


921/7W

GEOLOGIC SURVEY

GEOCHEMICAL SURVEY

AND

GEOPHYSICAL SURVEY

FOR

FIRST NATIONAL URANIUM MINES LTD.

ON CLAIMS

EXCEL-EXCELSIOR & EXCEL 1-20.

IN THE

NANAIMO MINING DIVISION

OF

BRITISH COLUMBIA

MANNY CONSULTANTS LTD.

E. Amendolagine, P.Eng.

May 7, 1973

| į | Despites of                 |
|---|-----------------------------|
| 1 | Mines con terimos Resources |
|   | A Committee Committee       |
|   | NO 4447 N P                 |

### PROPERTY

The property consists of 22 contiguous mining claims known as EXCEL, EXCELSIOR, and EXCEL 1 to 20 inclusive located in the Nanaimo Mining Division of British Columbia.

| Name           | Recorded No.             |
|----------------|--------------------------|
| EXCEL          | 33814                    |
| EXCELSIOR      | 33863                    |
| EXCEL 1 to 12  | 35057 to 35068 inclusive |
| EXCEL 13 & 14  | 35188 and 35189          |
| EXCEL 15 to 20 | 35069 to 35074 inclusive |

### LOCATION

The claims lie some 70 miles northwest of Gold River, some six miles north of the logging town of Nimpkish which is located at the south end of Nimpkish Lake and at 50°23' N. latitude and 126°57' W. longitude.

### ACCESS

Access is via Campbell River, Vancouver Island, some 57 miles west to Gold River on paved highway, then north some 70 miles on and all weather gravel logging road regulated by the Nimpkish Tree Farm licence, then some six miles north of the town of Nimpkish on the eash shore of Nimpkish Lake.

#### TOPOGRAPHY AND CLIMATE

The property lies on the east shore of Nimpkish with the topography rising from near sea level to some 3000 feet at the eastern extreme. The terrain is somewhat rugged. The area is covered by a dense mature west coast rain forest with almost jungle-like underbrush.

### GENERAL GEOLOGY

Ref. G.S.C., Memoir 272, Geology and Mineral Deposits of the Zeballos Nimpkish Area, Vancouver Island, B.C., by J.W. Hoadley and by Geological Reconnaissance Map of Vancouver Island and Gulf Islands, by J.E. Muller, 1971.

The general geology and sequence of formations for the area covering all the claims is the Carboniferous and Devonian (Sicker Volcanics) overlain by the Triassic Karmutsen Volcanics which are overlain by the Triassic Quatsino limestones which are overlain by the Bonanza sediments and flows which are all intruded by Jurassic Coast intrusives. The area is very high relief and rough topography. It is severely block-faulted.

### Legend

### Jurassic

### Coast Intrusions

Quartz diorite, granodiorite, quartz monzonite

### Bonanza Volcanics

Andesite, dacite rhyolite tuff breccia, greywacke, argillite

### Triassic

### Quatsino Limestones

Limestone, calcarious sitstone, greywacke, volcanic conglomerate.

### Karmutsen Volcanics

Basalt, pillar lava, flow lava, breccia, diabase, gabbro.

### Carboniferous

### Devonian

### Sicker Volcanics

Meta andesites, dacites, tuffs, breccia green schist.

### PROPERTY EXAMINATION SURVEYS AND EVALUATION

The surveys and examination were carried out by Geologist,

Peter Marshall and his assistant under the supervision of

E. Amendolagine during the period of October 15th to

November 22nd, 1972. They are:

### 1. EXCEL CLAIMS - NIMPKISH LAKE

### GENERAL GEOLOGY

The excel claims straddle an embayment of the Coast Intrusives into the pre-existing Quatsino Formation to the north and the Karmutsen Group to the south.

Metasomatic magnetite with associated sulphides occur with skarn zones along the contacts of this embayment.

### WORK DONE

A limited geologic mapping magnetometer survey and a limited number of geochemical soil samples were taken to test for geology, magnetite and copper mineralization. The control was a base line with survey lines spaced at 100 foot spacings.

### DETAILED GEOLOGY

The area of interest is a skarn zone with associated metasomatic magnetite and sulphides along the contacts of the Coast Intrusive, into the pre-existing marbles of the Quatsino Formation, and the fine grained basalts of the Karmutsen Group.

The skarn zone, composed mainly of green calc-silicate minerals with pink glossularite garnets with lesser amounts of calcite, is often associated with epidote rich zones along the intrusive. The skarn appears to be fairly continuous along the contact, and in places appears to be over thirty feet wide.

Magnetite occurs as discrete massively crystalline bodies in places platy, and others very solid with only scattered vugs lined with magnetite octahedrons. These magnetite bodies appear to be a series of long lenses, in places up to 20 feet wide and over a hundred feet long with the long axis parallel the intrusive, and appear to dip away from the intrusive.

Magnetite also occurs as disseminated grains and aggregates in the skarns, and to a lesser degree into the host rocks.

Sulphides, both chalcopyrite and pyrite occurs both as veins in the magnetite bodies, and disseminated grains in the magnetite, and the skarns.

The largest and widest chalcopyrite sulphide vein mapped was five feet wide. It was traced for about twenty feet and lost in overburden. A similar occurrence was noted approximately one hundred feet and on strike measuring about three feet wide. The veins appear rich in chalcopyrite near the contacts and higher in pyrite content in the center. A chip sample across the vein gave an assay result of over 15.4% copper.

The chalcopyrite has re-acted with carbonates in the rocks in many locations to produce green malachite staining. This can be used in the field to locate the sulphides.

The attitude of the magnetite bodes and the skarn zone appears to dip away from the center of the intrusive, this coupled with the relatively flatly bedded host rocks, and intrusive point to a dome shaped intrusive body. The magnetic data also seems to indicate magnetite bodies under the Quatsino Formation. This is evident by a series of high, and low readings obtained over the limestone, which usually showed no evidence of alteration on the surface.

The magnetic readings range from -100,000 gammas to +85,000 gammas. The limited magnetometer survey indicated another magnetic zone some 600 feet to the south of the main zone on the Karmutsen contact with the intrusive.

In this area the magnetic readings range from -2535 to +52460. gammas. This area should also be examined for mineralization.

#### CONCLUSION

The Excel-Excelsior group is the most impressive area. It requires a systematic survey consisting of magnetometer, geochemical soil sampling, limited induced polarization surveying and a geologic study of geology and mineralization. This would require a minimum of some 1500 feet of drilling to test the contact mineralized and altered zones.

This report was jointly written by the Geologist, Peter G. Marshall and Emanual Amendolagine from information obtained from the period of October 15th, 1972 to November 22nd, 1972.

Respect following the dominated,

E. AMENDOLATINE
BRITISH
Emanuel imandolation P.Eng.



325 Howe Street Vancouver 1, B.C.

Phone 688-3504

## Certificate of Analysis

REPORT NO.

806

SAMPLE(S) FROM:

MANNY CONSULTANTS 4550 Harriet Street Vancouver, B.C.

| SAMPLE NO. |                                                                       | Cu ppm                                               |        |                        |
|------------|-----------------------------------------------------------------------|------------------------------------------------------|--------|------------------------|
| 4 7 7      | 77                                                                    | 220                                                  |        |                        |
| AL l       | BL.                                                                   | 220                                                  |        |                        |
|            | ŦE                                                                    | 30                                                   |        |                        |
|            | 2                                                                     | 58                                                   |        |                        |
|            | 3                                                                     | 75                                                   |        |                        |
|            | 1E<br>2<br>3<br>4<br>5<br>6<br>1W<br>2<br>3<br>4<br>5<br>6<br>7<br>BL | 220<br>30<br>58<br>75<br>69<br>67<br>47              |        |                        |
|            | 5                                                                     | 67                                                   |        |                        |
|            | <del>6</del>                                                          | 47                                                   |        |                        |
|            | IW                                                                    | 147                                                  |        |                        |
|            | 2                                                                     | 100                                                  |        |                        |
|            | 3                                                                     | 60                                                   |        |                        |
|            | 4                                                                     | 60<br>91<br>85<br>134<br>93<br>38<br>70<br>97<br>280 |        |                        |
|            | 5                                                                     | 85                                                   |        |                        |
|            | 6                                                                     | 134                                                  |        |                        |
|            | 7                                                                     | 93                                                   |        |                        |
| AL 2       | $\operatorname{BL}$                                                   | 38                                                   |        |                        |
|            | 1E<br>2<br>3<br>4<br>5<br>0.5W                                        | 70                                                   |        |                        |
|            | 2                                                                     | 97                                                   |        |                        |
|            | 3                                                                     | 280                                                  |        |                        |
|            | 4                                                                     | 75<br>91<br>175<br>112<br>82                         |        |                        |
|            | 5                                                                     | 91                                                   |        |                        |
|            | 0.5W                                                                  | 175                                                  |        |                        |
|            | 2W<br>3                                                               | 112                                                  |        |                        |
|            | 3                                                                     | 82                                                   |        |                        |
|            | ANA<br>ANB                                                            | 15<br>20                                             |        |                        |
|            | . AMB                                                                 | . 20                                                 |        |                        |
|            | 4WC<br>5<br>6<br>7                                                    | 335                                                  | ,      |                        |
|            | Ś                                                                     | 97<br>122                                            |        |                        |
|            | 6                                                                     | 122                                                  |        |                        |
|            | 7                                                                     | 87                                                   |        |                        |
| A X        | ,                                                                     | 87<br>45                                             |        |                        |
|            |                                                                       |                                                      | 3      | <i>f</i>               |
|            |                                                                       |                                                      |        | $\mathcal{N}_{\alpha}$ |
|            |                                                                       |                                                      | j      | 74                     |
|            |                                                                       |                                                      |        | 4-1                    |
|            |                                                                       |                                                      |        | Í                      |
| DATE       |                                                                       | November 23/72                                       | SIGNED |                        |



325 Howe Street Vancouver 1, B.C.

# Certificate of Analysis

REPORT NO.

806

SAMPLE(S) FROM:

MANNY CONSULTANTS (PAGE 2)

| SAMPLE | ٧٥.                                                                                                                        | Gu ppm                                                                                                                                                  |        |          |  |
|--------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--|
| AL 3   | $_{ m BL}$                                                                                                                 | 248                                                                                                                                                     |        |          |  |
|        | 1E                                                                                                                         | 67                                                                                                                                                      |        |          |  |
|        | 2                                                                                                                          | 79                                                                                                                                                      |        |          |  |
|        | 3                                                                                                                          | 56                                                                                                                                                      |        |          |  |
|        | 1E<br>2<br>3<br>4<br>5<br>6<br>1W<br>2<br>3<br>4<br>5<br>6<br>1W<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 248<br>67<br>79<br>56<br>59<br>82<br>48<br>77<br>124<br>89<br>150<br>118<br>36<br>45<br>59<br>55<br>47<br>59<br>66<br>92<br>73<br>82<br>102<br>55<br>69 |        |          |  |
|        | 5                                                                                                                          | 82                                                                                                                                                      |        |          |  |
|        | 6                                                                                                                          | 48                                                                                                                                                      |        |          |  |
|        | 1W                                                                                                                         | 77                                                                                                                                                      |        |          |  |
|        | 2                                                                                                                          | 124                                                                                                                                                     |        |          |  |
|        | 3                                                                                                                          | 89                                                                                                                                                      |        |          |  |
|        | 4                                                                                                                          | 150                                                                                                                                                     |        |          |  |
|        | 5                                                                                                                          | 118                                                                                                                                                     |        |          |  |
|        | 6                                                                                                                          | 36                                                                                                                                                      |        |          |  |
| BL 1   | 1W                                                                                                                         | 45                                                                                                                                                      |        |          |  |
|        | 2                                                                                                                          | 59                                                                                                                                                      |        |          |  |
|        | 3                                                                                                                          | 55                                                                                                                                                      |        |          |  |
|        | 4                                                                                                                          | 47                                                                                                                                                      |        |          |  |
|        | 5 <sup>·</sup>                                                                                                             | 59                                                                                                                                                      |        |          |  |
|        | 6                                                                                                                          | 66                                                                                                                                                      |        |          |  |
|        | 7 .                                                                                                                        | 92                                                                                                                                                      |        |          |  |
|        | 8                                                                                                                          | 73                                                                                                                                                      |        |          |  |
|        | 9                                                                                                                          | 82                                                                                                                                                      |        |          |  |
|        | 10                                                                                                                         | 102                                                                                                                                                     |        |          |  |
|        | 11.                                                                                                                        | 55                                                                                                                                                      |        |          |  |
|        | 12                                                                                                                         | 69                                                                                                                                                      |        |          |  |
|        | 13                                                                                                                         | 74                                                                                                                                                      | •      |          |  |
|        | 14                                                                                                                         | $\mathfrak{S}l_{4}$                                                                                                                                     |        |          |  |
|        | 15                                                                                                                         | 73                                                                                                                                                      |        |          |  |
|        | 13<br>14<br>15<br>16<br>17                                                                                                 | 74<br>84<br>73<br>73<br>90                                                                                                                              |        |          |  |
|        | 17                                                                                                                         | 90                                                                                                                                                      |        |          |  |
|        |                                                                                                                            |                                                                                                                                                         |        | a ij     |  |
|        |                                                                                                                            |                                                                                                                                                         |        | A La     |  |
|        |                                                                                                                            |                                                                                                                                                         |        | 1 Id     |  |
|        |                                                                                                                            |                                                                                                                                                         |        | 1        |  |
| DATE   | November 23/72                                                                                                             |                                                                                                                                                         | SIGNED | <u> </u> |  |



325 Howe Street

Vancouver 1, B.C.

Phone 688-3504

# Certificate of Analysis

REPORT NO.

806

SAMPLE(S) FROM:

MANNYH CONSULTANTS (PAGE 3)

| SAMPLE NO. |                                                                                | Cu ppm                                                                                                    |                         |
|------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------|
| ר זמ       | i du                                                                           | 60                                                                                                        |                         |
| BL 1       | 18W                                                                            | 60<br>63<br>65<br>64<br>79<br>67                                                                          |                         |
|            | 19                                                                             | 65<br>65                                                                                                  |                         |
|            | 20                                                                             | 61                                                                                                        |                         |
|            | 20<br>21<br>22<br>23                                                           | 70                                                                                                        |                         |
|            | 22                                                                             | (7<br>4m                                                                                                  |                         |
|            | 23                                                                             | 0/                                                                                                        |                         |
|            | 24<br>25<br>26<br>27<br>28                                                     | ()<br>d)                                                                                                  |                         |
|            | 25                                                                             | 61                                                                                                        |                         |
|            | 26                                                                             | 02                                                                                                        |                         |
|            | 27                                                                             | 83                                                                                                        | •                       |
| _          | 28                                                                             | 73<br>81<br>62<br>83<br>82<br>80                                                                          |                         |
| BL 2       | ΤM                                                                             | 80                                                                                                        |                         |
|            | 1W<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>13<br>14<br>15<br>16 | 101                                                                                                       |                         |
|            | 3                                                                              | 54                                                                                                        |                         |
|            | 4                                                                              | 69                                                                                                        |                         |
|            | 5                                                                              | $\frac{73}{2}$                                                                                            |                         |
|            | 6                                                                              | 83                                                                                                        |                         |
|            | 7                                                                              | 74                                                                                                        |                         |
|            | 8                                                                              | 73                                                                                                        |                         |
|            | 9                                                                              | 90                                                                                                        |                         |
|            | 10                                                                             | 64                                                                                                        |                         |
|            | 11                                                                             | 56                                                                                                        |                         |
|            | 13                                                                             | 55                                                                                                        |                         |
|            | 1.4                                                                            | * 86                                                                                                      |                         |
|            | 15                                                                             | 52                                                                                                        |                         |
|            | 16                                                                             | 75 ·                                                                                                      |                         |
|            | 17                                                                             | 80                                                                                                        |                         |
|            | 17<br>18                                                                       | 81                                                                                                        |                         |
|            | 19                                                                             | 32                                                                                                        |                         |
|            | 19<br>20                                                                       | 101<br>54<br>69<br>73<br>83<br>74<br>73<br>90<br>64<br>56<br>55<br>86<br>52<br>75<br>80<br>81<br>32<br>75 |                         |
|            |                                                                                | • •                                                                                                       |                         |
|            |                                                                                |                                                                                                           | $A = \hat{\mathcal{Y}}$ |

DATE\_\_\_\_November 23/72

...... , SIGNED...



325 Howe Street Vancouver 1, B.C.

# Certificate of Analysis

REPORT NO.

. 806

SAMPLE(S) FROM:

MANNY CONSULTANTS (PAGE 4)

| SAMPLE 1     | 40.                                        | Cı | u ppm                                                                                                                                                                    |          | <br> |
|--------------|--------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| BL 2<br>BL 3 | 21W<br>22<br>1E                            |    | 48<br>69<br>73                                                                                                                                                           |          |      |
| EX           | 1E<br>234567891011231451NBLS<br>2345678910 |    | 48<br>69<br>73<br>68<br>10<br>61<br>57<br>72<br>61<br>67<br>63<br>30<br>36<br>60<br>52<br>61<br>42<br>114<br>32<br>50<br>285<br>25<br>8<br>9<br>9<br>9<br>24<br>27<br>10 | L claims |      |
|              | 7<br>8<br>9<br>10                          |    | 27<br>10<br>36<br>27                                                                                                                                                     |          |      |

November 23/72

\_\_\_\_\_\_ SIGNED.

PROVINCIAL ASSAYER



325 Howe Street

Vancouver 1, B.C

Phone 688-3504

# Certificate of Analysis

REPORT NO.

806

SAMPLE(S) FROM:

MANNY CONSULTANTS (PAGE 5)

| SAMPLE NO. |                      | Cu ppm                                  |  |
|------------|----------------------|-----------------------------------------|--|
| EX         | 11S<br>12            | 28 21                                   |  |
| EX 113     | BL<br>1S             | 58<br>11<br>19                          |  |
|            | 2 3 4                | 19<br>23<br>28<br>19 EXCEL claims<br>21 |  |
|            | 4<br>5<br>6<br>7     | 25<br>28<br>75                          |  |
|            | 7<br>8<br>9<br>10    | 43<br>48<br>87                          |  |
|            | 11<br>12<br>13       | 128  <br>331                            |  |
|            | 13<br>14<br>15<br>16 | 89<br>24<br>211                         |  |

November 23/72

SIGNED

1) fet 5)



325 Howe Street Vancouver 1, B.C.

# Certificate of Analysis

REPORT NO.

806

SAMPLE(S) FROM:

MANNY CONSULTANTS (ASSAY)

| SAMPLE NO. |              | Cu %  |  |
|------------|--------------|-------|--|
| PM         | 972          | •07   |  |
| •          | 1072         | •02   |  |
|            | 1172         | •02   |  |
|            | 1372         | .25   |  |
|            | 1372<br>1472 | 15.40 |  |
|            | 1572         | 19.40 |  |
|            | 1672         | 15.20 |  |

November 23/72

#### APPENDIX

#### GEOCHEMICAL SURVEY

The geochemical soil survey was conducted by taking soil samples with a spade. The samples were taken below the humus (organic)layer, which was heavy in places, in a poorly developed grey soil. The samples were placed in paper bags and marked for location and shipped to professional assayers "Core Laboratories" in Vancouver. The method used for assaying for copper was hot HNO3, HClO4 decomposition and measured by atomic absorption.

#### RESUME

#### PETER G. MARSHALL

- 1. Reside in Vancouver at Buchan Hotel
- Attended McMasters University in Hamilton, Ontario, majoring in geology-geography and that I am a language equivalent short of a degree.
- 3. That I have been employed as an exploration geologist since 1966 with the following companies:

Sulmac Exploration; E.G. Kennedy Consultants; Canadian Industrial Gas and Oil; Catto Syndicate; Dominion Geophysics; Compaignie General de Geophysics; Manny Consultants Ltd.,

4. That I carried out a geophysical, geologic and geochemical survey on the Excel and Excelsior claims during the months of October to November, 1972.

Peter G. Marshall Geologist

September 17, 1973

Department of Mines & Petroleum Resources VICTORIA, B.C.

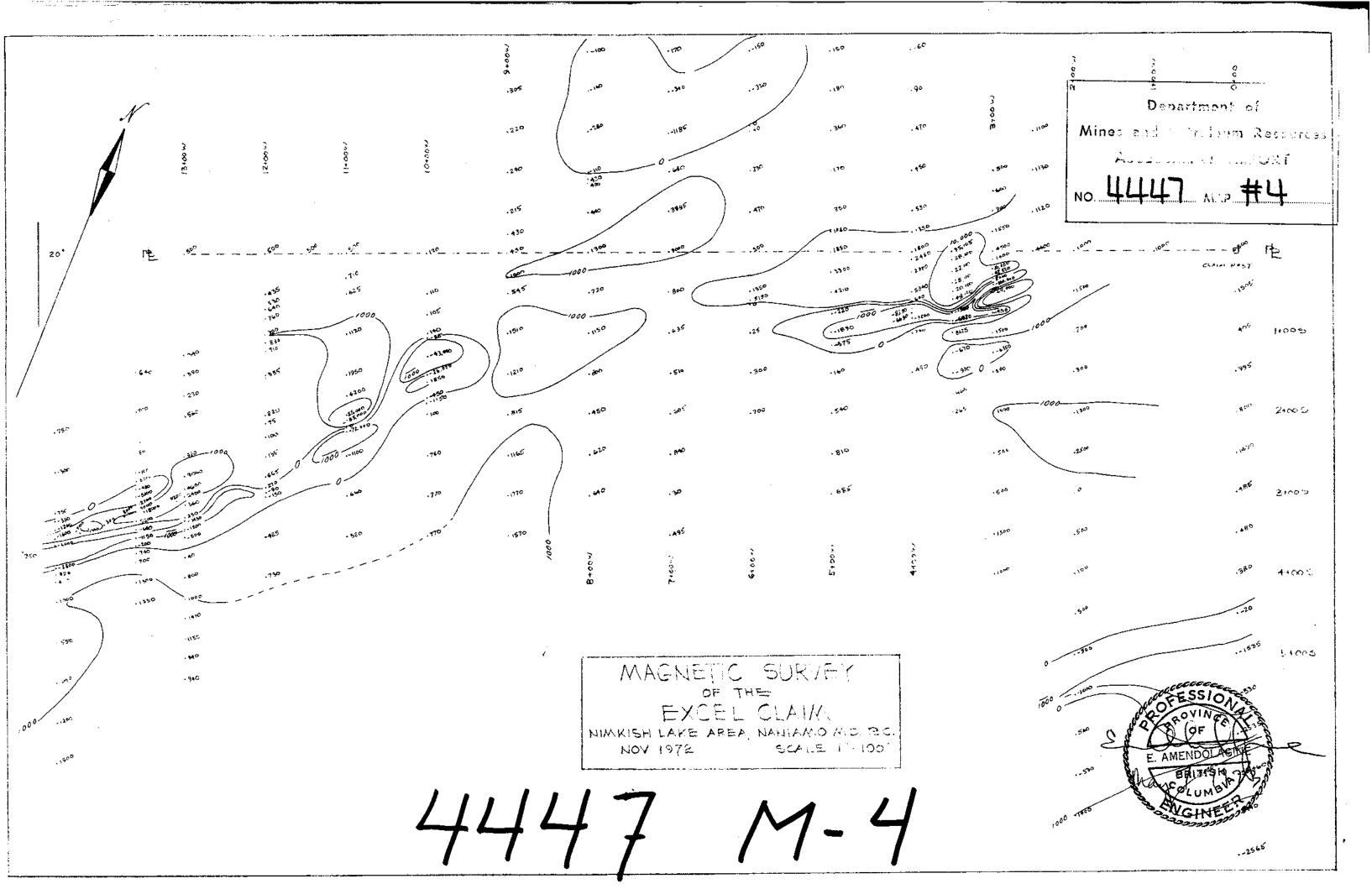
### FILE NO. 166-Nanaimo

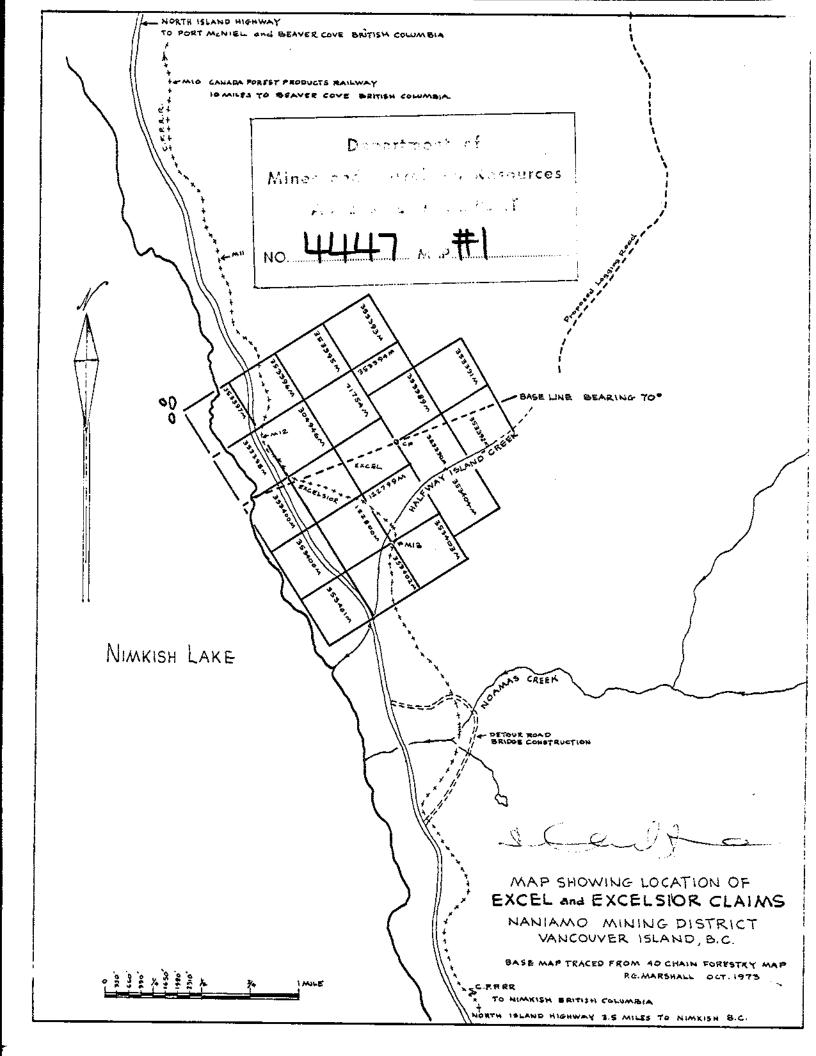
September 17, 1973

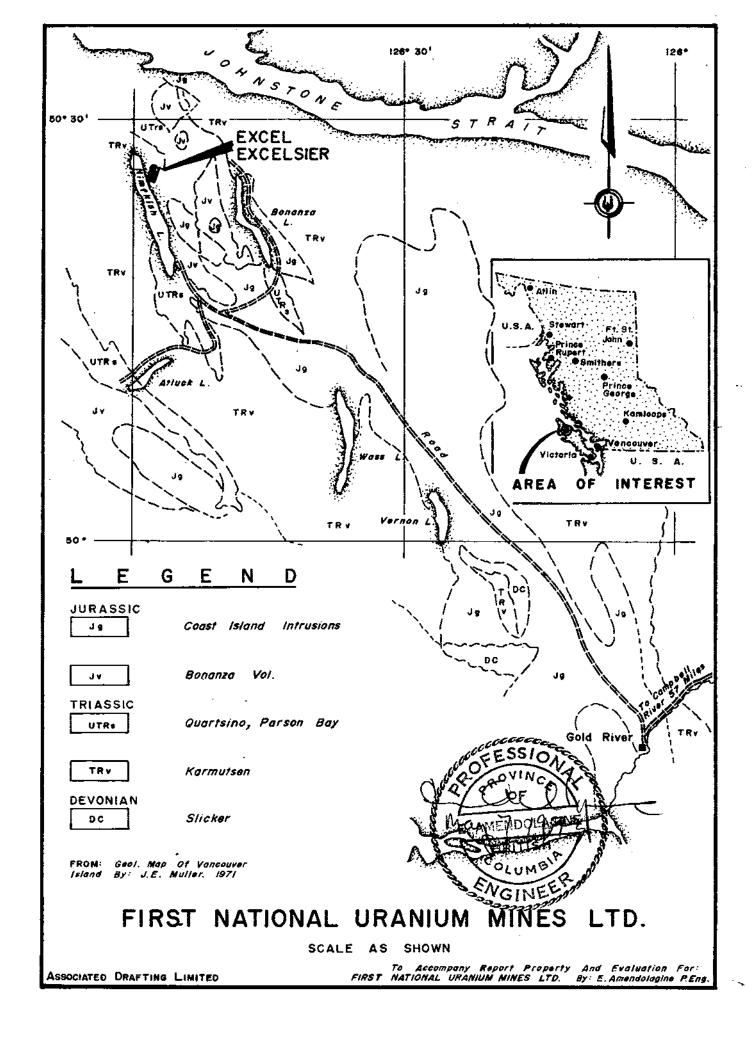
Dear Sirs:

### Enclosed is:

- (1) Index map showing the location of the Excel and Excelsior claims
- (2) Magnetometer model Fluxgate M.F.1. E.J. Sharpe instrument.
- (3) The geochemical lines run were explained over the telephone and was accepted as per geological plan plotted lines.
- (4) An appendix sheet is enclosed on the geochemical survey samples and method of extraction.
- (5) Statement of Peter Marshall's qualifications.


Respectfully submitted,
MANNY CONSULTANTS LTD.,


E. Amendolagine, P.Eng.,


-SEP 19 '73 PM

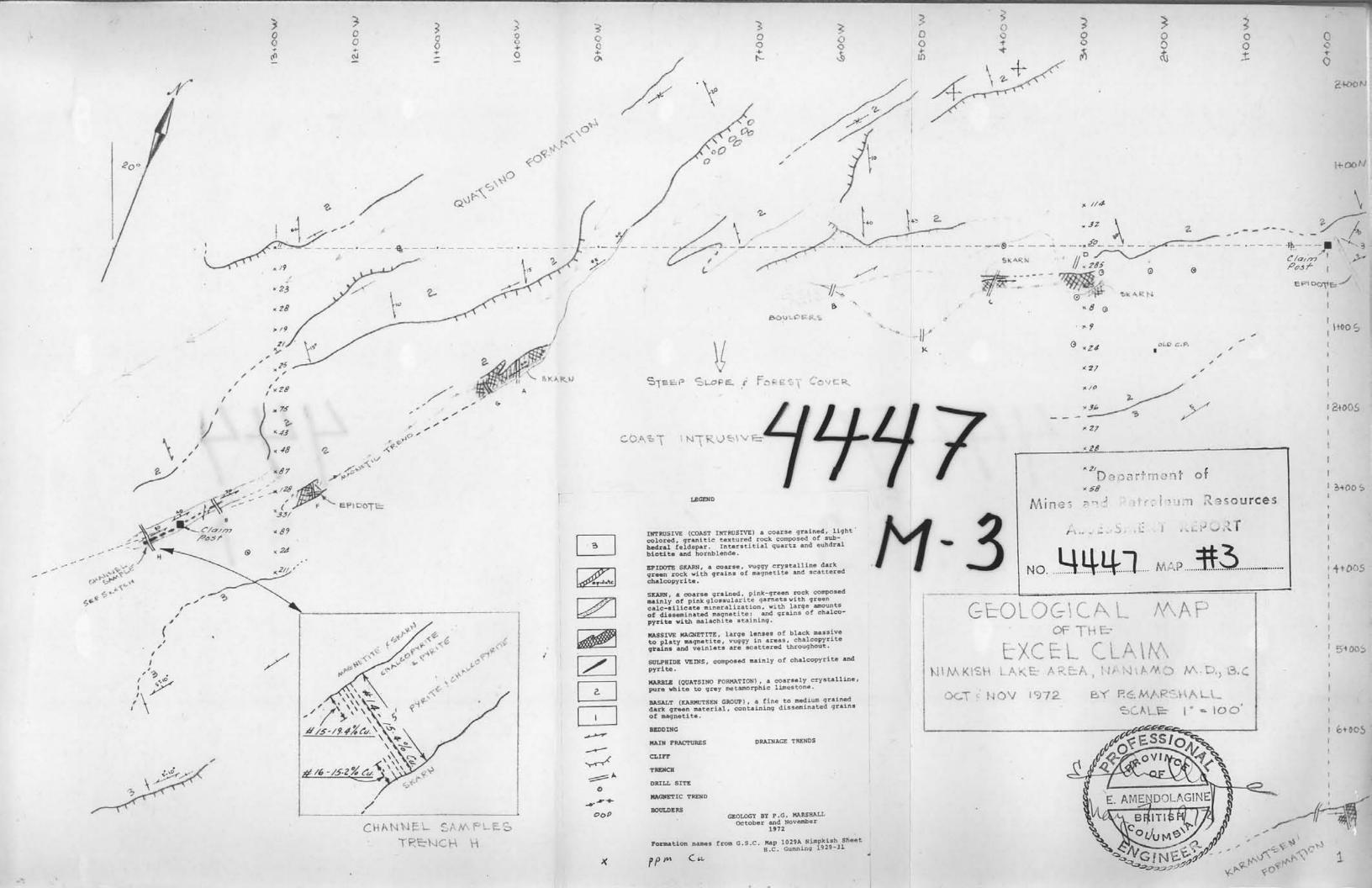

Comment of the second of the s

Figure CF Charles on the Followine CF







