Department of Mines and Petroleum Resources ASSESSMENT REPORT NO. 3253 MAP

.

C

О

C.

ASSESSMENT REPORT

5

GEOCHEMICAL SURVEY (June 16th 1971 to August 7th 1971) OVP & MK MINERAL CLAIMS TROITSA LAKE PROPERTY OMINECA MINING DIVISION BRITISH COLUMBIA

FOR

ASTON RESOURCES LTD., CERRO MINING COMPANY OF CANADA LTD.,

LAT. 53⁰32' N LONG. 127⁰20' W NTS 93 E 11

BY

D.K. Mustard, P.Eng.

&

N. Cawthorn

CONTENTS

()

Ο

O

	PAGE.	
SUMMARY		
INTRODUCTION	1.	
LOCATION AND ACCESS	1.	
COMMUNICATIONS	2.	
PROPERTY AND OWNERSHIP	2.	
HISTORY	4.	
GEOCHEMICAL SURVEY	4.	
CONCLUSIONS	9.	
PERSONNEL	APPENDIX '	'A'
TIME AND COST DISTRIBUTION	APPENDIX '	в'
VANCOUVER GEOCHEMICAL LABORATORIES' REPORT	APPENDIX '	c'

LIST OF ILLUSTRATIONS

Fig. No. Description

ſ

 \mathbf{O}

O

#1	1.	Property Lo	cation Ma	ър			1.
	2.	Histogram C	ı Talus	(Granodio	rite-Monzon	nite)	8.
	3.	Histogram C	u Soil	(Granodio	rite-Monzon	nite)	8.
	4,	Histogram C	u Moraine	(Granodio	rite-Monzon	nite)	8.
	5.	Histogram M	o Talus	(Granodio	rite-Monzon	nite)	8.
	6.	Histogram M	o Soil	(Granodio	rite-Mo n zon	nite)	8.
	7.	Histogram M	o Moraine	e(Granodio	rite-Monzon	nite)	8.
	8.	Histogram C	ı Talus	(Hazelton	Group Area	a)	8.
	9.	Histogram C	u Soil	(Hazelton	Group Area	a)	8.
	10.	Histogram M	o Talus	(Hazelton	Group Area	a)	8.
	11.	Histogram M	o Soil	(Hazelton	Group Area	a)	8.
	12.	Histogram C	ı Talus	(Rhyolite	Area)		8.
	13.	Histogram C	u Soil	(Rhyolite	Area)		8.
	14.	Histogram M	o Talus	(Rhyolite	Area)		8.
	15.	Histogram M	o Soil	(Rhyolite	Area)		8.
	16.	Histogram C	ı Silt				8.
	17.	Histogram M	o Silt				8.
	18.	Histogram C	ı Rock Ch	nip			8.
	19.	Histogram M	o Rock Ch	nip			8.
						Po	<u>cket</u> .
#2	20.	Map of claim	ns & area	as of samp	le type col	llected	1.

# 220.	Map of claims & a	reas of sample type collected	1.
3 21.	Geochemical Map-	Cu Talus(Granodiorite-Monzonite)	2.
~/ 22.	Geochemical Map	Cu Soil&(Granodiorite-Monzonite)	3.
<i>چ</i> 23.	Geochemical Map	Cu Soil, Talus,Rock Chip (Hazelton Group & Rhyolite Areas)	4.
624.	Geochemical Map	Mo Soil,Talus,Rock Chip (all areas)	5.
₩25.	Geochemical Map	Cu Silts	6.
8 26.	Geochemical Map	Mo Silts	7.

Page

SUMMARY

This report summarises work carried out on and adjacent to the OVP and MK groups of mineral claims of Aston Resources Ltd., Troitsa Lake Property by Cerro Mining Company of Canada Limited.

The property is located in the Coast Range Mountains at the South West corner of Troitsa Lake, approximately 90 miles South of Smithers, B.C.

The property is underlain by a Granodiorite - Quartz Monzonite -Monzonite stock intruded into Hazelton Group volcanic rocks. A later Rhyolite Complex and a later series of dykes of variable composition are also present.

Work carried out on the property consisted of a geochemical silt, soil, talus and rock chip sampling survey. The purpose of this was to define areas of more immediate interest for further exploration.

The results of the geochemical survey exhibited a good degree of sensitivity and indicated more specific areas for further exploration.

INTRODUCTION

On the 16th June, 1971, Cerro Mining Company of Canada Limited commenced their field programme on the Troitsa Lake Property of Aston Resources Ltd.

1.

Lockwood Survey Corporation Limited, Vancouver produced from airphotographs, a topographical base map of the area on a scale of 1" = 500'.

Lloyd Tattersall, Williams Lake, B.C. carried out 72,750 feet of line cutting on the property from June 16th to July 7th 1971.

Cerro Mining Company of Canada Limited, Vancouver office, carried out a silt, soil, talus and rock chip geochemical sampling survey.

The objective of the programme was to discover by geochemical silt and talus sampling those areas of anomalous molybdenum and copper content.

The work was carried out by N. Cawthorn B.Sc., K. Kierans and M. Shamrock, under the supervision of D.K. Mustard B.Sc.P.Eng.

LOCATION AND ACCESS

The property is located at the South West corner of Troitsa Lake, approximately 90 miles south of Smithers, B.C..The topography within the property is rugged and elevations vary from 2,950' to 6,700'. The timber line is about 4,500'.

The property is reached from Smithers by 40 miles of paved road to Houston, from there by 75 miles of gravel road to Tahtsa Lake and 12 miles from Tahtsa Lake to the property by helicopter.

Aston Resources Limited Cerro Mining Company of Canada Limited

LOCATION MAP Scale 1 : 250,000

Figure 1.

Equipment and materials for establishing camp were flown to the campsite on Troitsa Lake, from Tahtsa Lake by helicopter. After camp was established all equipment, supplies and personnel were flown to the property from Smithers by helicopter. Okanagon Helicopters, based in Smithers, supplied a pilot and Bell Jet Ranger.

Camp was established at an elevation of 3,000' on the Lake shore and later it was moved 2 miles south to an elevation of 4,780'.

COMMUNICATIONS

Two SSB Spilsbury and Tindall type SB - 60 portable transceivers were used: one being stationed at the base camp and the other in Smithers.

PROPERTY AND OWNERSHIP.

The property consists of 55 mineral claims owned by Aston Resources Ltd.and are listed on page 3. The claims form two groups - the OVP group and the MK group. The Assessment Report applies to these claims. In addition 21 claims were staked by Cerro Mining Company of Canada Limited during the 1971 field season. The Assessment Report doesnot apply to the latter claims.

2.

CLAIM NAME	RECORD NO.	IN GOOD	<u>STAN</u>	DING TO	REGISTE	RED HOLDE	R
MK 1-10	53881-53890	August 1	5th	1971	Aston H	Resources	Ltđ.
MK 20-32	53900-53912	August 1	5th	1971	н	11	11
MK 39-47	53919-53927	August 1	5th	1971		31	11
MK 57-59	53937-53939	August 1	5th	1971		92	11
OVP 2	44751	August	8th	1971	57	57	st
OVP 4	44753	August	8th	1971	11	41	¥9
OVP 6	44755	August	8th	1971	53	FI	ti -
OVP 8	44757	August	8th	1971	ŧı	61	11
OVP 10	44759	August	8th	1971	19	19	17
OVP 12-16	44761-44765	August	8th	1971	52	8	Ħ
OVP 18	44767	August	8th	1971	25	63	17
OVP 20-24	44769-44773	August	8th	1971	n	17	IJ
OVP 33-36	44782-44785	August	8th	1971	83	F	11
CAW 3 - 8					Cerro N	Aining Co.	of
CAW 11-16					```	anaua bu	
CAW 17Fr						17	
CAW 18Fr						19	
CAW 19-25						17	
The claims a	are grouped as	s follows	-:				
MK Group – MK 1-10, MK 20-32, MK 39-47, MK 57-59.							

OVP Group - OVP2, OVP4, OVP 6, OVP 8, OVP 10, OVP 12-16, OVP 18, OVP 20-24, OVP 33-36.

Ungrouped - CAW 3-8, CAW 11-16, CAW 17 Fr. CAW 18Fr. CAW 19-25.

3.

HISTORY

The property was discovered in 1966 by G. Bleiler and F. Giaque who staked the OVP group of claims. The property was optioned by Silver Standard in 1966 and additional claims (MK Group) were staked in 1967. Silver Standard carried out a programme consisting of geological mapping; trenching of the known showings; a very limited induced polarisation survey; and 2,402' of 'A' diamond drilling in five holes. Silver Standard relinquished their option on the property following completion of the 1968 programme.

4.

The property was then optioned by Aston Resources Limited who, in 1969, conducted some additional geological mapping, very limited rock geochemistry and helicopter airborne magnetic and electromagnetic surveys.

No work was done on the property in 1970.

In 1971 Cerro Mining Company of Canada Limited optioned the property from Aston Resources Limited.

GEOCHEMICAL SURVEY

A geochemical survey - soil, talus, silt and rock chip - of the area was undertaken to define areas of more immediate interest for exploration and to aid in the search for a possible buried ore deposit. Soil and talus samples were collected on a 500' grid throughout the claim area. Rock chip samples were collected where it was not possible to collect an adequate soil or talus sample. Silt samples were also collected where possible during this survey.

SOIL SAMPLE COLLECTION

Soil samples were taken using a short iron mattock and a wooden spoon. The samples were collected from the 'B' horizon. At each sample site a composite sample was made from four or five locations in the immediate vicinity. Samples were placed in standard $3\frac{1}{2}$ " by $6\frac{1}{2}$ " Kroaft paper sample bags which were filled approximately half full. Care was taken to avoid contamination by organic material.

TALUS SAMPLE COLLECTION

The talus samples were taken using a short iron mattock and from a depth of 6-12". At each sample site a composite sample was made from four or five locations in the immediate area. Samples were placed in standard $3\frac{1}{2}$ " by $6\frac{1}{2}$ " Kr**d**ft paper sample bags. The finest possible material was collected. Talus samples were taken where it was not possible to collect a 'B' horizon soil sample.

SILT SAMPLE COLLECTION

The silt samples were taken of active sediments, care being taken to avoid contamination from bank slump. At each sample site a composite sample was made up of material from four or five locations in the immediate vicinity. Samples were collected using a wooden spoon and placed in standard 3½" by 6½" Kroft paper sample bags. Silt size material was collected where possible. The sample bag was half to completely filled. The greater quantity of sample being taken where the silt was of a coarse nature.

ROCK CHIP SAMPLE COLLECTION.

These were collected where it was difficult to collect an adequate soil or talus sample . Small chips of rock $\frac{1}{4}$ " to $\frac{1}{2}$ " diameter were collected using a conventional prospectors' pick. Care was taken to collect only fresh unweathered rock. Samples were placed in $3\frac{1}{2}$ " by $6\frac{1}{2}$ " Kroft paper sample bags. The bags being almost completely filled with rock chips.

...6.

All notes were recorded, in duplicate, on tabulated data sheets.

The samples were packed in boxes and shipped to Vancouver Geochemical Laboratories, Vancouver, B.C. The sample preparation and analytical techniques are shown as Appendix 'C'.

The geochemical results indicated that the values for soil and talus samples were affected to a significant extent by the type of sample collected and also by the underlying rock type. In an attempt to assess the effects of these variables the area was subdivided into smaller areas according to the type of soil collected ('B' horizon, talus and samples collected in areas of moraine) and according to the dominant rock type (Granodiorite-Monzonite, Rhyolite, Hazelton Group) as illustrated in Figure 20. Examination of the resultant histograms shows that the soil, moraine and talus samples collected where the dominant rock type is Granodiorite-Monzonite have significantly higher threshold values for copper than samples from the other areas of the property. Consequently separate geochemical maps have been produced for copper in talus samples (Fig. 21.) and for copper in 'B' horizon soil samples and samples from the areas of moraine (Fig. 22), collected in the area of the Granodiorite -Monzonite stock. Copper values for all samples types collected in the areas of Rhyolite and Hazelton Group rocks have uniform threshold values. These results are shown in Fig. 23. Molybdenum values for all sample types collected in all areas of the property appear to have uniform threshold values. These are shown in Fig. 24.

It was not found to be necessary to subdivide silt and rock chip samples in the above manner. Rock chip sample results are also shown on Figs. 22 & 23, as the threshold values for these results correlate well with those of the soil and talus samples shown on these maps.Separate maps (Fig. 25) for copper and for molybdenum (Fig 26.) have been produced for the silt samples.

6.

Background values and orders of anomalies arrived at by examination of the histograms - figures are shown in the following tables.

COPPER GEOCHEMISTRY

TABLE 1

Values in p.p.m.

SAMPLE TYPE BACKGROUND THRESHOLD 3rd ORDER 2nd ORDER 1st ORDER & AREA ANOMALY ANOMALY ANOMALY 150 151-300 301-450 450 + Talus. 0-150 Monzonite. B Horizon & Moraine. 0-100 100 101-210 211-350 350 + Monzonite. B Horizon& Talus. 91-200 20**1-**300 0-90 90 300+ Rhyolite& Hazelton. TABLE 2. MOLYBDENUM GEOCHEMISTRY Values in p.p.m. 3rd ORDER SAMPLE TYPE BACKGROUND THRESHOLD 2nd ORDER 1st ORDER & AREA ANOMALY ANOMALY ANOMALY B Horizon, Talus & Moraine. 0 - 1.010 11-20 21-30 30 + Monzonite, Rhyolite & Hazelton. Values in p.p.m. TABLE 3. SILT SAMPLES BACKGROUND THRESHOLD 3rd ORDER 2nd ORDER 1st ORDER ELEMENT 300 + 91-200 201-300 Cu 0-90 90 21-30 10 11-20 30 +0 - 10Мо

... 8.

TABLE 4.	ROCK	CHIP SAMPI	LES	Values	s in p.p.m.
ELEMENT	BACKGROUND	THRESHOLD	<u>3rd ORDER</u>	2nd ORDER	1stORDER
Cu	0-90	90	91-200	201-300	300 +
Мо	0-10	10	11-20	21-30	30 +

8.

0

 \mathbf{O}

Ó

TROITSA LAKE Copper in Talus (Granodiorite - Monzonite Area)

0 - 150	Background
150	Threshold
151 - 300	Third order
301 - 450	Second order
> 450	First order

25		TROITSA LAK (Granodiori	E Copper in te - Monzonite	Soil Area)
20	-	0 - 100 100	Background Threshold	
		101 - 210 211 - 350 >350	Third order Second order First order	
requency				
7 10				Figure 3.

 $Z = \mathbb{N}_{1}$

C

Cu ppm

TROITSA LAKE Copper in Moraine (Granodiorite - Monzonite Area)

0 - 100	Background
100	Threshold
101 - 210	Third order
211 - 350	Second order
> 350	First order

1

Cu ppm

15

Frequency

(

TROITSA LAKE Molybdenum in Talus (Granodiorite - Monzonite Area)

- 0 10 Background
- 10 Threshold
- 11 20 Third order
- 21 30 Second order
 - >30 First order

Frequency

30

Figure 5.

TROITSA LAKE Molybdenum in Soil (Granodiorite - Monzonite Area)

- 0 10 Background 10 Threshold
- 11 20 Third order
- 21 30 Second order
 - >30 First order

C

30

3.

TROITSA LAKE Copper in Talus (Hazelton Group Area)

0 .	-	90	Backgro	ound
90			Thresh	old
91	_	200	Third	order
211	-	300	Second	order
	>	300	First	order

 7γ

Frequency

20

15

TROITSA LAKE Copper in Soil (Hazelton Group Area)

0 - 90 Background 90 Threshold 91 - 200 Third order 201 - 300 Second order >300 First order

Frequency

15

10

TROITSA LAKE Molybdenum in Talus (Hazelton Group Area)

- Background - 10 0
- Threshold 10
- Third order 11 - 20
- Second order - 30 21

Frequency

40,

30

First order > 30

Frequency

TROITSA LAKE Molybdenum in Soil (Hazelton Group Area)

0 - 10	Background
10	Threshold
11 - 20	Third order
21 - 30	Second order
> 30	First order

Figure 11.

ppm

TROITSA LAKE Cu in Talus (Rhyolite Area)

0	-	90	Backgro	ounď
90			Treshol	Lđ
91	-	200	Third	order
201	-	300	Second	order
	>	300	First	order

1

Cu ppm

Frequency

15

10

 \bigcirc

Frequency

10

5

.

.

.

.

(Rhyolite Area) 0 - 90 Backo

0 - 90 Background 90 Threshold 91 - 200 Third order 201 - 300 Second order > 300 First order

TROITSA LAKE Cu in soil

Figure 13.

L Markets and the second se

30

20

Frequency

10

. .

TROITSA LAKE Molybdenum in Soil (Rhyolite Area)

0	- 10	Background	
10		Thresho	old
11	- . 20	Third	order
21	- 30	Second	order
	> 30	First	orđer

Mo ppm

C

ency

honen Leeden Lee

TROITSA LAKE Copper in Silt

.0 -	90	Backgro	ound
90		Thresho	old
91 -	200	Third	order
211-	300	Second	order
>	300	First	order

Cu ppm

Mo ppm

0.		90	Backgro	ound
90			Thresho	old
91	_	200	Third	order
201	-	300	Second	order
	>	300	First	order

and a second second

Frequency

15

10

ang na panganan ang katalan na pangkang na na pangkang na pangkang na pangkang na pangkang na pangkang na pang Na pangkang na p

1 3

Mo ppm

المراجعة أعاريه والمنفون الأمراقين

CONCLUSIONS

(

The results of the geochemical survey show well defined areas of anomalous copper and molybdenum values. Further exploration should be concentrated initially in these areas and should consist of detailed geological mapping and rock geochemical sampling. The survey should be carried out under the direct supervision of a geologist.

D. K. Mustar ., P. Eng.

il Coulton

N. Cawthorn, B.Sc.

APPENDIX 'A'

PERSONNEL

D.K. Mustard, B.Sc. P.Eng. July13th,July 28th 1971. Division Geologist 1430 9th Street, West Vancouver,B.C.

N. Cawthorn, B.Sc. Junel6th to August 7th 1971 Project Geologist, #203,2495 West 2nd Ave, Vancouver,B.C.

K. Kierans, July 1st to August7th 1971
Field Assistant,
1333 East 41st Ave, Vancouver B.C.

M. Shamrock, July 1st to August7th 1971.
Field Assistant,
1333 East 41st Ave, Vancouver B.C.

APPENDIX 'B"

TIME AND COST DISTRIBUTION

WAGES

0

D.K. Mustard, B.Sc., P.Eng., Division Geologist	
July 13th, July 28th 1971.	
2 days @ \$150.00 per day	\$ 300.00
N. Geetheum D. G. Dusiert Geologist	
N. Cawthorn, B.Sc., Project Geologist,	
June 16th - August 7th 1971	
54 days @ \$55.00 per day	\$2970.00
K. Kierans, Field Assistant,	
July 1st - August 7th 1971	
38 days @ \$20.00 per day	\$ 760.00
M. Shamrock, Field Assistant,	
July 1st - August 7th 1971,	
38 days @ \$20.00 per day	\$ 760.00

FIELD CAMP MAINTAINANCE

D.K. Mustard, N. Cawthorn, K. Kierans, M. Shamrock. 132 man days,

Line cutters -; L. Tattersall, T. Billyboy, D. Anderson June 16th - July 7th 1971 66 man days

Total 198 man days @ \$10.00 /man day

APPENDIX 'B' Continued.

TRANSPORT

 \bigcirc

O

Helicopter (Okanagon Helicopters) 18 hrs 20mins @ \$250.00 per hour	\$ 4,750.55
ASSAYS	
Vancouver Geochem. Lab.	
Soil, Silt,Talus & Rock Chip Analyses	\$ 592.50
COMMUNICATIONS	
License, Antennae & Radio	\$ 645.00
PROFESSIONAL CONSULTANTS	
Lockwood Surveys Ltd,,Vancouver,B.C.	\$ 1,696.80
L. Tattersall - Line cutters	\$ 2,200.00
DRAFTING & MAP COMPILATION	\$ 159.51
REPORT PREPARATION	
Cerro Mining Company of Canada Limited.	\$ 250.00

TOTAL \$17,064.36

APPENDIX 'C'

O

0

C

•

Dancouver Geochemical Laboratories Ltd. NORTH VANCOUVER, B.C., CANADA

TELEPHONE: 604-988-2171

J. R. WOODCHAY CONWAY CH

TO:

Cerro Mining Co. of Canada Ltd. #401 - 1111 West Georgia Street

Attention : Mr. Cawthorn.

Vancouver, B.C.

1521 PEMBERTON AVENUE

- Mr. Laurie Nicol, Supervisor Chemist FROM: Vancouver Geochemical Laboratories Ltd. 1521 Pemberton Avenue North Vancouver, B.C.
- Analytical procedure used to process acid soluble SUBJECT: in geochemical samples received from copper Cerro Mining Co. of Canada.

Sample Preparation 1.

- Geochemical soil, silt and rock samples were received (a) in the laboratory in wet-strength 32 x 62 Kraft paper bags.
- The wet samples were dried in a ventilated oven. (b)
- (c) The dried soil and silt samples were sifted, using an 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus &0-mesh fraction was transferred into a new bag for analysis later.
- The dried rock samples were ord and pulverized to (d) minus 80-mesh. The pulverized sample was then put in a new bag for later analysis.

Methods of Digestion 2.

- (a) was used. Samples were weighed out by using a toploading balance.
- Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concen-(b) trated acids respectively).

Continued .

- 2. Methods of Digestion (Continued)
 - (c) The digested samples were diluted with demineralized water to a fixed volume and shaken.

3. Method of Analysis

Copper analyses were determined by using a Techtron Atomic Absorption Spectrophotometer Model AA4 or Model AA5 with their respective hollow cathode lamp. The digested samples were aspirated directly into an air and acetylene flame. The results, in parts per million, were calculated by comparing a set of standards to calibrate the atomic absorption unit.

4.

The analyses were supervised or determined by Mr. Conway Chun, or Mr. Laurie Nicol and their laboratory staff.

VANCOUVER GEOCHEMICAL LABORATORIES LTD.

LJN/ati

Vancouver Geochemical Laboratories Ltd.

NORTH VANCOUVER, B.C., CANADA TELEPHONE: 604-988-2171

J. R. WOODCOCK

TO:

Cerro Mining Co. of Canada Ltd.

4^{#401} - 1111 West Georgia Street

Vancouver, B.C.

1521 PEMBERTON AVENUE

FROM: Mr. Laurie Nicol, Supervisor Chemist Vancouver Geochemical Laboratories Ltd. 1521 Pemberton Avenue North Vancouver, B. C.

SUBJECT: Analytical procedure used to process acid soluble molybdenum in geochemical samples received from Cerro Mining Co. of Canada.

1. <u>Sample Preparation</u>

- (a) Geochemical soil, silt and rock samples were received in the laboratory in wet-strength 3^{1/2} x 6^{1/2} Kraft paper bags.
- (b) The wet samples were dried in a ventilated oven.
- (c) The dried soil and silt samples were sifted, using an 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.
- (d) The dried rock samples were crushed and pulverized to minus 80-mesh. The pulverized sample was then put in a new bag for later analysis.

2. Methods of Digestion

- (b) Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concentrated acids respectively).

Continued

2. <u>Methods of Digestion</u> (Continued)

(c) The digested samples were diluted with demineralized water to a fixed volume and shaken.

3. Method of Analysis

Molybdenum analyses were determined by using a Techtron Atomic Absorption Spectrophotometer Model AA4 with a molybdenum hollow cathode lamp. The digested samples were aspirated directly into a nitrous oxide acetylene flame. The results were read out on a Photovolt Varicord Model 43 chart recorder. The molybdenum values, in parts per million, were calculated by comparing a set of molybdenum standards.

4. The analyses were supervised or determined by Mr. Conway Chun, or Mr. Laurie Nicol and their laboratory staff.

VANCOUVER GEOCHEMICAL LABORATORIES LTD.

LJN/ati

8 <i>k</i>	0 122		Soil or talus	sample site, sample number,pp.m. Mo, p.p.m. Cu
15 K	810 R164	5	Rock chip sai	mple site, sample number,p.p.m. Mo,p.p.m. Cu.
3 (K	5∏118 12431	80	Silt sample s	site, sample number, p.p.m. Mo , p.p.m. Cu. '
/	_	7	Claim, boundo	ry. 1
_	a o o o -	-	Topographic	contour (contour interval 50').
	/	-	Limit of peri	manent snow.
/	_	_	Stream.	
7 <i>a</i> .	ng	e c	of Copper va	lues (p.p.m.)
0	8		0 -150	Background.
۲	8		151 - 300	Third order anomaly.
•	8		301 - 450	Second order anomaly.
۲	8		> 4.50	First order anomaly.
Ra	ng	e c	of Molybdenu	m values (p.p.m.)
0	8			Background
0	8			Third order anomaly.
0	8			Second order anomaly.

8 0 122 25682	Soil or talus sa	mple site, sample number,ppm.Mo,ppm.Cu.
15 ⊗ 105 KR164	Rock chip sampl	le site, sample number, p.p.m. Mo, p.p.m. Cu.
36 [] 1180 X D 431	Silt sample site	e, sample number, p.p.m. Mo , p.p.m. Cu.
	Claim boundary.	
6000-	Topographic con	ntour (contour interval 50').
1	Limit of perman	nent snow.
1	Stream.	
Range o	f Copper value	es (p.p.m.)
● ⊗ □	0 - 100	Background.
	101-210	Third order anomaly.
● ⊗ □	211 - 350	Second order anomaly.
● ⊗ □	> 350	First order anomaly.
Range o	f Molybdenum	values (p.p.m.)
0 & 0		Background
0 & □		Third order anomaly.
0 0 0		Second order anomaly.

8 () 122 43681	Soil or talus so	ample site, sample number,ppm.Mo,ppm.C
15 © 105 KR164	Rock chip samp	le site, sample number, p.p.m. Mo, p.p.m. Cu.
36[]1180 KD431	Silt sample sit	e, sample number, p.p.m. Mo , p.p.m. Cu.
	Claim boundary	·
6000	Topographic co	ntour (contour interval 50').
1	Limit of permo	nent snow.
/	Stream.	
anae	of Copper valu	es (p.p.m.)
	0-90	Background.
. 8 🗆	91 - 200	Third order anomaly.
● ⊗ □	201 - 300	Second order anomaly.
● ⊗ □	> 300	First order anomaly.
ange d	of Molybdenum	values (p.p.m.)
		Background
		Third order anomaly.

Ra	ng	e of	Copper value	es (p.p.m.)	/
0	8		0 - 90	Background.	
0	8		91 - 200	Third order anomaly.	
0	8		201-300	Second order anomaly.	
0	8	8	>300	First order anomaly.	
Ra	ng	e of	Molybdenum	values (p.p.m.)	
0	8			Background	
0	8			Third order anomaly.	
0	8			Second order anomaly.	

