

Lo, Amigo Old Alameda
ADAR RESOURCES LTD.
Swakum Mountain Report of Assessment Work

BY: C.H. Donaldson, P. Eng. \qquad February 14, '1973.
" MAPS
\#1 Line Cutting
\#2 Magnetic Contours
-3 Geochemical Survey
$\# 4$ W. F - EM Survey
$=5$ Claim mop

PART A

INTRODUCTION:

The writer was requested by the Directors of Adar Resources Ltd., of $330-850 \mathrm{~W}$. Pender St., Vancouver, B.C., to submit a report covering the recently completed extended magnetometric Survey, Geochemical Survey and Electromagnetic Survey on the L0 Claim Group, Amigo Claim Group and Mineral Leases M 27 H and M 28 H .

This report covers the work done on the claims during the 1972-73 assessment period and is submitted as an application for a "Certificate of Work" under the Mineral Act of B.C.

SUMMARY \& RECOMMENDATIONS:

The work was done between October 3rd and December 4th, 1972, by Brent 0ldheiser and Assistants.

The work was in four parts as follows:
(a) Line cutting: Lines 1-13 were extended 500^{\prime} East to the East boundary of LO $3 \& 5$ and M 28 H , and 1,000' West to Midway on Amigo 23, 25, 27 and Lot 4505 of M 27 H . (approximately 4 miles).
(b) Magnetometric Survey was done on the line extensions (approximately 4 miles) with readings at 100^{\prime} spacing along the lines 300^{\prime} apart ($\mathrm{N}-\mathrm{S}$).
(c) A Geochemical Survey was done along the full length of the lines with samples taken © 100' intervals. (approximately 10.3 miles).
(d) An Electromagnetic Survey was done along the full length of the lines. (approximately 9 miles).

SUMMARY \& RECOMMENDATIONS - (Continued)

In the Southern area of the surveyed block the geochemical and electromagnetic anomalies coincide exceptionally well and fit in with the Seigel Associates' interpretation of the magnetometric survey with remarkable accuracy.

The two main controls of mineralization are: (a) faulting and (b) magnetometric lows.

There is a long line of mineralization coincident with or adjacent to the magnetic interpreted fault striking approximately $\mathrm{N} 30^{\circ} \mathrm{W}$ from Line $0+00 ; 7+00$ West to Line $36+00 \mathrm{~N} ; 15+00$ West.

Another line of geochemical anomalies follows the interpreted magnetic contact striking northerly in a double curve from line $3+00 \mathrm{~N}$; $14+50$ West.

Two other lines of mineralization in the South Western section are related to two E-M anomalies, namely LI-A and LI-B.

The Lucky Mike shaft in the Northern section is associated with a magnetic low.

In the South Western section there are three high geochemical anomalies coincident with magnetic lows. These are: (1) at the extreme Western end of line $12+00 \mathrm{~N}$; (2) \& (3) on line $3+00 \mathrm{~N}$ at $16+00 \mathrm{~W}$ and $20+00 \mathrm{~W}$. All three of these require further work to delimit them.

North and slightly East of the Alameda shaft the two geochemical anomalies coincide with a magnetic low and the major fault respectively.

It is noteworthy that the geochemical survey shows a preponderance of $\mathrm{Pb}-\mathrm{Zn}$ in the Southern area with copper the cominant metal in the Northern section.

SUMMARY \& RECOMMENDATIONS - (Continued)
I recommend the following work:

PHASE I

1. Percussion drilling.
2. Additional line cutting.
3. Additional magnetometric surveying.
4. Additional electromagnetic surveying
5. Additional geochemical surveying.

PHASE II
Diamond and percussion drilling.

1. Percussion drilling: Five proposed holes are shown on the E-M map to be drilled in the following order: lst at 19+50 West on line $6+00 \mathrm{~N}$; 2nd at $20+50$ West on line $9+00 \mathrm{~N}$; 3rd at $14+00$ West on line $15+00 \mathrm{~N}$. The 4th hole is located at $10+50$ West on line $12+00 \mathrm{~N}$; this is a formation hole only. I recommend that the 5th hole be at $14+50$ West on line $9+00 \mathrm{~N}$ to test the geochemical anomaly at the interpreted intersection of the magnetic contact and fault. The first 4 holes to be drilled bearing $S 60^{\circ} \mathrm{E}$ at -45°; the 5th bearing due East at -45°.
2. Line cutting:
(a) Line $12+00 \mathrm{~N}, 15+00 \mathrm{~N}, 18+00 \mathrm{~N}$ be extended Westward to $30+00 \mathrm{~W}$, with intermediate lines at $13+50 \mathrm{~N}$ and $16+50 \mathrm{~N}$.
(b) Lines $6+00 \mathrm{~N}, 3+00 \mathrm{~N}, 0+00$, be extended Eastward from 15+00 to $21+00$ with intermediate lines at $1+50 \mathrm{~N}, 4+50 \mathrm{~N}$ to test the geochemical anomaly.
(c) Line $0+00$ be extended Westward to $30+00 \mathrm{~W}$ with an intermediate line at $7+50 \mathrm{~N}$.
Extend the base line 600 feet South and cut lines at $3+00 \mathrm{~S}$ and $6+00 \mathrm{~S}$ to $30+00$ West and $21+00$ East.
3. Magnetometric survey along the 4.1 miles.
4. Electromagnetic survey along the 4.1 miles.
 survey to be carried out over areas of interest.

PHASE II

Additional percussion drilling to be carried out as targets are available.

Where percussion drilling indicates commercial values, diamond drilling to be carried out.

COSTS:

Phase I

1. Percussion drilling.
4 holes © 400' each $=$ 1600' @ \$6.00/ft. \$ 9,600

2. Line cutting.

4.2 miles © $\$ 150 / \mathrm{mi}$. 630
3. Magnetometric survey.
4.2 miles @ $\$ 750 / \mathrm{mi}$. 630
4. Electromagnetic survey.
4.2 miles @ $\$ 150 / \mathrm{mi}$. 630
5. Geochemical survey.
$3+$ miles © $100^{\prime}=180$ samples
assaying - $180 @ \$ 5.00-\$ 900$collecting - $180 @ \$ 1.50-\underline{270}$1,17012,720
Camp - 3 men, 30 days @ $\$ 15$ \$1,350
Truck rental, 30 days @ $\$ 25$
Truck rental, 30 days @ $\$ 25$ 750 750
Travel 300
Casual labour, 2 men,30 days @ $\$ 40$ 2,400
Engineering 2,0006,800

COSTS - PHASE I - (Continued)

Balance forward	$\$ 19,520$
Contingencies	2,480
Bulldozer and instrument rental	22,000
	2,000
224,000	

PHASE II

Percussion drilling
10 holes 400' o \$6/ft. \$24,000
Diamond drilling
10 holes @ 500^{\prime} @ $\$ 10.00 / \mathrm{ft}$. 50,000
Engineering
\$2,000
Bulldozer Rental 2,000
Truck \& equipment rental 2,000
Sampling \& assaying
3,000
9,000
$\$ 83,000$

Declared before me at the
of
Pre vince of British Columbia, VANCOUVER, B. C.
day of
FEB 2019790

Sub - Mining Recorder
A Commiswice: fir taking Afficavits within British Columbia or A Notary Pubicin aná tor the l'ruvince of Britise Columb:a.

PART B

INTRODUCTION:

The work, consisting of line cutting; magnetometric, geochemical and electromagnetic surveys, were carried out between October 3rd and December 4th, 1972, by Brent 01dheiser of Mission, B.C., assisted by G. Oldheiser of Ioco, B.C. and K. O1dheiser of Mission, B.C.

LOCATION AND ACCESS:

The survey was carried out on mineral claims designated as LO 3 to 6 and Mineral Lease 28 H .

Claim	Record No.
LO 3	43383
L0 4	42468
L0 5	43384
L0 6	42469
28 H	

The work done to apply to Group 1 and Group 2. Group 1 comprises 40 Mineral claims; Group 2 comprises 29 mineral claims and 2 mineral leases.

The claims are situated on Swakum Mountain in the South Western section of Highland Valley, B.C. at co-ordinates of approximately $50^{\circ} 18^{\prime}$ N. Latitude and $120^{\circ} 41^{\prime} \mathrm{W}$. Longitude.

Access is from the settlement of Nicola, which is $61 / 2$ miles East of Merritt on No. 5 Highway. At the Eastern edge of Nicola a dirt road turns off Northerly through the Indian Reserve and continues about 15 miles to the property.

The claim group is at an elevation from 5300' to 5666^{\prime}. The latter being the peak of Swakum Mountain.

GEOLOGY

The claim group is underlain by the Paleozoic Nicola Series of rocks of Upper Triassic Age. These consist chiefly of basalts, andesites, tuffs, limy tuffs, limestone and some conglomerates.

Six miles to the East the massive Highland Valley Guichon Batholith occurs and 3 miles to the East the Central Nicola Batholith is evident. Both batholiths contain copper deposits, but the Guichon is the more important.

The Nicola series on the claim group has been intruded by an unclassified igneous intrusion consisting of diorite, quartz diorite, granodiorite, quartz porphyry, etc. of the Jurrasic Age.

Coincidental with the Jurrasic intrusion, the Nicola strata was warped, folded, sheared and faulted; thus creating channels for mineralizing solutions.

WORK DONE
Line cutting: 13 lines were extended Westward from $\frac{15}{18+00}$ to $25+00$, and 14 lines Eastward from $10+00$ to $15+00$, i.e. $1500 \times 13=19,500^{\prime}$ plus $500 \times 14=7,000$ totalling 26,500 ' or 5 miles.

Magnetometer Survey: Readings at 100' intervals were taken on the extension of all lines, i.e. 5 miles.
The instrument used was a Sharpes M.F. 1 Fluxgate Magnetometer. The digital readouts are accurate to ± 10 gammas.

All readings were corrected for diurnal fluctuations.
The readings were submitted to Seigel Associates Ltd. for mapping and interpretation. The enclosed map was prepared by them.

Geochemical Survey: Geochemical samples were taken from the " B " horizon at 100^{\prime} intervals along the $N-S$ base line for 3900^{\prime} and along the $14 \mathrm{E}-\mathrm{W}$ lines for a total of 580 samples, of which 576 were assayed.

Geochemical Survey - (Cont'd.)
The samples were assayed for copper, tungsten, lead and zinc in parts-per-million. (P.P.M.)

The results were mapped and anomalous areas colored as per the enclosed plan showing combined metals.
E.M. Survey: The Electromagnetic Survey was done over the total area.

The readings were mapped and the map submitted to Mr . Hings, P. Eng., for interpretation. Mr. Hings' interpretative map is enclosed. It is noted that the E.M. anomalies coincide exceptionally well with both the magnetometric and geochemical anomalies.

Four scout percussion drill holes were set out from Mr. Hings' interpretation.

Percussion Drilling \& Site Preparation:

A contract was arranged to drill the four proposed percussion drill holes. Roads were constructed, drill sites prepared and the drill moved in and started drilling. At 120' in the first holes water was present so it was necessary to change to wet drilling. At this time severe weather conditions occurred with temperatures at 16° below zero and 30 mph . winds. It was unfeasible to attempt further drilling so work was stopped temporarily awaiting favourable weather conditions. The drill target was estimated to commence at about 200' hole depth, but low mineralization was already present in the lower section of the hole to 120'.

Diamond Drilling:
Two 250' diamond drill holes were drilled in the Northern area near the Mike shaft to check the previous drilling in the copper-tungsten zone.

1. Line cutting:

5 miles @ $\$ 750$ p. mile $\$ 750$
Truck rental, 3 days od $\$ 25$
Camp, 2 men, 3 days @ $\$ 1590$
Trave] $\quad 100$
2. Magnetometer Survey:

5 miles © $\$ 150$ p. mile 750
Truck rental, 3 days © $\$ 2575$
Camp, 2 men, 3 days @ $\$ 15 \ldots 90$
915.00
3. Geochemical Survey:

580 samples taken @ $\$ 1.50870$
576 samples assayed @ $\$ 4.80$,770
Truck rental, 15 days @ $\$ 25$
Camp (2 men, 15 days o $\$ 15$ (casual) 495
Casual labour, 3 days © $\$ 40$
Travel and freight $\quad 170$
4. E.M. Survey:

Survey 10.3 mites e $\$ 150 / \mathrm{mi}$. 1,545
Truck rentai 10 days @ $\$ 250$
Skidoo rental 2 days @ $\$ 25$
Camp 12 days 2 men e $\$ 15360$
Trave1, etc. 150
Instrument \& equipment rental $\quad 150$
2,505.00
Diamond and
Percussion drilling and site preparation
5,850.00
Engineering:
$\begin{array}{ll}\text { Seigel \& Assoc. } & 100.00 \\ \text { D.L. Hings } & 200.00\end{array}$
C. Donaldson 500.00

Drafting - Altair 98.81
" - 01dheiser
500.00

Printing, etc. 15.00
Typing and coloring 55.00
Travel expenses $\quad 400.00$ Balance from previous work

WORK APPLICATION:

'71-72	M 27 H \& M 28 H	\$1,920
${ }^{\prime} 72-173$	Group 1-40 claims	\$ 4,000
	Group 2-28 claims	2,800
	$\begin{aligned} & \text { M } 27 \mathrm{H} \\ & \text { M } 28 \mathrm{H} \end{aligned}$	$\begin{array}{r}1,164 \\ 756 \\ \hline\end{array}$
		\$8,820

$\$ 1,920$
'73-'74
Group 1-40 cl.
$\$ 6,800$ Group 2-28 cl.
${ }^{1} 74-175$ L0 8, 10
200
$\$ 17,640$

REFERENCES

1. Geological Survey of Canada Memoir 249 by W.E. Cockfield.
2. Report by Sherwin F. Kelly, P. Eng.
3. Map and interpretation of the magnetometric survey by Seigel Associates Ltd.
4. Information from B. 01dheiser, Party Chief.
5. Map and interpretation of the electromagnetic survey by D.L. Hings, P. Eng.

CERTIFICATION

I, Clarence H. Donaldson of the City of Vancouver, in the Province of British Columbia, hereby certify as follows:

1] That I am a Registered Professional Engineer of the Province of British Columbia and reside at Suite 101, Brentwood Apartments, 2050 Barclay Street, Vancouver 5, B.C.

2] That my mining experience embraces all phases of the mining industry and I have worked throughout Canada, Australia, South Seas and parts of U.S.A. and Mexico.

3] That I have no interest either directly or indirectly in the claims or securities of Adar Resources Ltd., nor do I expect to receive any.

4] That the information contained herein was obtained from perusal of the reports as listed in "References", as well as a personal knowledge and examination of the area.

March 20th, 1973.

Mr. E.J. Bowles, Chief Gold Commissioner, Dep't. of Mines and Petroleum Resources, Victoria, B.C.

Dear Sir:

I have to answer to your letter to Adar Resources Ltd.,

I must apologize for neglecting to include the information you require.

The information is as follows:
(1) Geochemical assays were done by Bondar-Clegg \& Co. Ltd., North Vancouver, B.C.
For $\mathrm{Cu} ., \mathrm{Pb}$. and Zn . the samples were sieved and the metals extracted by hot aqua regia acid, then assayed by atomic absorption giving results in P.P.M.
For WO_{3} the samples were fused with a basic flux, then dissolved in complex thiocyanate. The solution then analyzed by standardized colorometric comparison against both synthetic and matrix standards. Results were recorded in P.P.M.
(2) Electromagnetic Survey: Infinite source.
(a) Electromagnetic survey to determine electromagnetic features.
(b) The instrument used was a Ronka E.M. 16 receiver on low frequency reception using the U.S. Naval Station at Arlington, Wash., U.S.A. on 18.6 K.C.S. from the N.P.G. station, 2 component reception vertical and horizontal.
(c) Arlington Naval Station.
(d) The parameter measured and recorded were the angular distortions at the various points on the grid map as shown quoted in degrees.

The results were interpreted by Mr. Don L. Hings, P. Eng. of E.L.C. Geophysics Ltd., 250 North Grosvenor, Vancouver, B.C.

To: Mr. E.J. Bowles,
March 20th, 1973. Dep't. of Mines and Petroleum Resources

The base map from which the interpretation was made was returned to Mr. B. Oldheiser, who is now out of town. A copy of this map will be forwarded to you as soon as it is available.

I trust that the above information meets your requirements and it will be filed with the report.

Respectfully submitted,
ADAR RESOURCES LTD.

Per: O.H. Donaldson, PEng.

MAD $23^{\prime 72 A M}$

REPT, OF MINES

