GEOPHYSICAC

INTERIM FIELD REPORT
on the
Sibley and Wren Properties
and Colleen Claims
Hartford Junction - Greenwood M.D. Latitude $49^{\circ} 05^{\prime} \mathrm{N}$: Longitude $118^{\circ} 35^{\prime} \mathrm{W} \quad 82-E-2$
on behalf of
Rayore Mines Ltd. (NPL)

Work done between June 9 th and June 15 th, 1968
by
A.B.I. Whittles, PH.D. Geoph. June 26 th, 1968

GEO-X SURVEYS LTD. ge7 hornby street, vano

GEOPHYSICAL

INTERIM FIELD REPORT

on the
Sibley and Wren Properties
and Colleen Claims
Hartford Junction - Greenwood M.D.
Latitude $49^{\circ} 05^{\prime} \mathrm{N}$: Longitude $118^{\circ} 35^{\prime} \mathrm{W} \quad 82-E-2$
on behalf of
Rayore Mines Ltd. (NPL)

Work done between June 9 th and June 15 th, 1968
by
A.B.L. Whittles, PH.D. Geoph. June 26 th, 1968

Page

Introduction 1
A. Zone 1 1
B. Zone 2 1
C. Zone 3 2
Instruments Used 2
Zone 1 2
Zone 2 3
Zone 3 Wren Property
Figures:

1. Claim and Line Sketch
2. Magnetometer Contours
3. Ronka EM Profiles
4. Magnetometer Contours
5. Soil Sampling - Copper ppm 'B' Zone
6. Soil Sampling - Lead ppm 'B' Zone
7. Soil Sampling - Zinc ppm 'B' Zone
8. Soil Sampling - Silver ppm 'B' Zone
9. Creek System in Anomalous Region
10. Magnetometer Contours
11. Ronka EM 16
12. Location Sketch
13. Ronka EM 16
Appendix:
I. Certificates
II. Instrument Specifications
III Cost Breakdown

Interim Field Report on the
Sibley and Wren Properties and the
Colleen Claims
on behalf of
Rayore Mines Ltd. (NPL)

INTRODUCTION:

Between June 9th and June 15th, 1968 A.B.L. Whittles and
B.A. Cochrane of,Geo-X Surveys Ltd, conducted reconnaissance and detailed geophysical (Magnetic and EM) and geochemical surveys over two areas near Hartford Junction, Greenwood Mining Division, B.C. (see Figure 12 for general location).

This work can be most conveniently divided into three parts (see Figure 1.).
A. Zone 1:

Work done on the Colleen claims and the Sibley property to the west of the road. These lines were run 400 feet apart and at 100 foot stations. Most of this work was completed earlier by another crew
B. Zone 2:

Work on the Colleen claims to the east of the road. Most of the work was reconnaissance in nature along lines with 100 foot stations. In one area a magnetic high was discovered and subsequently detailed magnetic, EM and geochemical work was done on a 100-foot by 100-foot grid.

C. Zone 3:

Work on the Wren property to the north of the Sibley property. Both reconnaissance and detailed magnetic and EM work was done using 100 -foot station spacing.

INSTRUMENTS USED:

Magnetic measurements were taken by a Sharpe MF-l fluxgate type instrument, operated by A.B.L. Whittles.
Simultaneous EM measurements were taken by B.A. Cochrane, using a Geonics EM-16. Station NPG (Jim Creek, Washington) with a frequency of 18.6 kc was used throughout the survey.

Zone 1:
One fairly strong anomaly occurs on line $40+00 \mathrm{~N}$ at about station $25+50 \mathrm{E}$ (see Figure 2, Anomaly $\mathrm{C}-1$). Interpolated maximum is about 1,200 gammas above a background of about 300 gammas. The magnetic body appears to be approximately spherical and at a depth of about 80 feet. Before drilling is considered, more detailed magnetic work should be completed since the anomaly is based on essentially two high readings and was not detailed (this work was completed by another crew). The EM results show a slight crossover in the region of the preceeding anomaly (see Figure 3). Several other crossovers occur, some may be associated with wet fault or shear zones. More
detailed work is suggested by some of these results, particularly In the region of lines $36-44 N$, stations 0 to $12 E$, and on lines 24 N and 28 N .

Zone 2:
The results are generally low over the reconnaissance lines surveyed, with the exception of the large anomaly (Anomaly $\mathrm{C}-2$) on I ine 13 N centered at station 55 E (see Figure 4). A high of 2,410 gammas was observed. Soil samples were taken at the anomaly. The samples were mostly taken for B horizon with a few from the A horizon. The samples were analyzed by T.S.L. Laboratories for $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$ and Ag . The results are shown in Figures 5, 6, 7 and 8. Figure 9 shows a detailed map of the creek tributary system. The highs shown for each metal in general coincide with the magnetic high but trend to the south west. Note that this effect may be at least partially due to the creek system. For example, the average content of copper in soil is about 25 p.p.m. but may range higher in a specific area. Thus the values observed are only in the category of "possibly"anomalous" being $1 / 2$ to $21 / 2$ times the average for all the samples. Diamond drilling, if carried out, should be done along the magnetic high trend, e.g. east-west between stations 53 E to 55 E on Iine 13 N , and along the geochemical trends; that is in a south west direction along a line running from station 55 E , line 13 N to station 54 E on line 12 N . Depth to the magnetic body is estimated to be $40-80$ feet. The EM results do not add anything further to the other results for this zone.

Further geophysical! work is suggested by the shape of the anomaly and it's strike in relationship to those anomalies on the Evening Star property (labelled ES-1 and ES-2).

Zone 3: Wren Property

A magnetic anomaly was detected, and runs from WA6 to WA 15 with the maximum values (approximately 1,300 gammas) at WA 9 and WA 15 (see Figure 10). Indicated depths are 90-130 feet at WA 9 and 60 100 feet at WA 14. An EM crossover point occurs at WA 14 to coincide with the magnetic anomaly (see Figure II). No other noticable EM results are indicated probably because of the wetness of the area through which the lines WA, WAS 1 and WAS 2 were run.

Several other interesting areas for further geophysical work are suggested by the results, particularly to the south of station 14 on line WAS 1 and to the south of station 17 on line WA.

Respectfully submitted,

> A.B.L. Whittles, Ph.D. June 25th, 1968

PERSONNEL

NAME :

EDUCATION :	$\begin{aligned} & \text { B.Sc.) } \\ & \text { M.Sc.) University of British Columbia } \\ & \text { Ph.D.) } \end{aligned}$
PROFESSIONAL	Society of Exploration Geophysicists
EXPERIENCE:	1957 and 1958 (Summers) - employed with
	Imperial 0il Ltd. on Seismic crew and in
	laboratories on data processing techniques.
	1959 - Instructor - Geophysical Exploration Laboratory Course, University of B.C.
	1964-68-Lecturer, Geophysical Exploration Courses, B.C. Institute of Technology.
	1967-68 - Part-time consulting and field work for Geo-X Surveys Ltd., Vancouver, B.C., and Roosevelt Mines Ltd.

PROFESSIONAL Society of Exploration Geophysicists Canadian Association of Physicists

1957 and 1958 (Summers) - employed with Imperial 0il Ltd. on Seismic crew and in laboratories on data processing techniques.

1959 - Instructor - Geophysical Exploration Laboratory Course, University of B.C.

1964 - 68 - Lecturer, Geophysical Exploration Courses, B.C. Institute of Technology.

1967 - 68 - Part-time consulting and field work for Geo-X Surveys Ltd., Vancouver, B.C., and Roosevelt Mines Ltd.

APPENDIX I

PERSONNEL

NAME: SANDNER, Stanley L.EDUCATION: B.Sc., University of British Columbia - 1963.(Honours Geology)
EXPERIENCE: 9 years active exploration and production experiencethroughout western North and western South America.Most of this experience was directly involved ingeophysical, geological and geochemical studies ofbase metal and iron deposits. He has also beendirectly involved in bringing two properties intoprofitable production.

ASSOCIATIONS: Application has been accepted by the Association of Professional Engineers of British Columbia.

PERSONNEL

NAME:	COCHRANE, Bruce A.
EDUCATION:	2nd year Industrial Design Student - Toronto.
EXPERIENCE: \quad1967 - Summer employment with Geo-X Surveys Ltd., doing geophysical field work and office data processing under professional supervision.	
la68-Summer employment with Geo-x Surveys Ltd., doing geophysical field work and office data processing under professional supervision.	

Specifications for MF-1 Fluxgate Magnetometer

Maximum Sensitivity:	20 gammas (per scale division) on 1000 gamma range.
Readability:	5 gammas ($\frac{1}{4}$ scale division) on 1000 gamma range.
Ranges: (Full Scale)	1,000 gammas 10,000 gammas 30,000 gammas 100,000 gammas
Maximum Range:	$\pm 100,000$ gammas
Latitude Adjustment Ranges:	10,000 to 75,000 gammas, Northern hemisphere convertible to: 10,000 to 75,000 gammas, Southern hemisphere or $\pm 30,000$ gammas equatorial.
Dimensions: (Including Battery Case)	$7{ }^{\prime \prime} \times 4^{\prime \prime} \times 16^{\prime \prime}$
$\text { Weight: } \begin{gathered} \quad \text { (Including } \\ \text { Battery Case) } \end{gathered}$	9 lbs.
Batteries:	12 flashlight batteries ("C" cell)

SPRCHPCATHONS

Primary Field:	Horizontal from any selected VLF transmitting station.
Frequency Range:	Approximately $15-25 \mathrm{kc}$.
Station Selection:	By plug-in units. Two stations selected by a switch on front panel.
Measured Field:	Vertical field, in-phase and quadrature components.
Accuracy of Readings:	$\pm 1 \%$ resolution.
Range of Measurements:	In-Phase $\pm 150 \%$ or $\pm 90^{\circ}$, quadrature $\pm 40 \%$
Output Readout:	Null-detection by an earphone, real and quadrature components from mechanical dials.
Batteries:	6, size AA penlight cells. Life about 200 hours.
Size:	$16 \times 5.5 \times 3.5 \mathrm{in} .(42 \times 14 \times 12 \mathrm{~cm})$
Weight:	$2.4 \mathrm{lbs} .(1.1 \mathrm{~kg}$)

Northwest
Southeast

Brenda Mines Limited.

COST BREAKDOWN

SIBLEY MINERAL LEASE

COLLEEN MINERAL CLAIMS

Stanley L. Sander, President.

f

