$82 G / 5 W$
GEOPHYSICAL (INDUCED POLARIZATION) REPORT JIM, CAT, CAROL, NEIL CLAIMS.

Cranbrook Area Fort Steele Mining Division British Columbia

Placid Oil Company -W. Schuur, M.Sc. --

June - November 196 December 28, 1967.

1174

PART 2

REPORT ON
induced pularization survey IN THE
CRANBROOK AREA, B.C. FOR
PLACID OIL COMPANY BY
ganadian aero mineral surveys limited
Project No. 7074

REPOR2 OX

INDUCED POLARIZATION SURVEY

IN THE

CRANBROOR AREA, B.C.

FOR

PLACID OIL COMPANY

BY

CANADLAN AERO MINERAL SURVEYS LTMITED
Project No. 7074

OTTAWA, Ontario,	
December $28,1967$.	W. Schuur, M.Sc.

TABLEOFCONTENTS

Page

SUMMARY (i)
I. INTRODICTION 1
II. EQUIPMENT AND PERSONNEL 1
III. GEOLOCY 2
IV. DISCUSSION OF RESULTS 3
V. COACLUSIONS AND RECOMMENDATIONS 15
APPENDIX I A) VguipmentJ) Fleld ProcedureC) Date Presentation

$$
\begin{aligned}
& 1 \text { Index Maf } \\
& \text { Fi- Apparent Chargeability Contour Map } \\
& \text { \# } \\
& 48 \\
& \Rightarrow 9 \\
& 410
\end{aligned}
$$

SUMMARY

During the period from June 20 till August 23 and from September 1) till November 13, 1967, Canadian Aero Mineral Surveys Limited conducted an induced polarization survey, covering approximately 100 Iine miles in the Cranbrook area, B.C. for Placid 011 Company. A total of 18 anomalous zones has been outlined, most of which follow a northeastern or northwestern trend, directions also disclosed by the apparent resistivity contour map. The anomalous zones have been classified as first, second and third priority follow-up targets and, whenever possible, drill hole locations were determined, from where most advantageously the various structures, corresponding with the individual anomalous zones, could be tested.

The following Canadian Aero Mineral Surveys Limited
personnel were associated with the survey.
A.R. Brazeau, P.Eng. Geophysicist.

Valleyfield, F.
K. Mann Geophysical Assistant

Cranbrcek, B.C.
W. Moure Geophysical Assistant

Cranbrook, B.C.
D. Fitzsiamons

Drafteman
Ottawe, Ontario.
W. Schuur, MSc. Geophysicist Ottawa, Ontario.

A11 further personnel, necessary for the field operations, were provided by Placid Oil Company.
III. GEOLOGY

The following publications and maps have been ured as
a reference for the geology of the area:

1. Geological Survey of Canada, Menoir 207, Cranbrook MapArea, B.C. ($1^{*}=\mathrm{i}$ mile) 1937.
2. Geological Survey of Canoda, Memoir 220, Nelson East Half, B.C. $\left(1^{\prime}=4\right.$ miles $) 1941$.
3. Transactions of C.I.M.M. Volume 48, 1945, p. 645-617.
4. Geological Survey of Canada, Preliminary Map 15-1957

St. Mary Lake, B.C. ($1^{n}=1$ Mile).
5. Geological Survey of Canada, Paper 58-10, Fernie Map Area, West Half, B.C. (${ }^{\prime \prime}=2$ Miles).
6. Geological Survey of Canada, Preliminary Map 11-1960, Fernie, West Half, B.C. ($l^{\prime \prime}=2$ Miles)

IV. DIRCUSSION OF RESULTS

a) Jim and Jim South Clain Groups

A total of 181,200 line feet was surveyed in this area, not including a considersble amount of detailing, carried out over anoalous areas. The Jim clain group area has bean suryeyed before the August break-up and regults have baen diseused in the Preliminary Report, previously submitted. Since in the light of later information obtained in the Cranbrook Area, review of data appears to be appropriate, a re-evaluation of the various anosious zonea will be made below.

Data obtained over the Jin and Jin South clain groups is presented in profile form on sheete 1,2 and 3 . In contour form this data is incorporated in the two contour maps accompanying this report. Please note that the sale of the raps is not axactiy as indicated, since mater copien mad to be prepared from oxisting, stretched ozalid copies. The same does of courae apply to the other areas surveyed.

The general chargeability backgreund value in this area is In the order of $4-5$ milliseconds (millivolt seconds). The average resiativity value appears to be in the order of 800 oha meters. Both from the resistivity and from the chargeability contour maps two distinct tronds are recognizable in this area, to wit: one in a northeast direction, the other approximitely perpendicular to this. It seens logical to assume son relationship between these trends and faulting, since no correlation exigts with
known geological strike directions or the geomorphology of the area. The general background chargeability value, as observed on the contour map, is approximately $4-6$ milliseconds. Chargeability readings of twice the background value are considered anomalous, and based on this a number of anomalous zones has been outined in the area. These zones have been labelled from " A " to " J ". With the exception of the anomalous zone " A ", which falls mainly in between lines 45 and 50 W from stations 0 till 25 N ., the anomalies appear to line up along a northeastern trend.

As stated above, Zone " A " falls chiefly in between two traverses and as a result resolution over the anomaly is poor. A comparison of the readings obtained with the 200 feet and the 400 feet spacing indicates a flat lying, fairly continuous source, which comes close to surface and near the survey line (at stations 12:40N and $20+50 \mathrm{~N}$, line 45 W). The area of above normal chargeability values shows average resistivities of approximately 600 ohm meters and stands out as a low resistivity zone surrounded by mostly northwest trending resistivity highs. At the time of writing of this report no magnetic data was available for the Jim claim group to assess any magnetic correlation. To test the nature of the source material, it is suggested that a drill hole be collared at either . 550 N or $20+50 \mathrm{~N}$ on line 45 W , to be drilled in a $\mathrm{N} 80^{\circ} \mathrm{W}$ direction at an angle of 30° Eor at least 250 feet. An average of up to 3% by volume of polarizable material can be expected in the structure.

Zones "B" and "C" are two parallel anomalous zones
situated in the southern part of the Jim survey grid. They follow
the northostern trend and extend more or less contimously for approximately 4800 Leet. The northernnost sone " $B^{* 3}$ exhibits a rather shallow dip to the northwewt over its southwestern part, while it eppears to be sub-horisontal over its northeastern paxt. In line with zone $B^{\prime \prime}$ approximately $\frac{1}{2}$ mile northeast frox ite northern end, another anomely is located, which has been labelled G". It is likely that this nome belongs to the same syaters as zone "B". No correlation betwean apparent chargembility and resistivity values exists over the southeastern part of zone "B", but over the northeastern part of the zone and ove:" zone "C" a marked increase in resistivity coincides with the incresse in chargeability readings.

The bast location for a drill hole to test the source of zone "B" is at 215 on line 30 N , to be drilled $520^{\circ} \mathrm{E}$ at an inclination of 70°. This hole is expected to intergect the source material within 250^{\prime} trom surface. The source is estimated to consiat of up to 2 多 average by volume of polarizable meerial.

An alternative drillhole location would be at 10 S on 1ine 10 , where ${ }^{2}$ vertical hola should intersect the source of the anomaly within 300 feet fron eurface. Ar: amount of up to 2% average by volume of polarizable material can be expected.

The burial of the source of anomalous zone ${ }^{C}$. which rune parallel to and south of gene "B", appears to be deepar than the previous zone. Approxinatefy the same shallow dip is indicated in the southwestern fott of the sone (around 285, 306) but in the
northeastern contimusion this tip appeaxs to be southeasterly. At the same time, the single structure indicated in the southwestern part appears to have been replaced by two more or less parallel bodies, both of which are at shallower depth here than elsewhere in the zont. The very high readings obtained on the 100 feet spacing on line 10 N are possibly due to some cultural cause and have not been used for interpretation. At the same time they might indicate a near vertical extension of the main structure to near surface, in which case trenching and shallow drilling would locate its source. For testing this zone, which does not seen to have any resistivity expression over its entire length, the following drill hole location is suggested: collar at $22 \mathrm{~s}, 10 \mathrm{~W}$ and drill $\mathrm{N} 20^{\circ} \mathrm{W}$ at an angle of 75° for a^{+}least 250 feet. This anosalous zone is the only one in the Jin area, of which the re-evaluation of the data has markedly changed the concept of geometry.

Of the remaining anomalous zones outlined in the Jim area, only zone $D^{\prime \prime}$ exhibits the size and amplitude to warrant lmadiate follow-up. The anomalous zones ${ }^{\circ} E^{* *}$, " $F^{\prime \prime}$, and " $G^{\prime \prime}$ are of too small extent or too low amplitude for efrst or second priority rating. This concept may be changed, however, if additional geochemical and ground magnetoneter data become available. The location of zone " H^{*} on line $45 E$ coincides with a railway crossing. The apparent steep dip and the appraciable decrease in resiativity makes one suepect that cultural source is involved. Zone " D " is made up of thraa more or less separate anomalies in echelon along the same northeastern trand as was shown by zones " B " and " C ", and by the resistivity contour
map. The nomalies fall mainly southeast of an area of resistivity readings above 2000 ohm meters and, especially the northeastern snomsly, has good correlation with low resistivity values of less than 500 ohm meter. The structure appears to be sub-horizontal around 42 N on line 15 E and the recommended drill hole location is therefore $42 \div 00 \mathrm{~N}, 15+00 \mathrm{E}$, to be drilled vertically for at least 300 feet. A maximum of up to $2 \frac{1}{2} \%$ average by volume of polarizable oterial could be expected in this feature.

In Jim South area, only one, fairly wide, anomalous
srea has been indicated. It is located at the eastern end of the grid and is still open to the east. Maximum chargeability values over zone " J " fall in the 20 milliseconds range, indicating an amount of up to 3% average by volume of polarizable material. The zone itself consists of three more or less isolated anomalies, each of which appears to be due to rather small, sub-horizontal source, Depth of burial for the individual anomalies is approximately the same and probably in the order of 200-300 feet. Amplitudes are sufficiently high to warrant follow-up and it is suggested that the anomaly just north of tie line "B" on line 258 be drilled first. A vertical hole collared at 62S, 25E, to be drilled for at least 350 feet should obtain the most conclusive results. Further testing of zone " J " should depend on the results of this hole and should be carried out by collaring on $665,25 \mathrm{E}$ and $50 \mathrm{~S}, 20 \mathrm{E}$, both to be drilled vertically for 350 feet.
b) Carol Clatm Group

The induced polarization survey in this area covered a total of 19.0 line miles, not counting 8.1 line miles done by detailing. The apparent resistivity contour map over this gxid shows very little variation in conductivity. The background value is In the order of 500 ohm meter against a maxirmum value of 200 ohm meter and a minimum of 300 ohm meter. The apparent chargeability contour map however show large changes in polarization characteristics On the basis of the chargeability values, the area can be roughly divided in two parts, a northern half with background values in the order of 2-3 milliseconds and a southern half with background value probably in the order of 8-10 milliseconds.

No anomalies were observed in the northern part of the zrea. The southern area, however, appears to be strongly anomalous. Within this anomalous belt, two acre or less saparste anomalous zones can be distinguished, separated from each other by an approximately northeast atriking band of chargeallity readings in the order of 8-10 milliseconds. The same magnitude of chargeabilities was obtained at. the western part of the anomalous belt and therefore was taken as background value.

Within the two major zones of anomalous chargeability readings a total of four units can be distinguished, wich have been labelled from "K" to "N".

Unit " $K^{\prime \prime}$ is more or less half circular zone in the western part of the anomalous belt, surrounding a core with readings in the 8-10 milliseconds range. Amplitudes in zone "g" are as high
as 20 milliseconds, indicating an average of up to $2 \mathrm{~h}_{\mathrm{h}} \%$ of polarizable material by volurae. The southern part of the zone exhibits a close correlation with the only high resistivity zone present in the Carol claim group. The corresponding structure appears to be sub-horizontal with mainly variations of depth of burial causing the changes in polarization responses. Depth of burial appears to be fairly shallow, in the order of 100 feet below surface. The northern extension of the zone has no correlation with resistivity and appears to be more confined in space. A shallow dip towards the north is indicated on 1 ine 50 E around 4 S , where an amount of up to 24% by volume of polarizable material can be expected. The slightly higher magnetic readings at stations 2 and 3 south on line 50 are not sufficiently significant to provide a further clue to the nature of the source material. It is suggested that unit "K" be tested both at 6 ro0s on 47 r50e, to be drilled vertically for at least 250 feet and at $26+00 \mathrm{~S}$ on line $35+00 \mathrm{E}$, to be drilled south along the line at an angle of 70° for at least 300 feet.

In the eastern anomalous zone a total of three anomalous units can be distinguished. Of these, the most interesting both for size and amplitude is zone " L " in the southeastern part of the grid. Within this unit three separate bands have been outined, each striking approximately east-west. No detailing was carried out over the southern band located around 85 on line 80 E , where a reading of 23.8 milliseconds was observed. Indications on line 75 E are that the body dips rather flatly to the south. Again, the
slightly higher magnetic readings at 8 S on lines 75 E and 80 E are not diagnostic for the source material to be expected. The central anomalous band, with peak values at 2 S on lines 70,75 and 80 E and at 0 and 2 N on respectively lines 85 and 90 E , comprise the highest anomalous readinge in this zone.

A maximum reading of 39 milliseconds with the 290 feet spacing was obtained over this zone at 3 N on 90 E , indicating a possible amount of up to 6% average by volume of polarizable material in a flatly south dipping structure. No magnetic data was available over the easternmost lines, but on the lines 70 and 80 E , a weak magnetic zone correlatea with the induced polarization enomaly. Resistivity values ovar zone "L" tend to be rather low but this appears more readily explained by ageneral change in rock type. The northern band seems to be intimately linked with the central band except possibly for its eastern extension, where they are probably split in two separate structures. An intermediate dip to the south is indicated for the northern stru cure, which may contain up to 5% average by volume of polarizable material. The nature of the source material is uncertain, but lack of magnetic correlation tends to exclude the presence of pyrrhotite. To test the various bands in zone "L", the following drillhole locations are suggested:

In the southern band a vertical hole should be collared at $8+00 \mathrm{~S}, 80+00 \mathrm{E}$, to be drilled for at least 300 feet.

For the central band a vertical hole should be collared
at $1+00 \mathrm{~N}$ on line $90+00 \mathrm{E}$, to be drilled for at least 250 feet.
For the northern band the best location is $3+00 N$, 3000 E , to be drilled N along the line for at least 300 feet at an angle of 70°.

The romaining anomalous zones " M " and " N " in the eastern belt are rather narrow structures, wich in the light of the high overall background values do not appear too interesting. The feature related to zone ' M ' dips flatly to the north at line gog, 20N. No datailing wa: done over this zone on line 958, which leaves some doubt about the real continuation of the structure. However, the zone as outlined on the contour map follows the general trend of the anomalous belt which is thought the most probable strike of the feature. Based on thia interpretation the best location for a drill hole to test the source material of this feature would be at 16 N , $92 \times 50 \mathrm{E}$, to be drilled vertically for at least 250 feet. The source of zone "N" appears to be deep seated and sub-horizontal. No magnetic correlation is present with this feature at could be expected over this rather deep, flat lying body. On the basis of present data no drilling can be recomanded on this anomaly.

c) Cal Claim Group

The eat claim group adjoins the Jim group to the west.
A cotal of 20.7 1ine miles has been surveyed in thif area, of which 3.7 line miles with detailing. A total of 5 zones has been outined in this area in which the chargeability readings observed were at least twice the average beekground value of $4-6$ milliseconds. These
zones have been labelled from " 0 " through " ${ }^{\prime}$ ". The strongest anomalles are obtained in zone " Q ", situated in the northern extreme of the claim group. The zone is still open to the north and the east. Detailing over this feature on line 105E revals a sheet-1ike body dipping flatly to the south at a depth of burial of approximately 100 feet at $46 \mathrm{~N}, 95 \mathrm{~W}$. The zone relates well with an area of high resistivity and with some apparent banding in magnetic data. It is thought to be a good drilling target with an expected amount of up to 5% average by volume of polarizable material. The best drill hole location appears to be at 42 N , 95 W to be drilled vertically for at leant 200 feet.

Just northeast of a wedge-shaped area with very low chargeability readings, in the order of 2 milliseconds, and straddling its boundary, anomalous zone " p " is outlined. It actually consists of two separate zones which for convenience have been labelled as one. The western part of the zone appears to corraspond with a sheet-like body, dipping very flatly to the north as indicated by the data obtained on line 125 W . In the eastern half, the dip appears to be shallow to the south. Good correlation exists between chargeability readings and high resistivity values, suggesting a possible connection between an increase in polarizable material and siliaification or any other process that tends to increase resistivity. The fair magnetic activity observed in the area is not directly correlatable with the I.P. targets. Some of the magnetic anomalies axe, however, of sufficient emplitude to be caused by pyrrhotite in the amounts
necessary to explain the induced polarization anomalies. If driliing of zone " P ", which is still open to the west, is considered, the following drillhole locations are suggested:
a) Collar at 35 N on line 125 W , drill vertically for 200 feet.
b) Collar at 13 N on line 90 W , drill vertically for 200 feet.

In between zone " P " and " Q " and parallel to zone " P " the I.P. survey outlined another band of anomalous chargeability readings, which was labelled " 0 ". This zone, with peak amplitudes of 14
milliseconds. on the 400 feet spacing and 17.0 on the 200 feet spacing, has good correlation with high resistivity zone. Some magnetic correlation is also present. The zone appears to be best explained as a sub-horizontal sheet-like body at a depth of approximately 100 feet. The amount of polarizable material expected over this zone is in the order of $1 \frac{1 \%}{2}$, which should make it a low priority drilling target only. A vertical hole of 200 feet collared at 30 N on line 105W should test the structure adequately.

The reading of 15.2 milliseconds obtained at 45 on ine 115 W together with the silghtly higher reading on the 100 feet spacing on the same line, were decisive to include this otherwise weak zone " S " in the anomaly listings. Over the western part of the zone some fairly high magnetic readings were obtained. The correlation of I.P. with resistivity appears to be negative: a zone of lower than the average 800 ohm meters resistivity value corresponds with the I.P. feature. The structure indicated by the I.P. data appears to be a sheet-like body, flatly dipping to the south. An
amount of up to 12% average by volume of polarizable material may be expected over this feature, which places it in the same category es zone " 0 ". If drilling is considered, a vertical hole collared 2t 25 on line 110 w , to be drilled for 200 feet, is suggested. On the south end of line 115W, correlating with a zone of high resistivity readings, two more or less isolated anomalous chargeability values have been labelled zone " R^{*}. Detailing over this zone is inconclusive and no magnetic data is avallable to lend this anomaly additional support. An extension of the traverse and further I.P. work is needed to be able to evaluate the anomaly.

Along the southeastern border of the Cat area narrow band of slightly above background chargeability readings has been outlined. This band correlates fairly well with a zone of higher resistivity readings. A very irregular magnetic pattern is observed over the general area of the zone but it is not directly correlatable with it. Detailing was carried out around 12 S on 1ine 85 W , to define the shape and electrical properties of the zone, which,at this particular spot, appears to consist of two sub-horizontal slabs at a depth of approximately 100 feet. The data obtained with the 200 feet spacing suggests that up to 2% of polarizable material average by volume can be expected over the zone. Since the anomalous bend, with considerable herringboning probably partly due to insufficient topographical control, lines up with zone "A" of Jim claim group, it has not been labelled anew. If drilling of this zone is considered, it could be done effectively from $12+00$ on line 85 W ,
where two holes are suggested: ose to be drilled $45^{\circ} \mathrm{W}$ at an angle of 70° for at least 300 feet, the other $\$ 45^{\circ} \mathrm{E}$ at -70° for at least 300 feet.

V. CONCLUSTONS AND RECOMMENDATTONS

The induced polarization survey in the Cranbrook area has been ouccessful in outlining a good many anomalous zones, most of which look sufficientiy promising to be followed up by drilling. Many of the momious zones correlate with zones of high resistivity, which, if due to silicification or tourmalinization, could prove an interesting factor according to the geologic setting of the area. Although for part of the grid, surveyed by induced polarization methods, ground magnetic data was available, no definite conclusions could be dxawn from the latter.

Baned on the combinad induced polarization and resistivity data the following anomaly listing has been prepared. At the same time drill hole locations are given, from which the zones may be tested most advantageously.

Jim and Jin South claim groups
First priority
None.

Second priority
Zone "A": Collar at aither $12+50 \mathrm{~N}$ or $20+50 \mathrm{~N}$ on line 45 W , drill $\mathrm{N} 80^{\circ} \mathrm{N}$ at -50° for at least 250 feet.

Zone "B": Collar at 215 on line $30 n$, drill s200e at -70° for 250 feet.
or collar at 10 S on line 10 W , drill vertically for at least 300 feet.

Zone "C": Collar at 22 S on line 10 W , drill $\mathrm{N} 20^{\circ} \mathrm{W}$. at -75° for at least 250 feet.

Zone " $\mathrm{D}^{\prime \prime}$: Collar at $42 \mathrm{~N}, 15 \mathrm{E}$, drill vertically for at least 300 feet.
Zone "J": Collar at 62S, 25E, drill vertically for at least 350 feet.

Third priority
Zones " E ", ' F ", " G ", no drilling recomended.

Carol claim group

First priority
Zone "L": Collar at $1+00 \mathrm{~N}, 90+00 \mathrm{E}$, dxill vertically for at least 250 feet.

Collar at $3+00 \mathrm{~N}, 80+00 \mathrm{E}$, drill N. along 1 ine at -70° for at least 300 feet.

Second priority
Zone " K ": Collar at $600 \mathrm{~S}, 47 \mathrm{50E}$, drill vertically for at least 250 feet.

Collax at $26-00 \mathrm{~S}, 3500 \mathrm{E}$, drill s. along line at -70° for at least 300 feet.

Zone "L": Collar at $8+00 \mathrm{~S}, 80 \mathrm{OOS}$, drill vertically for at least 300 seet.

Third priority
Zone " M ": Collar at $16 \mathrm{~N}, 92+50 \mathrm{E}$, drill vertically for at least 250 feet.

Zone "N": No drilling recomended.

Cat claim group
First priority
Zone " Q ": Collar at $42 \mathrm{~N}, 95 \mathrm{~W}$, drill vertically for at least 200 feet.

Second priority
Zone "P": Collar at 13N, 90W, drill vertically for 200 feet.

Third priority
Zone "O": Collar at $30 \mathrm{~N}, 105 \mathrm{~W}$, to be drilled vertically for 200 feet.
Zone "p": Collar at 35N, 125 W , drill vertically for 200 feet.
Zone " $A^{\prime \prime}$: Collar at $12 \mathrm{~S}, 85 \mathrm{~W}$, drill $\mathrm{N} 45^{\circ} \mathrm{W}$. at -70° for at least 300 feet.

Collar at $12 \mathrm{~S}, 85 \mathrm{~W}$, drill $545^{\circ} \mathrm{S}$. at -70° for at least 300 feet.

Zone "S": Collar at 2S, 110W, drill vertically for 200 feet.
Zone "R": No drilling recommended.

Respectfully submitted,

OTTAWA, Ontario, December 28, 1967.
W. Schuur, M.Sc. Geophysicist.

APPENDIX I

A. EQUIPMENT

The equipment used by Canadian Aero Mineral Surveys Limited is the high sensitivity D.C. pulse-type I.P. unit Mk. V, built by Sharpe Instruments Limited. A current on-time of 1.5 seconds and a measuring time of 0.5 seconds are employed. A choice of 3 power units is available with this equipment, of respectively $1.2 \mathrm{k} . \mathrm{w} ., 2.5 \mathrm{k} . \mathrm{w}$. and $7.5 \mathrm{k} . \mathrm{w}$. output to match requirements in specific areas. For surveys requesting a very high stable power source a 10 k.w., Volkswagen engine driven, power unit is also available.

B. FIELD PROCEDURE

All electrode configurations in common use in resistivity surveying like dipole-dipole, two array, three array, Wenner and Schlumberger configuration, can be used for DC induced polarization surveying. Canadian Aero Mineral Surveys Limited preferably uses the three array because of low coupling effect and high effective penetration. With this array one current electrode is placed at "infinity", a distance of at least 5 times the maximum spacing used during the survey from any survey station. The other current electrode and the two potential electrodes are equally spaced in line along the survey traverses.

In many areas high resistive bedrock is overlain by good conducting soils, which effectively prevent current to enter the
bedrock. To be able to obtain information about bedrock, spacings used have to be 20 and more times the depth of the overburden. In such cases, using any of the usual arrays, it is not possible to detect the presence of small or moderate sized bodies. Under these circumstances the gradient or rectangle method is both feasible and desirable. It reduces the effect of masking, retains a high degree of resolution and has good depth penetration. With this method, the two current electrodes are placed along a traverse at a mutual distance of 4000^{\prime} or more. The potential electrodes are kept within the middle third of the current electrode spacing. For each current electrode set-up a rectangle of dimensions $1 / 3 \times 1 / 4$ the current electrode spacing is surveyed. For the gradient array method the potential electrode spacing is usually kept within $1 / 20$ of the current electrode spacing.

For the other electrode configurations the electrode spacing depends primarily on required depth of penetration and size of body expected. Most common spacings for reconnaissance survey with the three array are the 400' and 200'. Readings are normally taken at 200^{\prime} intervals along the lines, but in areas of interest this interval is reduced to 100'. In some cases anomalous areas are further detailed using additional spacings 800', 400', 200', 100' and 50' - to provide information as regards the change of electrical properties with depth.

At each observation point both the primary voltage steady state voltage - and secondary voltage - transient voltage or overvoltage - are observed. The primary voltages are converted
by formula to apparent resistivities expressed in units of ohm meters. Secondary voltages are measured by integration and divided by their corresponding primary voltages to obtain the apparent chargeabilities. The chargeability expressed in units of milli-volt seconds per volt or milliseconds is the I.P. characteristic of the medium.
C. DATA PRESENTATION

Results are presented as combined apparent resistivity and apparent chargeability profiles. Resistivities are plotted at a logarithmic scale of $2^{\prime \prime}=1$ cycle. Apparent chargeabilities are plotted at a scale of $1^{\prime \prime}=5$ milliseconds. Apparent chargeability readings obtained with the reconnaissance spacing are also presented on a contour map. For the surveys done with the gradient method, contouring is done separately for each block, due to irregularities in the current distribution in the various blocks. For all other electrode configurations contouring is done continuously over the entire survey area.

