1815

GEOCHEMICAL SURVEY

OVER PART OF THE UTA - ATU - BON CLAIMS

NANAIMO MINING DIVISION

for

GALLEON EXPLORATIONS LTD. (NPL)

bу

R.K. GERMUNDSON, PhD.

April 9, 1969

TABLE OF CONTENTS

	Page
INTRODUCTION	1
LOCATION AND ACCESS	1
PHYSIOGRAPHY	1
CLAIMS	2
HISTORY	2
GENERAL GEOLOGY	3
LOCAL GEOLOGY	3
GEOCHEMICAL SURVEY	5
INTERPRETATION OF GEOCHEMICAL SURVEY	5
SUMMARY	7
COST	8
CERTIFICATE	9
MAPS Location map of Uta - Atu - Bon Claims	4
Plan of Uta - Atu - Bon Claims Plan of Geochemical Survey on Uta - Atu - Bon Claims	15 Pocket
TABLE Concharded welves for Uto -	10
Geochemical values for Uta - Atu - Bon Claims	10

Department of

Mines and Petroleum Researces

ASSESSMENT REPORT

NO. 1815 MAP

GEOCHEMICAL SURVEY

OVER PART OF THE UTA - ATU - BON CLAIMS

NANAIMO MINING DIVISION

(PORT McNEIL, 92 L/11 E, 50° 30' 127° 00' SE)

R.K. GERMUNDSON, PhD, GEOLOGY

May 2 - August 25, 1968

For GALLEON EXPLORATIONS LTD. (NPL)

835 - 777 Hornby St., Vancouver B.C.

INTRODUCTION:

The Uta - Atu - Bon Claims are held by Galleon Explorations Ltd. (NPL), 835 - 777 Hornby Street, Vancouver, B.C.. They are comprised of 57 contiguous claims and fractional claims. The claims were staked following preliminary geological investigations of the area by R.H.D. Philp, P. Eng.

This report is based on the results of the geochemical survey; visits to the property be the writer between May and August, 1968; Report on the Uta and Atu Groups by R.H.D. Philp, P. Eng.; and reconaissance mapping done by the Geological Survey of Canada (Paper 67 - 1).

LOCATION AND ACCESS:

The Uta - Atu - Bon Cliams are located 8 miles southwest of Port McNeil on northern Vancouver Island, British Columbia. Co-ordinates near the centre of the claims are 50° 32' north latitude and 127° 10' west longitude.

Access is via road from Port McNeil or Port Hardy. Several branch roads traverse the property, some of which are passable for vehicles. The others were heavily overgrown with second growth and have been cleared for walking.

Most of the area has been logged and the thick second growth of salal bush, along with felled trees and stumps, makes traversing very difficult.

PHYSIOGRAPHY:

The claims are in an area of low to moderate relief. Elevations vary between 500 and 1,200 feet above sea level. The greatest elevations are along the southwest side along the claim line of Uta 5 to 10 where the rocks of the Karmutsen Formation form a steep southwest flank of a valley.

This valley extends northwesterly through the central portion of the claims and is broad but well defined.

Hills are present on the northeastern portion of the claims and may be underlain by the Bonanza Group.

Overburden is extensive and depths to bed rock are difficult to determine.

CLAIMS:

The following are the 55 claims held by Galleon Explorations Ltd. (NPL).

	Name	Record Numbers
	Uta 1 - 10	24397 - 24406
	Uta 13 - 36	24407 - 24430
	Atu 1 - 12	24333 - 24444
	Bon 1 - 6	24 6 72 - 24677
	Bon 1 & 2 fractions	24678 - 24679
	Uta 1 fraction	24680
	Uta 38 - 39	24431 - 24432
	The claim lines over	the geochemical survey
area	were measured by chai	n and compass.

HISTORY:

Occurrences of copper, lead, zinc, iron, gold and silver on northern Vancouver Island have been explored since shortly after the turn of the century. Within the area production has come from the Coast Copper and Empire Development Properties and the Yreka Property.

Aeromagnetic maps covering the northern end of the Island, released by the Federal Government in 1963, have been used by several companies to set up exploration programs.

A major copper deposit is being explored by Utah Construction and Mining Co. This is about 20 miles northwest of the Uta - Atu - Bon claims.

During the past year extensive staking and exploration has taken place to the northwest and southeast of Utah's ground.

GENERAL GEOLOGY:

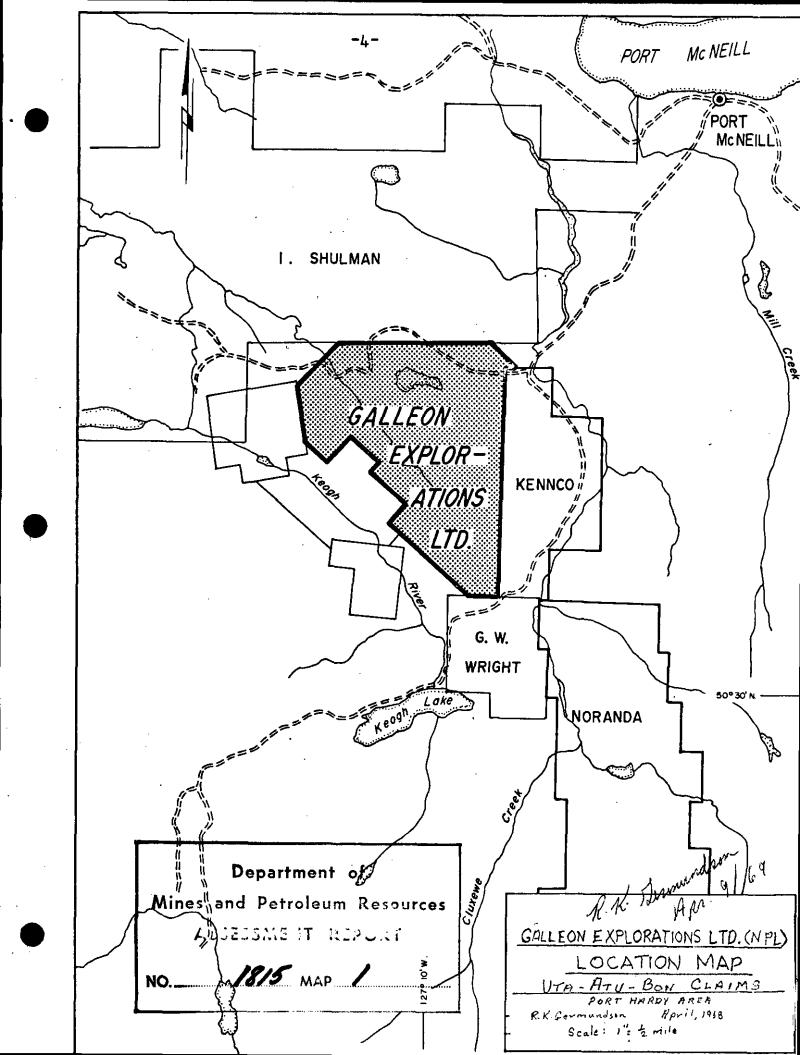
The northern Vancouver Island is underlain by volcanic and sedimentary rocks which vary in age from Triassic to Tertiary. They generally trend to the northwest, and show shallow to moderate dips.

Numerous small intrusives, varying in general from a granite to dioritic composition, intrude the Triassic rocks.

Most of the major faults which have been mapped strike northwesterly.

Rocks of the Triassic Period are the most extensive and important and are divided, in order of decreasing age, into the Karmutsen and Quatsino Formations and the Bonanza Group.

The Karmutsen Formation is composed of amygdaloidal, andesitic to basaltic flows. The Quatsino Formation consists of massive, grey limestone. Two series make up the Bonanza Group; one is predominantly volcanic; the other mainly sedimentary.


LOCAL GEOLOGY:

The geology of the Uta - Atu - Bon claims is included in Geological Survey of Canada Paper 67 - 1. The northern portion of the claims is shown as being underlain by rocks of the Bonanza Group and the southern portion by the Karmutsen Formation. The contact between the two is approximately east - west.

A granitic stock is exposed immediately to the southeast of the claims. A series of these occur in a southeast trending belt from west of Port Hardy.

A northwesterly trending fault extends through the centre of the claims.

The claims area is mostly covered with overburden. Karmutsen volcanics are exposed on the northwest portion of the property. These contain sporadic minor zones of disseminated chalcopyrite. Further northwest on an adjacent property other copper showings occur.

GEOCHEMICAL SURVEY:

The survey covers the following 21 claims: Uta 5 - 10, 16 - 26; and Atu 3, 6, 10 and 12.

A baseline trending N 45° W was cleared for 8,000 feet adjacent to the fault valley which crosses the claims. In addition control lines were cleared from 60 E ON to 60 E 26N; from 40 E ON to 40E 16N; and from 0E ON to 0E 30S. Other grid lines were established every 500 feet along the base line and were blazed and flagged every 200 feet. Samples were taken every 200 feet along the grid lines. Where samples were not taken the area was underlain by an unknown thickness of peat or decaying vegetation. Samples were collected each 100 feet in the northwestern part of the claims where anomalous values in copper were indicated.

The S samples were taken along existing roads and trails while measuring with chain and compass.

Sample pits were dug with a shovel into the top of the B soil horizon (depth varied between 6 inches and 40 inches). Samples were placed in wet strength sample envelopes and air dried. These were sent to TSL Laboratories Ltd., 325 Howe Street, Vancouver, for analysis.

Each sample was screened through 80 mesh and the minus 80 fraction was analised using the Hot HCl - Acid Extraction method. Copper values were obtained by Atomic Absorption by Messrs. Obersteiner and van Engelen.

INTERPRETATION OF GEOCHEMICAL SURVEY:

- (1) The background values for copper in the soil are taken as being between 45 and 60 parts per million. Values between 90 and 120 parts per million copper are considered to be significant if the samples are adjacent to soils with higher values.
- (2) The importance of sampling the B soil horizon is indicated by samples S 13 (3 ppm), S 14 (6 ppm), and S 19 and 20 (0.5 ppm). The "S" samples were taken by the writer, and the examples referred to were from sample locations where the A soil horizon was sampled. Similarly; values such as those at

OE 4N (12 ppm) and 10E 27S (12 ppm) are suspect because of the low copper values; 10E 27S is especially suspect because of its position with respect to 10E 28S (112 ppm).

- (3) Many of the soils are not from a true B soil horizon. In these cases the A soil horizon is immediately underlain by a grey to rusty coloured gravel. The effects of variation in copper concentration for these samples as compared to those taken from a true B soil horizon may be of considerable significance.
- (4) The depth of overburden, or the proximity of the sample to an outcrop, appears to control the copper values more than any other factor.
- (5) Most of the area northeast (N) of the baseline is heavily covered with overburden. A fairly high hill extends from 20E to 35E at about 10N. No outcrops were noted along the top or the southwestern flank. The hill drops steeply off to the northeast and the lake. Altered volcanics were noted along the trail near 55E and 60E at 26N but no copper mineralization was observed.
- (6) The most significant part of the survey is southwest (s) of the base line adjacent to the claim line between Uta 7, 8, 9, and 10; and extending to 20E on the Cub claims. Throughout this area the Karmutsen volcanics are exposed either in cliffs, gullies or gentle slopes. Chalcopyrite is finely disseminated in small amounts in many of the outcrops.

The anomalous area on 5W between 21S and 26S has a slope to the northeast away from Karmutsen volcanics containing minor amounts of disseminated chalcopyrite. The downslope migration of copper in the soil is significant.

Many of the other anomalous samples are also located downslope from exposures containing minor chalcopyrite. Others, especially those along the southwest edge of the survey area, are not near outcrops.

(7) It is concluded that the sporadic nature of the higher copper values in the soils is typical of anomalies found over the Karmutsen Formation. They reflect zones within certain beds of the volcanics which have been enriched and altered along strike; variations in the thickness of overburden tend to enhance the sporadic effect.

(8) The survey lies in an area of mainly low magnetic susceptibility as indicated by aeromagnetic maps published by the Federal Government in 1963. To the southeast of the survey area there is a slight increase in magnetism. It is recommended that the survey be extended in this direction during the 1969 field season.

SUMMARY:

The 55 Uta - Atu - Bon claims, held by Galleon Explorations Ltd. (NPL) are located 8 miles southwest of Port McNeil on northern Vancouver Island. The property is accessible by road but traversing the claims is difficult due to a thick undergrowth of salal bush over most of the area.

The claims are underlain by the Karmutsen Formation and Bonanza Group (Triassic). A major fault trends northwesterly through the property along a valley. Minor amounts of disseminated chalcopyrite were noted in the northwest portion of the property.

Sporadic but anomalous values in copper from soil samples trend northwesterly through the northwest part of the surveyed area. The Karmutsen, containing chalcopyrite, is exposed over the anomalous zone.

It is felt that the sporadic higher values in copper reflect proximity to bedrock and variations in thickness of overburden and indicate very low grade copper occurrences.

COST:

1: Personnel

Name		rked	Wage	Amount
M. Cloutier	May 14-31 June 1-30	12 21	\$70.00/day \$70.00/day	\$8.0.00 R.K.M 1,470.00 \$2,310.00
M. Kennedy	May 20-31 June 1-30	7 21	\$20.00/day \$20.00/day	\$ 140.00 R.16 B 420.00 \$ 560.00 R.K.D.
R. Johnston R. Moffat R. Frazell	June 1-30 June 1-30 Aug. 16-25 Aug. 16-25	21 21 10 10	\$350.00/mo. \$350.00/mo. \$350.00/mo. \$350.00/mo.	\$ 350.00 350.00 116.00 116.00 \$ 932.00
R.K. Germundson	May 13-18 June 3-10 Aug. 16-19	32 6 22	\$100.00/day \$100.00/day \$100.00/day	\$ 350.00 600.00 250.00 \$1,200.00
	Total Salary		:	\$5,002.00

2: Other Expenses Food, Accommodation, transportation, etc. @ \$4.00/man day

3: Analysis of samples - 400 @ \$1.25/spl. including processing bulk sample

464.00 R.K.J

\$ 500.00

Total Cost

Declared before me at the

Vanconner C*

, in the

Trovolation Columbia, this VO

cor of April, 1969

R.K. Thumandan Apr. 01/69

SUB-MINING RECORDER

CERTIFICATE

- I, Robert Kenneth Germundson, do hereby declare that:
- 1. I reside at 201 1025 Wolfe Avenue, Vancouver 9. B.C.
- 2. I obtained a B.Sc. (1958) and an M.Sc. in Geology from the University of Alberta.
- 3. I obtained a Ph.D. (1965) in Geology from the University of Missouri..
- 4. I have practised Geology in British Columbia since March, 1965 with Noranda Explorations Ltd., Brenda Mines Ltd. (NPL) and as an Independent Geologist.
- 5. My report is based upon the geochemical survey and my visits to the property between May and August, 1968.
- 6. I have no interest in the property described herein or securities of Galleon Explorations Ltd. (NPL).

April 9, 1969

R.K. Germundson, Ph.D.

R. K. Terminden

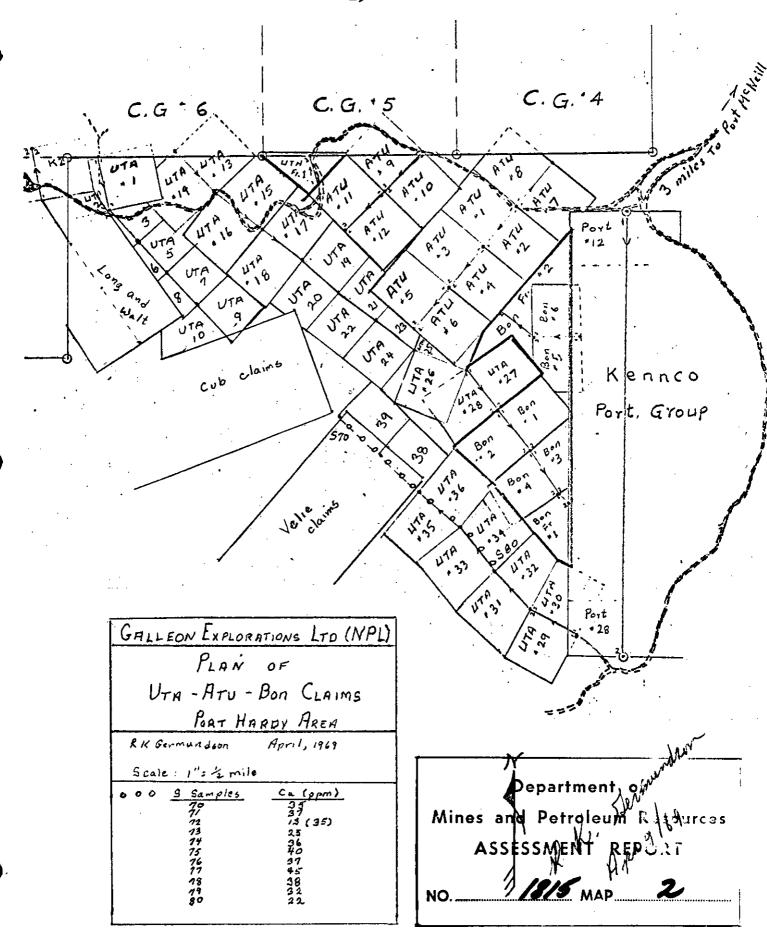
TABLE 1: GEOCHEMICAL VALUES for UTA - ATU - BON CLAIMS NANAIMO MINING DIVISION, VANCOUVER ISLAND

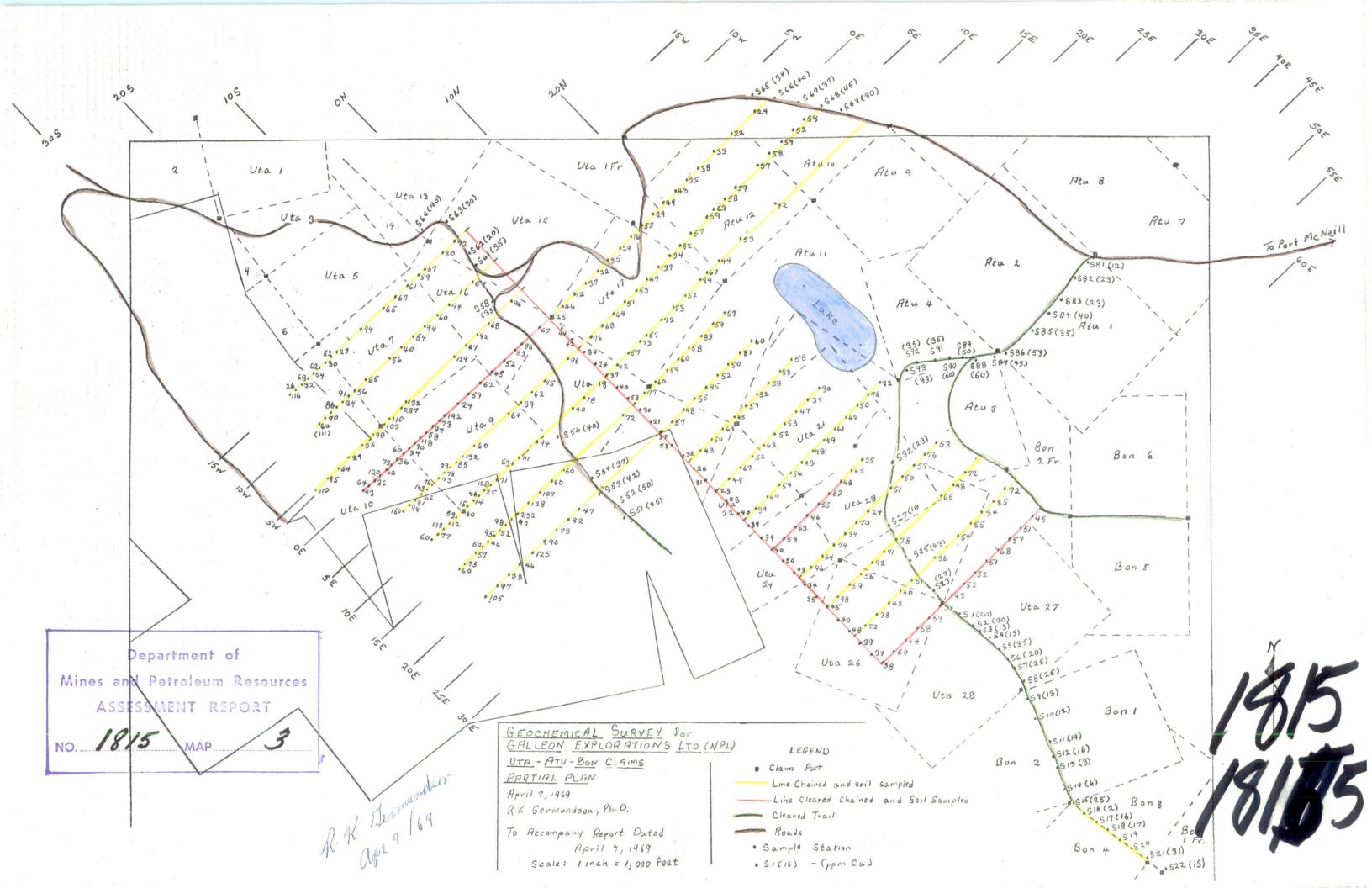
Line	ppm Cu	Line	ppm Cu
(base line)			
00	25	5E+23N	59
2E	44	24N	59 63
4E	42	26N	58
6E	34	28N	59 57 58
8E	24	32N	57
10E	37	34N	58
12E	40	36N	59 52 58 96
14E	58	38N	52
16E	30 21	5E+40N	58
18E	21	5E+2S	96
20E	37	6 S	45 62
22E	53	85	62
24E	32	108	39 64
26E	26	128	64
28E	31	188	60
30E	23	205	132
32E	58	21S	85
34E	40	225	23
36E	39	238	78
38E	39	248	73
4OE	40	258	76
42E	50	26S	j43
44E	43	27 S	62
46E	34	285	81
48E	35	29 S	98
50E	45	5E+30S	160
52E	40	10E+4S	18
54E	48	6S	40
56E	39	128	94
58E	37	15S	111
60E	,38	16S	63
(end base 1	ine)	19S 20S	71 128
5E+2N	76	21S	25
4N	76 68	225	25 46
6N	64	23S	14
8N	51	245	15
10N	53	25S	60
12N	53 47_	26S	53
14N	137	278	53 12
16N	34	288	112
18N	82	29 S	77
5E+20N	57	10E+30S	77 60

2.....

Line	ppm Cu	Line	ppm Cu
10E+2N	42	25E+2N	43
4N	42 57 73 57 72 53 52 84 67	4N	50 68
6N	<i>13</i> 57	6n 8n	68
7N 10N	72	10N	42 50
10N 12N	53	12N	45 59 58 58 58 48 67
14N	52	14N	58
17N	84 47	16N	83
18N	44	25E+18N	58
20N	53	30 E+2N 4N	48 67
24N 10E+30N	53 42	6N	57 52
15E+2S	72	8n	63
12S	60	lon	52
14S	40 107	12N	53
16S 18S	128	14N 16 N	47
203	252	30E+18N	52 63 52 53 47 34 30
218	90	35E+2N	34
228	98	4N	44
23 S	52 95	6N	44 54 56
24S	40	8N lon	56
25S 26S	50	12N	43 48
27S	57	14N	49
2 95	57 73 60	14N 16N	49 61
15E+30S	60	18N	42
15E+2N	77 60	20N 22N	50 76
4n 6n	59	35E+24N	76 82
8N	59 60	40E+2N	53
10N	58 83 59 57	4N	53 63 46 55 62
12N	83	6N	46
14N	29 57	8N 10N	55
15E+16N 20E+14S	ĹŹ	10N 12N	0.2 1. 8
168	47 82	14N	48 45
188	7 3 90	40E+16N	25
20S	90	45E+2N	46 6 4
225	125 46 38 97	4 N 6 N	64
248 268	38	8N	74 34
285	97	10N	70
20E+30S	102	12N	24 5 1
20E+2N	57	16N	51
EN 2 v	48 55	18N 20N	50 5 7
6n 8 n	45	20N 22N	76
ON 10N	52	45E+24N	53
12N	50		
1.4N	81		
20E+16N	60		

3.....


Line	ppm Cu	Line	pom Cu
50E+2N	48	00+30S	36
4N	59 56	31S 32S	64 1.3
ón 8n	92	32S 00+33S	43 29
lon	71 78	00+2N	46
12N 20N	65	4 n 6n	37
22N	92 71 78 65 48 72 72 72 38 42 40 51 36	8N	46 12 37 35 24 16 55 29
50E+24N	72 72	10N 12N	35 21
55E+2N 4N	38	14N 16N	<u>16</u>
4N 6N	42 40	16N 18N	55 20
8n 10n	51	20N	44
14N	36	22N	43
18N 20N	54 55 34 85	24N 26N 29N 32N	43 25 38 33 22
20N 22N	34	29N	33
24N	85 72	32N 00+36N	22
55E+26N 60E+2N	72 69	5W+2S	24 96
4N 6N	44	6S 8S	68
6N 8N	58 53	10S	68 42 67
lon	34	128	129
12N	43 52 52 51 68	20S 21S	132 287
14N 16N	52	238	110
18N	51 68	24S	103
2 9 n 22n	57	265 285	98 36
24N	51	30S 32S	36 39 64
60E+26N	45 67	32S 34S	64 95
00+2S 5S		36S	95 11 0
55 65 85	83	5W+38S 10W+4S	70 57
8S 10S	86 83 52 45 62 59 24 192 73 97 58 118	8S	57 94 60
128	62	108	60
14S	ጋሃ 2៤	12S 14S	94 54
168 1 8 8	192	145 165 185 245	40
19 S	73 9 7	18S 2LS	40 56 65
20S 21S	58	25S	56 91
228		258 268 278	91
235 245	70 34 60 36 73 62	28S	34 86
258	60	29 S	70 111
26 S	73	30S(a) 10W+30S(b)	60
27 5 28 5	62		- •
00+298	120		


4....

Line	ppm Cu	Sample	ppm Cu
15W+2S 48 78 88 10S 12S 14S 22S 23S 24S 24S 25S 26S 27S 28S 29S 15W+30S	72 80 67 59 61 67 65 94 29 52 30 62 54 68 32 26 116	5-31 333 334 337 3390 412 4456 449 449	43 23 25 25 26 31 14 25 25 25 46 32 46 46 41 46
Sample	ppm Cu	49 50 51	46 62 25
S-123456789101121345678910122222222222222222222222222222222222	20 30 13 \$5 35 20 25 25 13 12 19 16 3 6 25 2 16 17 .5 31 13 27 14 43 15 18 22 28 17	52 53 54 55 55 57 58 59 61 62 63 64 56 66 67 71 77 77 77 77 77 78 79 8-72 8-72	5437205577500040750573560758225

5.....

ppm Cu
12
23
23
23 23 40
35
53
4 5
60
50
60
35
35
35 33

