

RSOORT TO

$$
\begin{gathered}
\text { ON } \\
\text { GWRAWICAL SURVEYS } \\
\text { OF A PART UT ITS }
\end{gathered}
$$

MAKISTIN CLAL: GROUN

$$
B I
$$

 WRETMP, B. 6.

$$
92 I / 2 W
$$

AUGUST 20, 1971
Report on
Geophysical. Surveys
to
Acaplomo Ining \& Development Co. Etd.
Table of Contents
Introd̉uction 1
Location and Access. l
Sites of the Work. 2
Instruments Used. 3
South Area
Procedures, iagnetic. 4
Procedures, Alectronagnetic 5
Results, Ragnetic. 6
Results, Electromagnetic 7
Interpretations 7
Fast Area
Procedures, Magnetic. 9
Results, ragnetic 10
Interpretation 21
North Area
Fiocedures, Zlectromagnetic 12
Results, Hilectromagnetic $^{\text {a }}$ 12
Interpretation. 13
General Conclusions 1.4
Declaration of Expencitures 16
Certificate of Qualifications 17

nlustrations

folded in envelope bound in back of report.

3 Figure 3-Vagnetic Profiles, South Area
Figure 4 - Magnetic Contours with Claim Boundaries, South Area.
6 Figure 5 - $\sqrt{\text { FF }}$ Profiles with Claim Boundaries, South Area.
Figure 6 - VLF Profiles with Claim Boundaries, North Area.
A Figure 7 - Magnetic Profiles with Claim Boundaries, East Area.

REPORT TO

ACAPLOMO MINING a DEVELCPRENT CO. LID. (N.P.I.)
ON GEOPHYS ICAL SURVEYS
OF A PART OF ITS MAKELSTM CLANK

INTRODUCTION

In July, 197l, a geophysical survey by magnetic and electromagnetic techniques was conducted on several of the rakelstin group of mineral claims on Iron Mountain. This group of some 60 clains, belonging to Acaplomo Wining \& Development Co. Ltd. (N.P.L.), covers the top of Iron Fountain on the southeast outskirts of Kerritt, in the Wicola 连ning Division of British Columbia. The elevation is about $5,500 \mathrm{ft}$. The work was conducted on claims in Aca Hl group and on claims in Aca ${ }^{H 2}$ group. Affidavits covering the assessment work thus performed were filed in the office of the fining Recorder in ierritt, on July 28 th, 1971. This report is submitted in support of those affidavits.

LOCATIOY AND ACCESS

The rakelstin group of some 60 mineral claims extends north and south along the ridge of Iron Hountain and down both its east and west flanks, about 5 miles southeast of Merritt. The co-ordinates are $120^{\circ} 45^{\prime}$ west longitude and $50^{\circ} 2^{\prime}$ north latitude. Figure 1 shows the approximate outline and location of these claims, ertered on a portion of the Merritt topographic sheet, 921/SE.

Access to the claims is via the Coldwater Road, a gravel highway which runs southerly from the east boundary of the town of iferritt. This

road is followed for about 6 milies to Kwinshatin Creek, where a gravel road turns off to the east. This latter road swings north and goes to the top of the nountain, to provide servicing access for some micro-wave towers located on the summit. It is a graded road, suitable for passenger cars. The distance from the turnoff to the summit of the mountain is about 8 miles. This access road traverses the middle of the Acaplomo holdings and passes within a couple of hundred feet of the old shaft.

STTES OR THE WORK

The magnetic and electromagnetic surveys reported on herein, were carried out along pre-existing grid lines. It was difficult to follow some of the lines and occasionally impossible to locate pickets for the stations, as logging operations have recently been conducted over some of the clain area.

The work applicable in Aca $\# 1$ group was conducted on claims

 \# ${ }^{2} 4$; see figure 2. The surveys were conducted with a vertical force fluxgate magnetometer and a VLF electromagnetic receiver.

In the northern area, on claims Wakelstin \#3, $\# 22 A, \# 21 A$ and㮦50, electromagnetic work with the VLF instrument was carried out on portions of lines $2100 \mathrm{~N}, 2400 \mathrm{~N}, 2700 \mathrm{~N}$ and 3000 N to fill in a gap in that area where such work had not previously been completed. There was no gap here in the magnetic observations.

In the eastern area, magnetic work only was conducted on

along the west boundaries of claims lakelstin 4 , 45 and $H^{\prime} 7$ and four reconnaissance profiles 12001 , $900 \mathrm{~N}, 0$ and 3005 , were run easterly therefrom on claims Makelstin $\# 5,47$ and $\# 16$. These were preliminary probes only, to test for the type of magnetic pattern in this area. As the work continues, the remainder of that area will be completely covered.

In the southern area, both magnetic and electromagnetic profiles were run easterly from the baseline which extends north and south, along the west boundaries of claims lakelstin 453 and $\# 54$. This baseline is on the prolongation to the south, of Base Line No. 1. The profilies extended easterly from this baseline, across claims iakelstin \#53, $\frac{4}{4} 54, \$ 25,42$ and 28 , along lines $30005,33005,36005,39005,42005$ and 45005 .

INSTRUMENTS USED

For the magnetic survey, a vertical force flux-gate magnetometer was employed. It was manufactured by Scintrex Ltd, of Concord, Cntario. In previous work, an [F-l model had been used, but the one employed in this survey was an PF-2 moiel, serial no. 102004. Since a different instrument was now being employed, it was deemed advisable to re-run portions of the baselines in order to provide a comparism between the results with the two different instruments.

For the electromanetic work, the same Ronka Si-16 was utilized as before, manufactured by Geonics Ltd. of Toronto, Ontario, with serial no. 78.

The Fonka $\mathrm{E}-16$ instruments are designed to tune in on or more radio stations of the U.S. Navy, set up to communicate with ships at sea, particularly submarines. The electromagnetic waves emitted by these stations, in the 15 to 25 kiloHertz (kHz) band, propagate through the ground (as well as above the surface) and are subject to distortion by sub-surface conductivity

$$
4-
$$

contrasts. Such contrasts may arise from overburden variations, wet shear zones or faults, formational contacts and especially from metallicly conductive, sulphide mineral deposits.

The distortions of the electromagnetic field resulting from such contrasts, are measured with this instrument. With it, observations are made of the tilt of the ellipse of polarization of the primary field (the inphase component) and of the ratio of the out-of-phase (quadrature component) secondary vertical f"ield, to the primary horizontal field.

SOUTA AREA

Procecures, iagnetic

The $5-2$ flux-gate magnetometer was set to read on the 10% scale and adjusted to register 760 at Sese Station 1. The readings were then plotted as profiles along the mapoec grid lines to which they refer, A reading of 720 had been accepted for the datum, or zero value for this area, as described in wy report of iecember 4, 1970. The reacings were therefore piotted against that value as zero, but were enterer as garma values, not scale reading, The gamma value, however, is ten times the scale reazing, See figure 3 .

The instrument reading at any point, can be determined by dividing the recorded gama value by 10 and adding it to the datum reading of 720 . Thus, on figure 3, at station 2200 g on Line 3000 s , the olottec value is -100 . İvicing this by ten and acoing the resultant -lo to the datum value of 720 , indicates that the instrument read 710 at this station.

A base station had besn establisher close to the intersection of the access road and Line 4500S, near Station 2800\%, for the survey described in my report of arch 31, Igra. This was designated Base Station 2, and was userf for the work in the south area, describer below, It was tied to the
main Base Station 1, on the west side of the access road where it crosses Line 30001\%. The accepted value for this main, Base Station 1, is a reading of 760 on the 10 K scale (i.e. 7,600 garmas). Base 2 was found to have a value of 719 . This is discrepant with the value of 756 , found in the earlier work and will be discussed further below.

Readings were taken at 100 ft . intervals along Base Line 1 , which follows the west boundaries of clains makelstin 453 and 754 , from Lines 3000 s to 60005 . The readings were tied to Base 2 by making observations on that base at the start and at the termination of the recorcings along the base line. Correcting the reading at each station for diurnal variation, then fixed an accurate value for each of the base line stations. Any of them could therefore be used as a check-point, for determining diurnal variations during the grid line readings.

Readings were taken at 100 ft . intervals along lines 3000 s to 45005 , extencing 3000 ft , easterly from Base line l. On a couple of lines, the intervals are a little longer. These were where missing pickets necessitated pacing the intervals and then correcting the station spacings on arriving at a checkpoint. This also explains the southwesterly deviation of the eastern segment of tine 4500 . See figures 3 and 4 .

Frocedures, Electromagnetic

The VLF readings were taken along the same grid lines, but not along the base line. The values plotted for the in-phase component, are the percent slope, or tangent of the angle of inclination of the instrument, when recording a minimum audio signal. The tilt is positive if away from the operator's body, negative if toward it. As the tilt points towards the disturbing
conductive formation (positive $j \hat{i}$ in front of the operator , negative if behind him) it is necessary to know the direction the operator was facing, when making the observation. The operator faced west in all of the work on Iron Mountain. The tilt indicates the angle of inclination of the ellipse of polarization of the primary field.

The out-of-phase, or quadrature component, is measured perpendicularly to the primary field. The recorded value is the percent ratio of the vertical, out-of-phase secondary field to the primary field. It is an indicator of relative conductivity.

In general, when the in-phase observations change sharply from positive to negative, going westerly, and the quadrature does the reverse, producing sharp "cross-overs", a strongly conductive body is being traversed.

Results, Vagnetic

The readings along Dase Line 1 do not check completely with those recorded in my report of larch 31, 1971. The present survey shows lower values than those previously recorded, possibly 400 gamas lower. This is about the discrepancy previously noted, between the reading of 756 set for Base 2 in the earlier survey and the one of 719 found this time. In the 1971 survey, the instrument reading at Base 1 was about 800 , being 40 higher than its accepted value of 760 . The reading at Base 2 was about the same, close to 800 . This very high diurnal corection probably indicates that there was a magnetic disturbance at that time. The result was to make the value too high at Base 2 and all the profiles refered to it, too high in value as well.

The tie-in of Base 2 and Base 1 in this survey, on the other hand, showed no symptoms of magnetic disturbance, with even a minimal diux-
nal correction. At Base 2, the corrected reeding of 719 was 41 divisions (410 gamas) Iower than Base 1.

The magnetic profiles, on Lines 3000 S to 45005 , show no strongly marked peaks or valleys and the magnetic relief is low. See figure 3. The total range between the maximum of 350 gamas and the minimum of -320 , is only 670 gamas. Wost of the range lies between +200 and -200 gamas, for a general relief of 400 gammas.

A noticeable feature of the profiles, and of the base line, is the decline in readings towards the south and east. The values in the negative range become more numerous and deeper, as the reaiings progress southwaxcis, and the profiles also tend to decline towards the east.

Results, Blectromagnetic

The VLI profiles along the same grio lines as above, also show no particularly striking features. See figure 5, on which the claim numbers and boundaries are also shown. There are no strong cross overs, although there are a few weak ones of cubious significance. In general, the profiles are flatter in the eastern segrents of the lines than in the western portions. The inphase component shows more variations than does the quadrature, which stays fairly close to the zero line, in the main. A moderately distinctive set of peak reactions does occur on $2 l l$ lines, however, starting between 7002 and 1200 E on Line 3000 s and continuing south to between 1200E and 1700E on Line 4500S. A broad, distinctive dip in the in-phase component also is noticeable, from 1800 in on Line 36005 to Station 2060 on Line 45005 .

Interpretation

The magnetic contours are shown on figure 4. The claim numbers
and boundaries are also entered on this map, so the survey resuits may be related to the claim locations, The contours evince a general elongation in a northwesteriy direction, referred to grid north but which is actually slightly west of true north. This trend is closely paralleled by the trend of the peaks in the VJF in-phase component, mentioned above, extending from the vicinity of Stations 700 E to 1200 E on line 3000 S , southeasterly to the region of Stations 1200世 to 1700 E on Line 4500 S . These peaks, as a matter of fact, correspond to a series of negative value magnetic contours with the same general trend.

Cross-overs appear on the west sides of the above-noted peaks in the in-phase component. As there is no sharp recovery from the reversed relationship, however, the indication probably is of a broad formation of slightiy better conductivity, rather than of a relatively narrow vein formation. The cross-overs may then correspond to the contact of the formation causing the magnetic low on the east, with an axjacent one on the west, responsible for a slightly stronger magnetic reaction. This zone within which the cross-overs occur, should nevertheless be checked carefully when the soil survey is made.

Another band of magnetic depression contours, extending from Station 1700 on Line 3600S, southeasterly to Station 2060E on Line 4500S, lies along the zone of distinctive, broad dips in the in-phase component, noted above. The out-of-phase component exhibits little disturbance, however, and these reactions may possibiy be an effect of conductive overburden.

The predominance of negative, depression contours in the south and east portions of this area, plus the discrepancy between the two sets of base line readings, raise queries as to how the magnetic picture should be
presented. The question can be answered by expanding the survey area and by further checking of the base correlations and base line readings.

The first point requiring clarification refers to the correiation of the readings to the east of the base line with the higher readings to the west of it. This can be done by checking the bases, the base line and some of the grid line readings. This will show whether the reconciliation can be made by raising or lowering whole profiles, or if some lines will require rerunning. The results will then give the true distribution of the declining values to the south and east and their relationship to the whole magnetic situation. It may be found desirable to choose a new datum, or zero, possibly an instrument reacing circa 700. Niost of the negative depression contours would thus be eliminated, ano the intervening highs would be contoured instead, thereby representing the general magnetic picture more realistically. The second point to be resolved, concerns the possible signifin cance of the declining magnetic values to the south and east. Does this represent a regional gradient, or are the higher values to the north indicative of a large, anomalous area? To decice between these hypotheses will require extending the survey to the north and west to determine the gradients in those directions. This will show whether or not the central area, around the shaft, presents a magnetically anomalous zone of high values.

$345 \operatorname{ARA}$

Procedures, ametic

Base Line 2 was rear magnetically a.t 300 ft. Intervals, for the purpose of establishing stations on which checks could be made for diurnal variation. This base line runs south, along Stations 30002, from Line 3000., to Line 900. See fifure 7. This mav also shows claim numbers and boundaries.

A reading was taken on the main Base 1 station, observations were made along the base line and then a return check was made on tase 1 . There was very little diurnal variation during that time.

Two profiles, 1200 N and 900 M , were run easterly from the base line to 4700 E and 5900 E respectively. They extend eastwards from the central portion of the east boundary of the area originally surveyed magnetically, where there was a zone of low magnetic relief, described in my report of Eecember $28,1968$.

Two profiles, 0 and 3005 were run easterly to 4700 E . They extend eastwards from a southern area of high magnetic relief, as show on the map in the above-noted report.

Results, agnetic

There are some discrepancies in the readings at the intersections of this Base Line 2 with two or three of the profiles run during the 1968 survey. When the survey of this area is completed east of Base Line 2, check readings will need to be taken to resolve these differences.

This Base Line 2 shows the same trend to lower readings towards its south end, as was exhibited by the southern segment (3000S to 6000S) of Base Line 1. The south end of Base tine 2 (0 to 9005) is, however 2000 ft . north and 3000 ft . east of the north end (at 3000s) of the southern segment of Ease Line 1. The low values comparable with those found from 0 to 900 on Base Line 2, occur on Bese Line 1 from 40005 to 60005 . Thus, going west, the low values occur further south.

Profile 1200 lies in the negative range except for one, positive peak of 280 gammes near its western end, at Station 3700 E . It shows a
tendency to lower, negative values towards the east. pofile 900\% is in the negative range throughout its length. Cn both profiles, magnetic relief is but slight: 460 gammas on Profile 1200: and 320 garmas on Profile 900 R .

Profile 0 has a couple of positive peaks of slightly over 200 gammas, at its west end, near 3se Line 2, It declines to negative values towards the east. Frofile 300 S is negative, going to even lower values at its eastern end. It shows one positive peak of just over 100 gamas at station 3700 E . The total relief on Frofile 0 is 430 games and on Frofile 3005 it is 400 gammas. As these four profiles were reconnaissance probes only and are separated into two groups of only two each, the data recorded do not yet justify cirawing a contour map.

Interpretation

The generally low values recorded on the two profiles, 1200 . and 900 , continue eastwaros from an area of low relief, shown first on the mo, figuxe 3 aenmanying my report of 2ecember 28, 1968 and discussec in further detail in my report of ecember 4, 1970. They indicate that in this vicinity, the zone of low relief continues east of Pase Line 2 .

The west end of rofile 0 shows moderate magnetic relief, but the values then decline to the east. At its west enc, this line adjoins an area of moderately strong relief, shown on the map, figure 3 in my report of Iecember 28, 1968. The reactions on Frofile 0 indicate that the strong relief dies out quickly east of Sase Line 2. The results on Froitile 300 indicate that the zone of low relief is heve encroaching still farther west.

The preoominantly low values on all these profiles, together with the low values at the south enc of Base Line 2, irply that the area of
lower (negative) values found in the south area, (previously described) may swing around to the east and north. They thus would tend to isolate and bound the zone of strong magnetic relief, central to the earlier surveys, re-enforcing the suspicion that the area of high values and strong relief may be magnetically anomalous. Further extension of the magnetic survey is needed to complete the picture.

IORTH AREA

Procedures, Snectromagnetic

The Ronka N -16 VLF receiver, was employed on Lines 2100 F to 3000 N , to read profiles east and west of Base Iine 1 . Observations extended westerly to Stations 1500 N to 2700 W , except that Profile 2700 N went to 2000 W . To the east, Profile 2100 N extence to 1800 E and 30001 extended to 4000 E ; the others went to 3100 F . The work was concucted mainly on claims lakelstin ${ }^{4} 21 \mathrm{~A}$, $\$ 22 A$ and z^{2}, with minor extensions onto $\frac{4}{7} 50$ to the west and $\frac{4}{4}$ to the east. This work was designed to fill a gap which had existed between two Vis survey areas, to the north and to the south.

Results, Electromannetic

In accordance with prior experience in this area, the power
line serving some TV and radio receivers and transmitters nearby, createc profound disturbances in the readings taken in its immediate vicinity. This power line is suspended in the trees and runs along or close to the base line. Its presence is responsible for omitting readings near the base line on some profiles.

See figure 6; claims names and bounderies are also shown on this map.

A noticeable feature of the results on these profiles, is the predominantly positive tuend of the in-phase component east of the base line and its negative character west of the base line. The quadrature varies above and below the zero line in both areas.

There are few distinctive cross-overs. There is one, however, at Station 3300 on Profile 3000\%. Another occurs at Station 800 on Frofile 2100N. A weak one appears at station 22005 on wofile 2700 and a questionable, near approach, at Station 2800 en Frofile 2400 L .

West of the base line, the cross-overs are dubious, but there ave a flew weak cross-overs or near cross-overs, as at; Stations 800w and I200t on Profile 3000it; Station 700N, Profile 2700 N ; and mabe 800 N on Profile 2100 L .

Interpretations

In general appearance, these profijles conform to the pattern of low electromagnetic relief (in terms of cross-overs) which characterizes the results in the area to the south. These werodepicted on the map, figure 8 , accompanying my report of December 28, 1968.

Frofile 3000 i marks the boundary between the area to the south, just mentioned, and that to the north in which a number of pronounced crossovers co occur. These are shown on the rigure 7 in my report of January $4,1971$. This boundary is also the boundary between an area of high magnetic relief to the noxth and one of low magnetic relief to the south. The boundary is also marked by some high soil silver anomalies, mentioned in my report of lecember 28, 1968.

In evaluating the cross-overs in this area, the odd contrast between the reactions east and west oi the power line, must be kept in mind. This contrast raises a question as to whether or not that power line is exer-
ting a wide-spread effect, more moderate but more extensive than that observed within a couple of hundred feet. A nore careful look at dubious crossovers may therefore be indicated.

The cross-over at 3300 莹 on Profile 3000 N corresponis with a strong geochemical silver anomaly. The cross-over at Station 2200 on Line 2700N, corresponds with a weak geochemical copper anomaly. The one at 800 E on 2100\%, lies within the eige of a strong copper anomaly. West of the base line, the cubious, near cross-overs are generally close to copper, silver and zinc soil anomalies.

GEIERAL CONCLUSTONS

The survey herein reported has filled in a gap existing from prior work and indicated an interesting question for further investigation to answer.

The pre-existing gap in the VIF surveys, between Lines 2100 is and 30001 has been covered. The results indicate that the area covered belongs in the zone to the south, of flat electromagnetic relief (in terms of crossovers). The boundary between that zone and the one of strong reactions north of Line 32001 therefore lies between Lines 3000n and 3200N. This is also the boundary between an area of high magnetic relief to the north and one of low magnetic relief to the south, probably indicative of east-west faulting, and is furthermore a zone of strong silver anomalies.

The magnetic work to the east and south, showed declining magnetic values in those directions. This may require a revision of the previously chosen datum, or zero. It may be advisable to place the datum at a lower instrument reading in orcier to avoid a multiplicity of depression contours.

There is also some indication that the first areas of measurement, centered around the old shaft, may be surrounded by much lower values. If so, that area could conceivably be found to be magnetically anomalous. From the point of view of possible mineral deposition, that might be quite interesting as it could indicate a subjacent intrusive with possible accompanying hydrothermal alteration and replacement.

Continued exploration, both magnetically and electromagnetically
is definitely indicated, which should be supplemented by a continuing program of soil surveys.

Merritt, B. C.
August 20, 1971

eclaration of expenditures

The geophysical surveys herein reported, were conducted, under my
supervision, as follows:-
The ficle work, carried out from July 23 to 20,1971 , was periomed on a contract hasis, by iobert Veale, assistec by . Wilkie.

Cn Group Aca \quad.o. 1

> 3.47 miles of Vif observations, 350 per mile................... 1773.50
> Sental of truck, one cay... 20.00
> Rental of vir instrument, one day.................................. 10.00
> Tovares preparation of this report. $\frac{50.00}{253.50}$

On the affidavit of July 28,197 , the mileage was
listed as 3.33. The reviser figure above, 3.47
miles, is correct. only 200 was clainec at that time.

M Group Acs O, 2
3.44 miles of Vte observations \% 350 per mile....................3722.00
6.26 miles of marnetic observations 350 per mile.......... 313.00

Bentai of Vir instrument, one day................................... 10.00
Bental of truck, tro ciays.. 20.00
Towarcs prevaxation of this report. $\frac{250.00}{\frac{1}{1765.00}}$
On the affidavit of July 28, 1971, the VLI mileage was 1 isted as 3.7 miles; the revised figure of 3.44 above, is correct. The magnetic survey mileage was given as 5.97 ; the revised firure above, 6.26 miles, is correct. Cnly $\$ 700$ was clained on that afficiavit.

I hereby certify that the above expenditures were duly and properly
incurred for the work per formed and reported on herein.

CERTIFTCATE CF QUALIFICATIONS

I, Sherwin F. Kelly, F. Eng., residing at the Adelphi Hotel in verritt, B. C., certify that:-
(1) I am a registered Professional Engineer in the Province of British Columbia.
(2) I received the dogree of B, Sc. in Kining Engineering from the University of Kansas in 1917.
(3) I pursuec graduate work in geology and mineralogy at the Sorbonne, Ecole des tines and huseum d'Histoire Haturelle in Paris and at the University of Kansas and the University of Toronto. I also taught those two subjects at the two latter universities. I received my training in geophysics from Prof. Conrad Schlumberger of the Ecole des Mines, in Paris.
(4) I have practised as a geologist and geophysicist in Europe, North Africa, United States, Canada, Eexico, Central America, South America and the Caribbean, since 1920. Since 1936, my work has been principally as a consultant.
(5) This report of a geophysical survey conoucted on a portion of the akelstin group of mineral claims, held by Acaplomo ining \& Ievelopment Co. itdi. (N.F. H .), is basea on field work carriea out under my dixection.

Adelphi Hotel Serritt, 3. C. August 20, 1971

Acaplomo M. \& D. Co. Ltd. Makelstin Claim Group

To accompany geophysical report by Sherwin F. Kelly, P. Eng., geophysicist and geologist, on the Makelstim group, Iran Mtn, Nicolo Mining Division, dated Aug. 20, 1971.

Scale

Department of
Mines and Petroleum Resources ASSESSMENT REPORT
NO. 3192 MAP 4

Fig. 4
Magnetic Contours

South Area

$\sum^{N(\text { astr) }}$
Acaplomo M. \& D. Co. Ltd.
Makelstin Claim Group
T. accompany gaopbysical report by Sherwin F. Kelly,
P. Eng, geophysicist and geologist, on the Makelstin group, Iron Mountain, Nicola Mining Division,
daped Aug. 20, 1971 ,
Horwint? Kelf, p.Eng.

Scale

[^0]Fig. 5 VLF-EM Profiles South Area Observations made with
Geonics $M-16$ instrument. Readings taken facing W.

Department of
Mines and Petroleum Resources
ASSESSMENT REPORT
NO 3192 MAP \#5

[^0]: Grid lines numbered in feet south of Line 0 .
 Stations numbered in feet cast of Base Line.

