3492

GEOCHEMICAL - GEOPHYSICAL REPORT

on the

VICTOR MINERAL CLAIMS

YALE AREA, B. C.

Located 3 miles SW of Yale, B. C. (49°, 33'N, 121°, 29'W) - New Westminster Mining Division.

Bradley R. Mitchell

January 10, 1972

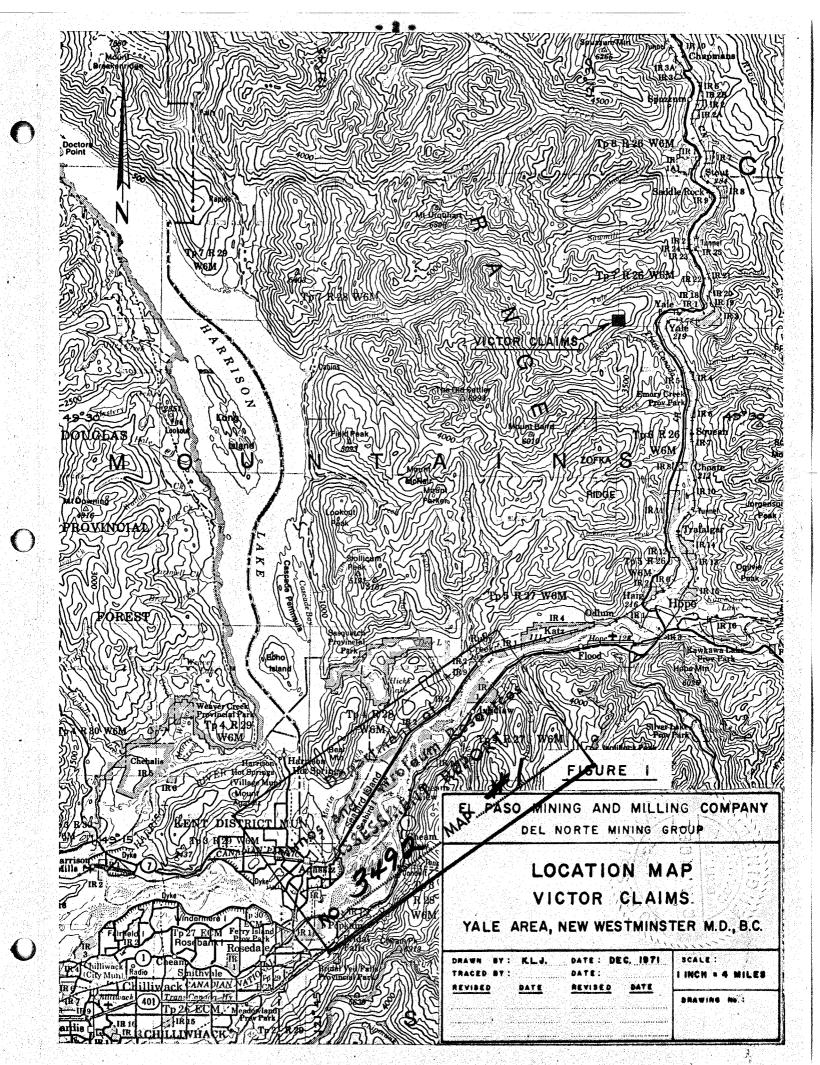
Nine's and petroleum Report

Nine's

TABLE OF CONTENTS

	SUMMARY	1
	INTRODUCTION	1
	FIELDWORK	3
	GEOLOGY	4
	MAGNETOMETER RESULTS	5
	GEOCHEMISTRY RESULTS	6
	CONCLUSIONS & RECOMMENDATIONS	9
	Appendix A - Geochemical Assays Appendix B - Geochemical Profile Appendix C - Petrographic Study Appendix D - Statement of Costs Appendix E - Statement of Qualifications	10 16 19 24 26
	ILLUSTRATIONS	
# 1	Figure 1 - Location Map Figure 2 - Cumulative Percent Frequency - Nickel in PPM Figure 3 - Frequency Distribution - Nickel in PPM	2 7 8
# 2.	Map No. 1 (92 H 11 A-1) Geology - Victor Claims (In	pocket)
#3	Map No. 2 (92 H 11 A-2) Geochemical Soils, Nickel in PPM, Victor Claims	11
# 4	Map No. 3 (92 H 11 A-3) Magnetometer Survey - Victor Claims	11

SUMMARY


From October 19 to November 20, 1971 a small crew varying between 2 and 6 men worked under difficult weather and ground conditions on a geochemical and ground magnetometer survey on the Victor claim group, about 3 miles southwest of Yale, B. C., in the New Westminster Mining Division. This property consists of 24 claims, Victor 1 - 24.

Deep snow and steep icy slopes at the time of the surveys made it impossible to complete a geological map of the natural outcrops. G.S.C. Map #69-47 shows that the property is underlain by schists and amphibolites of unknown age. The migmatitic equivalents of the above, and/or meta quartz diorites plus lesser amounts of gabbro-pyroxenites also occur. Disseminated nickel and copper sulphides occur within at least one narrow northeasterly striking gabbro-pyroxenite body.

The magnetometer survey was useful in indicating magnetite-bearing zones and/or mineralized zones. The results of the geochemical soil survey correlated fairly well with the result of the magnetometer survey. Soil and magnetometer anomalies are small in areal extent. No further work is planned on these claims.

INTRODUCTION

Between October 19 and November 21, 1971 a geochemical soil survey and a ground magnetometer survey were undertaken on the Victor claim group, owned by Walter Chrane of Yale, B. C. This program was

based on the occurrence of nickel and copper sulphides in a small showing on the property. As this occurrence is in the same general belt of rocks as the Giant Mascot Nickel mine, it was thought worthy of further investigation.

The Victor property consists of 24 claims, Victor 1 to 24 inclusive, and is located in the New Westminster Mining Division about 3 miles southwest of Yale, B. C. The Victor claims lie approximately between elevation 2400 and 3600 feet on an easterly-facing logging slash slope overlooking the Fraser River. From a point one mile south of Yale, a logging road winds up the mountain side and passes through the claim group.

FIELDWORK

A survey grid was laid out by Silva compass and nylon tape covering an area 2000 feet long by 1000 feet wide. The baseline runs 1500 feet northeast and 500 feet southwest of the 0+00 point. This point is located on the main mineral occurrence. Lines were spaced at 100 feet and stations at 50 feet. The grid overlies the Victor #4 claim and was used for the geochemical and magnetomer surveys and for the geological mapping.

A McPhar M-700 flux gate magnetometer was used for the magnetic survey. This instrument reads from 0 to 100,000 gammas in five ranges with either positive or negative polarity. The readings along each traverse were corrected by a time-correction plot.

The soil samples were taken from the "B" horizon, using a grub-hoe where possible. Otherwise, an auger, 1 inch in diameter, was used where snow depths and dense slash made it impractical to use the grub hoe.

A total of 373 samples were collected. These were analyzed by Barringer Research Ltd., 1170 Hornby Street, Vancouver, B. C., using the atomic absorption method for total nickel and recording results in parts per million (ppm).

GEOLOGY

(Map 1, 92 H 11 A-1)

The Victor claims are underlain by schists and amphibolites of unknown age, their migmatitic equivalents, or upper Cretaceous meta quartz diorites. At least one occurrence of nickel-copper mineralized gabbro-pyroxenite and possibly peridotite is intruded into these rocks. Contacts, bedding and a 6 to 12-inch pegmatite dike strike northeasterly with gentle northwesterly dips. At least one northerly striking shear is associated with the main mineral showing.

This occurrence, which lies at the southwest end of the survey area, consists of disseminated iron, nickel and copper sulphides in a small body of gabbro-pyroxenite. This ultramafic has an exposed length of 150 feet along a northeasterly direction and is approximately 10 feet wide. It is bounded by migmatites or meta quartz diorites where exposed. Minor mineralization was noted in the latter at or near the contact with

the gabbro-pyroxenite. Nickel-copper mineralization was also noted in a small exposure of what appears to be peridotite 150 feet along strike to the northeast, which may indicate a 300-foot mineralized length. Channel samples taken from the above are shown on the geological map of the property and range from .22 to .50% nickel and .14 to .23% copper. A report by Dr. Sidney Williams, who made a petrographic study of selected specimens from the mineralized zone is appended hereto. A report based on thin section and chemical analyses by Dr. W. C. Brisbin of Westerre Associates Limited of Winnipeg is also appended.

MAGNETOMETER RESULTS

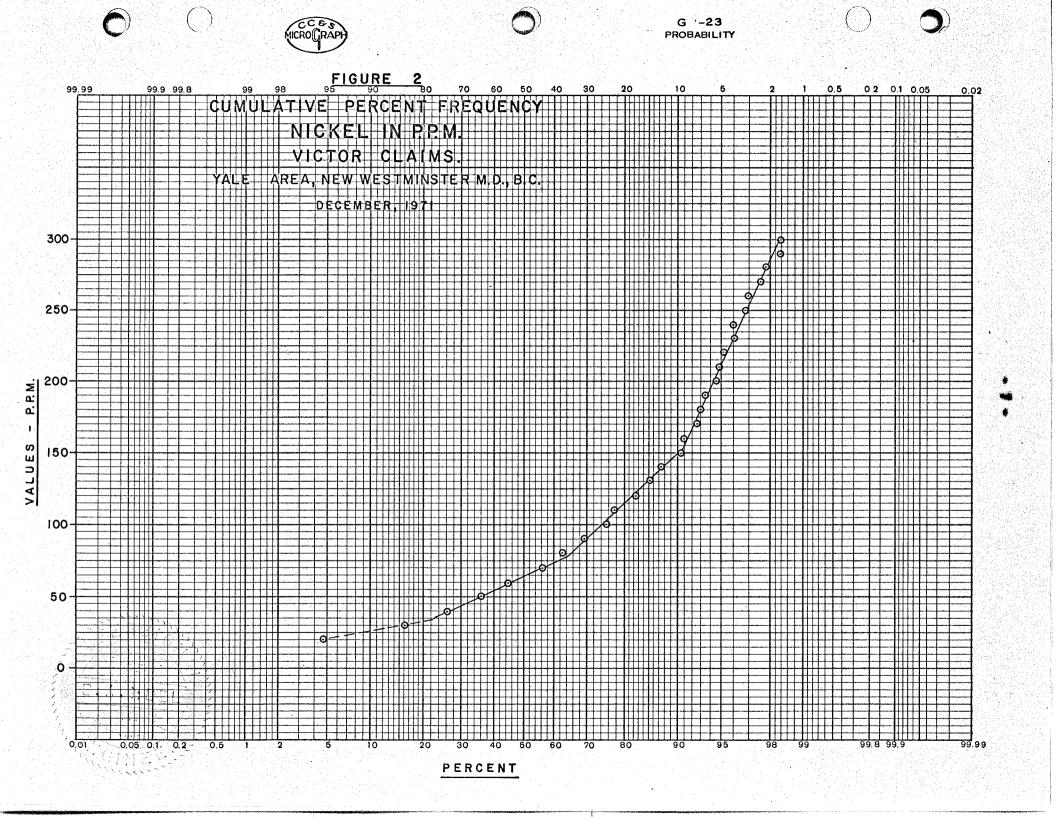
(Map 3, 92 H 11 A-3)

The corrected magnetometer readings were plotted to the nearest 10 gamma value and contoured at an interval of 100 gammas.

Readings were taken at 50-foot intervals and at 25-foot intervals in anomalous areas.

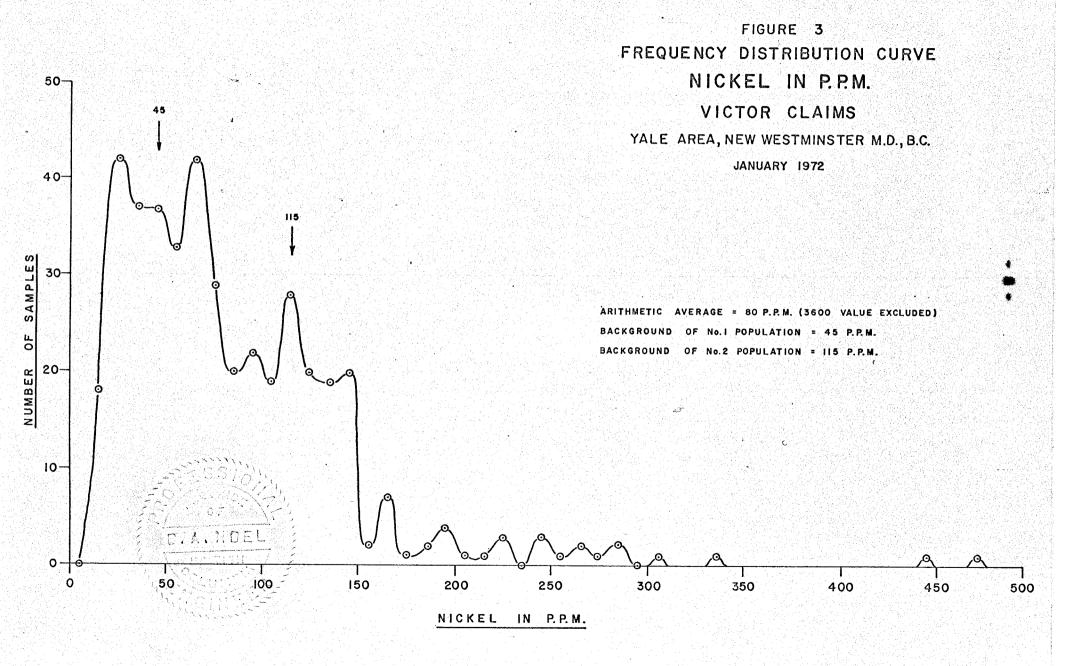
Three small magnetometer anomalies are indicated, the largest of which correlates with the main mineralized showing. Maximum magnetic relief throughout the survey area occurs over the main showing and is approximately 1000 gammas. This is much less than would have been expected over supposedly magnetite-pyrrhotite bearing gabbro-pyroxenite. This anomaly has a northeasterly trend while the two smaller anomalies plus the background outline have a northerly trend.

GEOCHEMICAL RESULTS


(Map 2, 92 H 11 A-2)

Attempts were made to collect all samples from the "B" horizon. Because of difficulties imposed by the snow, ice and slash, it is believed, however, that some "A" horizon material was inadvertently sampled.

The cumulative percent and frequency distribution statistical plots (Figures 2 and 3 respectively) indicate that a "non-normal distribution" of two populations of nickel in soils overlie the survey area. This may be attributed to the combination of variations in underlying rock and variations in the horizon sampled. The graphic backgrounds are 45 and 115 ppm nickel respectively. The arithmetic average is 80 ppm nickel.


The geochemical soil map was contoured using 50 ppm nickel as "background" and 300 ppm as "definitely anomalous". The criteria in picking these values are based mainly upon the results of a soil sample profile taken across the main mineral showing and not on the statistical analysis. The soil profile was done by Barringer Research prior to the commencement of the geochemistry soil survey, and is appended to this report.

The only "definitely anomalous" area consisting of two or more anomalous values, is over and immediately adjacent to the main mineral showing. Another anomaly is based solely upon a single unlikely 3600 ppm value and therefore should be disregarded. Several "probably"

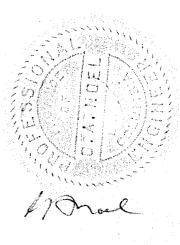
APPENDIX A

GEOCHEMICAL ASSAYS

anomalous" areas have been outlined. Three of these are supported by two or more "probably anomalous" values and several "possibly anomalous" values and are therefore considered to be valid.

The geochemical trends generally correlate with trends of the magnetometer survey. This is especially noticeable along a 600-foot northwesterly striking zone bounded by the main anomaly over the main showing and by one in the southwest corner of the survey area.

CONCLUSIONS AND RECOMMENDATIONS


The only exposed nickel-copper mineralization of any interest on the Victor claims is restricted to a small showing. The geochemistry and the magnetometer survey results indicate nothing else of definite interest so that the claims do not warrant further investigation.

Bradley Mitchell

maleaux

Vancouver, B. C.

January 10, 1972

APPENDIX B

GEOCHEMICAL PROFILE

BARRINGER RESEARCH

Geoghamical

Laboratory

El Paso Mining & Milling Go. Vancouver 1, B.C.

Authority: G.A. Noel

DEC 2 1 1971

BARRINGER RESEARCH LIMITED 304 CARLINGVIEW DRIVE REXDALE, ONTARIO, CANADA PHONE: 416-677-2491 CABLE: BARESEARCH

DATENOVEMber 18,1971

30S

82

Project Victor

REPORT NUMBER 288-B

El Paso Mining & Milling Co.

SAMPLE NUMBER	HC10 Ni ppm	SAMPLI NUMBER	EHC104 Ni ppm	UMBER	HC104 Ni ppm	AMPLE UMBER	HC10 Ni ppm
50W 35N	135	40W 15S	92	30W 35S	26	20W 40S	58
2 5N	62	20S	145	40S	54	45S	10
20N	140	25S	73	45S	40	50S	35
5N	150	30S	74	50S	76	50N	15
ON	210	35S	64	20W 50N	63	45N	280
5 <i>s</i>	150	40S	60	45N	245	40N_	110
10S	305	40W 45S	31	50N	200	35N	175
15s	110	30W 50N	240	35N	140	30N	225
20S	43	45N	81	30N	29	25N	49
25\$	100	40N	95	25N	190	20N	115
30\$	39	30N	120	20N	140	15N	36
40S	63	20N	65	15N	75	10N	645
50W 50S	100	15N	30	10N	125	5N°	110
40W 50N	95	10N	24	5N	63	0N	160
20N	26	5N	62	ON	25	10S	23
15N	62	ON	100	10S	57	15s	57
10N	89	10 s 15 S	260 60	205	72	20S	64
5N	105	20s	48	258	41	25S	48
		250	20			200	00

10S

240

44

39

25S

30S

30S

35S

66

95

Geochemical Laborato Report / 288-B2 _

SAM	PLE NUMBER	HC104 Ni ppm	SAMPLE NUMBER	HC104 Ni ppm	SAMPLE NUMBER	HC104 Ni ppm		SAMPLE NUMBER	Ni '
10W	35S	82	10W 15N	43	20E 20S	51		40E 30N	31
	40S	30	10N	69	30S	11		25N	78
	45S	15	5N	23	40S	50		15N	54
	50S	15	ON	470	45S	48		lon	65
OE	40N	23	5S	110	50S	80		5N	21
	35N	18	10s	66	30E 50N	52		ON	165
	25N	89	15S	33	40N	96		5 s	19
	20N	97	2 0S	67	35N	90		15s	70
	15N	44	2 5S	32	30N	51		258	220
	10N	20	30S	18	25N	24		30s	71
	5N	42	35S	82	15N	34		358	62
	0N	445	40S	40	5N	34		40S	125
	10S	49	45S	67	ON	21		45S	7 7
	158	125	50S	31	58	22		50S	160
	20S	130	20E 50N	97	10s	89		50E 40N	36
	25S	44	45N	27	15S	66		35N	33
	30S	14	40N	125	20S	47		30N	55
	35S	26	35N	49	25S	25		25N	53
	45S	53	30N	110	30S	130		20N	72
	50 s	73	25N	23	35S	40		15N	16
10E	50N	34	20N	21	40S	54		10N	61
	45N	64	15N	12	45S	94	1	5N	130
	40N	100	10N	25	50S	89		ON	30
	30N	53	5N	27	40E 45N	145		58	24
	25N	2 9	5s	37	40N	92		105	39
	20N	21	10s	32	35N	68		158	73
			15S	64					

Geochemical Laboratc Report / 288-B

SAMPLE NUMBER	HC10 Ni ppm	SAMPLE NUMBER	Ni 4	SAMPLE NUMBER	HC10 ₄ Ni ppm	SAMPLE NUMBER	HC10 Ni ppm
50E 20S	135	60E 50S	66	80E 20N	71	90E 15S	46
25S	88	70E 50N	73	15N	120	25S	76
30S	100	45N	15	10N	45	30S	65
35 <i>S</i>	100	40N	26	5N	40	35S_	47
40S	285	35N	54	ON	94	40S	72
45S	260	30N	19	5S	27		
50S	145	25N	29	10S	100		
60E 50N	220	15N	110	15S	140		
45N	195	10N	71	205	99		
35N	3600	5N.	. 57	25S	40		
30N	48	ON	17	35S	59		
25N	50	5S	195	40S	88		
20N	60	10s	110	45S	63		
15N	98	15s	38	50S	53		
10N	165	208	145	90E 50N	41		
5N	64	258	85	45N	32		
ON	23	305	39	40N	36		
5S	54	358	93	30N	190		
108	21	. 40s	84	25N	165		
158	87	45S	92	20N	110		
208	110	50s	97	15N	66		
25S	97	80E 50N	38	10N	58		
30S	120	45N	36	5N	76		
35S	125	40N	20	ON	120		
40s	110	30N	19	5S	119		
45S	79	25N	78	105	7.5		

BARRINGER RESEARCH

BARRINGER RESEARCH LIMITED 304 CARLINGVIEW DRIVE REXDALE, ONTARIO, CANADA PHONE: 416-677-2491 CABLE: BARESEARCH

Geochemical

DATE November 4, 1971

El Paso Mining and Milling, 500-885 Dunsmuir Street, Vancouver, B.C.

DFC - 1 1971

Project: Nictor

Authority: G.A. Noel

REPORT NUMBER 277 B

28/

SAMPLE NUMBER	HC104 Ni ppm	SAMPLE NUMBER	Ni 4	SAMPLE NUMBER	Ni 4	SAMPLE NUMBER	HC10 Ni ppm
L100E 5S	86	L110E 25S	58	120E 45S	275	L130E 40S	66
10S	66	L110E ON	31	120E 0N	100	L130E 0N	44
15S	23	5N	47	5N	66	5N	63
20S	42	10N	62	10N	49	10N	115
25S	58	15N	45	15N	26	15N	115
L100E 0N	41	20N	46	15N	44	20N	2 5
5N	94	25N	72	20N	88	25N	98
10N	52	30N	335	25N	41	30N	77_
15N	72	35N	25	30N	74	35N	39
20N	90	40N	N.S.	35N	50	40N	83
25N	77	45N	34	40N	65	50N	24
30N	93	50N	27	50N	19	L140E 5S	50
40N	34	L120E 5S	45	L130E 5S	34	10s	62
45N	15	10s	83	105	50	20S	52 ⁻
50N	10	15s	76	158	19	2 5S	36
L110E 5S	44	20S	31	208	59	305	34
105	39	258	50	258	180	358	29
) 15S	64	305	160	308	67	50s	45
208	36	35S	160	35 s	68	L140E ON	130

186-Nil Victor Property

eochemical l	aborato	ry Rep	iort/	15 -					
SAMPLE NUMBER	HC104 Ni ppm		SAMPLE NUMBER	Ni 7		TU T		1971	
L140E 5N	130		30N	145					
10N	54		35N	120					
15N	73		40N	51					
20N	68		45N	39					
25N	145		50N	130					
30N	110								
35N	21								
40N	84								
45N	73								
50N	120								
150E 5S	130								
10S	25								
15S	98								
20S	53								
25 S	20								
308	85								
35S	110								
40S	255								
455	120								

50S

ОN

5N

10N

15N

20N

25N -

60

67

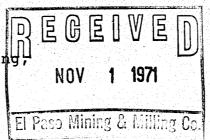
19

27

21_

40

21


APPENDIX C

PETROGRAPHIC STUDY

BARRINGER RESEARCH

BARRINGER RESEARCH LIMITED 1170 HORNBY STREET VANCOUVER, BRITISH COLUMBIA PHONE: 604-685-4231 CABLE: BARESEARCH VCR TELEX: 04-507739

Mr. G. Noel, El Paso Mining and Milling, 500-885 Dunsmuir Street, Vancouver, B.C.

October 29, 1971

Dear Gerry;

By now you should have received the results for the six geochem samples we took while on your Hope property. The samples were taken above and below the road cut at your 00 point. Samples EP 1 and EP 2 were 20 and 40 feet downslope from the road cut, and although mineralization is evident directly above, it is not indicated in these samples. The soil was a regosol with little horizon development evident. The samples were taken from a depth of 12 to 18 inches. Bedrock was close to the surface. Sample EP 3 was taken directly above the upper road cut and was a profile consisiting of an LH sample taken from a depth of 4 inches, a so called Ae sample taken 187 inches beneath the surface and a B sample taken 187 inches beneath the surface. It is obvious that the sample from the B horzon is most desirable. Sample EP 4 was taken 20 feet further upslope from EP 3, and at a depth of 14 inches. The values don't seem indicative of nickle mineralization yet, but hopefully better values will appear in the survey samples.

There are two soil types on the property, the most prevalent being the brown regosol. Samples should be taken 14 to 18 inches beneath the surface. The second type we encountered once, and consisted of a gray clay layer in the brown soil. The genesis of this clay is unknown. The fellows on the property know what to look for and should have little trouble with sampling errors. I hope the survey goes well.

Yours truly,

Barry Smee 1 50

BARRINGER RESEARCH LIMITED.

B.W. SMEE, Geochemist

BWS/smr

BARRINGER RESEARCH

Geochemiçal

Laboratory

BARRINGER RESEARCH LIMITED 304 CARLINGVIEW DRIVE REXDALE, ONTARIO, CANADA PHONE: 416-677-2491 CABLE: BARESEARCH

DATE October 26, 1971

El Paso Mining & Milling Co., 500-885 Dunsmuir Street, Vancouver, B.C.

Authority: B.W. Smee

REPORT NUMBER 268-B

DEC - 1 1971

SAMPLE NUMBER	HC10 Ni ppm					
EP 1	69					
EP 2	77					
EP 3 Ae	67					
EP 3 B	110					
EP 3 LH	62					
EP 4	90					

SPECIMEN SUBMITTED SEPTEMBER 1961 TO DR. SIDNEY WILLIAMS DOUGLAS, ARIZONA FOR PETROGRAPHIC STUDY

MEGASCOPIC DESCRIPTION (G. Noel)

VICTOR CLAIMS - MAIN TRENCH

Hornblendite (or pyroxenite ?) with disseminated pyrrhotite and chalcopyrite.

PETROGRAPHIC DESCRIPTION (Dr. Sidney Williams)

Victor Claims, Main Trench

The specimen is an amphibolite which may have been derived from a basic intrusive by mesozonal metamorphism. It consists of large interlocking subhedral to anhedral prisms of Fe-poor hornblende. The interstitial areas are filled with granular quartz and plagioclase (andesine). The plagioclase shows negligible sericitization. Minor amounts of biotite fill voids in the hornblende - these show only inciplent chloritization.

Granular pyrrhotite is interstitial to the silicates and appears to be compatible with the metamorphism.

Mineral percentages are estimated as follows: hornblende 70%, plagioclase 10%, quartz 15%, pyrrhotite 4%, biotite 0.5%, and traces of clinochlore and sericite.

WESTERRE ASSOCIATES LIMITED

GEOPHYSICAL & GEOLOGICAL CONSULTANTS

736 DBBORNE STREET WINNIPEG 13, MAN. PHONE (2014) 452-3677

C. D. Anderson, Ph. D., P. Eng.
D. T. Anderson, Ph. D., P. Eng.
W. C. Brisbin, Ph. D., P. Eng.
C. C. Bristol, Ph. D., P. Eng.
M. G. Holden
H. D. B. Wilson, Ph. D., P. Eng.

November 10, 1971

NOV 1 5 1971

MINERALS DEPT.
HUSKY OIL LTD.

Mr. R. E. Maret
Manager of Minerals Development
Husky Oil Limited
815 Sixth Street S.W.
Calgary 2, Alberta

Dear Ray,

I apologize for my delinquency in replying to your request for comments on the Victor Property, Yale, British Columbia. The delay has not been a result of a lack of interest, but rather that I have been extremely busy with University responsibilities, field trips, etc. since the beginning of September, and consequently have had little time for consulting work.

The following comments are based on hand specimen examination, thin section examination and chemical analysis of the samples from the Victor property by H.D.B. Wilson and myself. In addition, I have perused the literature that you enclosed with your letter in August.

1. Ultramafic Rocks

The rock in which the sulphides occur consists of amphibole, plagioclase, biotite, relict pyroxene and sulphides. The rock exhibits good metamorphic texture. Sulphides are interstitial.

2. Rock Analysis

The attached analytical results indicate that the rock in which the sulphide occurs is undoubtedly ultramafic in origin; but that the chemistry of the sample does not fit the "normal" analysis of most

WESTERRE ASSOCIATES LIMITED

GEOPHYSICAL & GEOLOGICAL CONSULTANTS

736 0880RNE STREET WINNIPEG 13, MAN. PHONE (204) 452-3677

C. D. Anderson, Ph. D., P. Eng.
D. T. Anderson, Ph. D., P. Eng.
W. C. Brisbin, Ph. D., P. Eng.
C. C. Bristol, Ph. D., P. Eng.
M. G. Holden
H. D. B. Wilson, Ph. D., P. Eng.

unaltered ultramafic types. The rock chemistry, coupled with the evidence from the thin sections points to an altered pyroxene peridotite, possibly one in which there has been silica contamination.

Nickel in Sulphides

The sulphur:nickel ratio based on the attached chemical analysis has a value of approximately 10. This is sufficiently low to indicate that the interstitial sulphides in the ultramafic material have high nickel concentrations and that any occurrences of massive sulphides on the property should be of good grade.

In summary, the occurrence appears to be one of an altered nickeliferous ultramafic body. The geologic setting suggests an emplacement similar to the Alpine type ultramafic bodies. The sulphur:nickel ratio is sufficiently low to encourage exploration for massive or richly disseminated sulphides associated with this body. The fact that there is considerable evidence for post-emplacement metamorphism suggests that the sulphides may have been remobilized to some degree and could occur as concentrations either within the ultramafic body or within adjacent host rocks.

I am sending, under separate cover, the samples, a thin section and the reports. I am planning to be in Calgary early in December and will attempt to drop in to see you.

Yours very truly,

W.C. BRISBIN, P.Eng

CE OF MAN.

WESTERRE ASSOCIATES LIMITED

GEOPHYSICAL & GEOLOGICAL CONSULTANTS

736 DSBORNE STREET WINNIPEG 13, MAN. PHONE (204) 452-3677

. C. D. Anderson, Ph. D., P. Eng. . D. T. Anderson, Ph. D., P. Eng. . W. C. Brisbin, Ph. D., P. Eng. . C. C. Bristol, Ph. D., P. Eng. o M. G. Holden o H. D. B. Wilson, Ph. D., P. Eng.

CHEMICAL ANALYSIS OF ROCK SAMPLE VICTOR PROPERTY, YALE, B.C.

SiO ₂	하는 사람이 반면하였다. 그렇다리다 말까?	
2102		51.85
Al ₂ O ₃		6.63
Fe ₂ O ₃		
		2.87
FeO		9.12
MgO		14.55
CaO		
		8.58
Na ₂ O		1.06
K ₂ O		0.09
H ₂ O+		0.09
}	요하는 이 보고 이 보는 이 등도 하는 것은 것이다. 보고 이 전 환경 등이 보고 있는 것도 되어 있다.	2 01
H ₂ O-		2.01
co,		
		0.84
TiO ₂		0.31
S		2.72
CuO		
		0.12
MnO	다는 경기를 가는 것들을 걸려고 있습니다. 하는 사람들이 들어 있는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것이다.	0.13
Nio	로 발표하는 것이 되는 것이다. 그런 그는 것이다. 가능하는 것 같아요. 그는 것이 되는 것이다.	0.32
Total		
		101.20

Analyst: K. Ramlal Date Analysed: August 27,1971

APPENDIX D

STATEMENT OF COSTS

STATEMENT OF COSTS

Wages

J.	Noe1	24 days	Oct. 19	- Nov.	13, 1971	@ \$500/month	\$	400
M.	Moret	24 days	Oct. 19	- Nov.	13, 1971	@ \$525/month		420
В.	Mitchell	19 days	Oct. 30	- Nov.	20, 1971	@ \$85 0/m onth		540
J.	Ruza	19 days	Oct. 30	- Nov.	20, 1971	@ \$575/month		364
R.	Wellwood	8 days	Nov. 7	- Nov.	15, 1971	@ \$600/month		160
Ď.	LePatourel	8 days	Nov. 7	- Nov.	15, 1971	@ \$55 0/mont h		<u> 147</u>
							\$2	N31

Total Wages	\$ 2,031
Leased Vehicles	300
Room and Board (102 man days at \$13/day)	1,326
Geochemical Analyses (373 sample - Ni)	654.80
	\$ 4,311.80

Declared before me at the

, in the

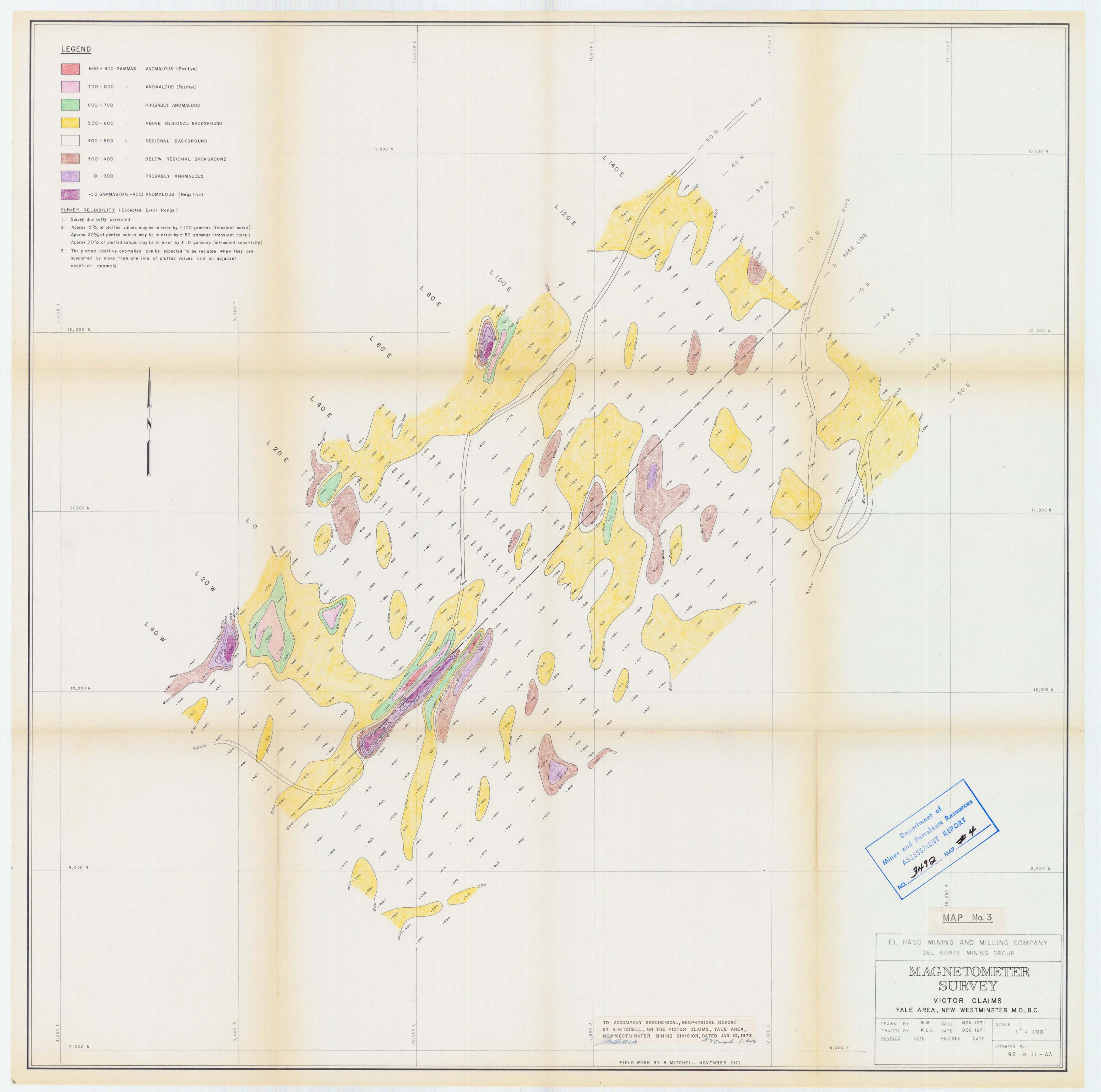
Province of British Columbia, this

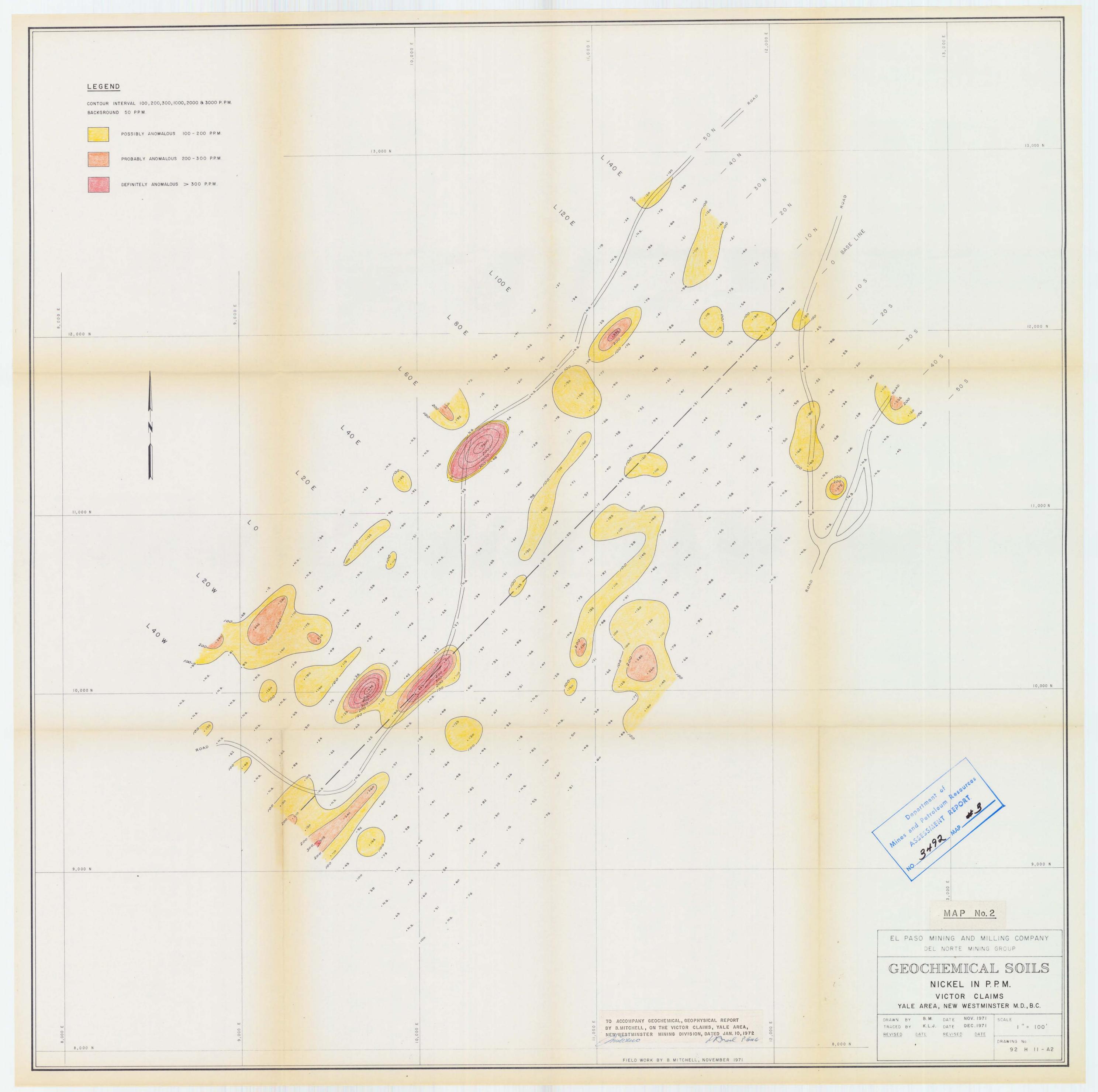
rit

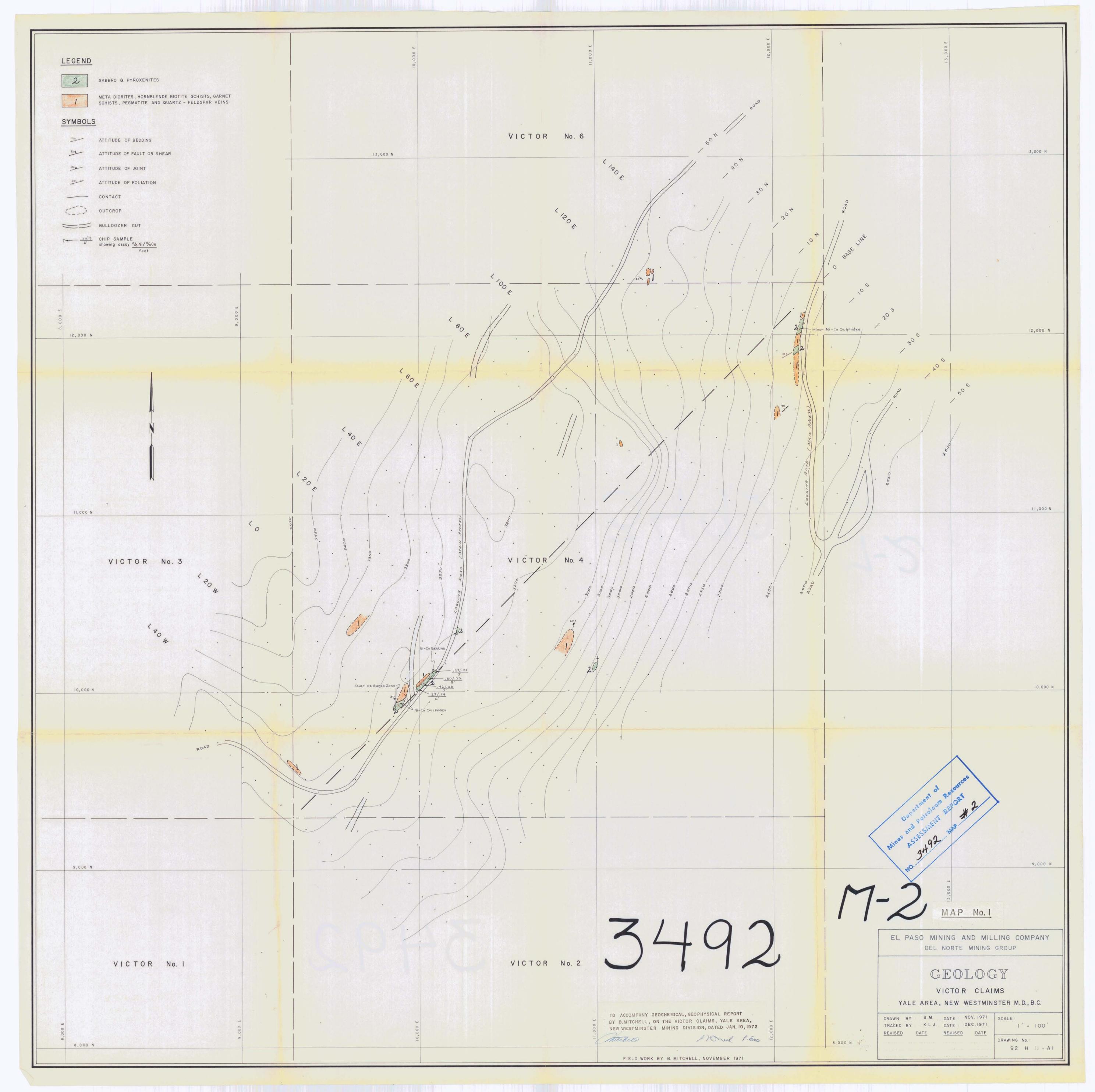
1. G. Astro

A Commissioner for taking Affidavits within British Columbia or A Notary Public in and for the Province of British Columbia.

Sub-mining Recorder


APPENDIX E


STATEMENT OF QUALIFICATIONS


STATEMENT OF QUALIFICATIONS

- I, Bradley R. Mitchell of 2991 Mathers Avenue, West Vancouver, B. C. do certify that:
- 1. I have been intermittently employed in mining exploration work from 1955 to 1965.
- I have two years of Applied Science training at the University of British Columbia.
- 3. I am a graduate of the University of British Columbia
 B. Sc. 1966 (Geophysics major, Geology minor).
- 4. I have been employed as a petroleum exploration geophysicist by Mobil Oil Canada Ltd. for 4 years.
- 5. I have been employed as a geologist by El Paso Mining and Milling Company for 1 year.

