

on the

Mac and Lair Groups

(Mac Group: PIT 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 77, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 159, 161, 162, 165, 166, 169, 170)

(Lair Group: PIT 57, 58, 59, 60, 160, 163, 164, 167, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202)

Twelve Miles South Southwest of Chukachida Lake, B.C.

Lat. 57° N; Long. 127° W 94 E /6E Department of Mines and Petroleum Resources ASSESSMENT REPORT T.C. Owned by: Work done for : SUMAC Mines Ltd.

Field Work

August 23, 1971 to August 30, 1971

By: T.C. Scott

Date: July 26, 1972.

TABLE OF CONTENTS

Introduction 1 Location and Access 1 Climate and Topography 1 Base Map 2 Field Procedures 2 Sample Preparations 4 Analytical Procedures 5 Soil Development 6 Rock Weathering 6 Results 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 1 i Declaration of Qualifications 10 Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications 12 i Declaration of Qualifications 12 i Declaration of Qualifications 12 i Declaration of Silver (Reconnaissance) Appendix 1 #3 Fig. 2 Histogram of Silver (Reconnaissance) Appendix 1 #3 Fig. 3 Histogram of Silver " #4 Fig. 4 Histogram of Silver " #6 Reconnaissance Goochemistry - Grid Location Claims - Silver #7 #9 Greenbermistry - Original Location Claims - Silver #7 #9 Greenbermistry - Original Market Count 1 #9 Greenbermistry - Original Market Count 1 #1 Fig. 1		Page
Location and Access 1 Climate and Topography 1 Base Map 2 Field Procedures 2 Sample Preparations 4 Analytical Procedures 5 Soil Development 6 Rock Weathering 6 Results 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 1 Declaration of Qualifications 10 Declaration of Expenses 11 Appendix 12 <u>ILLUSTRATIONS</u> #] Fig. 1 Location Map following Page 1 #] Fig. 2 Histogram of Silver (Reconnaissance) Appendix #] Fig. 3 Histogram of Silver (" #] Fig. 5 Histogram of Silver " #4 Fig. 5 Histogram of Silver " #4 Reconnaissance Geochemistry - #4 Fig. 5 Histogram of Silver " #4 Reconnaissance Geochemistry - #4 Geochemistry - Grid Location Claims = Silver #7 " " - Zin c #8 " " " - Zin c	Introduction	1
Climate and Topography 1 Base Map 2 Field Procedures 2 Sample Preparations 4 Analytical Procedures 5 Soil Development 6 Rock Weathering 6 Results 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications 12 ii Direct Field Expenditures 11 Appendix 12 Fig. 1 Location Map following Page 1 #D Fig. 2 Histogram of Silver (Reconnaissance) Appendix #J Fig. 3 Histogram of Sold #J Fig. 5 Histogram of Sold #J Fig. 5 Histogram of Sold #J Fig. 5 Histogram of Sold #J GPCoberonicitry - Coil Mc S. Coil	Location and Access	1
Base Map 2 Field Procedures 2 Sample Preparations 4 Analytical Procedures 5 Soil Development 6 Rock Weathering 6 Rock Weathering 6 Results 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications 12 if Recommissance Geochemistry 12 i Declaration of Qualifications 12 #1 Pie. 2 Histogram of Silver (Reconnaissance) Appendix #2 Pie. 2 Histogram of Silver (Reconnaissance) Appendix #3 Pie. 5 Histogram of Silver #4 Pie. 5 Histogram of Silver #5 Pie. 5 Histogram of Silver #4 Geochemistry-Grid Location Claims - Silver #3 """"""""""""""""""""""""""""""""""""	Climate and Topography	1
Field Procedures 2 Sample Preparations 4 Analytical Procedures 5 Soil Development 6 Rock Weathering 6 Rock Weathering 6 Rock Weathering 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications 12 iii Direct Field Expenditures 11 Appendix 12 Fig. 1 Location Map following Page 1 #Direct Field Expenditures 11 #J Fig. 2 Histogram of Silver (Reconnaissance) Appendix #J Fig. 3 Histogram of Cold " #U Fig. 4 Histogram of Silver " #U Fig. 5 Histogram of Silver " - Zin c #3 " " - Zin c #4 Groephemistry Coll M Groephemistry Coll M Groephemistry Coll	Base Map	2
Sample Preparations 4 Analytical Procedures 5 Soil Development 6 Rock Weathering 6 Rock Weathering 6 Results 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications 12 iii Direct Field Expenditures 11 Reconnaissance Geochemistry 12 iv Detailed Geochemistry iv Detailed Geochemistry iv Detailed Geochemistry 12 #J Fig. 1 Location Map following Page 1 #JSFig. 3 Histogram of Silver (Reconnaissence) Appendix #J Fig. 4 Histogram of Silver #U Fig. 5 Histogram of Sold "#U Fig. 5 Histogram of Sold "#U Fig. 5 Histogram of Soliver #3 """"""""""""""""""""""""""""""""""""	Field Procedures	2
Analytical Procedures 5 Soil Development 6 Rock Weathering 6 Results 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 1 i Declaration of Qualifications 12 Appendix 12 i Declaration of Qualifications 12 ii Reconnaissance Geochemistry 12 iv Detailed Geochemistry 12 Fig. 1 Location Map following Page 1 #DFig. 2 Histogram of Silver (Reconnaissance) Appendix #3Fig. 3 Histogram of Silver (Reconnaissance) Appendix #3Fig. 4 Histogram of Silver " #4Fig. 5 Histogram of Silver " #4Fig. 5 Histogram of Silver " #6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 " " " - Zin c #8 " " " " " - Zin c	Sample Preparations	${f u}_{i}$, and ${f u}_{i}$
Soil Development Soil Development Rock Weathering Results Assults Conclusions Declaration of Expenses i Declaration of Qualifications i Declaration of Qualifications i Declaration of Qualifications i Declaration of Qualifications ii Reconnaissance Geochemistry iv Detailed Geochemistry iv Detailed Geochemistry Histogram of Silver (Reconnaissance) Appendix #3Fig. 3 Histogram of Silver #45Fig. 5 Histogram of Silver #5Fig. 5 Histogram of Silver #6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 #6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 #9 Geochemistry-Soil NAGES Could	Analytical Procedures	5 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 5 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
Rock Weathering Results 6 Results 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 1 Direct Field Expenditures 11 Appendix 1 Direct Field Expenditures 11 Reconnaissance Geochemistry 1 Detailed Geochemistry 1 1 1 1 1 1 1 1 1 1 1 1 1	Soil Development	6
Results 6 Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications 12 i Declaration of	Rock Weathering	6
Interpretation 7 Conclusions 10 Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications ii Direct Field Expenditures iii Reconnaissance Geochemistry iv Detailed Geochemistry iv Detailed Geochemistry ILLUSTRATIONS #1 Fig. 1 Location Map following Page 1 #2 Fig. 2 Histogram of Silver (Reconnaissance) Appendix #3 Fig. 3 Histogram of Silver (Reconnaissance) Appendix #3 Fig. 3 Histogram of Silver " #4 Fig. 4 Histogram of Silver " #4 Fig. 5 Histogram of Silver " #6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 " " - Zin c #8 " " " - Gold	Results	9
Conclusions 10 Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications 12 i Declaration of Qualifications 12 i Direct Field Expenditures 12 ii Reconnaissance Geochemistry 12 iv Detailed Geochemistry 12 <u>ILLUSTRATIONS</u> #1 Fig. 1 Location Map following Page 1 #2 Fig. 2 Histogram of Silver (Reconnaissance) Appendix #3 Fig. 3 Histogram of Silver (Reconnaissance) Appendix 12 #4 Fig. 4 Histogram of Gold 12 #4 Fig. 5 Histogram of Silver 12 #6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 12 12 12 12 12 12 12 12 12 12 12 12 12	Interpretation	
Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications 12 ii Direct Field Expenditures 11 iii Reconnaissance Geochemistry 12 iv Detailed Geochemistry iv Detailed Geochemistry iv Detailed Geochemistry 12 #1 Fig. 1 Location Map following Page 1 #2 Fig. 2 Histogram of Silver (Reconnaissance) Appendix #3 Fig. 3 Histogram of Zinc " #4 Fig. 4 Histogram of Gold " #5 Fig. 5 Histogram of Silver " #6 Reconnaissance Geochemistry-Grid Location Claims - Silucr " #7 " " #8 " " - Zin c #8 " " - Gold	Conclusions	
Declaration of Expenses 11 Appendix 12 i Declaration of Qualifications ii Direct Field Expenditures iii Reconnaissance Geochemistry iv Detailed Geochemistry <u>ILLUSTRATIONS</u> #) Fig. 1 Location Map following Page 1 #) Fig. 2 Histogram of Silver (Reconnaissance) Appendix #3 Fig. 3 Histogram of Silver (Reconnaissance) Appendix #3 Fig. 4 Histogram of Gold " #14 Fig. 4 Histogram of Gold " #5 Fig. 5 Histogram of Silver " #6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 " " - Zin c #8 " " " - Gold "		10 I I I I I I I I I I I I I I I I I I I
Appendix i Declaration of Qualifications ii Direct Field Expenditures iii Reconnaissance Geochemistry iv Detailed Geochemistry iv Detailed Geochemistry <u>ILLUSTRATIONS</u> #) Fig. 1 Location Map following Page 1 #) Fig. 2 Histogram of Silver (Reconnaissance) Appendix #3Fig. 3 Histogram of Silver (Reconnaissance) Appendix #3Fig. 3 Histogram of Gold " #4 Fig. 4 Histogram of Gold " #5Fig. 5 Histogram of Silver " #6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 " " - Zin c #8 " " - Gold #9 GEOChemistry-Soil NGS Cond	Declaration of Expenses	\mathbf{u}
ILLUSTRATIONS #] Fig. 1 Location Map following Page 1 #) Fig. 2 Histogram of Silver (Reconnaissance) Appendix #3Fig. 3 Histogram of Zinc " #4 Fig. 4 Histogram of Gold " #5Fig. 5 Histogram of Silver " #6 Reconnaissance Gcochemistry-Grid Location Claims - Silver Silver #7 " " #8 " " - Zinc #9 GCOchemistry-Soil Macs Could Gold	Appendix i Declaration of Qualifications ii Direct Field Expenditures iii Reconnaissance Geochemistry iv Detailed Geochemistry	12
#) Fig. 1 Location Map following Page 1 #) Fig. 2 Histogram of Silver (Reconnaissance) Appendix #3Fig. 3 Histogram of Zinc " #4 Fig. 4 Histogram of Gold " #5Fig. 5 Histogram of Silver " #6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 " - Zinc #8 " " - Gold #9 Geochemistry-Soil MCS Cond	<u>ILLUSTRATIONS</u>	
#6 Reconnaissance Geochemistry-Grid Location Claims - Silver #7 "- Zinc #8 "- Gold #9 Geochemistry-Soil MGS Cod	#) Fig. 1Location Mapfol:#) Fig. 2Histogram of Silver (Reconnaissance)#3 Fig. 3Histogram of Zinc#4 Fig. 4Histogram of Gold#5 Fig. 5Histogram of Silver	lowing Page l Appendix " " "
(1, 1, 1, 1, 1, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	#6 Reconnaissance Geochemistry-Grid Loc #7 #8 #9 Geochemistry-Soil MGS Good	ation Claims - Silver "- Zinc "- Gold

Introduction

The Mac and Lair Groups of claims was staked on behalf of and by T.C. Scott during the period June 30 - August 23, 1971. Beginning on August 23 and continuing through to August 30, 1971, a reconnaissance soil and rock geochemical survey was carried out on the claim group. In addition, a detailed soil geochemical survey was carried out on a 100' x 100' grid.

Operations were conducted from a base camp located at the west end of Chukachida Lake which is 12 miles northeast of the claim groups.

The field crew commuted daily to the working area in a

helicopter.

Location and Access

The Mac and Lair Groups lie on the eastern flank of the Spatsizi Plateau in the Upper Stikine River area of northern British Columbia. The groups are adjacent to Lat. 57° 25' 30" North and Long. 127° 11' West. The elevation of the claim groups varies from 4,000 ft. to 6,250 ft. above mean sea level.

Access to the claim groups is by helicopter from one of the following lakes: Metsantan, Toodoggone or Chukachida. All of these can be serviced by float equiped aircraft. The closest road-serviced supply point is Dease Lake which lies 130 miles to the west.

Climate and Topography

The project area is snow covered from early October until mid-June. Some patches of snow, especially in creek valleys, remain until late July. The brief summer is usually cool with frequent rain. However, the summer of 1971 was unusually dry and warm.

The claim groups occur on the northeast corner of a small range of mountains which occurs between Moosehorn and McClair Creeks, immediately north of Toodoggone River. The slopes range from 10° to 30° with some precipitous cliffs facing north and east. Vegetation on the claim groups consists of alpine meadow and tundra with minor amounts of "buck-brush". A fringe of dense alpine balsam and spruce occurs on the north and east slopes between elevations of 4,000 ft. and 5,000 ft. The alpine meadows and tundra region is frequently interrupted by solifluction slopes and talus. Bedrock is exposed along most of the ridge crest.

Base Map

The base map was prepared by the photographic enlargement of a 1:250,000 Federal Government topographic sheet to a scale of 1:63,360. This map was in turn enlarged a scale of 1" = 1,320' by drafting techniques. A contour interval of 500 ft. was used.

A second map, on a scale of l = 100', was prepared to display the results of a detailed soil geochemical survey. The location of this sampling grid with respect to the claim groups is shown on the base map.

Field Procedure:

1. Reconnaissance Geochemistry

a. A series of soil samples were collected along the ridge crests and along the 5,500 ft. contour within the area of interest. The sample interval was paced to approximately 400 ft. and the locations were plotted on an air photograph for control. A plastic flag with a sample number was left at each sample station. At • each station, holes were dug with a mattock and soil

- 2 -

samples from the "B" horizon were taken with a stainless steel trowel.

Each sample was placed in a high-wet-strength kraft soil sample bag labelled with the appropriate sample number.

b. A series of rock specimens were collected from outcrops along the ridges and along the 5,500 ft. contour within the area of interest. The sample interval was paced to approximately 400 ft. and the locations were plotted on an air photograph for control. A plastic flag with a sample number was placed at each sample site. One rock specimen measuring 2" x 2" x 2" was collected from each station and placed in high-wetstrength kraft soil sample bags which were labelled with the appropriate sample number. Each sample was cobbed so as to reduce the amount of weathered rock on the sample.

2. Detailed Geochemistry

A 100 ft. x 100 ft. grid was constructed within the area of interest to facilitate the collection of soil samples and plotting of results. A base line striking 115° was constructed by chain and compase technique. Cross lines of various lengths were constructed at right angles to the base line at 100 ft. intervals. Slope corrections were made during chaining which resulted in a square sampling pattern on a horizontal plane. Sample stations were constructed every 100 ft. on the base line and the cross lines. Each sample station was marked by a small boulder to which a plastic flag, labelled with the grid coordinate, had been affixed.

Holes were dug at each station with a mattock and soil samples were taken with stainless steel trowels from the "B" horizon.

The soil samples were collected in high-wetstrength kraft soil sample bags labelled with the respective grid coordinates.

Sample Preparation

The soil samples were transported from the field to the base camp where they were dried and sieved through stainless steel screens to -80 mesh. The -80 mesh material was placed in coin envelopes labelled with the respective sample number and shipped to Chemex Labs Ltd., 212 Brooksbank Avenue, North Vancouver, B.C., for analysis.

The rock samples were transported to the base camp, packaged and shipped to Chemex Labs without any preparation in the field. The following is an outline of the preparation for geochemical analysis of the rock samples at Chemex Labs.

PREPARATION PROCEDURE FOR ROCK GEOCHEM SAMPLES - Weighing less than 450 gms.

- (1) Samples are sorted, recorded and dried @ approx. 120°F.
- (2) Dried samples are processed to -1/8" through geochem crusher only.
- (3) The entire crushed sample is pulverized to -100 mesh using rotary pulverizer.
- (4) Pulverized sample is rolled 100 times to produce a homogeneous pulp.

- 4 -

(5) 0.5 grams of pulp is weighed into test tube for HClO₄-HNO₃ digestion and final analyses of ppm Cu, Mo, Pb, Zn, Ag etc. A 5 gram sample is digested to dryness with aqua-regia for the ppb gold analyses.

The Pulverizer and crusher are thoroughly cleaned between samples to reduce contamination problems.

Analytical Procedures

All of the samples were analysed for gold, silver and zinc. The following analytical procedures were used.

PROCEDURE FOR THE ANALYSIS OF TRACE GOLD IN SOIL AND SILT MATERIALS.

- Step 1. The sample is dried at 110° F, sieved to -80 mesh and stored in a coin envelope.
- Step 2. A 2 gm sample is weighed into a 100 ml beaker.
- Step 3. 15 ml of aqua regia (3 parts HCl to 1 part HNO3) is added to the pulp.
- Step 4. After sitting for 15 minutes, the sample is heated to dryness.
- Step 5. More aqua regia is added and the sample is again evaporated to dryness.
- Step 6. The soluble salts are dissolved in 25% HCl and mixed.
- Step 7. The gold is extracted as the bromide in 5 ml. of methyl isobutyl ketone.
- Step 8. The organic layer is then analysed on the Atomic Absorption Spectrophotometer against prepared standards.

GEOCHEMICAL LABORATORY PROCEDURE FOR THE HANDLING AND ANALYSES OF SOIL AND SILT MATERIALS CONTAINING TRACES OF Cu, Mo, Zn, Ni and Co.

- Step 1. Samples are dried @ 110°F and then sieved to -80 mesh consistency through a nylon and stainless steel sieve. Presieved materials are processed starting at Step 2.
- Step 2. 0.50 grams of the dry pulp is weighed into a calibrated test tube.
- Step 3. 3 mls. of perchloric acid and 1 ml. of nitric acid is added to sample.
- Step 4. Samples are digested at low heat initially and then the temperature

is raised to 203°C. Digestion time 2 to 3 hours.

- Step 5. Digested samples are cooled, made up to 25 ml. volume with distilled water and solutions are thoroughly mixed.
- Step 6. Analyses for Cu, Mo, Zn, Ni and Co by Atomic Absorption procedures. Detection limits as per our brochure.

Bruce W. Brown Manager Laboratory Division.

Soil Development

Although the area was glaciated relatively recently, field observations indicate that the soil is largely residual in character. The steeper slopes show a considerable amount of down-hill creep (solifluction) and talus occurs in several areas.

The soil profile is only partially developed but the B_{f} horizon could still be recognized to ensure consistant sampling.

Rock Weathering

The degree to surface weathering of rock within this area varies greatly and increases proportionately to an increase in sulphide content and fracture density. Therefore, each rock specimen collected for geochemical analysis was cobbed such that only the least weathered material was sent for analysis.

Results

Statistical distributions of the results were obtained and the distributions were plotted as histograms. Because of the limited number of samples involved on the reconnaissance survey, the data collected on this survey were combined with those collected on an adjacent property of similar physiographical and geological environments (Moosehorn Group). This provided a larger population for the interpretation of the geochemical nature of the

- 6 -

area. The limits of the zinc anomalies were based on the distribution of zinc values obtained from the detailed soil geochemistry on the Mac and Lair Claim Groups.

Interpretation

Statistical distributions of the results were all found to be approximately log-normal and multi-modal. Since the standard statistical parameters have little meaning in the case of multi-modal distributions, these were not calculated.

The limits of background and anomalous populations were based on the natural grouping of values described by the multi-modal histograms (fig. 2). The mode containing the lowest values was considered to be background while the mode containing the highest values was considered to represent an anomalous condition.

1. Reconnaissance Geochemistry

a) Soil

Because of the limited number of samples involved, the data collected on this survey were combined with those collected on an adjacent property of similar physiographical and geological environments (Moosehorn Group). This provided a larger population for the interpretation of geochemical nature of this area. Past experience has shown that the background for Gold in this area is > 30 ppb, thus an arbitrary value of 1,000 ppb was used to define the lower limit of an anomalous condition.

b) Rock

Since only a limited number of rock samples were analysed geochemically the statistical distributions of the results were not calculated. However, the comparison of these results with the above soil results suggested that rock and soil geochemistry in this area is similar and that the results are in the same order of magnitude. Therefore, the background and anomalous conditions established for the reconnaissance soil geochemical survey was also used for the reconnaissance rock geochemical survey.

The limits for zinc anomalies were based on the distribution of zinc values obtained from the detailed soil geochemistry below.

2. Detailed Soil Geochemistry

Knowing that these soil samples were from an anomalous zone, new statistical distributions were calculated to accommodate an elevation of the geochemical threshold in the ground underlying the sample grid. This was done in the form of histograms, as explained above. However, the statistical distribution of gold was also plotted and new anomalous limits were defined.

The distribution of the results of the reconnaissance geochemistry has outlined an elongate zone approximately 10,000 ft. long and 2,000 ft. wide that is anomalous in gold and silver. This is enclosed by a zinc anomaly.

The distribution of the results of the detailed geochemistry on the grid defines a zone 4,000 ft. long and 300 ft. wide that displays coincident zinc, silver and gold anomalies.

The ground water moving down-hill over the source disperses the metallic elements at different rates depending on the physiochemical nature of the ground water and the chemical nature of the elements involved. Thus the width and exact position of the source material is difficult to determine. Two conclusions can be made from the distributions. 1. The anomalous condition in the soils are down-hill

> from the actual source. 2. There appears to be several sources from which the

metals in question have been dispersed.

- 8 -

A typical profile would be as indicated in the following

Gold is dispersed from a source primarily by solifluction of residual material. A typical profile would be as indicated in the following diagram :

Conclusions

The reconnaissance rock and soil geochemistry has outlined an anomalous zinc approximately 10,000 ft. long and 2,000 ft. wide. Detailed soil geochemistry over part of this zone has delineated a zone of coincident anomalies in Zn, Ag and Au over a length of 4,000 ft. and width of 300 ft.

As experience in British Columbia to-date has shown, there is no direct relationship between the values attained from the geochemical analysis of soils and the metal content of the underlying bedrock.

Further investigation of the anomalous areas defined by this survey is warranted.

T. C. Scott.

Approved: July 26, 1972.

Gordon R. Hilchey, P. Eng.

DECLARATION OF EXPENSES

- 11 -

Mac and Lair Groups

Men Employed on Survey

Gordon Kifiak	Aug. 23 - 30	3 days	@\$ 22.12*	= \$	66.36
Mohan Ramalingaswami	Aug. 23 - 30	5 days	@\$ 23.08*	=	115.40
Brian Norris	Aug. 23 - 30	4 days	@\$ 21.15*		84.60
Brent Patriquin	Aug. 23 - 30	5 days	@\$ 18.27*	-	91.35
Karl Yeung	Aug. 23 - 30	4 days	@\$ 21.15*	=	84.60
Barry Turner	Aug. 23 - 30	3 days	@\$ 18.27*		91.35
T. Cameron Scott	Aug. 23 - 30	2 days	@\$ 30 . 77*	=	61.54
Dr. T. Rodgers		½ da y	@\$100.00	=	50.00
C. J. Sullivan		<u> </u> day	@\$150.00	=	75.00
		27 man d	lays		a de la composition d

Direct Field Expenditures (see Appendix) 27 man days @\$136.25 \$ 3,678.75

Chemical Analysis

	RGS	samples	121	samples	(3	elements)	@\$3.20	\$ 387.20
	RGS	samples	83	samples	(3	elements)	@\$3.80	315.40
•	MGS	samples	340	samples	(3	elements)	@\$3.20	1,088.00

Grid Construction

33,900 line feet - 10 man days
(time and wages included in the
above list of men employed)

Drafting, reproduction, typing, etc.

\$ 6,189.46

* Rates include C.P.P., W.C.B., Vacation Pay and U.I.C. where applicable. Monthly rates were converted to daily rates (based on 26 day month).

Certified Correct T.C. Scott.

DECLARATION OF QUALIFICATION

i

Thomas Cameron SCOTT

Education: -	4 years	of University	at U.B.C.	towards a B.	Sc. in
	Geology	(major).			

- requires Eng. 100 to complete B.Sc. degree.
- Geological and related courses completed:
 - Introductory Geology, Mineralogy, Mineralography, Structural Geology, Optical Mineralogy, Petrology, Petrography, Economic Geology, Geochemistry, Sedimentology, Theories of Ore Search, Mineral Evaluation, Rock Mechanics.

Experience: 1963, 1964 (Summers)

Newconex Canadian Exploration

- General reconnaissance

- stream and soil geochemistry
- prospecting
- geological mapping

ref.: R. Knutsen (Toronto, Ontario)

1965, 1966 (Summers)

Noranda Exploration Ltd.

- General Reconnaissance - Party Chief

- stream and soil geochemistry - geological mapping

Detailed Property Work - Party Chief

- soil geochemistry
- sampling
- geophysical surveys
- road building
- geological mapping
- property evaluations

1967 (Summer)

Northstar Copper Mines - Detail Property Work - Party Chief - soil geochemistry - geological mapping -diamond drilling ref .: Dr. W.H. White, P. Eng. (University of B.C.) 1968 (Spring) West Coast Mining and Exploration - Detailed geological mapping ref .: H. Veerman, P. Eng. (West Vancouver) 1968 to 1969 Arbutus Mining and Exploration Ltd. in charge of the direction and execution of all exploration activities: - stream and soil geochemistry - prospecting - geological mapping - geophysical surveys - diamond drilling ref .: H. Veerman, P. Eng. (West Coast Mining and Exploration) 1970 (6 months) Frontier Explorations Ltd. in charge of the direction and execution of geo-

ref.: E.O. Chisholm, P. Eng. (Vancouver, B.C.)

drilling.

logical mapping, trenching, sampling and diamond

1971 to-date

Sumitomo Metal Mining Canada Ltd.

- Party chief in charge of reconnaissance exploration.
 - stream and soil geochemistry
 - geological mapping

The above Declaration of Qualification is true and correct to the best of my knowledge.

July 26, 1972

.R. Hilling

South

Gordon R. Hilchey, P. Eng

PITMAN PROJECT - 1971

Direct Field Expenditures

Camp Equipment	\$ 4,257
Fuel - gasoline	2,912
- fuel oil, propane	399
Catering	9,351
Communications	1,506
Transportation	20,321
Helicopter Rental	41,913
가지는 것 같아요. 그는 것 같은 것은 것이 같은 것이라는 것 같이다. 같이 같은 것은 것은 것은 것은 것은 것은 것을 것 같아요. 같이 같이 같이 같이 같이 같이다.	

\$80,659

Caller & Looks

Total Man Days

Period	Days	No. of	Men	<u>Man Days</u>
June 8 - Aug. 4	58	6		348
Aug. 5 - Aug. 31	27	8		216
Sept.1 - Sept. 7	7	4		28
				592

Direct Field Expenditures per Man Day

$$\frac{\$80,659}{592} = \$136.25$$

Mac and Lair Groups

Reconnaissance Geochemistry - Maps: Pitman 71-3a, b, c.

- 1. Gold: Plotting intervals 100, 500 and 1000 ppb were used.
- 2. Silver, Lead, Copper: Plotting intervals were based on analysis of respective histograms.
- 3. Zinc: Plotting interval based on zinc histogram of MGS Grid samples.

It was felt that the Mac and Lair Groups were physiographically and geologically similar to the Moosehorn Group, thus the results of reconnaissance sampling from both areas were combined to give a higher sample population. Mac and Lair Groups

Detailed Geochemistry - MGS Soil Grid - Maps: Pitman 71-3a, b, c

1. Gold, Silver, Zinc: Plotting intervals used were based on analysis of respective histograms. S/R Pitman - Log Normal Distribution of Ag in ppm. - McClair and Moosehorn Anomalies - RGS + P13-413 to 558

.

Class No.	Ran from	ge to	Mid Point	Population	876	- S	
1		.420	.354	109			
2	.420	•595	.500	40		emo	
3	•595	.840	.705			T A	8
• 4	.840	1.18	•999	22	3		<u>i</u> n
5	1.18	1.66	1.41	18	6	e e e e e e e e e e e e e e e e e e e	. t
6	1.66	2.36	1.99	20	۲ ۲ ۲	×	4
7	2.36	3.34	2.71	15	ANAC	part part	P13
8	3.34	4.72	3.98	10	CANAL CANAL		· +
9	4.72	6.65	5.60	14			RGS
10	6.65	9.40	7.95	9	25 2 <u>10</u>		1
11	9.40	13.3	11.2	2	н Н Н Н Н С Ч С Ч С Ч С Ч С С Ч С С Ч С С () –––– () ––––––––––––––––––––––––		
12	13.3	18.7	15.7	7 .	<u>ه</u> ۲		
13	18.7	26.4	22.3	4	6		
14	26.4	37.5	31.5		5		
15	37.5	52.5	42.5	273 Total	4		
16	52.5	74.5	62.5				
17	74.5	106.0	89.5		3	_ <u>,f</u>	
						a 20 4	
					± 2 2	Ba	
	n de la composition d Reference de la composition de la compos				E # 10		
					X 20 PAPI		
					S S NING	0	
					С С С С С С С С С С С С С С С С С С С		
					ACIN		
					FY TH		
			n na starter	Department of			
			Mine	s and Potroluum Resources	3 S 2 S	• • • • •	}
				ASSESSMENT REPORT	3-		
				ш >			
		1	NO	KS3 MAP #2	2-		
-43							
					0.		

-		S/R	Pitman - 1 - 1	Log Normal Dis McClair Creek	tribution of Zn in ppm. Anomaly, MGS Grid	10	000					111111111
	Class No.	Range		Mid-Point	Population	9 8 7						
0	·	from	to		•	6	E					
	1	2.7 -	3.3	3.0		5		Zinc				
	2	3.3 -	4.1	3.7		-		- 2				
	3	4.1 -	4.9	4.5		3		omal	•			
<u></u>	44	4.9 -	6.1	5.5	*	- CID.		k An				
	5	6.1 -		6.7		- VO		Cree				
	6	7.4	9.1	8.2		HOLS C		air S Gr				
	77	9.1 -	11.1	1.0.0		· · · · · · · · · · · · · · · · · · ·		McC1				
	8	11,1 -	13.5	12.2		- IU	9					
-	9	13.5 -	16.5	15.0			7					
	10	16.5 -	20.2	18.3			6					
	11	20.2	24.6	22.3		-	°					
	12	24.6 -	30.1	27.2	1		dudd					
	13	30.1 -	36.7	33.2			3 - 1				۵C	
-	<u>14</u>	36.7 -	44.8	40.6	1		Rang					
	15	44.8 -	54.7	49.5	3	HE INC						6
	16	54.7 -	66,8	60.4	8	DER D						
	17	66.8 -	81,5	73.7	21	ES X 2 ING PA						
	18	81.5 -	99,5	90.1	32	CYCLU	9					
	19	99.5	121.5	110.2	34	NG OR	7					
	20	1.21.5	148.3	134.2	28	CARTD	6					
	21	148,3 -	181.1	163.9	40	MI-LO VECIFY	5					
	22	181,1	221.1	200.1	33	-13 St	9					
	23	221.1 -	270.03	244.3	21		3					
	24	270.03 -	329.7	298.3	45							
	2.5	329.7	402.5	364.3	28	nafilig 1	2					-4
	26	402.5 -	491.4	444.8	12	*****						
	27	491.4 -	599.8	542.9	8		-			 		
	28	599.8 -	732.3	662.7	11		10		09	 50		40
	29	732.3 -	8.3.9	809,1	` 7		-					
	30	893.9 - 1	1091	937.6	. 3		-					
	31	1091 - 1	332.1	1206	1		~					
	32	1332.1 - 1	.626.3	1472								
	33	1626.3 - 1	985.2	1794	1		-					
	34	1985.2 - 2	423	2193	NOT THE LEVEL AND A STORE	Tendersonie de 1999						
	35	24232	9.58		W1903. 1000	****						
		2950	67.1		0 ⁹⁹ 05-39131		1					
	37	0.11 - 5	400	- 1979); 	340 Total		4					

S/R Pituan - Log Normal Distribution of Au in ppb.

- McClair Creek Anomaly, MGS Grid

A set of states	Rang	e.			7())	6		#
Class No.	from	to	Mid Point	Population		5		
1	13.9	23.2(<30) 18.0	170		4		
2	23.3	39.0	30.0	34		3		
3	. 39.1	65	50.5	2	ġ			Anon
4	66	102	85.0	21	ada Lt	2		Gek
5	103	171	131	12	S CAN	-		ן קרו
6	172	284	220	32	ONTROL			
7	285	482	368	24		1000_	×	
8	483	805	620	13	G GRAI	9 <u></u> 8 <u></u>		
9	806	1340	1040	8		6		
10	1341	2260	1750	9		5		
11	2261	3795	2930	10		4 qd		
12	3800	6400	4950	3		۲ ۲ ۲ ۲		
13	6410+ (>50	00)	8250			ange		
•				340 Total	INCH	2		
			•		TO TH			
					3 X 20 G PAPE			
6					CYCLES	1 <u>100</u> 9		
					AIC 3 G OR I	8 7		
				CALLENDER AND INCOMENTS IN INCOMENTS IN THE INCOMENTS IN A REPORT OF THE INCOMENTS IN A REPORT OF THE INCOMENTS	ARITHI	6		
				Department of	MI-LOG	. 5		
			Mines a	ed Parecisson Resources	-73 SE SP	4		
			ASS	ESSME REPORT		3		
and a start of the			28	31 MAP #4				
			NO. 20			2) <	
							* **	
						10	ليل فيا يا المنشوسية	الملحة

				ure	Rar	
	Population		Mid Point	to	from	Class No.
		41	•354	.420		1
		44	.500	•595	.420	2
			.705	.840	•595	3
		31	•999	1.18	.840	4
		43	1.41	1.66	1:18	5
0L1		25	1.99	2.36	1.66	6
ADA		31	2.71	3.34	2.36	7
CAN		25	3.98	4.72	3.34	8
I ROLS		46	5.60	6.65	4.72	9
MADE CON		24	7.95	9.40	6.65	10
		17	11.2	13.3	9.40	11
GHA		4	15.7	18.7	13.3	12
U		6	22.3	26.4	18.7	13
			31.5	37.5	26.4	14
	Total	340	42.5	52.5	37.5	15 .
•			62.5	74.5	52.5	16
			89.5	106.0	74.5	17
		•				
						•
NCH						•
ТнЕ						
E H O						•4
5 PAI						
CLES						
3 C B DR						
MIC O						
ARITH	1 11 17 - 1 197 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	erinteri a in the second second				
LOG,	artment of	Dep				

Mines and Polician Respires

ASSESSMENT REPORT

NO 3831

мар#5

.

S/R Pitman - Log Normal Distribution of Ag in ppm. - McClair Creek Anomaly - MGS Grid

4

**** ****

				Rock Geo "RGR"	Series			
ample	e No	Zn (ppm)	Ag (ppm)	Au (ppb)	Sample No	Zn (ppm)	Ag (ppm)	Au (
RGR	49	130	1		RGR 114	63	1.1	
	50	500	¢,5		116	120	58	269
	51	78		1.20%	117	124		
	52	80			118	43 ⁴⁴	14	
	54	158	0.5		119	113	1.0	-
	55	218	C.5	2 - 2	120	292	C.9	
	46	154			121	98		
	60	63	1.6.87	2.1	122	80	-	-
	61	51			123	. 86		-
-	62	51	1.0		124	100	-	-
	63 -	kite	-	1.2.3	125	-78	0.5	
	64	36			127	138	a la la martina	
	65 .	83			128	640	0,5	
	.60	1675			129	-97		
	68	00 02			131	110	0.5	
	69	51	- 4	12	132	142		
	70	56	e 	1.	133	116		
	71	72			134	120	0.9	-
	72	129	0.5	1	135	72		197
	•73	92	1	-	196	42	-	
	74	72		· · · · · ·	137	138		-
	75	- 78	-	-	138	116		-
	76	. 95		*	139 -	92		
	77	70			Values 10	ess then 0.9	ppm Ag or 1	ess th
	78	107	1.2		30 ppb At	i are denote	d by	
	80	80						
	81	110	0.5					
	82	162	0,5					
	83	100	-	-	~		1.5	
	84	.95		1.1			N.L.	
	85	104	1	1.5 -				
	86	1000	1.1.1	1	~~~			
	87	400		Ser. FI				
	86	150		. Salata				
	09	124				*		
	90	100						
	92	123		-				
	93	167	1	A Start	1			
	94	154	0.5					
	95	95		10.1				
	96	68	1000	-				
	-97	65	1.24	100				
	98	65	C.5	1				
	99	134	0.5					
	100	204						
	101	101			2.		*	
	103	255	-	-				-
	104	142	1. 14		14			
	(01)	107	• 0.5	-				
	106	78	-					
	41.7	6r	· ·	-			*	
	1.16	• 14		-				
	109	1	1	-				
	116	135	-					
	111	182		7 (7	1	
	112	dist.	6			6		
	11-	-		1				
				11				
			~			~		

	1	
c	123	
Ŀ	1.00	

Soll Geochemistry "RGS" Series								
Samp	Le No	n (ppm)	Aar (ppm)	Au (opb)	Sample No	Zn (pps)	Ag (ppm)	Au (bob)
R 3	1 22	zh (FEm)	3.0	and the second	RIS 84	113	0.5	
ALC .	02	100 Lan	15 -		ALL OF	167	1.5	
	40 01	100			0) QL	101	2.2	
	£4	120			00	204	2.0 %	-
	27	192			10-	210	4.0	100
	26	368	2.5	-	50	400	110	110
	27	72	-	-	.04	. 78	-	
	28	89			.90	30 ,	Sec. 79-14	-
1.	29.	384	0.5	30	91	113		270
	30	44	0.5		92	104		
	31	100			92A	400 -	j 0.6	
	32	680	2.0	1.1	93	116	-	750
	33	154	1.5	1.4	. 94	766	÷	30
	34	89	1.1.	36,	. 95	1000	1.0	
	32	123	1	-	. 96	* 80c	9.0	. 320
	30	197	Ş.5	1.	- 98	733	0.5	-
	37	28	13.5	756		1000-	1.0	
	38	13	27.5	240.	1(0)	187	. 0.5	
	39	75			101	680	7,5	326,
	40	3760	2.0	780	102	620	3.5	30
	41	292	17.5	179	103	116	1.0	
	42	733	2.5	-	164	400	0.5	
	43	58	19.5	480	105	500	2.5	-
	44	420	14.5	240	106	154		
	45	177	15.5		107	42	29.	2 2000
	45A	72	0.5	-	108	70	5.5	30
	46	127	1.5		109	327	5.5	30
1.14	47	100	* 	1	110	492	2.5	
	48	1640	2.0	3600	111	80	2.0	
	49	138			112	264	5.5	80
	50	15		1	113	292	1.0	30
	- 51	150		-	114	210	1.0	
	52	21	6.0		115	292	2.0	-
	-	72			116	282	2.5	80
	EL I	68	0.5		117	154	0.5	30
	-	75		Stand.	118A	75		
		75	0.5		1158	89		80
		121			'. 1160	98	1	
		190			1180	78	0.5	1.
	39	130		.20	1104	100		
	00	sho	3.0		119B	120		
	01	340		1280	1100	112	0.5	1. 1
	62	104	c.v	170	1100	110	0.5	
	63	292	2.0	110	1904	113	0.5	
	64	2160			LZCA	090	6.5	17
	65	1980	2.5	100	1208	202	1.3	
	66	273	1.0	LIU	1500	304	1.0	
	67	327	3.5	30	150D	368	. 5.0	
	68	700	37.	240	121A	44		
	69.	1 434	¢.5	• •	1218	24		
	70	154	3.0	-	121C	60		1 2 C
	71	. 95	-		12.15	72		-
	72	107		390	ASSI	83		
	73	75	1.6		1228.	86	-	-
	74	30	1.0		1220	83	9.0	
	75	37		1.1	1220	. 86	-	30
	76	38	1	77	103A	218 -	8 × 1	
	. 77	92	2.0		1238	247	1.0	
	78	138	1. s. s.	-	1530	239	0.5	80
	. 79	123	* 5.5	30	1230	255	1.0	
	e Bol	197	6.C		124A	78	-	1.41
	. 81	iic	120	-	184B	90	-	-
1	62		36.19	-	324.°	87	-	
	83	1. 107	1.0	~	1000 -	59		
	-	5			Velues less	*	pr. Av. or. 1. av	
					So Blue Vere	ine lengted	- ·	

ŀ				Rock Geod	hemistry			
			1.14	"BOR" S	eries	70 (000)	Ar (nom)	Att (mob
0	sple No	Zn (ppnt)	Ag (ppm)	Au (ppu)	RGR 114	83 .		- The Chine
	50	130	0.5		115	92	-	-
	51	83			116	120	58	2690
	52	78			117	- 134 -	1.	-
	53	Bo	-	-	118	98		
	54	198	0.5		119	113	1.0	
	55	218	6.4		120	298	C.5	~
	46	- 154			121	95		
	61				123	86	. 27	
	62	.51		S	124	100		-
	63	44			125	78	6.5	-
	64	36		1.5	127	138	-	
	· 67	- 53	1	-	125	.eto	C.5	
	66	1675			129	165		-
	67.	a 00 52			+ 5% 1-41	110		
	69	51			132	142	-	
		• 6		-	133	216		
	71	12		-	134	120	Ç.5	-
	72	122 .	0.5		136		-	
	- 73	- 92		1.	236	42		-
	74	72			137	138		
	76	95		14 m	139	92		
and the second se	77	. 70						
	78	107	1.5	-	Values le 30 ppb Au	se than 0.5 are denote	ppm Ag or 1 d bg " - ".	ers then
The second second	79	110						
	Sc	39						
CONTRACTOR OF	51 40	110	0.5					
	83	100	1.1.5	-				
	66	95			and the second			
Thursday Per	85	104		1.0				
Contraction of the	86	1000						
	87	400	C. March	1 June				
	80	107	7.0					
	90	134						
	91	- 100	1 - 1 - 1 - 1					
	92	123					1. S. S. 12	1.5
COLUMN I	. 93	167	1.					
The second	94	154	0.5					
and the second se	95	68				1.18		
	97	65						
	90	6ý	2.5					
	. 99	136	2.2					
	100	- 204		-				
	1.1	167						
	107		·					
	104	1%		· .				
	10%	107	ំណ					
	10.		~					
No. Contraction	17		-	1 ×				
(Concerta	1.5	He .	ж С	*				
	119	- 10 5-2						
AL BUL	110	190						
	. Ili	1)4						
10000	11			. *				

2011)eo,	she	m.	stry
"Rok	- 11	er	i'e	5

	umr 1.	No	Zn (ppm)*	Ar (por)	Au (pop)	Sample No	Zn (ppm)	Ag (ppm)	Au (ppt)
	RIS	i'e	2h	3.0	-	BGS 84	113	e.5	
		23	- 65	. 1.5		85	167	1.5	
		24	120			• 86	104	8.0	
-		25	192	-	1.	82	218	2.5	
		26	368	8.5		68	400	1.0	170
		27				89	78	-	
		28	89	-		90	3.0		×.
		20	384	- ⁶⁴⁰	30		113		270
		39	44	* - 0.		98	104		-
		31	105	-		968	1 3.75	14.0	-
		34	1 SL	1.5		20 . 	765		30
		3/4	99	-	30	95	1000	1.0	
		35	123	1.1	-	96	Beck	7.0 *	3210
		314	197	C.5		98	- 738	. 0.5	
		37	28	13,5		- 99	1000	1.0	5
		38	13	27.5	240	1.0	157		
		39	72		1	. 101	680	1.5	320
		hċ	3760	240	780		620	3.5 .	30
		41	293	17.5	.a.v.s	103	110	1.0	
		42	733	2.0		104	-400	6.5	
		43	5.58	19.5	680	105	900	2.4	
		44	uga .	14.9	240	106	1.54		-
		45		10.2		107	46	, 223. 5	2.020
		4 JA	107	1.5		119	3.27		30 ·
		17	100	-		110	482	10 2.5	
		48	1640	2.0	3600	111	50	2.0	
		44	138	a land		112	264	5.5	80
		50	15			113	292	1.0	30
		51	190			114	210	1.0	-
		52	21	6.0	10-15	115	598	2.0	
		13	72			116	282	1. T.S.S.	80
		54	68	0.5	· *	. 117 .	104	0.5	30
		56	77			118A	79	in the star	
		哲	15	0.5		1158	89		90
		58	134	S. Star	3.7	1100	90		
		59	130			1100	100		
1	4	60	252	3.0		1198	120		
		61	104	2.0	1350	. 1190	113	e.5	
		63	292	.2.0	170	119D	113	0.5	
		64	2160	1.1		120A	292	2.5	3. P
		65	1080	5.5	\$ 5000	1205	282	1.5	1.
		66	273	1.0	170	1200	304 -	1.0	
		67	327	3.	30	1200	368,	2.0	
		69	790	37.	240	1014	1,4		1 24
		69	1-34	4.5	1.1	121B	:24 -		
			1.54	3.3		121.0	20	-	
		73	98 .			1.215			
			1.7		390	LZLA .			
				A.C.		1228	26		
		<i>a</i> .			t de la	and a			20
		-				1 22			
						12788	34.7	. 1.0	-
			1.53	E. second		1032	2.59		
		152	- 133		3.5	12(5.)		1.	
				ζ.,		1254		-	-
			110	. 1.		1248	92	-	1 - 1
				₽ ² a.	-	1. 4	83		
		83		i lette		17.57	30.1	·	1.0
						Star Bell	* 582 - 4	190 Sector	

V ppt Po eas liers out

