

REPORT ON
AIRBORNE GEOPHYSICAL SURVEY

2151, 2383, 2384, 2385 Marmot Groups
Lat. $56^{\circ} 45$, Long, $126^{\circ} 30$

$$
\text { N.T.S } \quad 94 D \quad 10 E, 15 E
$$

Wesfrob Mines Limited
March 15, 1973 - March 31, 1973
D. H. Brown, P.Eng. (B.C.)
R. K. Watson, P.Eng. (Ont.)
(Lockwood Survey Corporation Limited)

D<xamaney of
Mines and patrolenta Resources ASESSmatr RHORT no 4254 .
INTRODUCTION 1
1.1 AREA DESCRIPTION 1
1.2 TOPOGRAPHY 1
1.3 SURVEY FLIGHT PATTERN 1
Location Map, Fig. 1 2
2.1 AIRCRAFT INSTRUMENTATION \& DATA RECORDING 3
(a) Gulf Mk.III Magnetometer 3
(b) Lockwood LHEM-200 Electromagnetometer 4
(c) C.A.R.L. Tracking Camera 5
(d) Bonzer Altimeter TRN-70 6
3.1 FIELD SURVEY PERSONNEL 6
4.1 POSITIONING 7
5.1 DATA COMPILATION AND PRESENTATION 7
(a) Aeromagnetic Data 7
(b) Electromagnetic Data 8
INTERPRETATION 10
Magnetic Survey 10
Electromagnetic Survey 10
RECOMMENDATIONS 12
SUMMARY AND CONCLUSIONS 13
APPENDIX
A. List of Claims
B. Statement of Work
C. Statement of Qualifications
\#+Fig. 4 Sample Magnetic Profile

INTRODUCTION

Abstract

During the period March 23rd to March 26th, 1973, Lockwood Survey Corporation Limited carried out an airborne geophysical survey over a group of claims in the northern part of British Columbia for Wesfrob Mines Limited.

The purpose of the survey was to provide information about mineral deposits and geological structure.

1.1 AREA DESCRIPTION

The area covered is in the vicinity of Moosevale Creek, 20 miles east of Thutade Lake in the Cassiar District. The position of the area with reference to the nearest 1° quadulateral is $56^{\circ} 126^{\circ} \mathrm{NE}$.

1.2 TOPOGRAPHY

The area is extremely rugged. Relief is in the order of 2,500 feet from the valley of Moosevale Creek to the peaks in the McConnel Range. Average elevation of the area is about 5,000 feet above sea level.
1.3 SURVEY FLIGHT PATTERN

The geophysical survey consisted of traverse lines flown at 660 feet spacing in a $N 60^{\circ}$ E direction. All traverses

LOCATION MAP

Department of
Mines and farroizur: Resources
ASSESSMENT REPORT
NO. 4254 MAP $\# 1$

Figure 1
were flown in drape fashion with the helicopter maintaining a ground clearance of 200 feet.

2.1 AIRCRAFT INSTRUMENTATION AND DATA RECORDING

The following equipment was installed in a Bell Jet Ranger 206A helicopter, registration CF-NMP, operated by Northern Thunderbird Airways of Prince George, B.C.
(a) The Gulf MK.III Magnetometer

The magnetometer, in a towed bird configuration, is a saturable core fluxgate system which is used to measure the earth's magnetic field intensity in the direction of the main earth's field. It is sensitive to magnetic field intensity variation of about 1 gamma.

The magnetometer head consists of two saturable core orienting fluxgates whose axes are at right angles to each other. The axis of the measuring fluxgate is normal to the plane containing the two orienting fluxgates. In operation, the self-orienting fluxgates are maintained by servometers in a position of minimum coupling with the earth's magnetic field; the measuring fluxgate is then in a position of maximum coupling with the earth's magnetic field.

The output from the magnetometer is recorded in profile form in red ink on a moving chart paper, at an approximate scale of 1 inch to 1,320 feet. The operating range for this survey was 1,200 gammas across a 10 inch chart; the recording pen automatically steps at the side of the chart at $5 / 6$ th of the full scale range, i.e. 1,000 gammas. Chart speed was 4 inches per minute. The magnetometer trace is repeated on the $M F E$ chart that records the electromagnetic channels. This record is 1,200 gammas across a 2 inch width. See Fig. 4.
(b) The Lockwood LHEM-200 Electromagnetometer

The helicopter-borne E.M. system used for this survey was developed by Lockwood Survey Corporation. This system measures the in-phase and out-of-phase components of the secondary electromagnetic field, in terms of the primary field at the receiver, viz., in parts per million of the primary field. The frequency of the alternating electromagnetic field is 4,000 cycles per second. Receiving and transmitting coils are held vertical and coaxial in a towed "bird", a distance of 30 feet apart and 100 feet below the helicopter. The sensitivity of the
measuring system is such that the minimum recognizable in-phase anomaly is about 8 parts per million. Noise on the in-phase profile is usually less than 5 parts per million of the primary field.

This equipment is operated at a "bird" height of 100 feet.

Full scale deflection of the in-phase and out-phase channels is 400 parts per million across a distance of 2 inches. Recorder used was an MFE with a chart speed of 6 inches per minute. Scale of the record is 1 " $=1040$ feet. See Fig. 5.
(c) The C.A.R.L. Mk.VIII Tracking Camera The camera used for this survey was developed by Canadian Applied Research Limited.

This camera uses a 35 mm . film and is operated in a discrete frame mode. The frame size is 25 mm . laterally and 18 mm . longitudinally. The focal length is 18.5 mm . The resulting lateral coverage is 1.5 times the terrain clearance, the longitudinal coverage is equal to the terrain clearance, i.e. at 200 feet above ground the lateral coverage is

300 feet, the longitudinal coverage 200 feet. Each frame is numbered by a prism system which exposes "veeder" counter numbers on the side of the frame at the moment of exposure. Coincident with every tenth film exposure a fiducial pulse is imprinted on the magnetometer and electromagnetometer recording charts. Exposure interval of this camera for the survey was 1.5 seconds. See Figures 4 and 5 .
(d) The Bonzer Altimeter TRN-70

This equipment measures the clearance between the helicopter and the nearest object. It consists of an electronic narrow aperture transmitter operating at 1600 megahertz. Output from the altimeter system was recorded on the bottom trace of the MFE recorder along with the electromagnetometer traces. Operating range was 2,500 feet across a 2 inch chart width. See Fig. 5.

3.1 FIELD SURVEY PERSONNEL

The survey was conducted in the field by the following personnel:

Pilot	: K. Knight
Navigator/Operator $:$	H. Sandau
Data Technician	: J. Clulow

The address of Mr . Knight is Northern Thunderbirds Airways, Prince George, B.C. The address of Mr. Sandau and Mr. Clulow is 1450 O'Connor Drive, Toronto, Ontario.

4.1 POSITIONING

The positioning of the helicopter was recorded by the vertically mounted tracking camera on 35 mm . film. The developed film was then related to the 1320 feet to 1 inch mosaics to obtain accurate positioning. The related points plotted on the mosaic were then connected in order to produce the flight path recovery.

5.1 DATA COMPILATION AND PRESENTATION

(a) Aeromagnetic Data

The magnetic data is presented as contours of the earth's total magnetic field intensity at a basic contour interval of 20 gammas. The horizontal scale of the map is 1320 feet $=1$ inch. As all flights were of very short duration, the diurnal variation is minimal. A common datum was drawn on all the traverse profiles for that particular day. By inspection of adjacent lines flown on different
days, the diurnal variation was removed so that all traverse lines have datums in the same plane.

From this datum magnetic values are read at the predetermined 20 gamma interval and transcribed on the base map with reference to the flight path. Points of equal magnetic intensity are joined to produce the final magnetic contour map. Fig. 2.
(b) Electromagnetic Data

The electromagnetic data is represented as the half scindrcy wavelength of the in-phase component, being the extent of the heavy line with the dot representing the peak of the anomaly.

The electromagnetic data includes (a) instrument drift and (b) response due to regional variations in ground conductivity. These components were corrected for by fitting to both the in-phase and out-of-phase records, a series of linear datum lines to approximate the broad or regional variations in the records.

The in-phase component records were then read at the anomaly peaks and the half-wave amplitude marked.

The corresponding out-of-phase anomaly peaks were read. The extent and amplitude were then located on the base map with their in and out-of-phase values transcribed beside the peak. See Fig. 3.

INTERPRETATION

Magnetic Survey

The results of the magnetic survey are shown in contour form on Sheet No. 2. A band of relatively nonmagnetic rock lies in the center of the map sheet separating two rock types which are more active magnetically. The positions of the contacts between these three units have been interpreted on the magnetic map and transcribed onto the EM interpretation map.

By relating these magnetic units to the geological units as shown on G.S.C. Sheet 962A, McConnell Creek, it is proposed that the central, unmagnetic group is a southward extension of the Sustut Group, a formation of sandstones, conglomerates and shales. The eastern magnetic formation conforms well with the Upper Triassic andesitic and basaltic tuffs (3A) which have been mapped in this location. The western magnetic rock type would appear to represent the Asitka Group which is a mixture of rhyolitic and andesitic lavas and greenstones and would likely have the active magnetic character which is seen on this map.

A displacement in the western contact has been interpreted as a fault.

Electromagnetic Survey

A large number of weak electromagnetic conductors were observed on the survey profiles. The positions of the anomalies were transcribed to the interpretation map using symbols to denote the position of the peak of the anomaly and the width of the anomaly at one half amplitude. This
map was then superimposed on the magnetic contours and electromagnetic conductors were joined from line to line so as to conform with the bedrock structure as indicated by the magnetic contours. The conductors were then put into four magnetic categories: (M) those coinciding directly with a magnetic high, (L) those coinciding directly with a magnetic low, (C) those coinciding with a steep magnetic gradient which might indicate the contact between two rock types. Those having no particular magnetic characteristic are not given a letter.

The in-phase amplitude over the out-of-phase amplitude at the anomaly peak is written beside each anomaly. The conductivity-width product for the most conductive anomalies was calculated from the peak in-phase and out-of-phase values, and is shown beside the anomaly peak. The unit is mhos.

Past experience has shown that massive sulphide deposits usually have a conductivity-width value of greater than 5 mhos. Values under 5 usually relate to weak conductors such as barren or poorly mineralized faults, shale beds and other formational conductors, or clay beds within overburden. with one or two exceptions the conductivities shown in this present survey are below the range of values which represent sulphides. They fall within the range of formational conductors and their tendency to line up with the regional strike in the area would support this observation. of course, it is important to remember that economic sulphide mineralization in certain environments can occur as thin stringers or veins which will have a low conductivity-width but may be minable by open pit methods. The type of environment and the type of deposits that are expected must be taken into account before judgment is made on the conductivity-width
value that is used as a lower cut-off.

Within the rock type interpreted as the Sustut Group lies one anomaly with a conductivity-width of 8 mhos which is the highest observed in the survey. This coincides with a weak magnetic conductor and may have some potential as a sulphide deposit providing the Sustut Group is an acceptable host rock. This conductor and the others in this group, however, could also be shale beds which have been reported as part of the formation.

An exposure of copper and silver mineralization is reported on Map 962A and lies within the Upper Triassic formation 3A. Its location is not accurate enough for the writer to relate to the present conductors and so no judgment can be made as to its electromagnetic response.

RECOMMENDATIONS

The anomalies having a conductivity-width product. within the range of sulphide mineralization and having a coincident magnetic response are worthy of ground follow-up on the basis of geophysics alone. This would include any anomalies with conductivity-width of 5 or greater. However, it is first recommended that a study be made of the type of bedrock in which the conductor lies to assess the likelihood of it being the type of bedrock in which sulphide minerals should occur. Once this is established the anomaly should be traced on the ground using conventional ground electromagnetic and magnetic instruments or induced polarization instruments in an environment in which disseminated mineralization is believed likely to occur.

SUMMARY AND CONCLUSIONS

An airborne magnetic and electromagnetic survey was carried out over the area under discussion using a total field Gulf magnetometer and a coaxial in-phase and out-ofphase helicopter electromagnetic instrument. From the magnetic information the surrounding bedrock geology was extended under the overburden which covered most of the survey area. Three general types of bedrock were outlined and are shown on the interpretation map. A large number of comparatively weak electromagnetic conductors were discovered, many of which are believed to represent formational conductors and shale beds. It is recommended that the few conductors which had a conductivity-width product within the range of sulphide mineralization be followed up providing the surrounding bedrock type is a potential host rock for sulphide mineralization.

T

DOMINION OF CANADA:

Province of British Columbia.
To Wit:

In the flatter of the Airborne Geophysical Survey
 over 2151, 2383, 2384 and 2385 Marmot Groups
 Lat. $56^{\circ} 45^{\prime}$ N., Long. $126^{\circ} 30^{\prime} \mathrm{W}$., Omineca M. D.

T, David H. Brown
of
\#504-1112 West Fender Street, Vancouver 1, B.C.
in the Province of British Columbia, do solemnly declare that the following expenses were incurred in connection with an Airborne (Magnetometer and E.M.) Geophysical Survey covering the $2151,2383,2384$ and 2385 Marmot Groups of mineral claims, plus other areas of the Sustut-Will-Willow, Day-Fir and Cross Groups, as detailed below.

SUSTUT-OLD FORT AIRBORNE GEOPHYSICAL (MAG. AND EM.) SURVEY:

Compilation for Marmot 1-141
Proportion of above Airborne Geophysical Survey
$\$ 13,670.97$
$631.68 \$ 14,302.65$

And I make this solemn declaration conscientiously believing it to be true, and knowing that it is of the same force and effect as if made under oath and by virtue of the "Canada Evidence Act."

Declared before me at the of

Province of British Columbia, this
day of

$$
{ }_{A i}^{9 f}
$$

A Cominissioner for taking Affidavits within British Columbia or
A Notary Public in and for the Province of British Columbia.

WESFRDE MINES LIMITED

HIE WEST PENDER STHEET

TELEPHONE: GEZ. 6242
TELEX O4.53245

The Mining Recorder
Omineca Mining Division
Smithers, B.C.
Dear Sir:
This is to certify that the personnel cited in the accompanying Declaration of Work Statement as having contributed essential work connected with the Airborne Geophysical Survey covering the Marmot and other groups of claims are qualified as stated below:

Mr. R. K. Watson, B.A.Sc., P.Eng. (Ont.) - graduated from University of Toronto in 1959 in Engineering Physics with the Geophysical option. Since then he has been continuously employed by major Geophysical companies including Lockwood Survey Corporation, a division of Huntec Ltd. of Toronto.

Mr. D. B. Sutherland, B.A., M.A. (University of Toronto), P.Eng. (Ont.) Chief Geophysicist for Falconbridge Nickel Mines Limited. He was responsible for flight line layout and interpretation on the ground. Mr. Sutherland has more than ten years experience with major companies directing geophysical work.

Mr. J. J. McDougall, B.A.Sc.(U.B.C.), P.Eng.(B.C.) - was responsible for coordinating all phases of the survey: geophysical, aircraft, ground control and radio contact on the site during the period of the survey. Mr. McDougall is Exploration Manager (B.C.), Wesfrob Mines Limited.
C. Christensen and R. Macphee - are qualified surveyors trained in the field by engineering staff of Falconbridge Nickel Mines Limited and Wesfrob Mines Limited over a period greater than eight years each. They also doubled as caterers for the crew of seven men involved in the survey.

I, D. H. Brown, B.A.Sc.(U.B.C.), P.Eng.(B.C.) was responsible for auxiliary engineering services and over-all supervision of the project and report compilations.

> Yours very truly,

D. H. Brown, P.Eng. (B.C.)

DHB: fn


```
FALCONBRIJ VCR
LOCKWOOD TOR
12 APRIL 1973
~
FALCONBRIDGE
VANCOUVER
```

Mines and Petrolfor Resources
Department of ASSESSMENT Rar ORT
no. 4254 м
p
,

```
ETTENTION DAVE BROWN
INVOICE STATEMENT MARMOT AND ALL OTHER GROUPS
TOTAL MOBILIZATHON AND DEMOBILIZATION COST -
```



```
PROPUCTION
APRIL 17 TO EVENING 27 TH MARCH
```



```
I 1 DAYS AT DOLLARS 575/DAY
DOLLARS 6.325.00
```


REDUCTION AND COMPILATION OF DATA


```
PER LINE MILE
DOLLARS 4.349 .40
```



```
1.):-
Ind
SKINNER
LOCXWOOD
AH? \(\therefore \because=\)
\(+\)
FALCONBRII VCR
```

```
13%年
nr<<uci:
A!:Wh:
```

-

FALCONERIJ VCR
LOCKWOOD TOR

Department of

Mines and Petroleum Resources

AS : 5 G LT T KART

NO. 4054 M...

ATTENTION MR J MCDOUGAL FALCONBRIDGE VANCOUVER

12 APRIL 1973

LINE MILEAGES AS REQUESTED		$5 \% .35 \%$	16.5
MARMOT	165.	19.50 Sestet	56.1

$$
\text { Less- } \frac{107.4}{2877} \text { old Fort }
$$

SKINNER
LOCKWOOD
${ }^{*}$ FALCONERIJ VCR
LOCKWOOD TOR
\mathfrak{c}
j
er

