2736

GEOPHYSICAL REPORT

Induced Polarization Survey on the BIT, BREN, GMM, VAL, TAK, RYE, RUM and BUN Claims

McLeese Lake: 52°30',122°14'

McLEESE LAKE COPPER MINES LTD. (N.P.L.)

Claims: BIT 1-6Fr, 1-41, 45-58, 65, 67-70, 74; BREN 1-50 GMM. 1-12A, 13-26, 31-74, 75-76A, 81-91, 93, 95, 97, 99, 101-122; VAL 1-2; TAK 1-30; RYE 1-8 M.C., 9-10; RUM 1-79Fr; BUN 1-38A, 41-44A.

R. W. Cannon, B.A.Sc., P.Eng.

March-July 1970

Vancouver, B.C. September 18, 1970.

CANEX AERIAL EXPLORATION LTD. Division of canadian exploration limited

DIVISION OF CANADIAN EXPLORATION

700 BURRARD BUILDING

VANCOUVER 5, B. C. CANADA

77

90

BREAKDOWN OF I.P. EXPENDITURES DAYS WORKED (MARCH THRU JULY 1970 INCL.)

MARCH

J.	Alsen	7 days	
F.	Hewett	8 days	
D.	Huston	13 days *	
R.	McCauley	3 days	
D.	Robertson	13 days *	
Α.	Welch	3 days	
	-14 -	47 man days	47

APRIL

L.	Bradish	l day
R.	Cannon	4 days *
R.	Damel	12 days
F.	Hewett	10 days
D.	Huston	13 days *
R.	Lefferson	7 days
R.	McCauley	10 days
D.	Robertson	17 days *
S.	Withrow	3 days
		77 man days

MAY

L.	Bradish
Α.	Clendenan
F.	Hewett
D.	Huston
Ρ.	Kowalczyk
R.	McCauley
R.	Needoba
D.	Robertson
J.	Thornton
R.	Walton

JUNE

B. Bowen . Bradish A. Clendenan F. Fletcher R. Needoba D. Robertson C. Wilmot	l day 15 days 19 days * 1 day 9 days 19 days * <u>3</u> days 67 man days	R.W. Gannon
	C/F	281

19 days * 11 days 1 day 2 days 19 days

6 days 7 days

19 days * 3 days 3 days

90 man days

		B/F	281
B. L. A. R. D.	Bowen Bradish Clendenan Needoba Robertson	1 day 9 days * 9 days 9 days 9 days *	·
R.	Weber	<u>5</u> days 42 man days	42
		TOTAL MAN DAYS =	323

Operators wages included with Equipment Costs. *

LABOUR COSTS

JULY

J.	Alsen	7/21 x \$540/month	, =	180.00
L.	Bradish	16/21 x \$540/month	=	411.43
Α.	Clendenan	20/21 x \$386/month	=	367.63
R.	Dame1	12 x \$25/day	. =	300.00
Β.	Bowen	2/21 x \$675/month	=	64.26
Τ.	Fletcher	1/21 x \$425/month	=	20.24
F.	Hewett	19/21 x \$665/month	=	601.69
D.	Huston	2/21 x \$770/month	=	73.30
Ρ.	Kowalczyk	19/21 x \$770/month	=	565.48
R.	Lefferson	7 x \$25/month	=	175.00
R.	McCauley	19 x \$25/day	· =	475.00
R.	Needoba	25/21 x \$386/month	=	459.53
J.	Thornton	3/21 x \$770/month	=	110.00
R.	Walton	3/21 x \$463/month	=	66.14
Α.	Welch	3/21 x \$635/month	=	• 9 0.71
s.	Withrow	3 x \$25/day	=	75.00
С.	Wilmot	3/21 x \$525/month	=	75.00
R.	Weber	5/21 x \$400/month	=	95.24

TOTAL LABOUR COST

I.P. Equipment plus two operators 77 operating days @ \$265/day 13 weather days @ \$100/day		20,405.00 1,300.00	¢
Board Costs 323 man days @ \$8.00/day/man	=	2,584.00	C.C.S.
Compensation, Administration and Supervision 323 @ \$5.00/day/man	Ξ	1,615.00	1000000

TOTAL COSTS

4,205.65

TOTAL COST OF LINE-CUTTING

77.91	miles	of Line		
7.5	miles	of Baseline		
84.41	miles	@ \$150.00/mile	=	\$12,811.50

TOTAL COST OF I.P. PLUS LINE-CUTTING = \$42,921.15

R. W. Cannon, P.Eng.

RWC/mm

TABLE OF CONTENTS

Page

The Method of Field Operation	1
Introduction	3
Location and Access	3
Property	3
Previous Work	7
Presentation of Results	7
Discussion of Results	7
Conclusions and Recommendations	8

LIST OF ILLUSTRATIONS

	I. P. Sections	End of Text
d'I	Location Map	In pocket
$\mathcal{A}^{(i)}$	Claim Map with I.P. Lines	In pocket
\$ 3	Pricent Frequency Effect Contour FLAM	
st a	Apparent Resistivity (Pa/27)	corroup lips

THE METHOD OF FIELD OPERATION

1

In the field procedure, measurements on the surface were made in a way that allows the effects of lateral changes in the properties of the ground to be separated from the effects of vertical changes in the properties of the ground. Current was applied to the ground at two points (X) feet apart. The potentials were measured at two other points (X) feet apart, in line with the current electrodes. The distance between the nearest current and potential electrodes was an integer number (N) times the basic distance (X).

The measurements were made along surveyed lines, with a constant distance (NX) between the nearest current and potential electrodes. Measurements were taken with values of N = 1, 2 and 3 for X = 300'.

In plotting the results, the values of the apparent resistivity, percent frequency effect and the apparent metal factor measured for each set of electrode positions were plotted at the intersection of grid lines, one from the center point of the current electrodes and the other from the center point of the potential electrodes. The resistivity values were plotted above the line and the percent frequency effect and metal factors below. The lateral displacement of a given value is determined by the location along the survey line of the center point between the current and potential electrodes. The distance of the value from the line is determined by the distance (NX) between the current and potential electrodes when the measurement was made. The separation between sender and receiver electrodes is only one factor which determines the depth to which the ground is being sampled in any particular measurement. The plotted results were contoured using a logarithmic contour interval 1, 1.5, 2, 3, 5, 7.5, and 10.

700 BURRARD BUILDING

.

REPORT ON THE INDUCED POLARIZATION SURVEY

3

MCLEESE LAKE AREA, B.C.

MCLEESE LAKE COPPER MINES LTD. (N.P.L.)

INTRODUCTION

An Induced Polarization Survey was carried out on 577 claims and fractions held by McLeese Lake Copper Mines Ltd. and Canex Aerial Exploration Ltd. during the months of March through July 1970.

This survey was conducted along 77.91 miles of cut line. The lines were cut at 800 and 1,600 foot intervals with stations marked every 100 feet.

The induced Polarization Survey by Canex Aerial personnel was carried out using McPhar frequency effect equipment (Model P 654) employing frequencies of 0.31 and 5.0 cycles per second.

LOCATION AND ACCESS

The property is located approximately 10 miles north-east of McLeese Lake and can be reached by bush road from Ross Sawmill. Access to the property is solely by 4-wheel drive vehicle.

PROPERTY

The property consists	of 577 claims and	fractions as follows:
CLAIM NAME:	RECORD NOS:	EXPIRY DATE:
BIT 1 - 2 FRS.	52911/12	July 15, 1970
BIT 1 - 41	48040/80	Oct. 21, 1970

CLAIM NAME:	RECORD NOS:	EXPIRY DATE:
· · ·		
BIT 45 - 58	48084/97	Oct. 21, 1970
BIT 65	48104 /0	Oct. 21, 1970
BIT 67 - 70	48106/9	Oct. 21, 1970
BIT 74	48113	Oct. 21, 1970
BREN 1 - 6 FRS.	48355/60	Dec. 24, 1970
BREN 1 - 22	44901/22	March 4, 1971
BREN 23 - 50	45199/226	March 21, 1971
GMM 13 - 20	48993/49000	March 7, 1971
GMM 21 - 26	49640/45	March 18, 1971
GMM 31 - 48	48947/ 6 4	March 7, 1971
GMM 49 - 54	49001/6	March 7, 1971
GMM 55 - 60	49646/51	March, 18, 1971
GMM 61 - 74	48965/78	March 7, 1971
GMM 81 - 90 .	49652/61	March 18, 1971
GMM 91	50740	May 6, 1971
GMM 93	50742	May 6, 1971 [°]
GMM 95	50744	May 6, 1971
GMM 97	50746	May 6, 1971
GMM 99	50748	May 6, 1971
GMM 101 - 122	50750/71	May 6, 1971
HL 1 - 108	51184/51291	May 14, 1972
JH 1 - 18	51292/51309	May 14, 1971
ROJ 1 - 48	49428/75	March 18, 1971

700 BURRARD BUILDING

- 4 -

CLAIM NAME:	RECORD NOS:	EXPIRY DATE:
BIT 3 - 6 FRS.	56297/300	Jan. 23, 1971
VAL 1 - 2	56301/2	Jan. 23, 1971
TAK 1 - 30	56303/32	Jan. 23, 1971

700 BURRARD BUILDING

- 5 -

CLAIM NAME:	TAG NO:
RYE #1 M.C.	117924 M
RYE #2 M.C.	117923 M
RYE #3 - 8 M.C.	84007/12 M
RYE #9 - 10	124497/8 M
RUM #1 - 9 FR.	117914/22 M
RUM #10 FR.2	117901 M
RUM #11 FR.	117904 M
RUM #12 FR.	117902 M
RUM#1341 ER.	83013/41 M
RUM #42 - 61 FR.	124401/20 M
RUM #62 FR.	124428 M
RUM #63 - 69 FR.	124421/27 M
RUM #70 - 79 FR.	124429/38 M
BUN #1 - 24 A	117954/77 M
BUN #25 - 37 A	83042/46 M
BUN #38 A	879843
BUN #41 - 42 A	879846/7
BUN #43 - 44 A	879844/45
GMM #1 - 5 A	117905/9 M
GMM #6 - 12 A	1179 47/ 53 M
GMM #75 - 76 A	124499/500 M

RECORD NO:

EXPIRY DATE:

May , 1971

PREVIOUS WORK

The previous work consisted of a limited Induced Polarization Survey and some diamond drilling near the Coast Silver ground.

PRESENTATION OF RESULTS

The Induced Polarization and Resistivity results are shown on the enclosed dataplots in the manner described in the notes preceding this report. All lines were run using an electrode spread of 300 feet and dipole separations of N = 1, 2 and 3. Plan maps of Percent Frequency Effect and Resistivity are included in the pocket at the back of the report.

DISCUSSION OF RESULTS

Anomalous areas were detected as follows:

Line	80E	-	177N to the end of the line at 189N
Line	64E	-	159N to 171N
Line	48E	-	136N to 181N
Line	32E	-	135N to 144N, 162N to 180N
Line	16E	-	135N to 141N, 153N to 180N
Line	0	-	144 to 170N, weak anomaly 95 to 6N
Line	8W	•	105 to 9N
Line	16W	-	127N to 133N
Line	32W	-	120N to 126N
Line	112W	~	87N (3rd separation)

Extensions of Lines near Coast Silver

Line	32W	-	24N	to	45N
Line	40W	- '	30N	to	48N
Line	48W	-	30N	to	48N
Line	56W	-	36N	tp	45N
Line	64W	-	36N	tò	45N
Line	72W	-	36N	to	45N
Line	80W	-	36N	to	54N

The anomalous areas on the northern end of the grid are fairly linear and are most likely due to sediments mapped by T. Takeda. The anomalous area located on Line 0 at 9S to 6N and Line 8W at 10S to 9N was due to minor pyrite which was detected by subsequent diamond drilling.

The anomalous area on the Coast Silver extensions coincides with the Morroco drilling which encountered pyrite and chalcopyrite.

CONCLUSIONS AND RECOMMENDATIONS

It was concluded that the only significant anomaly was the area previously drilled by Morroco Mines Ltd. It is recommended that no further exploration work be conducted on the McLeese Lake Copper ground.

R. W. Cannon

RWC/am

337	38 5	414 36	355 0	275	517			Pa 2TT	Department of Mines and Petroleum Resources ASSESSMENT REPORT
60N		63 N	66 N		69 N	72 N	75 N	78 N	NO
									McLEESE LAKE COPPER
0 -0.25	0.25	0.0	25 0.25	0.0	Q 5			P.F.E.	E 175128 E Distance de la constantion Fraçonistico des 4 de cos
25	0.75	0.2	5	0.75	0.1	5			N - 300' DANEX AERIAL EXPLOPATION UTV. DRAWN RY. R.A. NEEDOBA
60 N		63 N	66 N		69 N	72 N	75 N	7 B N	DATE: 14/7/70
4	0.6	D	6	0.0				M. F.	
-0.7		0.0	0.7		1.8				P Cannon

*5≈*5

-

.

.

487	5#2	5552 214 3333	738	372	572	387	180				Ja ZTV	Department of Mines and Petroleum Resources ASSESSIME T REPORT NO. 2736 MAD
	60 N	63	N	66 N		69 N		72 N	75 N	7 B N		
125	0.75	0.75 -05 0.0	0.0	0.25	0.75	1. O	0.25				P. F. E.	McLEESE LAKE COPPER LINE: 96 E (V-121-B) DIPO E - DIPOLE OULFLOURATION FREQUENCIES: 0.31 & 50 ton X = 300' DRAVEN BY: A.D. CLENDENFIN DRAVEN BY: A.D. CLENDENFIN DATE: 3/7/70
V	60 N	63 N	! 	66N		69 N	<u> </u>	72 N	75 N	78 N		
3.5 2.0	l. 7	2.3 -0.2 0.0	0.0 1.7	0.7	3.9 0.4	2.6	1. 7				M.F.	R. Eannon

-

i

357 353 642 305 273 442 240 207 728 200 254 /77 150 219 .

- 0.75 0.5 0.5 0.0 0.0 N=1 0.5 0.2 5 0.5 0,0 0.25 N=2 0.5 0.75 0.25 0.5 2,0 N=3 35 GN 3.3 -3.4 2.8 N=1 2-4 1.0 0.0 2.1 1.3 N=2 1.4 0.8 0.0 17 0.7 N=3 .

N=3

N=2

N=1

the second se

Department o ines and Petroleum R NO. 2136 MAP McLEESE LAKE COPPER UNE: 80 E (V-121-B) COURATION ik Queilo Isense ver**unps**e e 300 FEET CANER ASR' & LANDURATION LTD. CRAWN H.D. CLENDENFIN DALE 30 6 70 R. Eannon

.

Department of Mines and Petroleum Resources ASCESSMENT REPORT NO. 2136 MAP Pa/21 P.F.E. McLeese Lake Copper LINE: 72+00E DEPUSE - MPOLE COMPULIES NON 1.0 . FREQUENCIES 0.31 4 DO UP X == 300 ' 015 CANEX AERIAL EXPLORATION 1 TD. DRAWN BY D. ROBERTSON DATE: APRIL, 1970

 $(M,F)_{\alpha}$

R. Bannon

and the second second

1.0

0.7 .

n= 1		2 <i>-3</i> •	0.0	4.9 •	4.6	5.9	4.6 ·
1:1		2.5	4.2 •	2·2	3.6 •	2·5 3·5	5 3·6 •
1 = 5	3.8	3.4	<i>उ</i> .र •		2.4	3. O	2.9

1.5⁻ 2.7 1.8

N=2	-0.9	0.8	0.7	2 - 1	1.0	<i>ی</i> . •	ō
N = 3	0,6	5.3	0.6	0D	2.2	6.0	

•

3.0	4.4	2.7	6.4	8.1	2.8	3.1	5.1	5.1	0.7	7.9	<i>Ş.</i> 5	<u>3</u> .5
	•	•	,	•		•		•		*		•
										,		

.

Department of Mines and Petroleum Resources ASSESSMENT REPORT NO. 2736 MAP Pa/211 51N 54x P.F.E. McLeese Lake Copper LINE 64+00E DIPOLE - DIPOLE CONFIGURATION FREQUENCIES 0 J + 5.0 cps. X = 300' 2.0 CAMEX AERIAL EXPLORATION LTD. DRAWN BY: F. HEWETT DATE APRIL, 1970 591

 $(M,F)_{\alpha}$

3.6 .

NO. 2336 MAP

.

1

~

45N	48N	SIN	54N	
			P.F.E.	anna 19 mar 19 mar 19 mar ann ann ann ann ann ann ann ann ann a
				McLeese Lake Copper
				1.1ME: 48+00E
1.0				DIPOLE DIPOLE CONFIGURATION
•				FREQUENCES 03U4.50 dbs
-0.5	-		ah firiya a sa	X = 300'
,				CANEX AERIAL EXPLORATION LTD.
				DRAWN BY. D. HUSTON
15N	ADNÍ			DALE: APRIL, 1970
_i		5/N	54N	

 $(M,F)_{\alpha}$

431	461	49N	52N	55N	58N	41N	64N	67a	70 N	73N	76N
	0.0		9.3	۲. /	3-8	2.5	0.0	3.8	0.0	<i>\</i> ∙∂	1.0 2.1
n=	-								-	•	• •
n= 2		3.8	(4,9)	2.2	~ 1 - 1	2-8	- Z. 5	3.8	3.9	3. B	2.5
n - 3			4.7	0.0	4.0	0.0	0.0	0.0	1.4		4.8 4.8
r(= 5			•	•	•	•	-	•	•	•	· ·

McLeese Lake Copper
LINE: 48E (V-121-B)
DIPOLE - DIPOLE CONFIGURATION
FreQUENCIES, 0.31 & 50 cps.
X = 300'
CANEX ARRIAL EXPLORATION LTD.
DRAWN BY: L.C.B.
DATE: 3 - 7-70

.

The second se

N =1			-0.6		1.5		5.0		4.5		8.9	
N = 2		1.8		-1.0		2.0		3.8		5.2.		5.4
N = 3	3.3		2·5 ·		2.9		2.0		6.7 ·		4.8 ,	

-

•

ICZN	10511	108 N	lling	こよろ	אקוו	120N	1230	126N	129 N	132.1	135N
		L				1				1	

and the second secon

STRACE AND A TONER DURA ROLT OF PH N. (IE. STA. AT I BIN ON STOLAN)

9∧	12N	15N	18N	21N	24 N	27~	30 N	33~	361/	391/	42.N
		L	I	11	l	1	L	J			l

2		238		2,57		2,09	/			Mine	Department of and Petroleum Resource
~	/?2	151	2;20	.22	1/2	/22	1,73	124	-	NO. 3	ASSESSMENT REPORT
1	69N	/	72 N		75N		78.4		в/л 1	€a/217 8.4%	
										P.F.E.	McLeese Lake Copper
	ho	55	40	0.5	7 <u>,0</u>	0,5	0,75	0,25			LINE: 24+00E DIPOLE - DIPOLE CONFIGURATION FREQUENCIES: 0.31 + E.0 opt.
		0,75		1.0		1,0					X 300' CANEX AERIAL EXPLORATION LTD.
	69N 1		72/V		75"/Y		78/4		B/N	B4N	LATE April, 1970
							10			$(\mathcal{M},\mathcal{F})_{\infty}$	1000000-
	5.9	3,2	45	4./	-	41	412	2:0			P. Cannon

3.2 3.9 4.8

.

Department o 2736 MAAD

REE. McLeese Lake Copper LINE: 165 (X-121.B) MALLER ALCONDENTIN TRIQUENCES USI & DECOL X = 300' CAMEX FERMLEX TO GETTY LTD CHAVE 13-6-70

M.F.

Department of Mines and Petroleum Resources ACCESSILE.IT REACTIN NO. 2136 MAP Pa/2TT P.F.E. McLeese Lake Copper LINE: 0+00 DIPOLS - DIPOLE CONFIGURATION FREQUENCIES: 0.31 + 5.0 cps. X = 300'CANEX AERIAL EXPLORATION LTD DRAWN BY: O. HUSTON DATE: APRIL, 1970

(M.F.)a

R. Canne

69 N	72 N	75 N	7BN	erN	B4N	\$7.N	90 N	23 <i>N</i>	26.N	89 N	IOZ N	
			1			······································		1	L.	,	1	

0		0.25		0.5		0.25		0.5		- 0.5		0.25		-0.5
15		15		S		<i>a</i>		A		293		+		10
	075		0.75		0		0.5		P.25		0.25		0.5	
			8						1. S.S.		2		T .	
0.5		1.0		0.75		3.25		0.5		0.25		-= 25		0.5
		4						1				9		+

	69 N 72 N	2	5N	78N	eiw	84 N		87 <i>N</i>	90 N		93 N	96 N	99N	102N
	X.													
/								1						
17	\ 45	1.5	2.5	.3		0	1.7	7.9		2.6	٤.2	- 78	3.4	-12
18 h	$\langle \langle \cdot \rangle$	5		~	8	* 6 S	2	(*)		12	*	28	28	5
			1		1.00	-					a		(2-72)	
1	12 12	3		0	54	5.1		3.9	° .		4.1	4-1 -	2.2	7.2.
1 :														
18	16	4.2.	0	8.0	-	2.4	5.6	2.5	È.	2.0	4.2	LS	- Z. 3	6.3
1.5	-))	÷	14	8			14	10 C		19	. X.			×.

Mines and Petroleum Resources ASSIGGMENT REPORT

McLeese Lake Copper LINE 00 B.L. (V-121-B) DIPOLE DIPOLE CON, I UPATION FREE COLD DURA 50 COL CANEX AERIAL EXPLOSING LYS. DERIVAN BY: L.C.B., H.D.C.

/y ≈ /

24

Department of Mines and Petroleum Resources ASSESSMENT REPORT NO 2136 M.P. Pa/217 54 N P.F.F. McLeese Lake Copper LINE: 8+00E DIPOLE - DIPOLE CONFIGURATION FREQUENCIES: 0.31 + 5.0 cps. X == 300' CANEX AERIAL EXPLORATION LTD. DRAWN BY: D. HUSTON DATE: APRIL, 1970

(M.F.)a

				1.1	11 11	241	30N	3314	36,1	39 N	AZN
9N	IZN	ISN	18 N	<i>IN</i>	~7/4				·		

1 18 1.3 7.1	<u>.</u>	5.0	5.3	2.C	3.3	3.2	<i>3.</i> 7	/.3	14	Ø,0 ,	0.0	-3.4	0. ; ,	-6.0	12.0
9.7 14 5.7	4.4	<i>5.1</i>	8.0 -	3.0 - 5.8	2.5 ∙ 3.8	4 .; 2.2	3. 2	2.3 4.4	- J.4 -0.5	0.6 0.7	-0.1	-3.7 0-0	0.3 , , ,	-7.7 0.0	0.0
) · · · ·	ن .ز. ۲	•			·	,	·							

 $(M.F.)_{\alpha}$

					<i>.</i> .	5 /	ol (p	\$ \$	6-4	/0 ·	- 18	64	- 6.1
	40	1.4	7. 9 -	0.4	2,4		00	47	3. ś	ie I b	9 7.3	- 3-7	
61		6.0	A lo	<i>i</i> 2	i.4	2.0	~7	22	0.0	92	- 7.4	12	3.7

.

•

Department of Mines and Petroleum Resources ASSESSMENT REPORT NO. 2736 MAP Palett 5411 McLeese Lake Copper LINE 16+00 W DIPOLE OPPOLE CONFIGURATION PREQUENCIES 0 31 4 50 cps X = 300' CANEX AERIAL EXPLORATION LTD. DRAWN BY D. HUSTON DATE APRIL, 1970

(M.F.) a

42N	45N	48N		51N 	54 N		57N	60N	63N		66N	69N		72/V	75N	(7 8 N	8/N		891V	87N		9014		93N		96N		99N	10:	2 N
								1	\ <i> </i>								-										·		·		
IN =1	0.0		0.0	6. -	. 1	-16	ø .	°		4.3	2.9		0.0		3,3	•7.9	4.8		-22	6	3 .	0.0		0.0		-7.8		3, 5	į	23	<u>.3</u> .2
14 = 2		0,0	-	3.8	7.2		-5.7	0.0	- 4. 3		6.5	3.9		1.5	- 6.3		12	3.5		· 6.3	0,0		7.0		0.0		0.0		4.6	0.0	
14 = 3			0.0 ·	2.	.2	-2.9	0.	>	0.0	1.2	9. <i>8</i>		1.1		-21	4.5	<i>0.0</i>		6.2	<i>6.</i> (>	0.0		0.0		2.5		- 3. <i>6</i> 0	3	1.2	2 &

•

Department of Mines and Petroleum Resources ASJESSMENT REPORT NO. 2736 MAP

McLeese Lake Copper 16 V (V-121-B) 300' P. KOWALCZYK 7/6/70

R. Cannon

PFE

M.F.

150 N

N = 3 N = 2 N = 1		301	2 36	347 262	375 14 400	396	329 308 415 1	374	437 40 183	343 265 148	204	290	241	285	340 	232	237	180 NI -	134	140	87	57 8	67 \$2	44	110 48 39	ð (46	85	129	101	117 55
6 N 	9N 	12N	15 N		1814 I	2 1 N	24 <i>N</i>	2	7 /v	3 0N	33 N		34 N	39 ,y		42 _N	4 5 	N	48 /V		57 N/	54N		57 N	<i>L</i> s,	~	63 N		66 N	
N = 1 N = 2 N = 3			1.5	1.5	10 20	2.0	1.0 1.75 7.25	1.0 1.25	0.25	-0.25	6.25	0.0 0.25	o.•	0.25	0 <i>.5</i> ~0.75	-0.5	0.25 0.2 0.2	- 0.25 5 0.25	0.0	- 0.25 0.5	o. - 0.25 0.	z5 <i>e.0</i>	1.0 0,0	0.25	0.25	0.0	0.5	0.5	0.25	0.0
∠ /V }	9 N .	12 N	15 M		/8 ∧/ 1	21 N	24 N		7 N	30 N 	3 3N		3LN	39 N		4 2 N	4 5	<i>N</i>	48 N		51 /y	54 N		57 N		N	6 3 <i>N</i>		66 Ay	
N = 1 N = 2 N = 3			c.3	5.7 4. 2.9	25	5.0	2.4 - - - 2.8 -	2.8 2. 3.8	1.4 • • •	- 1.7 - - 1.5 -	J. 2	0.0 - 0.9	0.0	.6 .7	3.1 -2.2	- 2.1	L.7 2.1	-2.2	0 , 0	- 3.5 3.6	- 2.9		0.0	5.8	1.2 4.5	· · · · · · · · · · · · · · · · · · ·	5-9	8.5	2.5	0.0 4.3

GANEX AERIAL EXPLORATION LTD.

DRAWN BY: L.C. B.

DATE: 14.7.70

;

P. F. E.

:2N

Ja/ 1211

1-25

6.9

.9N

182

Sni 12N

MF

McLeese Lake Copper LINE: 32W (V-121-B) DIPOLE - DIPOLE CONFIGURATION FREQUENCES 031 4 50 ups. X = 300' CANEX AER AL EXPLORATION LTD. DRAWN BY: L.C.B. DATE: 7.6.70

138N

M.F.

Sa/2TT

P.F.E.

······························

• .

185 155 125 65 35 3.5 0.0 3N 6N ۱..... 1 1 Ł.

Department of Mines and Petroleum Resources ASCESSMENT REPORT 163 NO. 2136 MAP Ja/211 12N 3~ M.F.E McLeese Lake Copper UNE: 48W-0.5-• DEDUCTOR CONFIGURATION a - CN178:001 + 50 0,3. X 300' CANEX AERIAL EXPLORATION LTD. GANEL BY L.C.B. Const. 14/7/70 9 N 12 N MF

- 3.0

R. Cannon

300 D. HUSTON 7/5/20

. .

Mines and Petrole ASSESSMELT

NO. 2736 MA

nt of
um Resources
REPORT
ιp

N - 1			4. 7		4.1		2.2		2.4		7.4	
N=2		3.8		9.6		3, /		4.1		<i>8.9</i>		9.4
N=3	6.6		5.6		2.7		2.2		8.5		4.6	

McLeese Lake Copper

LINE: 112W - V-121.8 DIPOLE - DIPOLE CONFIGURATION FREQUENCIES: 0.31 + 5.0 cps. X = 300' CANEX AERIAL EXPLORATION LTD DRAWN BY: L.C. B. DATE: 31.5.70

(M. F.)a

3N 6N 9N 12N 15N 18N 21N 24N 21N 30N BON SON 39N 42N 45 N GAN SAN IZAN ISAN IBA ZIN ZYN LIN JON ISN SGAL 39N " 33 00 96 15 103

McLeese Lake Copper

LINE: 128W ON V-121 B DEDUCTION LODE OUTLON FREQUENCIES: 031 + 50 - pt X = 500' CANEX AREAL EXPLORATION LTD. DRAWN BY: L.C. B. DATE 31.5.70

Pa/211

SUN

P.F.E.

 $(M,F)_{\alpha}$

54N

÷.,

Department of Mines and Petroleum Resources AUGEOSMENT REPORT NO. 2136 M.P Pa/217 46N 457V P.F.E. Coast Silver LINE: 40+00W DIPOLE - DIPOLE COMPIGURATION FREQUENCIES: 0.31 + 5.0 cps. X = 300' CANEX AERIAL EXPLORATION LTD. DRAWN BY: R. CANNON DATE: FEB., 1970 48N (M.F.) a

McLeese Lake Copper LINE: 64W. Coast Silver DUTIES OF ATOM ROURATION FREQUENCIES 031 4 50 rps X = 300'CANEX AERIAL EXPLORATION LTD. DR. N. BY: L.C.B. DATE: 24 5 .70

P.F.F.

(M.F.)a

McLeese Lake Copper LINE: 72 W coast Silver DIPOLE - DIPOLE CONFIGURATION FREQUENCIES: 0.51 + 5.0 cps X= 300 CANEX AERIAL EXPLORATION LTD. DRAWN BY: D. ROBERTSON. DATE: 24.5-70

(M.F.)a

87N 50/20

P.F.E.

McLeese Lake Copper LINE: 80W COast Silver

DIPOLE - DIPOLE CONFIGURATION FREQUENCIES: 0.31 4 ED ops

X = 3001 CANEX AERIAL EXPLORATION LTD.

DRAWN BY L.C. 8.

DATE 24.5.10

Department of Mines and Petroleum Resources ASSIGGMENT REPORT NO. 1136 MAP

(M.F)a

102 270 229 170 222 116 N=3 . . 125 298 226 N=2 238 252 N=1 155 185 65 1.75 N=1 3.5 3.25 6.25 3,5 3.5 2.75 N=2 . 550 3.75 6.5 N=3 215 65 95 16 15 6.7 12 N=1 . 28 12 5.7 23 15 65 16/ 74 37 6/ N=2 49 /3 15 14 8.8 54 81 N=3

Coast Silver LINE: 48+00W DIPOLE - DIPOLE CONFIGURATION FREQUENCIES: 0.31 + 5.0 cps. X = 300'CANEX AERIAL EXPLORATION LTD. DRAWN BY: D. HUSTON DATE: FEB., 1970

West and the state of the state of the state of the second state of the state of the state of the state of the McLeese Lake Copper UNI: 48W coast silver PERCENCEMENTS OF A STREET S and the constant of the second 3 = 300 ['] ABORY ACENC EXPLORATION 2 10. P KOWALCZYK 1.1. 24/5/70

.

na Stanton K. Stanton in Berning in na phase na se in a sintegradi i jini i sintegradi i jini i sintegradi kan Marina Stanton K. Stanto Marina Stanton K. Stanton	 1
McLeese Lake Copper	
CONTRACT SILVER	;
² States and the Q [™] Equipant and the second	•
i Bartan (1997) (1997) (1997) (1997) Bartan (1997) (1997) (1997)	
21 ÷ 300'	;
CARCS NEWSON CNPLOR STUDY, STUD	
D.S. ROBERTSON	:
ONTE: 24-5-70	•
. The contraction of the second s	

one commute and .~ 2. \bigcirc $\sim >$ 537 5.5 - 0 7 -----<> <>à G $\overline{\bigcirc}$ LN \bigcirc ____ \bigcirc \$7 10 U \sim

