

REPORT OF THE GEOCHEMICAL SOIL SURVEY ON THE COUGAR GROUP OF CLAIMS, BABINE AREA, B.C. FOR NITTETSU MINING COMPANY LIMITED

JULY 29 - 31, 1970

LATITUDE 54[°] 40' N LONGITUDE 126[°] 15' W

BY

B.W. SMEE AND R. CAVEN, P. ENG. BARRINGER RESEARCH LIMITED 1198 WEST PENDER STREET VANCOUVER, B.C.

LIST OF CONTENTS

Introduction1Results2Recommendations3Cost Estimate for Survey4Certificate of Qualificationfollows pageAppendix I - Laboratory Reports

ŝ.

.

LIST OF DRAWINGS

-i-

*

DWG. NO.	TITLE	SCALE
X 4-137-3	Locality Plan (follows page 1)	
2 V ⁴⁻¹³⁷⁻⁴	Geochemical Soil Survey Total Copper	1"=1000'

PAGE

INTRODUCTION

A geochemical reconnaissance soil survey was carried out on the Cougar 1 - 40 Claims by Barringer Research Limited, during the period of July 29th to July 31st inclusive. A total of 205 samples were collected, of which 201 were soil or bog samples and 4 were stream sediment samples. The collection was done by G. Rowe of Vancouver, and L. Rasminsky and J. Larway of Toronto.

The Cougar Group is situated approximately 10 miles south of Topley Landing, B.C. Access is by the Granisle road. The area is gently rolling, and completely bush covered. Bogs occupy low-lying areas.

The Cougar Group lies within the Jurassic Hazelton group of volcanics and sediments. Outcrop is very scarce. The soils vary from a well-drained regosol on the topographic highs, to a thick peat-like bog in the topographic lows. In all cases, the B horizon was sampled using a grub hoe. Small streams meander through the bogs. The bogs generally are underlain by a grey clay. In some instances the bog bottoms were beyond the reach of the six foot bog augers and could not be sampled. The samples were packed in heavy kraft paper envelopes.

The purpose of this survey was to perform a reconnaissance study at a minimum expense to assess the potential value of the Cougar Group. Soil samples were taken on 1000 foot lines at 400 foot intervals. The bog bottoms were sampled using a tube-type auger. Using this spacing, it was felt that broad areas of potential economic mineralization would be recognized, although narrow vein type mineralization could be easily missed. All lines were run by pace and compass.

The soil and stream samples were sent to the Barringer Research Limited Laboratory in Vancouver, where they were analysed for total copper in the case of soils; and 0.5N HCl copper for stream sediments. The samples were oven dried, sieved to -80 mesh with nylon screening, and a 0.2 gram cut was taken. For soils, the cut was digested in 0.5N hydrochloric acid. The solutions were analysed for copper using atomic absorption instrumentation. The analysis was performed by Miss Y. Hazeldene.

-1-

RESULTS (DWG. NO. 4-137-4)

The statistics for the Cougar Group samples are as follows:-

	ppm Cu
Median	17
Std. Dev.	10
Background	0 - 40
Threshold	40
3rd Order Anomaly	41 - 55
2nd Order Anomaly	56 - 70
lst Order Anomaly	>70

The background copper value for this area is about the average found in the Hazelton Formation. The pattern of distribution of the values is unimodul, and represents only one rock type and very little if any mineralization.

The above threshold values which occur on the Cougar Group are, for the most part, isolated spot highs. The two highs on Line 110E are due to contamination from the road and power line. The two point anomaly on Line 60E is low and could be attributed to natural bog accumulation, this should be checked however. On Line 40E there are two spot highs which are the highest naturally occurring copper values found on the property. The topography in this area is very smooth, and these samples could also be bog accumulation.

As one proceeds west towards Baboon Lake, the topography becomes extremely smooth, and bogs are prevalent. There is not an accumulation of copper in this low lying area, which indicates that there is little or no copper mineralization draining into the lake.

-2-

RECOMMENDATIONS

٩.

1. I recommend that check samples of the anomalies on Lines 40E and 60E be taken. The samples should be on 100 foot spacings and 200 foot lines and extend at least 400 feet either side of the anomaly.

2. Swamp bottom samples should be taken near the anomalies with a tube auger. Mineralization will tend to show itself at this swamp-swamp bottom interface.

3. Further work on the Cougar claims should await the results of the above follow-up work.

BARRINGER RESEARCH LIMITED

BW Sme

B. W. Smee, Geochemist

Endorsed by: an R. Cavén, P. Eng.

OF Roger J. Cavén BRITIS

December 24, 1970 Vancouver, B. C.

COST ESTIMATE FOR COUGAR GROUP

Field Work:-Mobilization \$ 175.00 9 man days @ \$75.00 per day \$ 675.00 Plotting, Reporting, Supervision @ \$125.00 per day \$ 250.00 Drafting \$ 125.00

Laboratory:-

ŧ

205 samples @ \$1.20 per sample \$246.00

TOTAL

\$1471.00

Declared bosore me at this City Christer and this City Alfragama of Province of Fridah Columbia, this 76 april 1971, A.D. 'day of A Commissioner for taking Affidavits within British Columbia or A Notary Public in and for the Province of British Columbia.

SUB - MINING RECORDER

CERTIFICATE

I, Barry W. Smee, of the city of Vancouver, in the Province of British Columbia hereby certify:-

- THAT I am a geochemist employed by Barringer Research Limited, 1198 West Pender Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of Alberta with the degree of BSc. in geology and chemistry.
- 3. THAT I am an Associate Member of the Society of Exploration Geochemists.
- 4. THAT I have held a responsible position in the field of geochemistry for at least one year.

Dated at Vancouver, British Columbia this 24 day of DEC 1970

Ble Some

B. W. Smee

APPENDIX I

,

÷

-

LABORATORY REPORTS

2

<u>L'Alleochemicel</u>	Laborato	ry llopo	rt / 1	53 B	•				Pag	e 3.
Sample No.	Total Cu ppm	S	ample o.	Total Cu ppm		Sample No.	Total Cu ppm		Sample No.	Total Cu ppm
								<u></u>		
)	
									CO 1	N.S.
									2	N.S.
									4	27
									5	11
									6	13
					<u></u>				7	10
									8	9 [.]
									9	27
									10	32
									11	28
									12	16
									13 A	14
									1 3B	10
									14	31
									15	24
					, <u>, , , , , , , , , , , , , , , , </u>				16	17
									17	12
			<u></u>						18	14
									19	20
						1			20	23
									21	12
· · · · · · · · · · · · · · · · · · ·						1			22	14
				<u> </u>		+				
L	l			L	L		J	L	L .: 5	<u> </u>

Cooph mical Laboratory Report /

• •

• •

na		U I /					Page	4.
Sample No.	Total Cu ppm	Sample No.	Total Cu ppm		Sample No.	Total Cu ppm	Sample No.	Total Cu ppm
24	27	51	15		. 78	N.S.	105	44
25	25	52	17		79	13	106	17
26	41	53	28		· 80	9	108	20
27	16	54	14		81	21	 109	<u>2</u> 6
28	17	55	18		82	24	110	17
29	23	56	11		83	21	111	13
190'N of19 30	15	57	14		84	9	112	17
31	8	58	18		85	13	113	20
32	60	59	16		86	32	114	21
·· 33	11	60	26	·	87	14	115	16
34	29	61	69		88	25	116	19
35	18	62	14		89	21	117	15
36	55	63	70		90	27	118	13
+75'N 37	10	64	11		91	15	119	40
38	20	65	16		92	20	120	14
+100'N 39	42	66	N.S.		93	15	121	18
40	N.S.	67	46		94	19	122	13
41	N.S.	68	13		95	21	123	24
41	10	69	22		96	15	124	17
+40'N 42	12	70	22		97	14	125	21
-25'S 43	20	71	15		98	14	126	16
+75'NE 44	21	72	17		99	15	 127	27
+75'W 45	12	100's 73	21		100	17	 128	9
46	23	74	12		101	11	129	16
47	17	75	16		102	39	130	14
40	24	250'E 76	36		103	26	 131	19
50	14	77	31		104	40	132	28

Geochemical Laboratory Report / 153 B

-

.

Genelianien	Laborator	j Report /	153 в	.	Page 5.
Sample No.	Total Cu ppm	Sample No.	Total Cu ppm	Sample Total No. Cu ppm	Sample Total No. Cu ppm
1.33	19	160	21	-50S 29	
134	19	161	19	188 21	
135	14	+25N 162	20	+75'N 189 11	
136	19	163	13	190 15	
137	13	164	14	191 12	
138	16	165	12	192 14	
139	15	166	13	193 23	
140	15	167	15	194 18	
141	39	168	13	+100'W 195 20	
142	28	169	16	196 18	
143	13	170	15	197 15	
144	19	171	17	198 16	
145	14	172	15	-100'S 27	
146	13	173	55	200 18	
147	18	174	12	201 17	
148	14	175	14	150'Wide 202 15	
149	13	176	13	203 13	
150	21	.177	90	204 28	
151	N.S.	100'E 178	18	205 18	
152	22	+75'S	26	206 9	
153	17	180	N.S.	-100'S 9	
154	19	181	13	208 23	
155	23	182 .	13		
+25'N 156	17	183	24	210 N.S.	
-1005 157	28	184	11		
+50'W 158	15	185	15		
159	18	186	14		

	Hcl.	-]				
Sample No.	ppm								
		-	-				-	-	
							 	-	
		-					 		
		_	-	-		-	 		
		_		-		-	 	· · · ·	
		_					 		-
									
LAKE 150'N CO 4	7	_					 		
CREEK CREEK 64 X S 300'S	15							-	
CO 52 CREEK 53	22		<u></u>		·				
107	9		-						
200'N 114A							 		
			-				 		
		-					 		
						· · · · ·	 		
						•			
							 		
		-					 		

Eucencienteal Laboratory Report / 1.53

