0

Geological, geophysical and geochemical report on POPPY CLAIM GROUP (Poppy Claims \# 1FR, \# 2, \# 3, \# 6, \# 7, \# 8, \# 9, \# 10 and \# 11) situated in the Greenwood Mining Division, B.C., 3 miles NW of Greenwood and approximately 3000 North of junction of Poppy Creek and Motherlode Creek
N.T.S. $82 \mathrm{E} / 2 \mathrm{~W}$

Latitude $49007^{\prime} \mathrm{N}$; Longitude $11^{8} 8045^{\prime} \mathrm{W}$ and owned by PECHINEY DEVELOPMENT LTD.

Field Work between June 2 and June 24, 1970.

Report by
J.P. Guelpa, Geologist

June 24, 1970
Page
SUMMARY AND CONCLUSIONS 1
A WORK DONE ON POPPY CLAIMS 2
I. Line Cutting 2
II. Geology of Poppy Claims 3

1. Description of Formations 3
2. Geological Correlations 6
3. Structure 7
4. Mineralization 10
III. Geophysical Survey 11
IV. Geochemical Survey 11
B COST OF WORK 12
I. Salary of Employees 12
5. Line Cutting 12
6. Geology 12
7. Magnetic Survey 13
8. Soil Sempling 13
9. Miscellaneous 13
II. Other Expenses 13
III. Total 13

APPENDIX

I Fersonnel Certificates
II Geochemical Analysis for Copper

LIST OF MAPS ($/ \& \infty$

Number of Maps

$$
\begin{aligned}
& \text { /4 Location of Poppy Claims } \\
& \text { \# } 1 \\
& \text { Scale } 1 \text { : } 50.000 \\
& \text { Geology of Poppy Claims \#2 } \\
& \text { Scale } 1^{\prime \prime}=200^{\circ} \\
& \text { F Magnetism } \\
& \text { Scale } 1^{\prime \prime}=200^{\prime} \\
& \text { \%7 Geochemistry and Survey Grid } \\
& \text { \# } 4 \\
& \text { Scale } 1^{\prime \prime}=200^{\circ}
\end{aligned}
$$

SUMMARY AND CONCLUSIONS

During the month of June 1970, the Poppy claim group, situated 3 miles NNW of Greenwood, staked in July 1969 by a crew of PECHINEY DEVELOPMENT LTD. in the neighbour-hood of a copper showing, has been prospected and geological, geophysical (magnetometric) and geochemical (soil sampling) surveys were carried out.

The results show that copper mineralization is known in a small fracture inside the limestone formation close to the contact with sharpstone conglomerate. Although skarns are present, no copper mineralization has been fourd in these skarns.

Magnetometric and geochemical surveys do not indicate eny valuable anomaly. Copper is present in soils in near norm mal concentration.

No further work is recommended on the Poppy claim group.

> J.P. Guelpa, Geol.

A preliminary exploration program has been carried out by PECHINEY DEVELOPMENT LTD. on the FOPPY GROUP during the month of June consisting of line cutting, geological mapping, and magnetic and geochemical surveys.

Normal access to the group of claims is by 4 wheel drive car from Greenwood.

I Line Cutting

Following a preliminary geological reconnaissance done previously in 1969, a line cutting has been performed in order to make mapping easier and to provide a grid for magnetic and geochemical surveys.

The grid covers chiefly the area supposed to be favorable for an eventual mireralization according to regional and local criterions, i.e. the roughly outlined area of skarn and conglomerate.

Tertiary volcanics and arkoses have not been fully covered ; being well known, they are of no interest as far as Cu mineralization is concerned.

The line cutting was executed by using a Topofil "Chaix". 13 lines have been done with a spacing of 400° and flags every 100 . 30.000 feet of lines have been flagged.
J.P. Guelpa, Geol.

II Geology of Poppy Claims (enclosed map \# 2)

1. Description of Formations

Map Unit 1 - Conglomerate (1b)
The conglomerate can be either a massive rock without a conspicuous structure or a brecciated looking rock depending on the size and nature of fragments. The rock on fresh fractures is generally bluish to dark blue and weathered to brownish shades with rusty appearance on natural breakage plans.

It consists typically of smoky grey to white rounded to subangular fragments of chert reaching up to 10 mm in diameter but which happen to be so small that a magnifying glass is required for observation.

In some outcrops the rock is almost entirely composed of small chert fragments embedded in an abundant matrix of quartz and chlorite. Some epidote can be noticed here and there, and it is cut by thin cuartz bearing veinlets.

Commonly together with the chert, the conglomerate includes shale and argillite slabs of larger size (up to a fev irches) that are responsible for the fragmental appearance of most of the outcrops. Some fragments of igneous rocks have been observed too.

The conglomerate rarely shows a well defined bedding. Closely associated are lenses of argillite of various sizes ranging from a mere slab (as indicated above) to well individualized bodies of a few feet length; furthermore a few small mappable units can be outlined.
J.P. Gùelpa, Geol.

Argillites (1e)
They are fine-grained and range to extremely finegrained more massive silstones. They are dark blue to black on fresh fractures and weathered to brownish shades.

Both conglomerate and argillites bear evidence of alteration, at least partly of metamorphic origin, since it is not uncommon to see in the aluminous meterial of argillites crystals of cordierite and possibly of andalusite. This is obviously due to the same cause which has produced replacement of limestone as indicated below.

Both conglomerate and argillite are always slightly magnetic and contain a fine mineralization of pyrite and minor chalcopyrite and/or mispickel.

Map Unit 2

On the conglomerate is lying conformably an important formation of limestone which has been nearly fully replaced by pyroxene - garnet-fluorite bearing skarn. The original limestone which is only preserved in a few lenses is a crystalline medium, a coarsc-grained, white to cream coloured rock. It is massive most of the time, but large bedded limestone is exposed in some places. The skarn is a much denser massive rock whose colour varies accordirg to the contents in pyroxene (green), garnet (green) and fluorite (yellow).

In some areas, it appears to be rich in epidote; wollastonite is sometimes found close to the preserved limestone. Bedding is observed in some places. The skarn is often invaded by veins of quartz and it happens to be roughly banded. This is, however, unusual. No obvious and continuous mineralization has been found inside the skarn.

A few lenses of sharpstone conglomerate of various size occur inside the limestone-skarn on different levels.

Map Unit 3
A few small outcrops belonging to the same dyke of quartz diorite have been found or claim Poppy \# 7 . It is a common biotite-hornblende-quartz diorite with an equigranular structure. Nevertheless, one of the outcrops shows a slight planar orientation of mafics minerals roughly conformable with the beading of adjoining skarn. The relation between this dyke and the volcanics is not a crosscutting one which could be assumed at first sight, but the volcanics form here a thin blanketing partly covering the dyke.

Map Unit 4 - Arkose
The arkoses outcrop mainly on Poppy cleim \# 3. It is a medium to coarse-grained clastic rock holding lenses of coarser subconglomerate with quartz pepples up to one inch.

Map Unit 5 - Andesitic and trachyandesitic flow They are porphyritic trachytic to andesitic pink to grey with minor darker flows.

Phenocrysts are mostly feldspars, but phenocrysts of pyroxene are typical of some flows.

Intrusives

The a rkoses and underlying formations are intruded by numerous syenite porphyry small dykes characteristically brownish to pink in colour with a fine crystalline groundmass and tabular to lath-like orthoclase crystals. This rock is referred to as "pulaskite". The dykes are trending NNE to NE.

2. Geological correlations

Following the study of regional geology the units mapped on the Poppy claims are easily correlated as follows:

1. The conglomerate with associated argillites appears to be the sharpstone conglomerate known elsewhere in the Greenwood map area.
2. Limestones and skarns deriving from them are obviously correlated with the limestones which elsewhere overlie conformably the sharpstone conglomerate.
J.P. Guelpa, Geol
3. The arkoses belong obviously to the Kettle River formation.
4. Porphyritic andesitic and trachyandesitic flows are known under the name of Marron formation.

TABLE OF FORMATIONS

3. Structure

The sharpstone conglomerate and associated argillites trend northeasterly and dip to the NW with moderate values (300 to 50°).

The conglomerate is directly overlain by the limestone and skarn; the contact is conformable and even gradational ir some places where the skarn holds small lenses of conglomerate. Between L. 44 and L. 48 8-9 NW there is a conspicuous gradation between silicified skarn turning from brownish to bluish shades and a fine pebbled conglomerate the matrix of which is largely siliceous.

> J.P. Guelpa, Geol.

It is well realized that this gradation is obviously due largely to the subsequent alteration; nevertheless, the conformability itself is not doubtful. Limestone and skarn have thus the same average altitude as the conglomerate, but some evidence of tectonic deformation appears, for there are variations in dip and even in strike at the upper part of the formation (North-East corner of Poppy claim \#8).

The arkoses trending North-Eest and dipping South-East are known to lie unconformably upon the Jurassic formations, but here the value of this unconformability is unknown, i.e. we don't know the altitude of the limestone underneath. Possibly it is roughly the same as where it outcrops and if so, the unconformability is high (Fig. \#1); possibly the limestore was forming here a small anticlinal ondulation and if so, the unconformability is likely low (Fig. \# 2). At any rate, because of the subrectilinear drawing of formation outlines between conglomerate and arkose (west half) and chiefly between conglomerate and volcanics (east half), the contact is believed to be a dip-slip fault. Another reason for this interpretation is that - as far as we can judge from such a small area - the conglomerate truly indicates the bottom of the limestone and is not merely a lens inside it. It means that the $h_{y p o t h e s i s ~ s h o w n ~ i n ~ F i g . ~ \# ~}^{\text {F }}$ is not satisfactory and either Fig. \# 1 or Fig. \# 2 has to be retained.

A fault tending NW following a creek for awhile put in anormal contact the formations and appears to be mainly a strike-slip fault younger than the NE trending fault which has been displaced together with the map units.

The problem of relationship between tertiary volcaneics and Jurassic limestones

The authors of regional geology have pointed out that the Kettle River arkose is a formation, the thickness of which varies greatly. Figures up to 3000 ard 4000 ' have been suggested, although at the same time it was noticed that the apparent thickness could be much bigger than the true one because of repetitive normal faulting. In the Phoenix area the thickness in diamond drill holes proved to be not more than 150'.

The paper 67-42 from the GSC (Monger 1968) and the enclosed map at the scale of $1^{\prime \prime}=1$ mile indicates a fault which follows the Ingram Creek for awhile and then which is expected to be the contact volcanites-limestone in the NE corner of Poppy Claim \#7.

Actually, the detailed mapping as it can be seen from the map pattern excludes the possibility of a dip-slip fault. Theoretically the remaining possibility for a tectonic contact would be a flat late-tertiary thrust fault having thrusted the volcanics ahead of the arkoses upon the limestone after a period of tertiary erosion. This, however, is entirely hypothetical and unlikely because of the relationship between outcrops and topography. Furthermore, at two different places, limestone and volcanics outcrop only a few feet apart from each other and there is no evidence at all for a faulted zone but only for a strong angular discordance between beds of limestone and flows of lavas.

Thus it appears that the Kettle River arkoses are here absent; the limestone is directly overlaid by post arkose volcanics likely because of an original lack, unless enough time had passed between axkoses and volcanic periods to permet the former to be taken away by erosion.

The gathered data, however, are not incompatible with a very thin arkose formation south of the NE trending fault. In fact, the arkose appears to be roughly conformable with the steepness, and even if it outcrops south of Poppy \# 2, its true thickness can be much reduced.

Furthermore, two small outcrops of limestone at the southwest corner of Poppy claim \# 2 suggest a "window" through the arkoses which in this case would be really thin.

4. Mineralization

No noticeable mineralization has been discovered inside the skarns; nevertheless, a good showing exists in the non-replaced limestone.

This showing is located on Poppy \# 6 in a fractured zone and consists of chalcopyrite plus bornite and chalcocite. The fracture trends north-east, but has not been traced for more than 50' eastwards whereas westwards it proved to be connected to an identical showing previously discovered on the adjoining property.

It has already been stated that the conglomerate and associated argillites always show a fine mineralization in pyrite mainly.
III. Geophysical Survey (enclosed map \# 2)

A magnetic survey has been carried out on the Poppy Group according to the grid 400' x 100' using a fluxgate magnetometer MFI (manufactured by SHARPE).

348 measurements have been taken. The survey covers the area of skarns and pyrite mineralized conglomerate which is assumed to be favorable for mineralization. The isogams $+400+450+500+550+600+700$ have been drawn from the readings but no anomalous area has been found that is worth a more detailed survey. The only high reading +1000 is surrounded, in a radius of 50^{\prime}, by normal readings.

The survey only reveals that there is a coincidence appearing between the trend of most isogams and the strike of geological formations.
IV. Geochemical Survey (enclosed map \# 3)

147 soil samples have been taken along the lines covering the more interesting area.

The sampling has been carried out by using a hand drill at a depth of one foot beneath the organic layer which is very thin here. The samples have been put in strong paper bags and sent to Crest Laboratories, Vancouver.

The analysis was made by the method of atomic absorption. Besides this analysis, no anomaly appears to be on the whole area close to normal crustal averages.

B COST OF WORK

I. Salary of Employees

This preliminary exploration program was carried out by myself with the help of a prospector whose name is Charles Teeple from Vancouver. He is a student working as a prospector during summer time for mining companies.

The salary of Charles Teeple amounts to $\$ 450$ a month and my salary is $\$ 1200$.

1. Line Cutting

The line cutting was executed by C. Teeple under my supervision. It took him 8 days (from June 2 to June 11) to achieve the work in pretty difficult field conditions (very steep hills, numerous windfalls) using a "Topofil Chaix".

This work represents a cost of $8 \times 15=\$ 120$.

2. Geology

Some topographic work was required for which the lines were used that had been cut in the meantime. It consisted mainly in drawing creeks and old logging roads to provide a mapping of outcrops as accurate as possible.

Detailed geological mapping and studying of formations relationship required 11 days of field work. The bed rock outcrops pretty good except on Poppy claim \# 3. Fortunately, this claim is most likely completely covered with arkoses and volcanics which are of little intexest for us.

11 days of fieldwork (from June 3 to June 15) represent a cost of $\$ 440$.
3. Magnetic Survey

It took me 3 days of fieldwork to survey the area which means an expenditure of \$120 (June 16 - June 19).
4. Soil Sampling

Soil sampling was carried out by C. Teeple in four days of field work which represents a cost of $\$ 60$.
5. Miscellaneous

4 days of work were necessary to study the regional geology and to prepare maps and reports which will cost PECHINEY DEVELOPMENT LTD. $\$ 160$ (June 20 to June 24). In the meantime, C. Teeple assisted me in drafting and colouring maps which means an additional cost of $\$ 30$.

II. Other Expenses

a) Laboratory expenses

The soil samples were sent to Crest Laboratories, Vancouver, for Cu analysis. The costs for 147 samples amount to $\$ 176$ plus $\$ 7$ for the mailing of the samples.
b) Living expenses

During our stay in Greenwood for the purpose of assessment work, C. Teeple had room and board at the Greenwood Hotel and myself at the Supreme Motel. PECHINEY DEVELOPNENT LID. will have to pay $\$ 150$ for C. Teeple and $\$ 210$ for myself for hotel accommodation.

IIT. The total amount spent by PECHINEY DEVELOPMENT LTD consequently comes to $\$ 1473$ for this preliminary exploration program.

APPENDIX I

GUELPA, Jean Paul: Doctor of Earth Science (3rd cycle) University of Lyon, France, 1966. Since graduation engaged in various phases of mineral exploration in Quebec with the "Ministere des Ressources Naturelles", and in B.C. with MOKTA CANADA LTD and at present with PECHINEY DEVELOPMENT LTD.

TEEPLE, Charles: Student. Previous experience in line cutting and soil sampling with WESTERN GEOLOGICAL SERVICES in Vancouver Island, B.C.

Pechiney Development Itd. (T.P. I. $)$
Suite 619-744 Weat Hasting3 Street
VAMCOLVER $1, B$. C.
Lot Ho. 236 ©: Geochenical Anslysia for Copper:
Mesh Stze: - 80
Anelytical Method: Atcmic Aboorption
Dfogesthon Mechod: $\quad \mathrm{HClO}_{4}-\mathrm{ENO}_{3}$

Suxple Wumex:	Coppex pors	Sample luaber:	Coppe: ppen	Sanple Number:	Copper pqu
BL 8	36	BL 34	18	12-4SE	24
9	24	35	40	SSTE	20
10	24	36	18	685	14
11	24	37	20	$75^{\text {E }}$	12
22	26	38	28	88 L	8
13	22	39	52	9SE	16
14	26	40	16	16-2SE	22
15	22	42	20	3SE	36
16	18	42	16	4 SE	14
20	22	43	14	5SE	18
21	32	44	10	658	32
23	32	45	14	7 SE	6
23	44	46	12	8SE	12
24	20	47	12	20-6EE	12
25	22	48	14	7SE	12
26	20	$8 \cdot 438$	16	6S5	22
27	32	55 E	16	983	50
28	22	658	18	10SE	22
29	22	758	12	$24 \cdot 4 \mathrm{SL}$	24
30	20	888	12	5cx	24
32	10	9 SE	8	658	16
32	14	10s8	8	75 L	10
33	16	12-38R	20	8SE	20

Pechney Development Ist. (N. P. ios)
Lot Ho. 236 G
Junce 24. 1970
Page 2....

Sample Number:	Coppex ppat	Sample Eumber:	Copper pun	Sample Mmber:	$\begin{gathered} \text { copper } \\ \text { pea } \end{gathered}$
24-9SE	30	44-4S1	8	$44.4 N \mathrm{~N}$	10
28-65E	24	5SE	10	5m\%	8
75 E	18	6SE	12	6MW	22
8SE	20	758	12	7NW	12
98 E	10	48. 1s8	16	8Nu	16
IOSE	20	2SE	14	9 N	16
32-158	46.	388	12	48 - INW	8
2SE	28	4SE	8	2NW	14
3SE	20	5SE	14	3NW	8
4SE	16	65 E	14	4NO	12
5SE	28	7 SE	14	5NW	14
6SE	32	36-1N6	16	7 Nw	12
7SE	16	2WW	20	7 MW	16
858	18	40-1ma	12	8W	13
9SE	12	2 W	18	926	14
40-15E	8	3NW	18	10\%以	14
2SE	10	4N6	18	11 W	10
3SE	12	5 NW	16	12Nu	14
$4 \mathrm{4E}$	12	6 Win	8	36-158	40
5SE	10	7\%W	32	2SE	20
658	10	8NV	20	358	52
768	12	9NW	22	4SE	40
44-13E	12	44 - 1m\%	12	53x	20
$25 E$	10	2N\%	12	6 k	26
368	10	3RW	1.2	7 SE	14
				8SE	18

Yours twaly,
CREST IADORATORIES (B, C.) LID.
co: Mr. Cumpa Jean opath c/o Suprome Motel

Graexwhod, \%.C.

Eruce Gxara Chantst

