	10.0	.02
449	50.0	60.0	10.0	.02
450	60.0	70.0	10.0	.03
451	70.0	80.0	10.0	.02
452	80.0	90.0	10.0	.02
453	90.0	100.0	10.0	$.0 \%$

KIMBERIAY COPPER MINES ITD. KAMIOOps, B. C. Feb. 19, 1967.

Hole No. 16. 400: ahead of 17
0.0-50.0: Casing. No samples. Overburaen over 50.0

Hole No. 17. 4001 ahead of 18
0.0-50.0: Casing. No samples. Overbuxcen over 50.01

Hole No. 18. 1,000' ahead of 19.
0.0-50.0 Casing. No samples. Overburden over 50.01

Hole No. 19 2001 ahead of No. 20.

Hole No. 20. Located at $60 \times 00 \mathrm{~s} \mathrm{~m}-3 \mathrm{x} 00 \mathrm{v}$.

490	15.0	30.0	15.0	0.02
491	30.0	40.0	10.0	.02
492	40.0	50.0	10.0	.02
493	50.0	60.0	10.0	32
494	60.0	70.0	10.0	.03
495	70.0	80.0	10.0	.02

HoIe No. 21, Located at $7 \times 00 \mathrm{~N}-9 \times 00 \mathrm{~V}$
0.0-50.01 Casing. No samples Overburden over 50.01

Hole No. 22.

496	15.0	30.0	15.0	0.05
497	30.0	40.0	10.0	.02
498	40.0	50.0	10.0	.03
499	50.0	60.0	10.0	.03
500	60.0	70.0	10.0	.03

Hole No. 23.

No.	501	From
502	27.0	To
503	40.0	50.0
504	50.0	60.0
505	60.0	70.0
506	70.0	80.0
507	80.0	90.0
508	90.0	100.0
	100.0	110.0

Width
\cdots
13.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
of Ca
0.02

102
.02
.02
.02 . 02

Hole NO. 24.
0.0-50.0 Overburden No samples.

Hole 25.
0.0 - 50.0 Casing. No semples. Overburden over 50.01

Hole No. 26.

Hole No. 27

525	17.0	30.0	13.0	.02
526	30.0	40.0	10.0	.020
527	40.0	50.0	10.0	.02
528	50.0	60.0	10.0	.02
529	60.0	70.0	10.0	.02
530	70.0	80.0	10.0	.04
531	80.0	90.0	10.0	.03
532	90.0	100.0	10.0	.03
533	100.0	110.0	10.0	.02
8	23.0	30.0		
534	30.0	40.0	10.0	.03
535	10.0	50.0	10.0	.02
536	50.0	60.0	10.0	.02
537	60.0	0.0	10.0	.02
538	70.0	80.0	10.0	.42

Hole No. 29
Casing 0.0-50.0 No samples Overburden over 50.01

SAMPL LIST

KMBERLEY COPPER MIEES ITD.
KAMOOPS, B. C.
Feb. 24, 1067

Hole No. 30 Located at $28 \times O O E-13 \% 00 \mathrm{~N}$
Casing 0.0-60.0: No samples. Overburden over 60.0:

Eole No. 31 Located at 11K50: - 27500H

Sample No.	540	From	53.0
541		60.0	
50.0			
542	70.0	80.0	
543	80.0	90.0	
544	90.0	100.0	
	545	100.0	110.0
	546	110.0	120.0
547	120.0	130.0	
548	130.0	140.0	
549	140.0	150.0	

Wid.th $\begin{array}{r}7.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0\end{array}$
Ao en
0.02
, 02
.82
.02
.63
.01
102
.82
.06
Eole No. 32 Located at IOXOON - 26\%00m

550	40.0	50.0	10.0	0.03
551	50.0	60.0	10.0	.03
552	60.0	70.0	10.0	.03
553	70.0	80.0	10.0	.02
554	80.0	90.0	10.0	0.02
555	90.0	100.0	10.0	.03
556	100.0	110.0	10.0	.03
557	110.0	120.0	10.0	.02
558				

Hole No. 33 Located at 9XOON - 24530π
$\left.\begin{array}{rrrrr}555 & 23.0 & 30.0 & 7.0 & 0.00 \\ 559 & 30.0 & 40.0 & 10.0 & 0.1 / \\ 560 & 40.0 & 50.0 & 10.0 & .41 \\ 561 & 50.0 & 60.0 & 10.0 & 12 \\ 562 & 60.0 & 70.0 & 10.0 & .2 .1 \\ 563 & 70.0 & 80.0 & 10.0 & .61\end{array}\right\}$

Hole No. 35. Located at $35 \mathrm{mOS}-32 \mathrm{X} 40 \mathrm{E}$ Vertical, steep slope.

570	43.0	50.0	7.0	0.02
571	50.0	60.0	10.0	.01
572	60.0	70.0	10.0	.01
573	70.0	80.0	10.0	. 0
574	80.0	90.0	10.0	10
575	90.0	100.0	10.0	. Δ
576	100.0	110.0	10.0	.01
577	110.0	120.0	10.0	.02
578	120.0	130.0	10.0	, dr
579	130.0	140.0	10.0	.01
580	140.0	150.0	10.0	, 01

Hole No. 36. Located at $24 \times 200 S-33 \mathrm{OOOE}$ Vertical, Steep slope.

581	30.0	40.0	10.0	0.02
582	40.0	50.0	10.0	.81
583	50.0	60.0	20.0	- 01
584	60.0	70.0	10.0	- 0λ
585	70.0	80.0	10.0	02
586	80.0	90.0	10.0	.03
587	90.0	100.0	10.0	- 01
588	100.0	110.0	10.0	. 0
589	110.0	120.0	10.0	. 05
590	120.0	130.0	10.0	, 03
591.	130.0	140.0	10.0	.03
592	140.0	150.0	10.0	. 82

Hole No. 37. Located at 12XOOS -- 33XoOs Vertical, Steep slope

593	20.0	30.0	10.0	0.02
594	30.0	40.0	10.0	.03
595	40.0	50.0	10.0	.02
596	50.0	60.0	10.0	.07
597	60.0	70.0	10.0	.02
598	70.0	80.0	10.0	.63
599	80.0	90.0	10.0	.04
600	90.0	100.0	10.0	.05
601	100.0	110.0	10.0	.03
602	110.0	120.0	10.0	.03
603	120.0	130.0	10.0	.03

Sample List.
KIMBERLEY COPPER MINTS LTD.
Keroloops, B. C. Feb. 28, 1967
Hole No. 38

Hole No. 39
Overburden 60.01 plus. No samples.
Hole No. 40

611	15.0	30.0
612	30.0	10.0
613	40.0	50.0
614	50.0	60.0
615	60.0	70.0
616	70.0	80.0
617	80.0	90.0

15.0
10.0
10.0
10.0
10.0
10.0
10.0

Hole No. 41
$\left.\begin{array}{lllll}618 & 15.0 & 30.0 & 15.0 & 0.23 \\ 619 & 30.0 & 40.0 & 10.0 & 46 \\ 620 & 40.0 & 50.0 & 10.0 & .31 \\ 621 & 50.0 & 60.0 & 10.0 & .31 \\ 622 & 60.0 & 70.0 & 10.0 & .34\end{array}\right\}$

Hole No. 42

623	28.0	40.0	12.0	0.03	
624	40.0	50.0	10.0	.01	
625	50.0	60.0	10.0	.01	
626	60.0	10.0	10.0	.18	
627	70.0	80.0	10.0	.51	
628	80.0	90.0	10.0	138	0.34
				301	

KAMLOOPS, B. C.

April 18, 1967.

Hole No. 43

No. 629	From	40.0	to
630		50.0	50.0
631	60.0	60.0	
632		70.0	70.0
633	80.0	80.0	
634	90.0	90.0	
635		100.0	100.0
			110.0

Hole No. 44
Overburden 50.01 plus, no samples.
Fole No. 75

636
50.0
60.0

Hole No. 74

637	37.0	50.0
638	50.0	60.0
639	60.0	70.0
640	70.0	80.0
641	80.0	90.0
642	90.0	100.0
643	100.0	110.0
64	110.0	120.0

Hole No. 73
645
646
54.0
60.0
60.0
70.0

Eole No. 72

647	10.0	20.0	10.0	.03
648	20.0	30.0	10.0	.03
649	30.0	40.0	10.0	.03
650	40.0	50.0	10.0	.03
651	50.0	60.0	10.0	.06
652	70.0	70.0	10.0	.05
653	80.0	80.0	10.0	.86
654	90.0	10.0	10	.05

13.0	0.24
10.0	.22
10.0	.35
10.0	.23
10.0	.10
10.0	.65
10.0	.05
10.0	.05

6.0
0.03
10.0
.03

Hole 55

No. $\begin{array}{r}35453 \\ 454 \\ 455 \\ 456 \\ 457\end{array}$
Hole No. 56

No. 35458	14.0	20.0
459	20.0	30.0
460	30.0	40.0
461	40.0	50.0
462	50.0	60.0
463	60.0	70.0
464	70.0	80.0
465	80.0	90.0
466	90.0	100.0

Hole NO. 49

No. | 35467 |
| ---: |
| 468 |
| 469 |
| 470 |
| 471 |
| 472 |
| 473 |
| 474 |
| 475 |
| 476 |
| 477 |
| 478 |

Hole No. 50

No. | 35479 |
| ---: |
| 480 |
| 481 |
| 482 |
| 483 |
| 484 |
| 485 |

Hole No. 51

No. | 35456 |
| ---: |
| 487 |
| 488 |
| 489 |
| 490 |
| 491 |
| 492 |

From 28
40.0
50.0
60.0
70.0
To
40.0
50.0
60.0
70.0
80.0

Width
12.0
10.0
10.0
10.0
10.0

$$
\begin{array}{r}
\% \quad 0 \\
\hline 0.08 \\
08 \\
008 \\
113
\end{array}
$$

6.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

7.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0 0.20
.12
.12
.12
.22
$: 10$
108
.06
$: 06$
106
.05

6.0	0.03
10.0	103
10.0	105
10.0	.05
10.0	48
10.0	107
10.0	1.0

Kimberley Copper Mines Itd.
April 25, 1967

H01e 2T0. 52					$0 \mathrm{~B}$
No. 689	From 17.0	To 30.0	Width	13.0	0.04
690	30.0	40.0		10.0	$\therefore 3$
691	40.0	50.0		10.0	i 02
692	50.0	60.0		10.0	- 02
693	60.0	70.0		10.0	102
694	70.0	80.0		10.0	102
695	80.0	90.0		10.0	$\cdots 2$
696	90.0	100.0		10.0	- 0
697	100.0	110.0		10.0	.01
698	110.0	120.0		10.0	1.02
699	120.0	130.0		10.0	.0才

Hole NO. 53
35426
35427

$$
\begin{array}{rl}
30.0 & 40.0 \\
40.0 & 50.0
\end{array}
$$

Hole NO. 57

35428	22.0	30.0	8.0	0.09
35429	30.0	40.0	10.0	-08
35430	140.0	50.0	10:0	.09
431	50.0	60.0	10.0	. 04
432	60.0	70.0	10.0	- 08
433	70.0	80.0	10.0	. 82
434	80.0	90.0	10.0	$\therefore \Delta 2$
435	90.0	100.0	10.0	. 02
436	100.0	110.0	10.0	+02
437	110.0	120.0	10.0	+02
438	120.0	130.0	10.0	- 0^{2}
439	130.0	140.0	10.0	$\cdots 2$
440	140.0	150.0	10.0	- 02

Hole NO. 69

35441	18.0	30.0	12.0	8.12
442	30.0	40.0	10.0	0.4
443	40.0	50.0	10.0	.04
444	50.0	60.0	10.0	0.7
445	60.0	70.0	10.0	10.0
446	70.0	80.0	0.0	
447	80.0	90.0	10.0	4.0

Hole No. 54
35448
449
450
451
452

30.0	40.0
40.0	50.0
50.0	60.0
50.0	70.0
70.0	80.0

[^1]\[

$$
\begin{aligned}
& 0.05 \\
& .04 \\
& .07 \\
& .04 \\
& .07
\end{aligned}
$$
\]

Kimberley Copper Mines Ltd.
April 21, 1967

Kamloons, B. C.
路
Hole NO. 70

No. 655	From	53.0	to	60.0
656	60.0	70.0	Width	7.0
657	70.0	80.0		10.0
658	80.0	90.0		10.0
659	90.0	100.0		10.0
660	100.0	110.0		10.0
661	110.0	120.0		10.0

Hole No. 71

662	50.0	60.0
663	60.0	70.0
664	70.0	80.0
665	80.0	90.0
666	90.0	100.0
667	100.0	110.0
668	110.0	120.0

10.0
10.0
10.0
10.0
10.0
10.0
10.0

$$
\begin{aligned}
& 0.16 \\
& .23 \\
& .19 \\
& .18 \\
& .23 \\
& .22
\end{aligned}
$$

Hole No. 68

669		48.0	60.0	12.0
670	60.0	70.0	10.0	0.04
671	70.0	80.0	10.0	.03
672	80.0	90.0	10.0	.14
673	90.0	100.0	10.0	.13
674	100.0	110.0	10.0	.07
675	110.0	120.0	10.0	.09
676	120.0	130.0	10.0	.88
677	Cancelled.			

Hole No. 67

678	30.0	40.0	10.0	0.42
679	40.0	50.0	10.0	10
680	50.0	60.0	10.0	10
681	60.0	70.0	10.0	.8
682	70.0	80.0	10.0	.8
683	80.0	90.0	10.0	.14

Hole NO. 64

684	58.0	70.0	12.0	0.02
685	70.0	80.0	10.0	02
686	80.0	90.0	10.0	.02
687	90.0	100.0	10.0	.02
688	100.0	110.0	10.0	.02

April 26, 1967

Hole NO. 61

No. 35493	From	50.0	to	60.0
494	60.0	70.0	Width	10.0
495	70.0	80.0	10.0	
496	80.0	90.0	10.0	
497	90.0	100.0	10.0	
498	100.0	110.0	10.0	
			10.0	

Hole NO 60.

35499	60.0	70.0	10.0
500	70.0	80.0	10.0
501	80.0	90.0	10.0
502	90.0	100.0	10.0
503	100.0	110.0	10.0

HoLe No. 62.

504	60.0	70.0	10.0
505	70.0	80.0	10.0
506	80.0	90.0	10.0
507	90.0	100.0	10.0
508	100.0	110.0	
509	110.0	120.0	10.0
			10.0

Hole No. 59.

510	40.0	50.0	10.0
511	50.0	60.0	10.0
512	60.0	70.0	10.0
513	70.0	80.0	10.0
514	80.0	90.0	10.0
515	90.0	100.0	10.0
516	100.0	110.0	10.0

Hole No. 45.

517	18.0	30.0	12.0
518	30.0	40.0	10.0
519	40.0	50.0	10.0
520	50.0	60.0	10.0
521	60.0	70.0	10.0
522	70.0	80.0	10.0
523	80.0	90.0	10.0
524	90.0	100.0	10.0
525	100.0	110.0	10.0
526	110.0	120.0	10.0
527	120.0	130.0	10.0
528	130.0	140.0	10.0

Hole 1io. 47.

35529	From	20.0	30.0
530	30.0	40.0	Width 10.0
531	40.0	50.0	10.0
532	50.0	60.0	10.0
533	60.0	70.0	10.0
534	70.0	80.0	10.0
535	80.0	90.0	10.0
536	90.0	100.0	10.0
537	100.0	110.0	10.0
538	110.0	120.0	10.0
			10.0

EOIe MO. 46.

539	20.0
540	30.0
541	40.0
542	50.0
543	60.0
544	70.0
545	80.0
546	90.0
547	100.0
548	110.0

30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

Hoie No. 48.

549
550
551
552
553
554
555
556
557
558
559
550
561
562
Hole No. 58.

Hole No. 63.

No. 35576	From	70.0	To 80.0	Width
577	80.0	90.0	10.0	
578	90.0	100.0	10.0	
579	100.0	110.0	10.0	
580	110.0	120.0	10.0	
				10.0

$\left\{\begin{array}{l}\text { XEROQ } \\ \text { COPY }\end{array}\right\}$

[^0]: L. G. Phelan, M.A.Sc., P.Eng. Consulting Geologist

[^1]: 10.0
 10.0
 10.0
 10.0
 10.0

