GEOCHEMICAL REPORT

on the

Moosehorn Group

(WAS 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32; PIT 69, 70, 71, 72, 73, 74, 75, 76)

Eleven Miles Southwest of Chukachida Lake, B.C.

Lat. 57° N ;	, Long. 127	° W
94 E	16E	Department of
		Mines and Petroleum Resources
		ASSESSMENT REPORT
		2822
Owned by:	T.C. Scott	NO. COM MAP
Work done for:	SUMAC Mine	s Ltd.

Field Work

August 6, 1971 to August 11, 1971

14.00

By: T.C. Scott Date: July 26, 1972.

Table of Contents

	Page
Introduction	1
Location and Access	1
Climate and Topography	1
Base Map	2
Field Procedures	2
Sample Preparations	3
Analytical Procedures	3
Soil Development	4
Results	4
Interpretation	4
Conclusions	7
Declaration of Expenses	8
Appendix i Declaration of Qualifications ii Direct Field Expenditures iii Reconnaissance Geochemistry	9
<u>Illustrations</u>	
#1 Fig. 1 Location Map	following Page 1
#JFig. 2 Histogram of Silver	Appendix
#3 Fig. 3 Histogram of Lead	1
Histogram of Copper	n
#5 Fig. 5 Histogram of Zinc	11
Base Map	
#6 MapClaim and Soil line location#7 Map 71-6aGold#8 Map 71-6bSilver#9 Map 71-6cCopper#10 Map 71-6dZinc#11 Map 71-6eLead	in pocket " " " " "

6e. 3

Introduction

The Moosehorn Group of Claims was staked on behalf of and by T.C. Scott during the period July 1 - 9, 1971. Beginning on August 2 continuing through to August 11, 1971, a reconnaissance soil survey was carried out on the claim group.

Operations were conducted from a base camp located at the west end of Chukachida Lake which is 12 miles northeast of the claim group.

The field crew commuted daily to the working area in a helicopter.

Location and Access

The Moosehorn Group lies on the eastern flank of the Spatsizi Plateau in the upper Stikine River area of northern British Columbia. The group is centered near Lat. 57⁰29' North, Long. 127⁰13' West. The elevation of the property varies from approximately 4,500 ft. to 6,300 ft. above mean sea level.

Access to the claim group is by helicopter from one of the following lakes: Metsantan, Toodoggone or Chukachida. All of these can be serviced by float equiped aircraft. The closest road-serviced supply point is Dease Lake which lies 125 miles to the west.

Climate and Topography

The project area is snow covered from early October until mid-June. Some patches of snow, especially in creek valleys, remain until late July. The brief summer is usually cool with frequent rain. However, the summer of 1971 was unusually dry and warm.

Fig. 1

The claim group is on a southwesterly exposed slope that averages about 30° . Vegetation on the property consists of "buck brush" and willows on the valley floor, a fringe of dense alpine balsam and spruce along the base of the slope and alpine meadow and tundra above an elevation of 5,000 ft. The area of alpine meadows and tundra is sometimes interrupted by solifluction slopes but rarely by talus.

- 2 -

Base Map

The base map was prepared by the photographic enlargement of a 1:250,000 Federal Government topographic sheet to a scale of 1:63,360. This map was in turn enlarged to 1" = 1,320' by drafting techniques. A contour interval of 500 ft. was used. Because the accuracy of the base map would be reduced if a further enlargement was made to accommodate the sample locations, a second map on a scale of 1" = 600' was constructed. This map displays a slope corrected plan of the sample stations and the respective assay values.

Field Procedure

The chaining of the lines and the collecting of soil samples were done simultaneously. Samples were taken at 200' slope-chained intervals. Each station was marked by a coloured plastic flag which had a sample number written on it. Intermediate points along the line were also marked with plastic flags. The starting and finishing points for each line were marked on an air photograph for control.

At each station, holes were dug with a mattock and soil samples were taken with a stainless steel trowel from the "B" horizon.

The soil samples were collected in high-wet-strength kraft soil sample bags.

Sample Preparation

The samples were transported from the field to the base camp where they were dried and sieved through stainless steel screens to -80 mesh. The -80 mesh material was placed in numbered coin envelopes and shipped to Chemex Labs. Ltd., 212 Brooksbank Ave., North Vancouver, B.C., for analysis.

Analytical Procedures

All of the samples were analysed for gold, silver, lead and copper. The majority of the samples were later analysed for zinc. The following analytical procedures were used:

Procedure for the Analysis of Trace Gold in Soil and Silt Materials.

- Step 1. The sample is dried at 110°F, sieved to -80 mesh and stored in a coin envelope.
- Step 2. A 2 gm sample is weighed into a 100 ml beaker.
- Step 3. 15 ml of aqua regia (3 parts HCl to 1 part HNO₃) is added to the pulp.
- Step 4. After sitting for 15 minutes, the sample is heated to dryness.
- Step 5. More aqua regia is added and the sample is again evaporated to dryness.
- Step 6. The soluble salts are dissolved in 25% HCl and mixed.
- Step 7. The gold is extracted as the bromide in 5 ml. of methyl isobutyl ketone.
- Step 8. The organic layer is then analyzed on the Atomic Absorption Spectrophotometer against prepared standards.

<u>Geochemical Laboratory Procedure for the Handling and Analyses of Soil and</u> Silt Materials Containing Traces of CU, MO, ZN, NI and CO.

- Step 1. Samples are dried @ 110^oF and then sieved to -80 mesh consistency through a nylon and stainless steel sieve. Presieved materials are processed starting at Step 2.
- Step 2. 0.50 grams of the dry pulp is weighed into a calibrated test tube.
- Step 3. 3 mls. of perchloric acid and 1 ml. of nitric acid is added to sample.
- Step. 4. Samples are digested at low heat initially and then the

temperature is raised to 203°C. Digestion time 2 to 3 hours.

- Step 5. Digested samples are cooled, made up to 25 ml. volume with distilled water and solutions are thoroughly mixed.
- Step 6. Analyses for Cu, Mo, Zn, Ni and Co by Atomic Absorption procedures. Detection limits as per our brochure.

Bruce W. Brown, Manager Laboratory Division.

Soil Development

Although the area was glaciated relatively recently, field observations indicate that the soil is largely residual in character. The steeper slopes show a considerable amount of down-hill creep (solifluction). Minor talus occurs up-hill from the soil sample lines.

The soil profile is only partially developed. Although the "B" horizon is distinct, further sub-divisions are difficult to determine. The material taken as samples can be classified as being from the B_f horizon.

Results

Statistical distributions of the results were obtained and the distributions were plotted as histograms. Because of the limited number of samples involved, the data collected on this survey were combined with those collected on an adjacent property of similar physiographical and geological environments (Mac and Lair Groups). This provided a larger population for the interpretation of the geochemical nature of the area. The limits of the zinc anomalies were based on the distribution of zinc values obtained from the detailed soil geochemistry on the Mac and Lair Claim Groups.

Interpretation

The statistical distributions of the results were all found to be approximately log-normal and multi-modal. Since the standard statistical parameters have little meaning in the case of multi-modal distributions, these were not calculated.

The limits of background and anomalous populations were based on the natural grouping of values described by the multi-modal histograms (fig. 2). The mode containing the lowest values was considered to be background while the mode containing the highest values was considered to represent an anomalous condition. Past experience has shown that the background for Gold in this area is >30 ppb, thus an arbitrary value of 1,000 ppb was used to define the lower limit of an anomalous condition.

The values, when plotted on a 1'' = 600' plan of the sample stations, delineate a zone approximately 5,000 ft. long which is anomalous in Ag, Pb, Zn and Cu.

The ground water moving down-hill from the source disperses the metallic elements at different rates depending on the physiochemical nature of the ground water and the chemical nature of the elements involved. Thus, the width and exact position of the source material is difficult to determine.

Two conclusions can be made from the distributions :

- 1) The anomalous conditions in the soil are down-hill from the actual source.
- 2) Pb, being very immoble, forms an anomaly very close to the source material.

- 5-

A typical profile would be as indicated in the following

Gold is dispersed from a source primarily by mechanical solifluction of residual material. A typical profile would be as indicated in the following diagram :

م توليغ Conclusions

The principle area of interest occurs on the lower slopes of the property and extends across 3 of the lines. The anomalous zone appears to be approximately 5,000 ft. long and of undetermined width.

As experience in British Columbia to-date has shown, there is no definite relationship between the values attained from the geochemical analysis of soils and the metal content of underlying bedrock.

Further investigation of the anomalous area defined by this survey is warranted.

T. C. Scott

Approved: July 26, 1972.

Gordon R. Hilchey, P. Eng.

DECLARATION OF EXPENSES

Moosehorn Group

Men Employed on Survey

Brent Patriquin	Aug. 6 - ll	5 days	@\$ 18.27* = \$	91.35
Barry Turner	Aug. 6 - 11	5 days	@\$ 18.27* =	91.35
T. Cameron Scott	Aug. 6 - 11	$1\frac{1}{2}$ days	@\$ 30.77* =	46.15
Dr. T. Rodgers		<u> 1</u> day	@\$100.00 =	50.00
C. J. Sullivan		<u> </u> day	@\$150.00 =	75.00
		$12\frac{1}{2}$ man d	lays	

Direct Field Expenditure (see Appendix) 12¹/₂ man days @\$136.25 \$ 1,703.12

Chemical Analysis 145 samples (4 elements) @\$ 3.20 \$

106 samples (1 element) @\$ 1.00 \$ 106.00

Drafting, reproduction, typing, etc.

\$ 2,626.97

464.00

* Rates include C.P.P., W.C.B., Vacation Pay and U.I.C. where applicable. Monthly rates were converted to daily rates (based on 26 day month).

to

Certified Correct

T. C. Scott

DECLARATION OF QUALIFICATION

Thomas Cameron SCOTT

Education:	- 4 years	of University	at U.B.C.	towards	a B.Sc. in	
	Geology (major).				

- requires Eng. 100 to complete B.Sc. degree.
- Geological and related courses completed:
 - Introductory Geology, Mineralogy, Mineralography, Structural Geology, Optical Mineralogy, Petrology, Petrography, Economic Geology, Geochemistry, Sedimentology, Theories of Ore Search, Mineral Evaluation, Rock Mechanics.

Experience: 1963, 1964 (Summers)

Newconex Canadian Exploration

- General reconnaissance

- stream and soil geochemistry

- prospecting
- geological mapping

ref.: R. Knutsen (Toronto, Ontario)

1965, 1966 (Summers)

Noranda Exploration Ltd.

- General Reconnaissance - Party Chief

- stream and soil geochemistry - geological mapping

Detailed Property Work - Party Chief

- soil geochemistry
- sampling
- geophysical surveys
- road building
- geological mapping
- property evaluations

```
1967 (Summer)
```

Northstar Copper Mines

- Detail Property Work - Party Chief

soil geochemistry
 geological mapping
 diamond drilling

ref.: Dr. W.H. White, P. Eng. (University of B.C.)

1968 (Spring)

West Coast Mining and Exploration

- Detailed geological mapping

ref.: H. Veerman, P. Eng. (West Vancouver)

1968 to 1969

-

Arbutus Mining and Exploration Ltd.

in charge of the direction and execution of all exploration activities:

- stream and soil geochemistry
- prospecting
- geological mapping
- geophysical surveys
- diamond drilling

ref.: H. Veerman, P. Eng. (West Coast Mining and Exploration)

1970 (6 months)

Frontier Explorations Ltd.

- in charge of the direction and execution of geological mapping, trenching, sampling and diamond drilling.

ref.: E.O. Chisholm, P. Eng. (Vancouver, B.C.)

1971 to-date

Sumitomo Metal Mining Canada Ltd.

- Party chief in charge of reconnaissance exploration.
 - stream and soil geochemistry
 - geological mapping

Sert

The above Declaration of Qualification is true and correct to the best of my knowledge.

July 26, 1972

n

Gordon R. Hilchey, P. Eng.

PITMAN PROJECT - 1971

Direct Field Expenditures

Camp Equipment	\$ 4,257
Fuel - gasoline	2,912
- fuel oil, propane	399
Catering	9,351
Communications .	1,506
Transportation	20,321
Helicopter Rental	41,913
	\$80,659

Total Man Days

Period	Days	No. of Men	Man Days
June 8 - Aug. 4	58	6	348
Aug. 5 - Aug. 31	27	8	216
Sept.l - Sept. 7	7	4	28
			592

Direct Field Expenditures per Man Day

 $\frac{\$80,659}{592} = \136.25

~ 100.000

Moosehorn Group

iii

Reconnaissance Geochemistry - Maps: Pitman 71-6a, b, c, d, e.

1. Gold: Plotting intervals of 100, 500 and 1000 ppb were used.

2. Silver, Lead, Copper: Plotting intervals were based on analysis of respective histograms.

3. Zinc: Plotting interval based on zinc histogram of MGS Grid samples on the Mac and Lair Groups.

÷ 12 2

It was felt that the Moosehorn Group was physiographically . and geologically similar to the Mac and Lair Groups, thus the results of the reconnaissance sampling from both areas were combined to give a higher sample population.

S/R Pitman - Log Normal Distribution of Ag in ppm. - McClair and Moosehorn Anomalies - RGS + P13-413 to 558

Ф00-

œ

++

	Ran	8.6				8 7				
Class No.	from	to	Mid Point	Population		6				
1		.420	•354	109		5				
2	.420	•595	.500	40						
3	•595	.840	.705			4		80		
• 4	.840	1.18	•999	22		3		55		
5	1.18	1.66	1.41	18			d e s	<u>.</u> Ч		
6	1.66	2.36	1.99	20	A LTD	2	O N	413		
7	2.36	3.34	2.71	15			0 P	-1		
8	3.34	4.72	3.98	10				- 144		
9	4.72	6.65	5.60	14	NTRO NTRO		5	ccs		
10	6.65	9.40	7.95	9		10	U V V	-H4+		
11	9.40	13.3	11.2	2	АРН	9				
12	13.3	18.7	15.7	7	<u>Ю</u>	8				
13	18.7	26.4	22.3	4		6				
14	26.4	37.5	31.5			5				
15	37.5	52.5	42.5	273 Total						
16	52.5	74.5	62.5			4 —				
17	74.5	106.0	89.5			3				
an Arrange An Arrange an Arrange						3e				
•					I	Ran				
				Department of	E INC	2				
	•		Mines	and Petroleum Resources	11 C1 L1					
• • • • • • • • • • • • • • • • • • •			A	SESSMENT REPORT	X 20					
		•	20	227 #7	CLES	1.0		+++++++++++++++++++++++++++++++++++++++		
			NO	DOX MAP TTX	3 C√	9 8				
			١		0 2 9	7				
					RACII	6				
					FY T	5				
					SPECI	4				
					8 6 7 3	۲	هـــــ			
		an an Arran an Array Rainn an Array			, (3				
		an an an an Alain. An an Alain								
		4				2				· + + + + + + + + + + + + + + + + + + +
								┿╋╦╬┲╪╋╤ ┿╋╗┾┿╋╋╤	┿╪╪╪╪╧╼┺ ┶╪╧╪┿┿╼┺┺ ╲╴╡	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								┿╋╌╋┯╼┨┷		
						0-1				
				a de la composición d O service de la composición de la compos				60		C

Lredneucy



		S/R Pitman - L - M	og Normal Dis oosehorn Creel	tribution of Pb in ppm. < Anomaly		10000					8			
-		P	MA THAT		14 · · · ·	9								
0.	Class No.	from to	fild-Point	Population .	C	7								
	1	2.7 3.3	3.0		C.	5		Lead						
	2	3.3 - 4.1	3.7			4		- A						
	3	4.1 - 4.9	4.5			3		omal						
	4	4.9 - 6.1	5.5		ci			k An	58	•				
	5	6.1 - 7.4	6.7		ADA LT	2		Cree	to 5					
	6	7.4 - 9.1	8.2		GAN GAN			torn-	413					
	7	9.1 - 11.1	10.0		DATROL			loseh	P13-					
	8	11.1 - 13.5	12.2	2		1000-		Mc	1					
	9	13.5 - 16.5	15.0	10	G GHAI	8								
-	10	16.5 - 20.2	18.3	23		6								
	11	20.2 - 24.6	22.3	15		5								
-	12	24,6 - 30.1	27.2	17		4								
( .	13	30.1 - 36.7	33.2	12	• 6.	3								
	14	36.7 ~ 44.8	40.6	19			20 20							
	15	44.8 - 54.7	49.5	10	INCH	2	2							
	16	54.7 - 66.8	60.4	12	R O THE									
	17	66.8 - 81.5	73.7	9	X 20 PAPE									
	18	81.5 - 99.5	90,1	4	YCLES	100-								
	19	99,5 - 121,5	110.2	1	C. 3 C	8								
	20	121.5 - 148.3	134.2	4	RITHM	6								
	21	148.3 - 181.1	163.9	2	-LOGA	5								
	22	181,1 - 221,1	200.1		3 SEMI	4								
	23	221.1 - 270.03	244.3	1	7	3								
	24	270.03 - 329.7	298.3	1										
	25	329.7 402.5	364.3	3		2								
	26	402.5 - 491.4	444.8	2	(-									
	2.7	491.4 - 599.8	542.9					4						
	28	599.8 - 732.3	662.7			10-	11111	1111		60		50	1111111	40
	29	732.3 - 893.9	809,1											ne
	30	893.9 - 1091	987.6											
	31	1091 - 1332.1	1206											
	32	1332.1 - 1626.3	1472											
	33	1626.3 - 1985.2	1794											
	34	1985.2 - 2423	2193	WIER IN STREET										
	35	2423 - 2958		1										
			3260			a								
	37	-110409	3081	149. Total										



		· · · · · · · · · · · · · · · · · · ·		1000			
2	Class	Range	Mid-Foint	Population		9 8	
1.	No.	from to		·	- 6	7	
	1	2.7 - 3.3	3,0	11	and the	5	opper
	2	3.3 - 4.1	3.7	13		4	22
	3	4.1 - 4.9	4,5	•.	C	3	naly
	4	4.9 - 6.1	5.5	18 .	d		8 Ano.
	5	6.1 - 7.4	6.7	27	ADA LT	2	reek o 55
	6	7.4 - 9.1	8.2	23	S CAN		113 t C
	7	9.1 - 11.1	10.0	15	DNTROL		isehoo
	8	11.1 - 13.5	12.2	10	- 13 A	100-	Moco
	9	13.5 - 16.5	15.0	6	G GRAF	8	
	10	16.5 - 20.2	18.3	4		6	
	11	20.2 - 24.6	22.3	7		5	
-	12	24.6 - 30.1	27.2	2	Printersonal	4	- mqc
	13	30.1 - 36.7	33.2	3	. C	3	L .
	14	36.7 - 44.8	40.6	5			a Na Na Na Na Na Na Na Na Na Na Na Na Na
	15	44.8 - 54.7	49.5	1	MCH	2	3
	16	54.7 - 66.8	60.4		R TO THE		
	17 .	66.8 - 81.5	73,7	1	A 20		
	1.8	81,5 - 99,5	90,1	1	CYCLES	10	
	19	99.5 - 121.5	110.2	1	a 08 D	8	
	20	121.5 - 148.3	134.2		ARUTHIN RACING	6	
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21	148.3 - 181.1	163.9		al-LOG	5	
	22	181,1 - 221,1	200.1		73 SEI	4	
		221.1 - 270.03	244.3	149 Total		3	
	- 	270.03 - 329.7	298.3				
		329.7 402.5	364.3			2	
		402.5 - 491.4	444.8				
-		491.4 - 599.8	542,9			1.0	
		599.8 - 732.3	662.7	·		1.0	09
		732.3 ~ 893.9	309,1				
		893.9 - 1091	987.6		arrentetation (arrentetation) and Sama		
		1091 - 1332.1	1206 PIC			-	
	*****	1332.1 - 1626.3	1472			-	
	17 Marian 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199	1020.3 - 1985.2	1/94				
		1985.2 - 2423	2193				
	• ···· ··· ··· ··· ··· ···	2423 - 2958					
		2958 3611	3263				



.

40

.....

+++++

		S/R Pitman -	Log Normal Dis McClair Creek	tribution of Zn in ppm. Anomaly, MGS Grid	10000		
	Class No.	Range	Mid-Point	Population .	9 8 7 6		
U.	1	2.7 - 3.3	3.0		5		
	2	3.3 - 4.1	3.7		4	- 21	
	3	4.1 - 4,9	4.5	•	3	haly	
4	4	4.9 - 5.1	5.5		e	Anon	
	5	6,1 - 7,4	6.7		22		
-	6	7.4 - 9.1	8.2	·	LIS CAN	ir cu	
	77	9.1 - 11.1	10.0		SDNTHC	CC1a MGS	
	8	11,1 - 13,5	12.2	•	1000		
	. 9	13.5 - 15.5	15.0		88		
	10	16.5 - 20.2	18.3		6		
	11	20,2 - 21,6	22.3		5		
	12	24.6 - 30.1	27.2	1	· 4	bpm.	
	13	30.1 - 36.7	33.2				
-	i4	36.7 - 44.8	40.6	1		lange	
	15	44.8 - 54.7	49.5	3	2 INCI		
	16	54.7 - 65.8	60.4	8	E8 10 11		
	17	66.8 - 81.5	73.7	21	S X 20 VG PAP		
	18	81.5 - 99.5	90,1	32	100 BRAWII		
	19	99.5 - 121.5	110.2	34	- 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		
	20	121.5 - 148.3	134.2	. 28	TRACII		
	21	148,3 - 181,1	163.9	40	ECIFY		
	22	181,1 ~ 221,1	200.1	33	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		
	23	221.1 - 270.03	244.3	21	3-		
	24	270.03 - 329.7	298.3	45			
	25	329.7 402.5	364.3	28	- 2		
	26	402,5 - 491,4	444.8	12			
	27	491.4 - 599.8	542.9	8	10		
	28	599.8 - 732.3	662.7	11		50	40
	29	732.3 - 891.9	809,1	7			
	30	893.9 - 1091	987.6				
		1091 - 1332.1	1206	1			
	32	1332.1 - 1626.3	1472 40				
	33	1626.3 - 1985.2	1794	1	/2 		
	34	1985.2 - 2423	2193				
	35	24232958					
		2953 - 3611	3263				
	37	(0.1) - 47.00	1989	340 Total			







				• #				
Mocsehorn (lsim	Group		10 20	San	nple Au	Ag Cu	Pb	Zn
Au Ag Cu Pb 20 Sem	ple Au o (ppp)	$(\operatorname{bbm})$ $(\operatorname{bbm})$	(ppm) (pp	1 (m	lo (ppb)	(ppm) (pp	(mqq) (an	(ppm)
(The 2 get	4680 -	- 7	84 .27	4	- 11	- 1	10	68
10 10 39	463 -		449 80	9. Jo	,12 30	4.0 0	39	00
8 20	464 -	- 3	76 14	9		- 10	20 18	74
6 22	465 170	3	31 1)	3	514 -	- 0	24	63
6.0 8 62	466 -	e.) 6	14	14. 	5150 -	7 0 10	25	84
1.6 8 37	467 -	23.00 74	180 2	00	516 -	2.6 10	30	78
	468 -	- 3	35	82	517 -	0 4	33	101
4 26	469 -	12.0 20	82 6	80	910 -	2.5	3 60	130
7 28	470 -	-			5202	1.5	8 50	168
3 14	. 471 -	3.5 8	69	+20	501		8 35	257
an <u> </u>	4728 -	3.5 7	125	500	5055 20	3 5 42	4 1125	2400
h - C.5 4 24	473 -	8.0 2	375 .1	820	DEEK DU	2.0	7 26	149
a c.h 4 18	474 -	1.5	8 67	3.84	223	7.5 1	0 52	275
x6	479 -	540 1	62	315	506	0.5	8 12	53
27 - 0.5 16 16 71	476 -	4.0 2	2 36		526	1.0 1	3 33	78
288 - 0.5 10 35 66	477B -	0.5. 3	1. 69	231	507 -	1.0	4 16	78
29 - 1.0 13 16 74	178		7 20 -		528 -	- 20	6 . 16	58
20 7 16 71	- 479 ·		7 20		529 -	123	6 14	63
121 - 10 24 123	480		4 18		530B -		10 30	101
- 6 20 7 ⁸	481.	1 - 5. 6	3 14		531 -	1.0	14 130	178
1730 30 - 7 28 7 ⁸	482	- ,-	12 20		132 -		6 33	130
434 6, 18 74	4838		13 39		1.23 -	1.0	14 39	227
w36 - 17.5 36 76 960	484		10 24	1. 1. 1.	534 -	3.0.	19 46	173
436 - 20.0 42 172 1000	F13-485	5 . S.	4 18	130-34	535B -	6.0	21 79	520
437 - 5.6 84 3935 4000+	486		.4 20	163 / 1	536 -	5.0	21 44	250
4388 - 0.9 42 120 1090	487	·	4 20	13	537 -	2.0	10 40	14%
439 - 4.0 51 375. 2500	488B	- 0.5	7 . 31	1-2.1	538 -		13 98	242
440 - 4.0 7 260 200	1459	0.9	12 410	2000	539 -	The series in	8 44	113
441 - 7.0 31 63 SHC	1490	24.0	200 2100	174	5400 -	1.5	7 30	150
442 - 2.0 21 22	4.91	- 0.5	12 194	140 1	541 -	3.0	6 35	113
4438 - 1.5 40 91	192		- 10 - 10	80	42 -	4.0	8 28	113
444 - 2.6 34 39	493B	- 0.0		L 119		8.0	24 56	213
449 - 2.0 21 54 500	494			2 48		-	. 7 24	107
446 - 2.0 42 12	1+95	- 0.2	10 5	6 200	5458 -	· . 6	-3 -30	126
h47 - * 30	606		8 5	6 130	- 46 -	1.5	6 44	2 113
448	497	-	н	27 98	5478 -	, 0.5	6 6	3 172
10 24	4980	- 0.1	12 11	40	548 -	2.5	7 3	1 255
450 / 20	499		6	42 90	549 -	-	7 2	4 187
451 3, 24	500		7	37 95	. 550 -	17 - 16	7 - 2	4 138
452 3 24	501	0.5	4	46 52	551 320	- 1	10 7	6 520
453 4 20	502	B	6	44	552B	- 1.0	112 33	6 1410
454 - 4 20	503	H	3	46 76	553		7 3	9 113
455 * - 1 50	204		4	22 . 53	554	- 7.5	44 7	9 535
496 - 0.5 14 00	500		L.	35 87	555	- 0.5	12 1	6 218
457B 0 24	500	- 8,1	• 18	76	556	- 3.0	26 6	600
498 - 10 10	8 8 50	38 - 0.1	. 10	40 133	557B	- 1.5	28 (	3 282
459 4 20 10	1		6	14 31	558	- 1.5	24	24 255
460	.0 11 .1	0	8	18 . 63	1.	Jace the	0.5 000	Ag and
461 -					30 ppb	Au are de	noted by	" - ".



				М	coseliori	C16	im Sroup	5			1								
ie ,	Au	Ag	cu	Pb	Zn		ample	Au	P.A.	,64	Eb.	2,01	Sa	unple	Au	Ag	Cu	Pb	Zn
4	(ppp)	( ppm)	(ppm)	(ppm)	(ppn)	1	No	(ppb)	(DDm)	(ppm)	ppm)	(Dhu)		no	(pp	o) (ppm)	(ppm)	(ppm	() (ppm)
413	-	1.5	7	- 30			4620	-	-		84	215		511	-	-	T.	18	68
414	-	5.0	10	39			463	Ξ.		6	449	260		512	30	4.0 -	8	-39	68
415	7	·= ,	8				464	-	•	3	76	149.		513	-	-	10	26	- 25
416		0.5	6	22			465	7.20		. 3	31	113		114	-			-10	74
417	-	6.0	8	62			466	-	2.0	6	1.+	74		9150			1	-24	03
41.81	-	1.0	8	37			467	-	23.5	7/14	180	200		516	-	1.0	10	33	84
419	÷	-	3	20			468	-	-	3	35	52		-17		2.5	10	30	78
420E	-	÷.,	4	26			469	-	12.0	20.	-98	656		510	-	2.	7	33	101
421	. •	-	Ť	28			470		-					219	-	1.0	a	60	130
4,22	-	-	3	- 14			471	-	3.5	8	69	420		9805	-	1.5	8	50	168 -
4238	-		6	52			4/2	В	3.0	7	125	400		521		-	8	35	257
424		Q.9	1+	24			473		8.0	20	375	1820		522A	30	3.5	424	1125	2400
420	-	0.0	14	18			474	-	1.	, 18	67	384		523	-	2.0	7	.26	.149
426	÷	-	3	15	50		47	-	5.0	11	62	314		524	-	7.5	10	52	275
427		0.5	16	36	71		- 476	~	4.0	22	50	*			~	0,5	8	12	53
4, BB	-	0.5	10	3	.66		47	н –	Ø.5	15	. 62	231		526		1.0	13	33	78
429	-	1.0	13	10	594		1.78	1		7	30			527	-	1.0	4	16	78
430	+			10	71.		1.79	¥ :-	-	7	-20			528	-		# 6 g	16	58
431	-		10		113		480	- 1	~	h.	18			529	-	- 1	6	14	63
432	-	-	6	1 11	75		48	L	-	3	14			530B		-	10	30	101
4330	30			- 2	ş 78.		• 748,	- 2	-	12	20			531		1.0	14	130	178
434	-		6	1	8 . 74		48	<u> </u> в –	-	13	39			532	-	• 7	6	33	130
435		17.	31	1	6		18	ii -		10	24		1	533		1.0	14	39	297
1.36	-	20.0	42	17	2 1000		P13-48	5 -		14	18	1383	1	134	-	3.0	18	46	173
437		14.1	. 84	393	5 . 4000		48	6 -		14	20	163		635B	~	6.0	21 .	79	520
438	в -	.0.1	. Le	2 18	0 1080		48	π.		- 4	20	193	1	\$36	-	2.0	21	44	250
439		1 4.		1 37	ny star		48	BR -	- C.		37	123		537	-	2.0	10	40	145
440		4.0	a	7 26	ia 1200		48	9.	. c.	. 12	- 416	680	A.C.	538	-		13	98	242
441	-	7.	0 3	1. 6	3 840		49	ić .	- 24.0	305 6	2750	2600		539	1.7	-	8	44	113
442		2.	0 2	1	2		. 45	11 .	. 0.3	6 12	140	179		5400		1.5	• 7	30	120
443	38	1.	5 4	0	91		4	12	- 0.	9 12	6	140		541	-	3.0	6	35	113
111,1	4 · ·	. 2.	6 3	4.	39		44	Kan -	- 62		41	r 88	t.	-42	-	4.0	8	28	113
- hh			0 2	21	54 . 88		44	)L.	- 04	5	3 51	. 113		743		8.0	24	56	213
44	6	- 2.	.0 1	+£.	12		4	¥7	- 0	5 1	1 2	2 45		544	-	-	7	26	107
44	7			8	30		4.1	xî.		11	i ŝi	5 200		14.14	-	0.5	3	30	126
لبابا	8	4	-	6	20		4	94 - I	- 0.		3 51	130		.46	3	1.5	6	'42	113 .
- 44	19	. 15		10	24		· 4	地	- 0.	s 1	3 3	7 98		147.B	-	0.5	6	63	172
45	ic.	-	-	-7	20		4	19		1	14			348	-	2.5	7	31	255
4	1	-	-	3	24		-	10		ŧ	5 . 4	90		549	÷.,	-	7	24	187
h	52			3.	24		-	-1			7. 3	7 95		550	-		7	24	138
4	53	-	-	4	26		5	181	- 0.	5 4	4 4	6 52		551	320	-	10	76	520
- 4	54	-	-	4	26			038	- 8.	5 (	5 4	4		552B	1	1.0	112	336	1410
1	55	-	-	7	30		5	134			3 4	6 76		553		2	7	39	113
h	56	- 1	0.5	14	60			05			+ 2	2 53		554	-	7.5	44	79	535
	57B		-	8	24			06.			4 3	5 87		955	-	0.5	12	46	218
	58			10	18		414	07	- 8	5 1	8 7	6	2	556	-	3.0	26	63	600
	50		-	8	22	78	1	C88	- 0	5 1	0 4	0 123	1	557B	-	1.5	28	63	282
	160			8	80- 1	01		09			0 1	4 33	1	558	-	1.5	24	24	255
	161			8	280 1	40	13	10			8 1	8 62	ANT -						6.3
	401							-			- 1	5 03		Value	es les	s that C	.5 pp	n Ag e	bd



	一般 高兴 他 教育的主义									Wig.	1				
Statistic Malater Ave						Moosel	norn Cla	in Gro	ıp						
	A State State State	onnin (	Au	Ag Cu	P	b Zn	6	ample	Au	AR	du	Hu	Zn	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Sample No
		10	(ppb) (	(ppm) (pp	m) (p	pm) (pp	m)	No	(ppb	) (ppm	) (ppm	a (ppa	- 27	a	511
Carlos Andrews		3-1-1-3	25	1.5	7	30		. 462	c -	1.00		04	er P		510
		4	-	5.0 1	LO	39		463	1975	0.	10	445	1 20		512
		5	1	1- 22	8	20 - 4		464	14.5	-	3	14	) 14		511
		16	- 1	c.5	6	22		46	170	-	3	3.		3	5150
		17	1.	6.0	8	62		460	1. 11 ×	с.	6	1	ŧ 1	4	51.50
		188	-	1.0	8	37		46	E S	23.	5 72	18	0 20	DC	010
ZE /		19	6	1-11	3	20		46	8	-		3	9	52	
Grid Free W		208	• -		4	86		46	9 -	12.	0 2	8	2 6	80	510
Since Since		21	-	ar a start	7	28		.47	0 -	-					519
a fait in Venil		+22	-		3	14		47	1 -	3.	5	8 6	9 4	20	5200
	A Part Street	4231		-	6	52		h	28 -	3.	5	7 12	25 5	00	521
		424		0.5	4	24		-h*	13 -	8.	0 2	0 3	75 18	320	522A
		425		0.5	4	18 .		24.	74 -	1	.5	8	67	384	523
Strate Manufactor		Wer.	192		1	18	50	Ц	75	5	.0 .	4	62	315	524
Ball AF An		187		0.5	16	. 16	71	.4	76		.0 :	2	26		525
		No.		0.5	10	35	66	i.	77B	- 9	.5	14	69	231	526
		hot		1.0	13	16	74	L.	78	-	1	7	20		527
					7	16	n	1	79	-	_	7	20		928
		23	-	A HE	7/1	26	163	1	80		314	4	18		529
		*3.		1.10	6	20	75		81			3	14		530B
						1	78		.82	- 17		12	20 -		531
			5- 34			18	1		Ron			13	39		532
			4	100		and the	0	1	Ru		1.44	10	24		533
	· 合称是一个"一个"。"是一个"	43		11.2	10	- Areas	INC	*	hae			- A	18	178 1	534
	Service of the service	43	( - · ·	2:.0	42	2051	hh IF	223-	100	·	1		20	163	5351
	E THE PARTY AND A PARTY AND A	43	7 +	5.7	04	-95	T. AC		400	Sec.	-		-20	142	536
			(9B -		te .	124			401	-			27	102	537
	·····································	1. A A A A A A A A A A A A A A A A A A A	- 19	4.0	10	210	- mark		450B	534	0.7		SI LIE	120	538
A/-	· · · · · · · · · · · · · · · · · · ·	1	40 -	4.0		200	dh.n		489		0.5	14	410	nere	539
∆/m	"一个"的"你们的"的"是不是你?"	4	41 -	7.0	31	53	340		490	+	24.0	260	2756	2014	540
∆/5m			42 -	- 2.0 -	21	24		17	491	5-15	0.5	12	140	110	541
sise	· · · · · · · · · · · · · · · · · · ·		43B	- 1.5	40	91			492	-	2.5	12	03	140	5 542
Charles and the second	Δ, 125		. <u>7</u> .17	- ê40	34	38			4998	-	0.5	4	++	62	12.7
	A/192		e145	- 2,0	21	54	550		1.94	-	0.5	10	54.	113	
A,	the second se		1.6	2.0	4	\$ 15			458	5	0.5	7 -	22	98	Torene
$\Delta/s$			447			8 30			496		-	10	55	2/20	1
			448	-		6 20			497		9.2	.6	56	130	1
A/532			149		1	10 Z4			4980	-	0.5	8	37	98	
A	and the state of the state of the	and the second	450	-		7 20			499	-	- "	13	140		240
Afesse	t State Barry Consult		451			3 24			500	-		6	42	90	549
Afex			452			3 24	•		501		-	7	37	95	200
Also	Department of		453			4 24	6		502	215	0:5	- 4	46	- 82	
A 5.00	Mines and Petroleum Resou	Irces	854		14	4 2	0		503B	-	2.5	6	46		592
Afer	ASSESSMENT REPORT		455	-		7 3	0		504	1726		3	46	76	-553
Afse	3827 #9		456	- 0	.5	14 6	0		505	11-1	-	4	22	53	5.554
A/194	MAP 11		457B	1		6 2	34	1 the set	506	1	1	4	35	87	555
fore			458	-	-	10 1	18	a upt	507	-	8.5	18	76		1 556
SULLIV	AN RODGERS		459		+	8	22 78	i j	5088	-	0.5	10	40	133	357
	SUMAC -		460			8	20 103		509		-	6	14	31	558
CALL DALL SATURDARY			461		-	8 2	80 44		510	-		18	18	8 63	R. T.
PITMAI	N 'Was Group'														30
(MC	DOSEHORN PROFERTY														
Reconna	Issance Soll Lines	17													
	COPIER														
Map No. 71-Gc		1													
Date: Oct., 1971	Scale: 1': 600/ NTS: 94 E														

An         Ag         Out         Pp         An           1         -         -         7         18         68           2         30         4.0         8         39         68           3         -         -         10         26         95           14         -         -         7         24         63           150         -         1.0         10         35         64           17         -         2.5         10         30         78           18         -         2.5         7         33         101           19         -         1.5         8         60         130           200         -         1.5         8         50         168           21         -         6.5         8         12         53           22         -         0.5         8         12         53           24         -         7.5         10         52         275           25         -         0.5         8         12         53           26         1.0         13         33         78	
Au         Ag         Ou         Pe         Zn           1         -         -         7         18         68           2         30         4.0         8         39         68           3         -         -         10         26         95           14         -         -         6         18         74           150         -         -         7         24         63           16         -         1.0         10         35         84           17         -         2.5         7         33         101           19         -         1.5         8         60         130           200         -         1.5         8         50         168           21         -         1.5         8         50         168           220         -         1.5         8         122         53           24         -         7.5         10         52         275           25         -         0.5         8         122         53           26         1.0         13         33         78	
1     -     7     18     68       12     30     4.0     8     39     68       13     -     -     10     26     95       14     -     -     7     24     63       150     -     1.0     10     35     84       150     -     1.0     10     35     84       16     -     1.0     10     30     78       18     -     2.5     7     33     101       19     -     1.5     8     60     130       200     -     1.5     8     50     168       21     -     -     8     35     257       226     0.3     5     424     1125     2400       23     -     2.0     7     .26     149       24     -     7.5     10     52     275       25     -     0.3     33     78       26     1.0     13     33     78       25     -     6     14     63       308     -     10     30     101       31     -     1.0     14     39     227 <t< th=""><th>)</th></t<>	)
12     30     4.0     8     39     68       13     -     -     10     26     95       14     -     -     6     18     74       150     -     1.0     10     35     94       150     -     2.5     10     30     78       16     -     1.0     10     35     94       17     -     2.5     7     33     101       19     -     1.5     8     60     130       200     -     1.5     8     50     168       21     -     7.5     8     50     168       21     -     7.5     10     52     275       22     -     0.3     8     12     53       22     -     0.3     8     12     53       23     -     1.0     14     16     78       23     -     1.0     14     16     78       23     -     1.0     14     16     78       24     -     1.0     14     130     101       33     -     1.0     14     39     227       34     -	
13     -     10     26     95       14     -     -     6     18     74       150     -     -     7     24     63       16     -     1.0     10     35     84       17     -     2.5     10     30     78       18     -     2.5     7     33     101       19     -     1.5     8     60     130       200     -     1.5     8     50     168       21     -     -     8     35     257       226     30     3.5     424     1125     2400       23     -     2.00     7     .26     149       24     -     7.5     10     52     275       25     -     0.3     8     12     53       26     1.0     13     33     78       27     1.0     14     16     78       28     -     1.0     14     39     27       308     -     10     30     101       31     1.0     14     39     27       333     -     1.0     14     39       334	
14     -     -     6     18     74       150     -     -     7     24     63       16     -     1.0     35     84       17     -     2.5     10     30     78       18     -     2.5     7     33     101       19     -     1.5     8     60     130       200     -     1.5     8     50     .168       21     -     -     8     35     257       226     30     3.5     424     1125     2400       23     -     2.0     7     .26     149       24     -     7.5     10     52     275       25     -     0.3     8     12     53       26     -     1.0     13     33     78       27     -     1.0     14     16     78       28     -     -     6     14     63       308     -     -     10     30     101       31     -     1.0     14     130     130       333     -     1.0     14     39     227       34     3.0     28	
150     -     -     7     24     63       16     -     1,0     10     35     94       17     -     2.5     10     30     78       18     -     2.5     7     33     101       19     -     1.5     8     60     130       200     -     1.5     8     50     168       21     -     -     8     35     257       22A     30     3.5     424     1125     2400       23     -     2.0     7     .26     149       24     -     7.5     10     52     275       25     -     0.3     8     12     53       26     1.0     13     33     78       27     1.0     4     16     78       28     -     6     14     63       308     -     10     30     101       31     -     1.0     14     39     227       333     -     1.0     14     39     227       334     -     1.0     14     39     227       335     -     6     33     130 <tr< td=""><td></td></tr<>	
1.0     10     35     94       17     2.5     10     30     78       18     2.5     7     33     101       19     1.5     8     60     130       200      1.5     8     50     168       21       8     35     257       226     30     3.5     424     1125     2400       23      2.0     7     .26     149       24      7.5     10     52     275       25      0.3     8     12     53       26      1.0     13     33     78       27      1.0     13     33     78       28       6     14     63       308       10     30     101       31      1.0     14     39     227       33      1.0     14     39     227       34      1.0     14     39     227       353      1.0     14     39     227       34      1.0     14     39     2	
17       -       2.5       10       30       78         18       -       2.5       7       33       101         19       -       1.5       8       60       130         200       -       1.5       8       50       168         21       -       -       8       35       257         200       3.5       424       1125       2400         23       -       2.0       7       .26       149         24       -       7.5       10       52       275         25       -       0.5       8       12       53         26       -       1.0       13       33       78         27       -       1.0       14       16       78         28       -       -       6       14       63         308       -       -       10       30       101         31       -       1.0       14       39       227         33       -       1.0       14       39       227         34       -       1.0       14       39       227	
18       -       2.5       7       33       101         19       -       1.5       8       60       130         200       -       1.5       8       50       168         21       -       -       8       35       257         22A       30       3.5       424       1125       2400         23       -       2.0       7       .26       149         24       -       7.5       10       52       275         25       -       0.5       8       12       53         26       -       1.0       14       16       78         29       -       -       6       14       63         308       -       -       10       30       101         31       -       1.0       14       130       178         328       -       -       10       30       101         331       -       1.0       14       39       227         34       -       3.0       15       16       33       130         353       -       1.0       14       39	
19       -       1.5       8       60       130         200       -       1.5       8       50       168         21       -       -       8       35       257         22A       30       3.5       424       1125       2400         23       -       2.0       7       .26       149         24       -       7.5       10       52       275         25       -       0.5       8       12       53         26       -       1.0       13       33       78         27       -       1.0       14       16       78         28       -       -       6       14       63         308       -       -       10       30       101         31       -       1.0       14       130       178         328       -       -       10       30       101         333       -       1.0       14       39       277         34       -       3.0       13       130       145         333       -       1.0       14       39       277	
200     -     1.5     8     50     168       21     -     -     8     35     257       22A     30     3.5     424     1125     2400       23     -     2.0     7     .26     149       24     -     7.5     10     52     275       25     -     0.5     8     12     53       26     -     1.0     13     33     78       27     -     1.0     4     16     78       28     -     -     6     14     63       308     -     -     10     30     101       31     -     1.0     14     130     178       328     -     -     6     33     130       333     -     1.0     14     39     227       34     -     3.0     13     46     173       353     -     1.0     14     39     227       34     -     3.0     13     14     130       354     -     1.0     14     39     227       354     -     3.0     13     14       355     -     1.	X
21     -     -     8     35     257       22A     30     3.5     424     1125     2400       23     -     2.0     7     .26     149       24     -     7.5     10     52     275       25     -     0.5     8     12     53       26     -     1.0     13     33     78       27     -     1.0     4     16     78       28     -     -     6     14     63       308     -     -     10     30     101       31     -     1.0     14     130     178       328     -     -     6     33     130       333     -     1.0     14     39     227       34     -     3.0     15     16     173       335     -     1.0     14     39     227       34     -     3.0     15     70     30       353     -     1.0     14     39     227       34     -     3.0     15     17     30       354     -     3.0     15     13     15       36     - <td>-</td>	-
22A     30     3.5     424     1125     2400       23     -     2.0     7     .26     149       24     -     7.5     10     52     275       25     -     0.5     8     12     53       26     -     1.0     13     33     78       27     -     1.0     14     16     78       28     -     -     6     14     63       308     -     -     10     30     101       31     -     1.0     14     130     178       308     -     -     10     30     101       31     -     1.0     14     130     178       328     -     -     6     33     130       333     -     1.0     14     39     227       334     -     3.0     19     46     173       335     -     1.0     14     39     227       335     -     1.0     14     39     227       335     -     1.0     14     39     227       336     -     1.0     14     39     247       336	
23       - $2.0$ 7 $.26$ $149$ $24$ - $7.5$ $10$ $52$ $275$ $25$ - $0.5$ $8$ $12$ $53$ $26$ - $1.0$ $13$ $33$ $78$ $27$ - $1.0$ $4$ $16$ $78$ $28$ -       - $6$ $14$ $63$ $29$ -       - $6$ $14$ $63$ $308$ -       - $10$ $30$ $101$ $31$ - $1.0$ $14$ $130$ $178$ $328$ -       - $10$ $30$ $101$ $331$ - $1.0$ $14$ $39$ $227$ $334$ - $3.0$ $18$ $44$ $173$ $335$ - $1.0$ $14$ $39$ $227$ $334$ - $5.0$ $21$ $44$ $250$ $337$ - $2.0$ $21$ $44$ $25$	
24       - $7.5$ $10$ $52$ $275$ $25$ - $0.5$ $8$ $12$ $53$ $26$ - $1.0$ $13$ $33$ $78$ $27$ - $1.0$ $4$ $16$ $78$ $28$ -       - $6$ $14$ $63$ $29$ -       - $6$ $14$ $63$ $308$ -       - $10$ $30$ $101$ $31$ - $1.0$ $14$ $130$ $178$ $333$ - $1.0$ $14$ $39$ $227$ $334$ - $3.0$ $19$ $46$ $173$ $3558$ - $6.0$ $21$ $79$ $520$ $536$ - $13$ $08$ $242$ $339$ - $2.0$ $10$ $40$ $145$ $546$ $1.5$ $6$ $35$ $113$ $544$ $ 7$ $30$ $120$ $544$	
2) $ 0.5$ $8$ $12$ $53$ $26$ $ 1.0$ $13$ $33$ $78$ $27$ $ 1.0$ $4$ $16$ $78$ $28$ $  6$ $14$ $63$ $29$ $  6$ $14$ $63$ $308$ $  10$ $30$ $101$ $31$ $ 1.0$ $14$ $130$ $178$ $328$ $  6$ $33$ $130$ $331$ $ 1.0$ $14$ $39$ $227$ $334$ $ 3.0$ $19$ $46$ $173$ $3358$ $ 6.0$ $21$ $79$ $520$ $536$ $ 5.0$ $21$ $44$ $240$ $537$ $ 2.0$ $10$ $40$ $145$ $538$ $  13$ $98$ $242$ $339$ $  8$ $44$ $113$ $540$ $ 1.5$ $7$ $30$ $120$ $541$ $ 3.0$ $6$ $35$ $113$ $542$ $ 4.0$ $8$ $28$ $113$ $543$ $ 6$ $53$ $172$ $546$ $ 1.5$ $6$ $63$ $172$ $546$ $ 1.5$ $6$ $63$ $172$ $548$ $ 2.5$ $7$ $31$ $252$ $548$ $  7$ $24$ $136$ $551$ $320$ $-$ </td <td></td>	
26       - $1.0$ $13$ $33$ $78$ $27$ - $1.0$ $4$ $16$ $78$ $28$ -       - $6$ $14$ $63$ $29$ -       - $6$ $14$ $63$ $308$ -       - $10$ $30$ $101$ $31$ - $1.0$ $14$ $130$ $178$ $331$ - $1.0$ $14$ $39$ $227$ $334$ - $1.0$ $14$ $39$ $227$ $334$ - $3.0$ $19$ $46$ $173$ $3358$ - $5.0$ $21$ $79$ $520$ $536$ - $5.0$ $21$ $79$ $520$ $536$ - $5.0$ $21$ $44$ $250$ $537$ - $2.0$ $10$ $40$ $145$ $540$ - $1.5$ $7$ $30$ $120$ $544$ - $7$ $24$ $131$	
27.1.041678 $23$ 61463 $29$ 61463 $308$ 1030101 $31$ .1.014130178 $32$ 633130 $33$ .1.01439227 $34$ .3.01946173 $3538$ 2179520 $36$ .5.0.21144250 $36$ 1398242 $37$ 13 $943$ $44$ $44$ $546$ .1.5 $546$ $548$ $548$ $551$ $5528$ $544$ $554$ $544$ $753$ $753$ $753$ <td></td>	
28       -       6       16 $58$ $29$ -       6       14       63 $308$ -       10       30       101 $31$ -       1.0       14       130       178 $331$ -       1.0       14       39       227 $333$ -       1.0       14       39       227 $334$ -       3.0       18       46       173 $3358$ -       6.0       21       79       520 $536$ -       5.0       21       44       250 $536$ -       5.0       21       44       250 $536$ -       5.0       21       44       250 $536$ -       5.0       21       44       250 $536$ -       1.3       05       242 $339$ -       -       8       44       113 $5460$ 1.15       7       30       120 $5445$ -       6.5       3       121 $546$ -	
29-61463 $308$ 1030101 $31$ -1.014130178 $32$ 633130 $33$ -1.01439227 $34$ -3.01946173 $3538$ -6.02179520 $36$ -5.02144250 $37$ -2.01040145 $37$ -2.01040145 $36$ -1.308242 $39$ 844113 $5400$ -1.5730120 $541$ -3.0635113 $542$ -4.0828113 $544$ 726107 $5452$ -0.5663172 $546$ -1.5642113 $548$ -2.573125 $549$ 724136 $551$ 320-107632 $552$ -731236144 $553$ -739113 $544$ 739113 $554$ -739313	
308-1030101 $31$ -1.014130178 $32$ 633130 $33$ -1.01439227 $34$ -3.01846173 $3538$ -6.02179520 $36$ -5.02144250 $36$ -5.02144250 $36$ -2.01040145 $36$ -1.5730120 $39$ 844113 $5400$ -1.5730120 $541$ -3.0635113 $542$ -4.0828113 $543$ -0.5663172 $546$ -1.5663172 $546$ -1.573125 $549$ 724136 $551$ 320-107652 $5528$ -1.03123361410 $554$ -739313 $554$ -739313 $554$ -739313 $554$ -739313 $554$ -739313	
31- $1.0$ $14$ $130$ $178$ $32$ 6 $33$ $130$ $33$ - $1.0$ $14$ $39$ $227$ $34$ - $3.0$ $18$ $46$ $173$ $3558$ - $6.0$ $21$ $79$ $520$ $536$ - $5.0$ $21$ $44$ $250$ $537$ - $2.0$ $10$ $40$ $145$ $538$ $13$ $98$ $242$ $339$ $8$ $44$ $113$ $5400$ - $1.5$ 7 $30$ $120$ $541$ - $3.0$ $6$ $35$ $113$ $542$ - $4.0$ $8$ $28$ $113$ $544$ 7 $26$ $107$ $546$ - $1.5$ $6$ $63$ $172$ $548$ - $2.5$ $7$ $31$ $252$ $549$ $7$ $24$ $136$ $551$ $320$ - $10$ $76$ $520$ $552$ $7$ $39$ $113$ $551$ $ 7$ $39$ $113$ $551$ $ 7$ $39$ $113$ $554$ - $7$ $39$ $113$	
326 $33$ 130 $33$ -1.01439 $227$ $34$ -3.01846 $173$ $3558$ -6.0 $21$ 79 $520$ $36$ - $5.0$ $21$ 44 $250$ $36$ - $5.0$ $21$ 44 $250$ $37$ - $2.0$ 1040145 $36$ -1398 $242$ $39$ 844113 $5400$ -1.5730120 $541$ -3.0635113 $542$ -4.08 $28$ 113 $543$ - $5.0$ $21$ $56$ $213$ $544$ 7 $26$ 107 $5476$ - $1.5$ 6 $63$ 172 $548$ - $2.5$ 7 $31$ $250$ $549$ 7 $24$ $136$ $551$ $320$ -10 $76$ $520$ $552$ 7 $39$ $113$ $551$ $  7$ $39$ $113$ $551$ $  7$ $39$ $113$ $554$ - $ 7$ $39$ $113$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
34 - 3.0 18 46 173 3508 - 6.0 21 79 520 36 - 5.0 21 44 250 37 - 2.0 10 40 145 38 - 13 98 242 39 - 8 44 113 5400 - 1.5 7 30 120 541 - 3.0 6 35 113 542 - 4.0 8 28 113 542 - 4.0 8 28 113 543 - 7 26 107 5498 - 7 26 107 5498 - 0.5 6 63 172 548 - 2.5 7 31 253 549 - 7 24 135 551 320 - 7 24 135 551 320 - 7 39 113 554 - 7, 39 113 544 - 7 39 113 544 - 7, 5 44 70 530	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
336- $5.0$ $21$ $44$ $250$ $337$ - $2.0$ $10$ $40$ $145$ $336$ $13$ $98$ $242$ $339$ $8$ $44$ $113$ $4400$ - $1.5$ 7 $30$ $120$ $541$ - $3.0$ $6$ $35$ $113$ $542$ - $4.0$ $8$ $28$ $113$ $543$ - $8.0$ $21$ $56$ $213$ $544$ 7 $26$ $107$ $546$ - $1.5$ $6$ $42$ $113$ $546$ - $1.5$ $6$ $42$ $113$ $546$ - $1.5$ $6$ $63$ $172$ $546$ - $1.5$ $6$ $63$ $172$ $546$ - $7$ $31$ $255$ $551$ $320$ - $7$ $31$ $256$ $5528$ - $1.0$ $112$ $336$ $1410$ $554$ - $7$ $39$ $113$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
536 13 98 242 39 8 44 113 5400 - 1.5 7 30 120 541 - 3.0 6 35 113 542 - 4.0 8 28 113 542 - 4.0 8 28 113 543 - 8.0 24 56 213 544 7 26 107 5452 - 0.5 3 30 126 546 - 1.5 6 42 113 5478 - 0.5 6 63 172 548 - 2.5 7 31 255 549 - 7 24 197 550 - 7 24 197 550 - 7 24 197 551 320 - 10 76 520 5528 - 1.0 112 336 1410 552 - 7 39 113 554 - 7, 5 44 70 530	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3.41       - $3.0$ $6$ $35$ $113$ $942$ - $4.0$ $8$ $28$ $113$ $643$ - $8.0$ $24$ $96$ $213$ $643$ - $8.0$ $24$ $96$ $213$ $643$ - $7$ $26$ $107$ $5452$ - $0.5$ $6$ $42$ $113$ $546$ - $1.5$ $6$ $42$ $113$ $546$ - $1.5$ $6$ $42$ $113$ $546$ - $1.5$ $6$ $63$ $172$ $548$ - $2.5$ $7$ $31$ $255$ $549$ -       - $7$ $24$ $136$ $551$ $320$ - $10$ $76$ $520$ $5528$ - $1.0$ $112$ $336$ $1410$ $554$ -       - $7$ $39$ $113$ $544$ - $7.5$ $10$ $70$ $5$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
843 · $8.0$ 2 · $56$ 213 44 · - 7 26 107 5458 · $0.5$ 3 30 126 546 · $1.5$ 6 42 113 5478 · $0.5$ 6 63 172 548 · $2.5$ 7 31 255 549 · - 7 24 157 550 · - 7 24 157 551 320 · 10 76 520 5528 · $1.0$ 112 336 1410 553 - 7 39 313 554 · $75$ 34 70 530	
44       -       7       26       107 $5456$ -       0.5       3       30       126 $546$ -       1.5       6       42       113 $5478$ -       0.5       6       63       172 $546$ -       1.5       7       31       256 $548$ -       2.5       7       31       256 $549$ -       -       7       24       187 $550$ -       -       7       24       138 $551$ 320       -       10       76       520 $5528$ -       1.0       112       336       1410 $553$ -       -       7       39       313 $544$ -       7.5       34       70       53	
5458 - 0.5 - 3 - 30 - 126 $546 - 1.5 - 6 - 42 - 113$ $5478 - 0.5 - 6 - 63 - 172$ $548 - 2.5 - 7 - 31 - 253$ $549 7 - 24 - 136$ $551 - 7 - 24 - 136$ $551 - 7 - 24 - 136$ $551 - 7 - 7 - 24 - 136$ $551 - 7 - 7 - 39 - 113$ $554 - 7 - 7 - 39 - 113$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
548 - 2.5 7 31 255 $549 - 7 24 197$ $550 - 7 24 136$ $551 320 - 10 76 520$ $5528 - 1.0 112 336 1410$ $553 - 7 39 313$ $554 - 7.5 34 79 533$	
549 - 7 24 197 550 - 7 24 197 551 320 - 7 24 136 5528 - 10 76 520 5528 - 1.0 112 336 1410 553 - 7 39 113	
550 7 24 136 551 320 - 10 76 520 5528 - 1.0 112 336 1410 553 - 7 39 113	
551 320 - 10 76 520 5528 - 1.0 112 336 1410 553 - 7 39 113 554 - 7.5 54 79 533	
552B - 1.0 112 336 1410 553 - 7 39 113 554 - 7.5 14 79 533	
553 7 39 113 554 - 7.5 14 79 533	
54 - 7.5 bb 70 53	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FRE 0.5 10 16 000	No.
977B - 1,7 20 63 28	
555 - 1.5 24 24 25 ¹	J.C.
Values less than 0.5 ppm As and	
30 ppb Au are denoted by " - ".	

535B



						M	oosehorn	Claim	Group		An	Cu	FD	Zn	E	ampl
		angila	Au	Ag (ppm)	Cu (ppm)	Pb (ppm)	(ppm).	San	lo Ipre	(ppb/)	(ppm)	(ppm)	(ppm)	(ppm)	J.	No
		300	(FE0)	THE R		30		1	6628	1	-	7	84	275		511
		19-14		1.9		and and		1	463	-	0.5	6	449	800	in the	512
			4 -	.5.0	10	39			405			3	76	140		513
		1 41	5 7		. 8	-20			404	-		a:	31	113	12	51
		H.	6 -	¢.5	6	22			405	174) 1	-	2	10	74		91
		4	g	6.0	8	.62		Ē	466	*	0.5	0	190	200		51
		4	.8B -	1.0	8	37			467	ъ. ,	3.5	74	100	2041	· Es	51
		4	19 -	1	3	20			468	-	2	3	35	62		51
	PEA DE A		OB -	-	4	26			469	-	12.0	20	82	680	1.14	51
	Scher 280 35		ат		7	28	s		470	-	-					51
	1/2 ·	Series.				.il			471	-	3.9	ε	69	420		52
		1	614 ·						472	в -	3.5		12	5 50	0	52
			23E -						1.7		8.0	2	37	5 182	a	58
		and the second	- 24	с.	84	1 21	94 T		er ro Leel		1		8 6	7 .38	4	52
			+25 -	.O.	5	+ 1	· ·		4.74	* ; *	**		6	0 21	9 31	-58
			-26 -	-		3 1	8 50		47	- v	9.0		2 0	6		55
			427	Ø.	5 1	6 1	6 - 71		1+17	-	ц.(	3 2	2 2	20	1 to	G.
		124	+2.8B	0.	.5- 3	0 3	66		47	79	e.	5 3	4 6	9 23	L Con	-
		1257	429	- 1	.a ]	3 0	16 74		67	8 -	-		7 2	20		20
			1.20	_	-	7	16 71		427	9 -			7 3	20		51
		522	- 10			id a	24 123		48	· ·	a in g		4	18		5
		1	-31			4	20 7B		4.8	in .			3	14	1	1.5
			432			9				Ro .			12	20		5
		No.	4 <u>3</u> 30 3	io.	-		20 (2			de Duin			1.2	29		ż
			434	-	÷	6	19 10			Dis D	-		10	24	all's	
			435	- 1	1.5	36	76 960			644 	-	-		- 0	6 00	
			436	- 2)	0.0	42 1	172, 1000		.P13-4	85		-	4	10	130 4	5
			437	-	5.5	84 39	935 400	*		86	-	-	4	20	163 *	
		THE WAY	438B	- 10	0.5	42	120 1080	C.		87	-	-1.5	4	20	153	
			1439	(They	4.0	1	375 2600			+98B	6	1.9	7	37	123-	
	△, 510	a second	140	-	4.0	7	260 20			+89	- 4	.5 1	12	416	680	
	f 511		1.11.2		7.0	31	63 84	e -		190	- 2	4.0	200 2	750 2	600	
A /513	2/2	Shirt-	1.1.5		0.0	21	. 22			691		05	12	140	178	
1 5 14			- 442	-	5.49 	1.0	-			tina Nati			12	63	140	
515 C			. 143B		2.7	40	2.4			49.	-			LL I	82	
	△ r 525-		1444	-	2.0	34) -	-1 -9	a.s.		4123E					110	
	A + 526	1	Hr.	~	2.0	21	04 5	QU.		494	-	0.5		214	22.5	
	A 528		446	+	2.0	42	12			496 <b>.</b>	-	0.5	7	22	93	
	A + 529		447		-	8	30			496	-	*	10	56	200 *	
	A 5308		448		-	6	20			497	-	615	8	56	130	
	A 532		149	-	14	16	24			4980	-	0.5	8 -	37	98-	
	A 5 33		450	2	-	7	20			499	3	-	13	140		1-
	A + 530		in the			3	24			500	-	_	6	42	90	1
	A 536		401			1 2	24			501	-		7	37	95	
	A 539		452	~	-		26			JEI.		O.E	1	46	-82	
	∆ / 539	2	453		-	4	00			502		0.7		10b		
$\triangle$	\$ 5400	atten of	454	1. 7		4	20			503B	1	2.5	0	144	110	
A	54/ .		455	17 -	-	7	30			504	-	-	3	46	76.	
△ / 543	**	14	456	12	0.5	14	60		THE REAL	505	-	-	4	22	53	
e\$ 7 544			451	в –	-	8	24		A.	506	-		4	35	87	Sec.
545 B			45	8 -	-	10	18		at .	507	-	.8.5	18	76		-
	SULLIVAN RODGERS	100	he	9	196		3 22	78	4	5089	-	0.5	10	40	133	
, d	- SUMAC -		14	0			8 20	101		509	-		6	14	31	-
-			415				3 250	Lile S	1	510	-	-	8	18	63	ł
	PITMAN - 'Was Group'	SELE	46	1. J.				3								
1	(MOOSEHORN PROPERTY)															hoe
1	Reconnaissance Soil Lines	And the second														
	ZINC															
1 N	lap No. 71-6d															
	nate: Oct 1971 Scale: 1" - 600' NTS: 94 F															

T.C.5.

e Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	-	7	18	68
30	4.0	8	39	68
14-4	- 10	10	26	95
-	- 1	6.	18	74
- D	-	7	24	63
-	1.0	10	35	84
·	2.5	10	30	78
3 -	2.5	- 7	33	101
9 -	1.5	8	60	130
0C	1.5	8	50	168
1 -	-	8	35	257
2A 30	3.5	424	1125	2400
3 -	0.8	7	26	149
4	7.5	10	52	275
5	0.5	8	12	53
6 -	1.0	13	33	78
7 -	1.0	4	16	78
8 -		.6	16	. 58 .
9 -	+	. 6	14	63
30В -	-	10	30	101
31 -	1.0	14	130	178
32 -	1	6	33	130
- 83	1.0	14	39	227
34 -	3.0	18	46	173
35B -	6.0	21	79	520
36 -	5.0	21	1.4.	250
37 +	2.0	10	40	140
38 -		13	99	242
39 -		-8	44	113
400 -	1.5		30	120
41	3.0	6	35	113
42 -	4.6	8	28	113
43	8.0	24	56	213
44		7	26	107
458	0.5	2	30	126
46	1 2.0	4	42	112
479	2.5	6	63	172
4.9		7	21	2406
the state	5.00	1.	24	187
			24	128
- 0,0		10	24	130
051 380	1.5.5	10	226	1410
52B -	- 1.0	112	335	1410
- 200		1	39	113
	7.5	44	19	232
555 -	0.5	12	40	210
556 -	3.0	26	63	000
557B -	1.5	28	63	282
548 -	1.5	24	- 214	255
Values le	are d	n 0.5 enoted	ppm Ag	aud



							Me	osehorr	Cla	im Group								
and the second		amp.	Le Au	A (p	g (n	Cu .	Pb (ppm)	Zn (ppm)	No.	ample	Au (ppb)	A# (ppm)	(ppm)	Ft (ppm	) (pp	m) [	Sar	nple No
San Liber 1		No.	413 -	1	.5	7	30	(P.L.m.)	11	4620	-	-	T	84	27	3	£ ;	511
1. 一部間			414 -	. 5	.0	10	39			463	-	0.5	· 6	449		6-1		.12
			415 -		1	8	20			464	-	-	3	76	14	<u>a</u>		13
	and the state of the second		416 -		0.5	6	22			465	1.70	-	3	31	11	3		534
			417 .	- 6	6.0	8	62		F.	466	-	0.5	6	11		4		,1%
7			418B	- 3	1.0	8	37		1	467	-	23.5	- (A)	1,84		e.		916
N /			419	-	-	3	20			468	1	-	3	3		12		117
N Page			420B	-		4	26			469	-	12.0	. 20	8	5 03	51.		510
agnetic 280 35			421		-	7	28			470	-	-		£ 4	a - a			5201
12		3	422	5		3	14			471		3.7		7 19		10		521
			423B	-		0	52			4/21	B. P.	Q. 1		n 90	19			5.201
· · · · · · · · · · · · · · · · · · ·			424		0.5	- 4	18	1. 1. s.		475		1.		5 K	17 3	44		523
			425		0.2		18	50		475		5.1	· 1	li n		29		524
			420		0.5	16	16	71		476	-	4.2			×.			98.
	the state of the state of		428B	1	0.5	10	35	66		497	·B -	с.	5. 1	5. E	69: I	3.1		526
	the state of the state		429	-	1.0	13	16	74		472	-	-						527
	不过是我们 小小小 想		430	-	4	7	16	71		475		-						528
	の「「「「「「」」」		431	-		10	źł	+ 123		480		-		14	18			529
			432	-	-	6	50	75		483	i	-		3	Tμ			530
	And the state of		433C	30	-	7		8 78		48	s -			12				531
			434	-	÷	6	1	8 74		48	38 -	•		13	39			132
	· * · · · · · · · · · · · · · · · · · ·		435	-	17.5	36	7	6 960		48	4 .	* _ *		1.0	-214	-	1	-34
			436	1.	20.0	42	17	2 1000		123-48	35	· ·		4	18	178		535
			437	-	5.5	81	+ 393	5 14000	1	48	*6	•	*	4	20	Ina n		136
			4386	No.	0.5	111-	2 12	15 2600		42	57		-	4	20	159		537
	and the second second	1	439		4.0	2.	7 26	60 200		43	сов Ra		• 2	12	97. 416	660		538
7 510			440		7.0	3	1 8	3 840	0	145	90	- 24	.0 :	200 2	750	26:00		39
			442		2.0	1 2	1	22		4	91	- (	1,5		14.0	179		ۇيلى
			443B	~	. 1.5	14	0	91		14	32	- 5	1.24	12	63	140		.41
			444	-	. 5.0	8 3	14	39		4	03H	- 3	94 1	7	44	88		.42
	A 7525		445	×	2,0		21	54 88	80	34	94	- (	1.5	8	54	113	į.	543
L	- 1526 + 529		446	•	2.0	5	42	12	*	u.	95	-	1.5			3		144
	\$ 528		447	-	-		8	30		4	96	+	-	10	50			A state
A/01	308		448	*	2		6	20		4	97			6	36	130		-de
A 531	A STATE AND A STATE AND A STATE		449		-		10	24		4	980	*	0.5	20	27	96		54.3
A 533			450	-			2	20		L	-90	*		13	140			543
△ / 535 8	The state of the state		451		4 5		2	24		1. 3	000	-	-	¢ e	412	90		550
A 536-			452	-			. 4	26			101	-	0.5	ł	u.fr	HP		553
538	Department of		453	-14			4	20			102 1028		2.5	6	44	JE		552
539 0C	Minos and Petroleum Resp	-	454			_	7	30			504		-	3	46	76		553
	AUSESSMENT REPORT	1	47	6	- 0	.5	14	60			505	1	_	4	22	53		554
a	NO. 3832 MAP#11		45	7B .	Tole.	-	8	24	•		506	-	~	- <u>1</u> 4	35	87		555
			45	8	- and	-	10	18		4 - 1	507	-	8.5	18	776		-	\$56
SULLIV	AN RODGERS		45	9		1	8	35	78	14	508B		0.5	10	40	133	1	500
	SUMAC -		46	0		-	8	20	101		509			6	14	31		558
	JUMAU		46	51		•	В	280	LL C		510	-	-	8	18	63	1	Va
PITMA	N — 'Was Group'																	30
(MC	DOSEHORN PROPERTY)																	
necoma	LEAD	195																
	LEAD	1																
No. 71-Ge	Scale: 1" - 600' NTS: 94 F	1																
and and in the		A CONTRACTOR OF																

T.G.S.

Au	Ag	Cu	Fb	Zn
( ppc	/ (Film)	(bbm	1 ( ppm)	(ppm)
20	1.0	a	20	68
50	-	1.5	35	0.0
-		10	18	71
		-	214	63
		1	24	en en
-	4.12	10	20	(24
	2.1	1	30	10
-	4.0	-	33	101
	7.2	27	00	130
-	1.9	5	50	168
-	-	8	35	257
30	3.5	424	1125 2	2400
-	2.0	77.	26	149
-	7.5	10	52	275
-	14-2	8	12	13
	1.0	13	33	75
-	1.0	14	10	78
-	•	6	16	58
-	-	6	14	63
-	-	. 10	30 .	101
-	1.0	14	130.	178
-	-	6	33	130
4	1.0	14	3%	227
~	3.0	18	46	173
-	6.0	21	7,0	
-	546	<u>c1</u>	lala.	
-	2.0	10	40	145
τ	1.8.	13	98	242
-	-	8	14/4 -	113
•	1.4	7	341	120
-	3.0	6	3	113
-	4.0	8	28	113
-	8.0	24		213
-	π	19	26	107
-	0.00	1.4	30	126
-	1.	6	42	113
-	0.5	6	63	172
<del>.</del>	2.0	T.	31	255
-	-	7	24	187
-	-	7	. 24	138
320	-	10	76	520
-	1.0	112	336	1410
-	-	7	39	113
-	7.5	44	79	535
-	0.5	12	46	218
-	3.0	26	63	600
-	1.5	28	63	282
-	1.5	рľ,	24	255
				-

dues less than 0.5 ppm Ag and ) ppb Au are denoted by " - ".