

GEOCHEMICAL REPORT

ON

HI GROUP MINERAL CLAIMS

HEDLEY AREA

OSOYCOS MINING DIVISION

		Department of
	ВҮ	Mines and Petroleum Resources
		ASSESSMENT REPORT
	A.W. Dean, P.Eng.	NO 4421 MAP
CLAIMS:	HI 1 to 40 inclusiv	
LOCATION :	8 miles northwest o 49° 128° S.E.	f Hedley, B.C.
	N.T.S.: 92-H-8E	
OWNER:	John M. McAndrew	
WORK BY:	Ducanex Resources L	imited
DATES :	June 2 to June 5, 1	973
	June 12 and 13, 197	3

June 26 to June 28, 1973

Vancouver, B.C.

June 28, 1973.

	Page
INTRODUCTION	1
LOCATION AND ACCESS	1
CLAIMS	l
GEOLOGY	2
GEOCHEMICAL SURVEY	2
LABORATORY PROCEDURE	2
DISCUSSION OF RESULTS	3
APPENDIX A - STATEMENT OF COSTS	
APPENDIX B - GEOCHEM LAB RESULTS - in pocket	

TABLE OF CONTENTS

MAPS

# BFIG. 1	HI GROUP LOCATION MAP	following Page 1
∓_]β FIG. 2	HI CLAIM GROUP 1" = 800"	Pocket
#38 FIG. 3	Cu VALUES IN P.P.M. 1" = 200'	Pocket
$\# \Downarrow \beta$ Fig. 4	Mo VALUES IN P.P.M. 1" = 200'	Pocket

<u>GRAPHS</u>

FIG. 3a - following Page 3

FIG. 4a - following Page 3

INTRODUCTION

A soil geochemical survey was completed in two stages on a portion of the Hi Group claims from June 2 to June 5, and June 12 and 13, 1973. The survey was undertaken in an overburden covered area to test for possible copper and molybdenum anomalous conditions overlying two high IP chargeability anomalies previously outlined by Anaconda American Brass Limited in 1968. (Assessment Report No. 1617) The sampling and field survey was conducted by D. Johnson, geologist and K. Allen, assistant, under the general supervision of A.W. Dean, P.Eng. The data gathered and the results of the survey are discussed in the body of this report. LOCATION AND ACCESS (Fig. 1)

The centre of the Hi claims is located three miles west of McNulty Creek, some eight miles northwest of Hedley, B.C. The south end of the group can be easily reached by a forestry fire access road that leaves Highway No. 3 two miles west of Hedley. CLAIMS

The Hi Group consists of a total of forty full-size, contiguous claims that were staked by the present owner, J.M. McAndrew in 1972. These claims cover the north-east portion of the J.M. claim group once held by Anaconda American Brass Limited until March 9, 1971.

Claim names, record numbers and recorded dates are listed below:

Claim Name	Record Number	Record Date		
Hi No. 1 to Hi No. 40 inclusive	29323 - 29362 inclusive	July 7, 1972		

Full interest in the above claims is held by J.M. McAndrew of Surrey, British Columbia.

GEOLOGY

Government geological map No. 888A by H.M.A. Rice shows the Hi Group overlies a roof pendant of Triassic volcanic rocks (Nicola Group) within the Similkameen batholith (Coast Intrusions).

Outcrop within the survey area is scarce. Small outcrops of fine-grained andesite containing minor amounts of disseminated and fine line stringers of pyrite and magnetite were observed at stations $118 \ E - 184 \ N$ and $129 \ E - 200 \ N$. Also feldspar porphyry although not observed in outcrop is known to exist in the vicinity of station $130 \ E - 196 \ N$ where it was encountered in a packsack drill hole completed in 1970.

GEOCHEMICAL SURVEY

Picket lines spaced eight hundred feet apart previously established by Anaconda in 1968 (lines 200 N, 192 N and 184N) were re-used for the survey. Additional chain and compass lines were made to establish an overall grid with lines spaced four hundred feet apart. The layout of grid lines relative to claim boundaries is shown in Fig. 2.

Soil samples were collected along grid lines at one hundred foot intervals from the B horizon at depths varying from six to twelve inches. A total of 268 samples were collected, placed in standard size heavy duty paper envelopes and shipped to Bondar-Clegg and Company Limited, North Vancouver, British Columbia, for analysis.

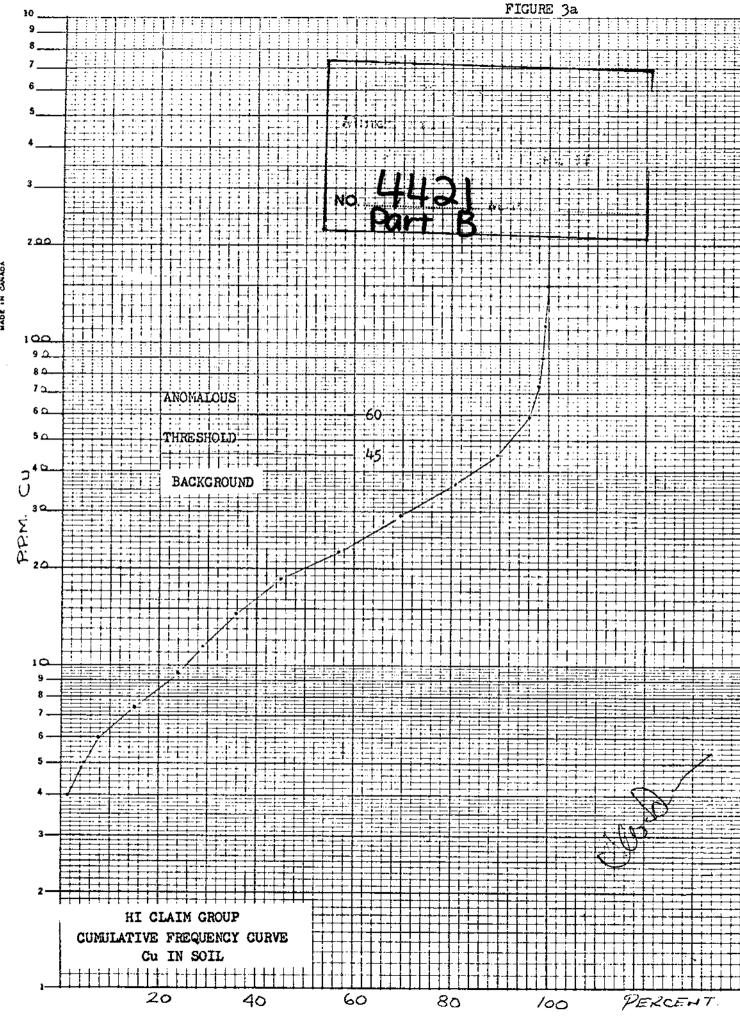
LABORATORY PROCEDURE

Samples received by Bondar-Clegg were dried in infra-red

dryers and sieved to -80 mesh. A .5 gram sample of the -80 mesh fraction was digested in LeFort aqua regia for three hours, bulked to 20% acid concentration and homogenized. After allowing one hour settling time, the samples were than analyzed by atomic absorption for copper and molybdenum in constant comparison with both synthetic and matrix standards. A permanent printout chart is retained for cross check purposes.

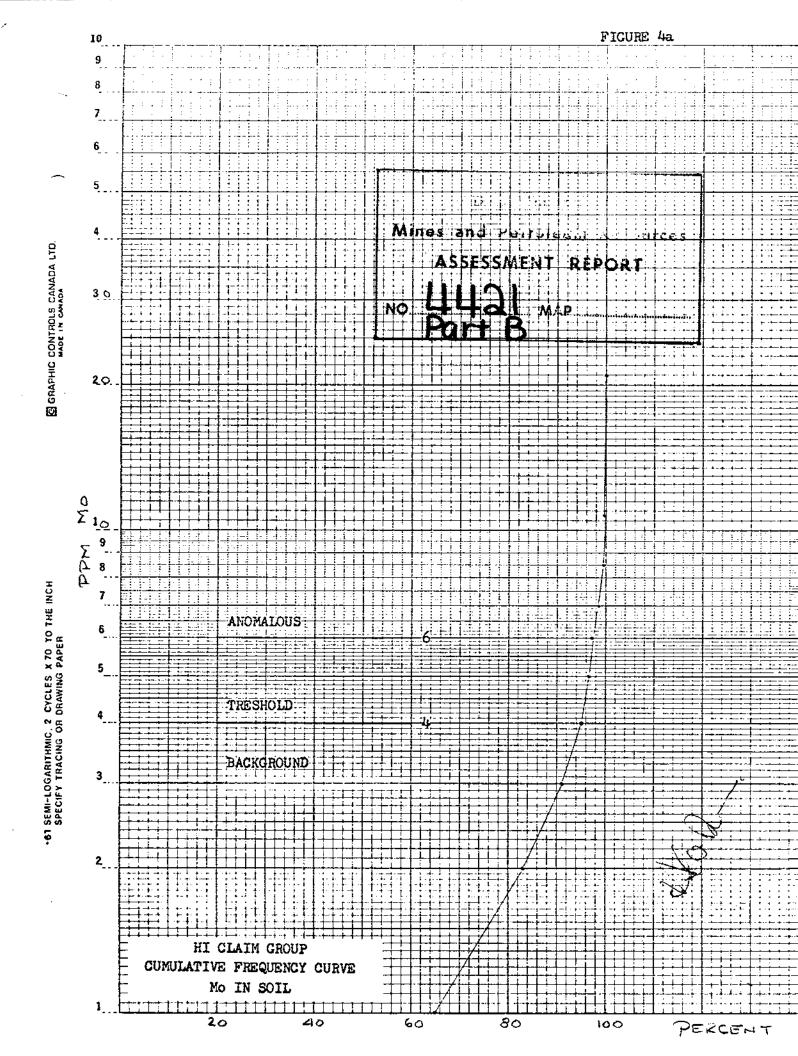
DISCUSSION OF RESULTS

 <u>Copper geochem results</u> have been plotted and contoured as shown in Fig. 3. The values range from 4 to 175 p.p.m. and have been divided into three categories, derived from a cumulative frequency curve (3a) as follows:


> 4 - 45 p.p.m. Cu - background 45 - 60 p.p.m. Cu - threshold 60+ p.p.m. Cu - anomalous

An anomaly approximately two hundred feet wide and seven hundred feet long centred at 117 E.- 196 N. lies on the east fringe of an IP anomaly outlined by Anaconda in 1968. Threshold and weakly anomalous values centred at 107 E. -198 N. and 130 E. - 196 N. lie coincident with portions of

the IP anomalies outlined by Anaconda.


2) <u>Molybdemum geochem results</u> have been plotted as shown in Fig. 4. Values range from non-detected to 29 p.p.m. The values, based on a cumulative frequency curve (Fig. 4a) have been divided into three categories as follows:

> N.C. - 4 p.p.m. Mo - background 4 - 6 p.p.m. Mo - threshold 6+ p.p.m. Mo - anomalous

"-71 SEMI-LOGARITHMIC, 3 CYCLES X 10 TO THE INCH

C GRAPHIC CONTROLS CANADA LTD. WADE IN CANADA

Only a few sporadic molybdenum anomalous values were detected in the survey area. Of a total of nine values considered anomalous, six are coincident with the more western IP anomaly outlined by Anaconda in 1968.

A.W. Dean

Vancouver, B.C.

June 28, 1973

APPENDIX A

STATEMENT OF COSTS

The following cost statement is for work carried out by three Ducanex Resources Limited personnel on the Hi Group property belonging to J.M. McAndrew between June 2 and June 27, 1973.

The work consisted of the re-establishing and layout of compass and chain lines and a geochemical survey during which 268 samples were collected. Additional time was spent in Vancouver with report preparation by A.W. Dean and drafting by Global Drafting Services.

COSTS

Geological Enginee	r 1 day @ \$50.00/day	= \$	50.00
Geologist	6 days @ \$34.60/day	32	208.00
Assistant	6 days @ \$18.30/day	-	110.00
Room and board, \$8	/man day, 13 man days	-	104.00
Geochem analysis t (268 samples @	y Bondar-Clegg \$1.70 each)		455.60
Transportation (Je da	ep rental 6 days @ \$17.20/ ay, plus fuel \$20.00)	-	123.00

Report and map preparation: l geological engineer 2 days @ \$50.00/day 100.00 Drafting: Global Drafting Services 70.00

\$1220.60

Declared before me at the Manyann & , in the Province of British Columbia, this day of Whi 197 , A.D.

A Completione.

flicard Achin British C A Notary Public in and for the Pravince of British Col

SUB-MENTER ---0000000

CERTIFICATE

I. A.W. Dean, of the City of Burnaby, in the Province of British Columbia, hereby certify as follows:

- 1. That I am a Registered Professional Engineer of the Province of British Columbia and reside at 5 North Springer Avenue, Burnaby 2, British Columbia.
- 2. That I am a graduate of Michigan Technological University with a Bachelor of Science in Geological Engineering, having practised my profession since 1958.
- 3. That I have no interest either directly or indirectly in the claims known as the Hi Group nor do I expect to receive any.

A.W. Dean, P.Eng.

Vancouver, B.C. June 28, 1973

APPENDIX B

geologists • geochemists • analysts

E

ļ

_

_

_

_

_

_

_

_

-

.

BONDAR-CLEGG & COMPANY LTD.

1500 PEMBERTON AVENUE, NORTH VANCOUVER, B.C. PHONE 988-5315

GEOCHEMICAL LAB REPORT

No: 23 - 222

E	Extraction.	Hot	Aqua Re	gia	(((,)	From.	Duc	anex Res	sources Ltd.		
٨	Nethod	Aton	nic Abso	rption		Date			June 22, 19.73		
F	raction U	sed			••••••	Analyst K, B,					
	SAMPLE NO).	Cu ppm	Mo ppm					REMARKS		
HI	184N 11	19E	38	4							
~		20	_80_	3							
	12	21	26	2							
HI	184N 12	22E	16	1					ND denotes 'not detected		
HI	184N 12	24E	20	5					cc Mr. D. Johnson		
	1:	2.5	14	1							
	1:	26	12	1							
	13	27	18	1							
	1.	28	16	1							
	1	29	18	ND							
	1	30	_42	1							
	1	31	20	ND							
	1	32	26	1							
	1	33	34	1							
	1	34	24	1							
	1	35	35	1							
	1	36	38	1							
	1	37	46	1							
	1	38	31	2							
	1	39	28	2							
<u>.HI</u>	<u>184N 1</u>	40E	.52	2			1	1	1617		
<u>HI</u>	188N 1	19E	26	4		Z		1	-/-		
	1	20	45	5							
	1	.22	24	2							
	1	.25	12	1				0			
	1	.26	14	ND				P	RT 7		
	1	.27	12	1							
		28	12	ND							
		29	12	1					RECEIVED		
		.30	14	ND					(1070333)		
						····			A.W.D.		

23 - 222 Report No.-

~

/

Geochemical Lab Report

2 Page No.-

SAMPLE NO.	Cu ppm	Mo ppm		s	AMPLE N	NO.	Cu ppm	Mo ppm		
HI 188N 131E	21	ND		HI	196N	119E	37	2		
132	25	ND				120	25	1		
133	36	1				121	26	2		
134	60	2				122	26	1		
135	.50	2	•		.	123	30	2		
136	34	1		HI	196N	124E	32	2		
137	28	1		HI	200N	115E	48	2		
138	37	1				116	38	2		
139	24	1				117	128	3		
HI 188N 140E	32	1				118	56	2		
HI ·192N 130E	25	1				119	52	2		
131	44	1				120	33	1		
132	46	3				121	21	1		
133	50	2				122	24	2		
134 -	60	2				123	24	2		
135	33	2		HI	200N	124E	35	1	1	
136	34	3			204N	116E	24	1		
137	22	2				117	23	1		
138	22	1				118	16	ND		
139	18	2				119	19	1		
13 <i>7</i> 117E	50	9				120	25	1	1	
118	30	. 1				121	25	ND		
119	29	ND				122	27	2		
120	17	3				123	34	1		
121	29	3		HI	204N		26	1		
121	20	3						·		
124E	30	1					· · · · · ·			
1245	12	2						:		· · · · · · · · · · · · · · · · · · ·
125	12					_ <u>_</u> ·				
126	<u>18</u> 28	1			<u></u>	<u> </u>				
HI 192N 128E	20	1								
HI 196N 115E	175	13								
HI 196N 115E					•.					
110	<u>98</u> 98	4						In	ECEIVED	
	60	3							172773	1
118	00	<u>د</u>						 	-	
		i	<u> </u>				L	t	LA.W.D.	

APPENDIX B

geologists • geochemists • analysts

BONDAR-CLEGG & COMPANY LTD.

1500 PEMBERTON AVENUE, NORTH VANCOUVER, B.C. PHONE 988-5315

GEOCHEMICAL LAB REPORT

No: 23 - 177

	Extraction Hot Aqua Regia						From Ducanex Resources Ltd.					
	Method Atom			Date								
	Fraction Used	-	80 mesh			Analy	Analyst K. B.					
	SAMPLE NO.	Cu ppm	Mo PP ^m						REMARKS			
HI	180N - 105E	19	2	ļ								
<u> </u>	106E	9	1	 								
·	107E	12	ND			ļ		 				
	. 108E	. 6	ND					-				
	109E	17	ND	<u> </u>								
	110E	8	ND	 								
	111E	8	ND									
•••	112E	.5	ND									
	113E	7	ND									
	114E	8	ND	ļ								
- -	<u>115E</u>	6	ND		<u> </u>		·					
	<u>116E</u>	7	ND									
	117E	6	ND									
	118E	10	1	<u> </u>	.							
	119E	14	1						· · · · · · · · · · · · · · · · · · ·			
<u> </u>	180N - 120E	22	2	, 								
HI	<u> 184N - 101E</u>	5	ND									
	102E	6	ND		ļ							
	103E	13	1	 				 				
<u> </u>	104E	16	ND	[1/1	11						
	105E	5	ND		4	\square			- 132			
	106E	4	ND	·			4					
	107E	8	ND									
	108E	8	ND		ļ				DT 7			
	<u>109E</u>	11	ND					[]	KIZ			
	110E	9	ND		<u> </u>			- •				
	<u>111E</u>	13	ND	ļ								
	<u>112E</u>	9_	1		-							
_	<u>113E</u>	10	1									
HI	<u> 184n - 114e</u>	10	1									

Report No. 23 - 177

Geochemical Lab Report

Page No.--- 2

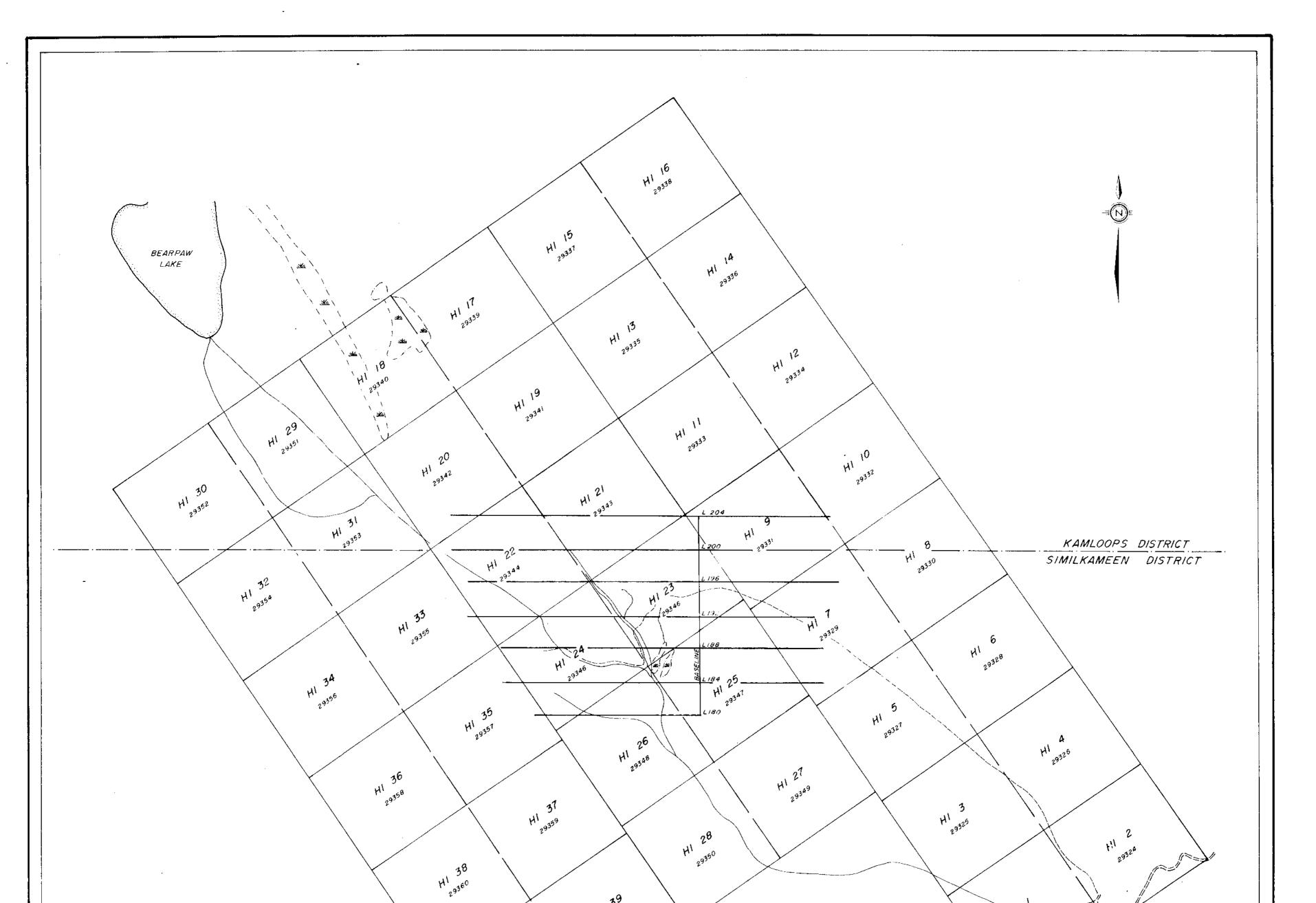
SAMPLE NO.	Cu ppm	Mo ppm		SAMPLE NO.	Cu ppm	Mo ppm		
<u>HI 184N - 115E</u>	18	22	ні	<u> 192N - 108E</u>	5	ND		
<u>116E</u>	9	4_		<u>109E</u>	8	9	 	
117E	20	2		110E	10	3		
118E	29	1		111E	38	6		
119E	30	3		112E	31	ND	:	
HI 184N - 120E	69 -	3		113E	58 -	1		-
HI 188N - 101E	7	ND		<u>114E</u>	43 -	1		
102E	8	ND		115E	58 -	1		
103E	7	ND	HI	192N - 116E	53 -	2		
104E	8	ND	HI	196N - 97E	6	ND		
105E	10	ND		98E	6	ND		
106E	14	1		99E	6	ND		
107E	9	ND		100E	5	ND		
108E	9	ND		102E	6	29		
109E	10	ND		104E	8	ND		
110E	12	1		105E	9	ND		
111E	21	1		106E	20	2		
112E	20	ND		107E	63 -	4		
113E	11	1		108E	61 -	7		
114E	17	2		109E	42 ~	4		
115E	18	6		110E	47 ~	4		
<u>116E</u>	22	5		111E	40 -	1		
117E	34	1		112E	41 -	3		
HI 188N - 118E	40 -	2		113E	38	2		
<u>HI 192N - 97E</u>	7	ND		114E	37	3.		
98E	9	ND		125E	30	. 3		
99E	8	ND		126E	37	3		
100E	7	ND		1 27E	27	ND		
101E	5	ND		1285	28	1		
102E	7	ND		129E	44 -	1		
103E	7	ND		130E	67 -	2		
104E	6	ND		131E	40 ~	1		
105E	10	ND		132E	53 -	3		
106E	9	1		133E	39	ND		
HI 192N - 107E	9	2	нı	196N - 134E	36	1		

Report No. 23 - 177

Geochemical Lab Report

Page No.-----

SAMPLE NO.	Cu ppm	Mo ppm			SAMPLE NO.	Cu ppm	Mo ppm		
HI 196N - 135E	21	1	 	HI	200N - 135E	26	1		
136E	20	1			136E	30	1	·	
<u>137</u> E	18	2		ļ	137E	66 -	4		
138E	12	1			138E	33	2		
140E	26	2			139E	15	1		
141E	24	2			140E	21	1		
HI 196N - 142E	17	2		HI	200N - 141E	27	1		
HI 200N - 95E	4	ND		HI	204N - 95E	4	ND		
96E	4	1	_		99E	36	ND		
97E	5	ND			100E	64 -	2		
98E	_7	3			101E	20	3		
99E	6	ND		1.	102E	57 -	3		
100E	14	ND			10 <u>3</u> E	48 -	4		
103E	74 -	4			104E	10	ND		
104E	46 -	3			105E	25	5		
105E	23	2			<u>106E</u>	24	1		
106E	42	2			107E	42	2		
107E	60 -	7			108E	9	ND		
108E	39	2			109E	10	ND		
109E	13	ND			110E	28	7		
110E	<u>15</u>	1			111E	25	2		
111E	<u>43</u> -	ND			112E	·11	1		
1 <u>12</u> E	101 -	3			113E	10	1		
113E	<u>1</u> 7	ND			114E	22	2		
114E	46 -	2			115E	13	ND		
125E	53 ◄	3			125E	38	ND		
126E	29	1			126E	33	ND		
127E	53 -	2	 		127E	18	ND		
128E	29	ND			128E	25	ND		
1295	38	1			129E	20	1		
130E	37	1			130E	38	ND		
131E	22	ND			131E	59 —	ND		
132E	39	ND			132E	39	ND		
·133E	_32	1			133E	_32	ND		
HI 200N - 134E	30	1		HI	204N - 134E	31	ND		


Geochemical Lab Report

23 - 177 Report No.

. •

Page No.-----4

Cu ppm	Mo ppm			SAMPLE NO.				
20	ND							
13	ND			· ·				
14	1							
9	ND							
21	ND						ĺ	
. 9	ND							
10	3							
letected	t							
				·				
	1							
								1
						1		
							<u> </u> -	
	1							
	20 13 14 9 21 9 10	20 ND 13 ND 14 1 9 ND 21 ND 9 ND	20 ND 13 ND 14 1 9 ND 21 ND 9 ND 10 3	20 ND 13 ND 14 1 9 ND 21 ND 9 ND 9 ND 9 ND 10 3 10 3 110 3 110 1 <t< td=""><td>20 ND </td><td>20 ND </td><td>20 ND </td><td>20 ND </td></t<>	20 ND	20 ND	20 ND	20 ND

GROUI SIMIL + 2 MEER Hediey HI GROUP Location Insert Scale I"=8 miles

LE	GEND
Minera	al Claim Name And Record Number Sl
رچې	Swamp
~	Stream
/	Trail
11	Road

nown

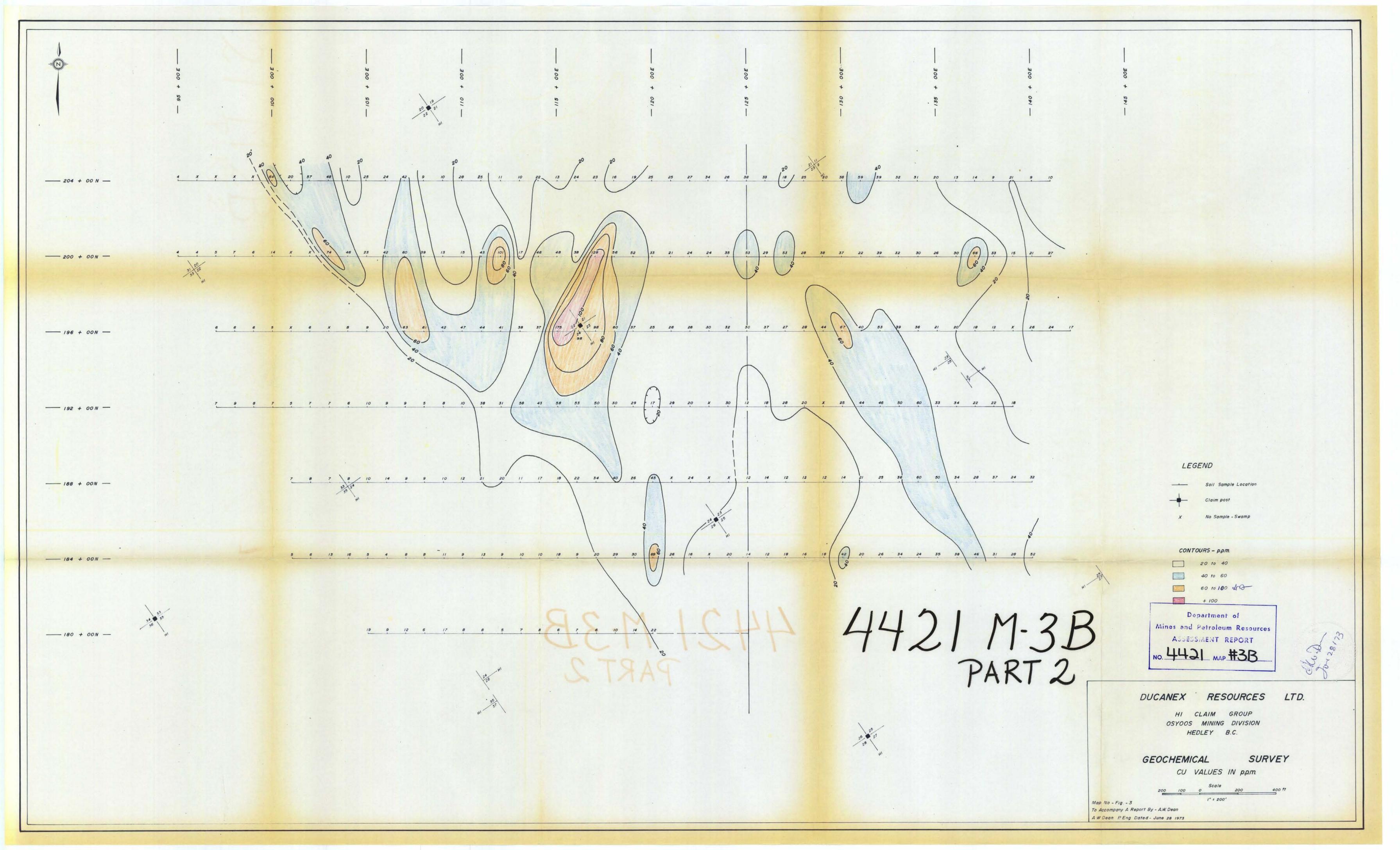
H1 39 29361

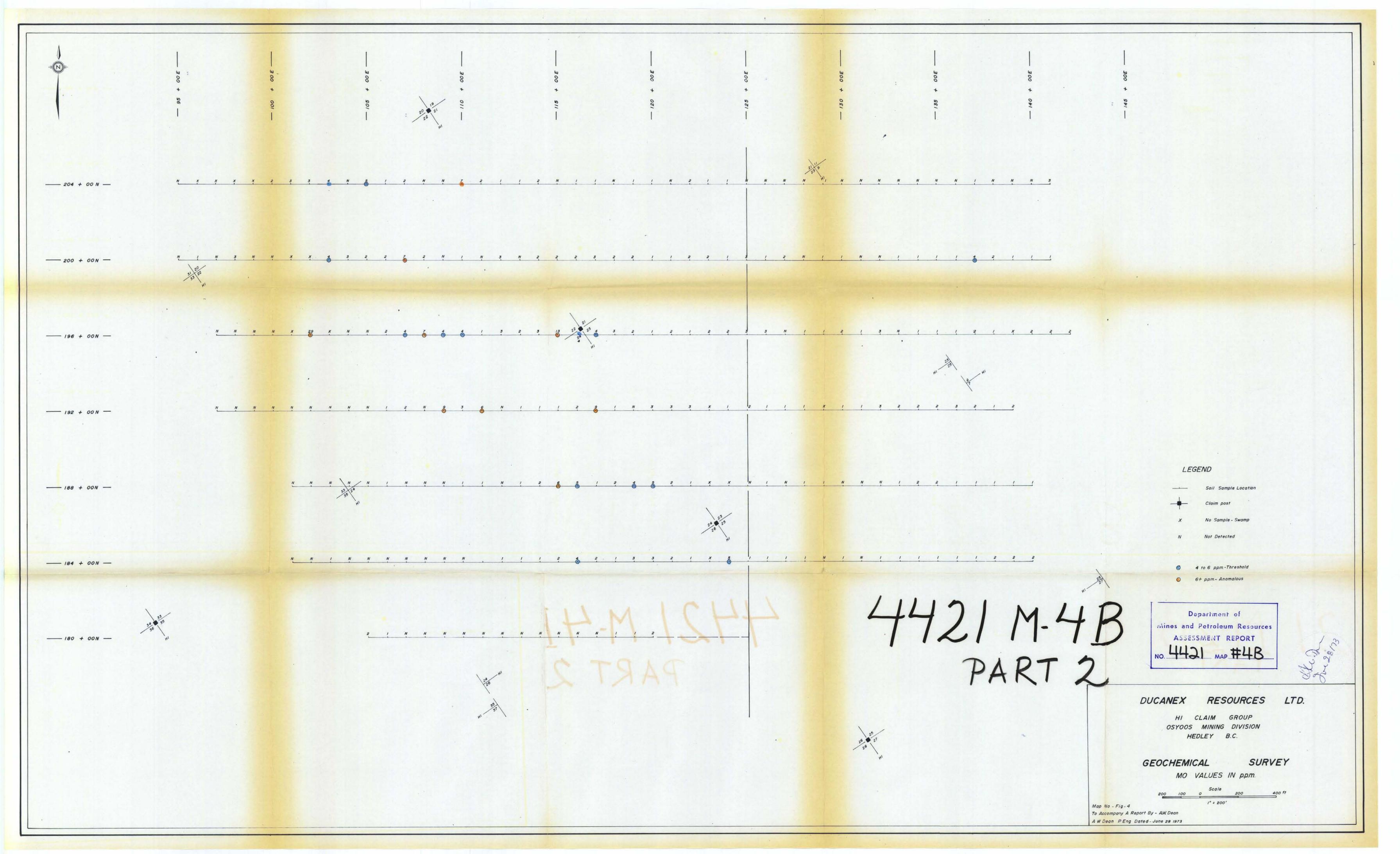
۵Q

HI 29^{36?}

---- Road

Department of Mines and retroleum Resources ASSESSMENT REPORT NO 4421 MAP #38


.


HI-29323

HI CLAIM GROUP No I GROUP OSOYOOS M.D. HEDLEY B.C. TO ACCOMPANY GEOCHEMICAL REPORT BY A.W. DEAN 1600 ft 800

SCALE Date -June 28 1973 Plate - Fig - 2

