-

A REPORT ON PERCUSSION DRILLING ON THE HOOK CLAIMS ON BEHALF OF HUDSON'S BAY OIL AND GAS COMPANY LIMITED by D.B. Kilby July 26, 1974

CLAIMS:

Hook 1-72, 87, 89, Hooker 1 Fraction

1

LOCATION: Cariboo Mining Division Horsefly, B.C. Latitude 52°26'N Longitude 121°23'E

DATES:

June 10, 11, 24, 1974

TABLE OF CONTENTS

		PAGE
INTRODUCTION		1
LOCATION AND ACCESS		1
CLAIM STATUS		1
PERCUSSION DRILLING		1
GEOLOGY		2
CONCLUSIONS		2
STATEMENT OF PERSONNEL AND EXPENSES		3
STATEMENT OF QUALIFICATIONS		4
APPENDIX 1		5
PERCUSSION DRILL LOGS AND ASSAY RESULTS	S II	n back pocket

LIST OF ILLUSTRATIONS

- Fig. 1 # Location Map
- Fig. 2 #_Location of Percussion Drill Holes and Access Roads

LIST OF TABLES

Table 1 Details of Percussion Drilling

INTRODUCTION:

The following is a report on the percussion drill programme done by Hudson's Bay Oil and Gas Company Limited in June, 1974.

LOCATION AND ACCESS:

The Hook Mineral Claims are located seven miles northeast of Horsefly, B.C. in the Cariboo Mining Division.

Access is via a forest access and four wheel drive road from Horsefly to Hooker Lake.

CLAIM STATUS:

The Hook 1-72, 87, 89 and Hooker 1 Fraction mineral claims are owned by Hudson's Bay Oil and Gas Company Limited.

PERCUSSION DRILLING:

Three percussion drill holes were drilled to a depth of 300 feet. Samples were collected for each ten foot section of the hole. One-eigth of the cuttings and water for each ten foot run was collected. The excess water was decanted and the remainder was placed in a plastic bag. Fine material was allowed to settle and excess water was carefully decanted. A small amount of material was removed from each sample and placed in a vial. The samples were then shipped to the Vangeochem Laboratory in North Vancouver, B.C. where they were analysed for copper, molybdenum, lead, zinc and silver. A description of the method of analysis is enclosed in Appendix 1.

A portion of the material in each phial was placed in a saucer and examined with a binocular microscope. Careful notes were made on the rock type, sulphide content and alteration of the drill cuttings. (see drill logs enclosed in the pocket)

TABLE 1

DETAILS OF PERCUSSION DRILLING

<u>Hole</u>	Depth	Inclination	Depth of Overburden	Co-ordinates	Location*
74 H-1	300'	-90°	10'	74+00N,106+00E	400'NW of I.P. Hook 55, 56 F.P. Hook 53,54
74 H-2	300'	-90°	10'	81+00N,104+00E	650'SW of I.P. Hook 57, 58 F.P. Hook 53, 54
74 H-3	300'	-90°	10	87+00N,102+00E	700'WNW of I.P. Hook 57, 58 F.P. Hook 53, 54

* For more detailed location see the map enclosed in the map pocket.

GEOLOGY:

The grid is underlain by a flat lying sequence of alkalic Nicola group flows and pyroclastics. A fine to medium grained, weakly mineralized, altered augite monzonite outcrops on the western side of the grid.

Percussion drilling was done in an attempt to test a weak to moderately strong I.P. anomaly and a coincident circular airphoto feature. An examination of the drill cuttings showed that the area of interest is underlain by a monzonite-syenodiorite to monzonite porphyry with up to 5% sulphides. Very little if any copper sulphides were seen and assays were uniformly low. (See assays in drill logs in the map pocket) Alteration was restricted to the carbonate-epidote facies. Sulphides appeared to be mainly fracture controlled and were often associated with mafic material.

CONCLUSIONS:

The percussion drill programme established the presence of a sulphide bearing monzonitic intrusive that coincides with prominent I.P. and airphoto features. Assay results were uniformly low, however, and it is thought that no further work is justified.

Daniel B. Kilby.

D.B. Kilby July 31, 1974

DBK:kdl

Page 2

Page 3.

STATEMENT OF PERSONNEL AND EXPENSES

Kilby, D.B. 171 Pmeberton Avenue North Vancouver, B.C.

North Vancouver, B.C.	2 days (24 June logging cuttings, 1 day compilation of data and preparing report) @ \$66.00/day	\$	132.00
Drilling costs 900 feet @	\$2.75/foot	2	,475.00
Laboratory charges 87 samp	les @ \$3.80/sample		330.60
		\$2	,937.60

STATEMENT OF QUALIFICATIONS

The Mining Recorder Quesnel, B.C.

Dear Sir:

Mr. D.B. Kilby of Vancouver, B.C. supervised the percussion drill programme on the Hook claims and personally logged the drill-cuttings from each of the holes. Mr. Kilby attended the University of British Columbia from 1966-1971 and was awarded a B.A.Sc. degree in geology. From 1968-1972 he was employed as a field assistant and temporary geologist. Since early 1973 he has been employed as a geologist in mineral exploration in British Columbia under my general direction.

Kenneth C. Rose, P.Eng.

July 26, 1974.

KCR:kd1

APPENDIX 1

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA 604-988-2172

TO:

Hudson's Bay Oil & Gas Co. Ltd., 171 Pemberton Avenue, North Vancouver, B.C.

FROM: Mr. Laurie Nicol, Supervisor Chemist, Vangeochem Lab Ltd., 1521 Pemberton Avenue, North Vancouver, B. C.

SUBJECT: Analytical procedure used to determine acid soluble Cu. Pb. Zn & Ag in geochemical samples received from

L. Sample Preparation

- (a) Geochemical rock; soil, or silt samples were received in the laboratory in 8" x 13" plastic sample bags, in 42" x 9" cotton mailing bags or in wet-strength 32 x 63 Kraft paper bags.
- (b) The wet samples were dried in a ventilated oven.
- (c) The dried soil and silt samples were sifted by using a shaking machine using an 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.
- (d) The dried rock samples were crushed and pulverized to minus 80-mesh. The pulverized sample was then put in a new bag for later analysis.

Continued

SPECIALIZING IN TRACE ELEMENT ANALYSIS

- VANGEOCHEM LAB LTD.

2. Methods of Digestion

- (a) 0.50 gram of the minus 80-mesh samples was used. Samples were weighed out by using a top-loading balance.
- (b) Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concentrated acids respectively).
- (c) The digested samples were diluted with demineralized water to a fixed volume and shaken.

3. Method of Analysis

LJN/bje

Cu, Pb, Zn & Atanalyses were determined by using a Techtron Atomic Absorption Spectrophotometer Model AA4 or Model AA5 with their respective hollow cathode lamp. The digested samples were aspirated directly into an air and acetylene flame. The results, in parts per million, were calculated by comparing a set of standards to calibrate the atomic absorption unit.

The analyses were supervised or determined by Mr. Conway Chun, or Mr. Laurie Nicol and their laboratory staff.

L. J. Nicol VANGEOCHEM LAB LTD.

Vancouver Geochemical Laboratories Ltd.

1521 PEMBERTON AVENUE NORTH VANCOUVER, B.C., CANADA TELEPHONE: 604-988-2171

J. R. WOODCOCK

TO:

Hudson's Bay Oil & Gas Co. Ltd., 171 Pemberton Avenue, North Vancouver, B.C.

FROM:

Mr. Laurie Nicol, Supervisor Chemist Vancouver Geochemical Laboratories Ltd. 1521 Pemberton Avenue North Vancouver, B. C.

SUBJECT: Analytical procedure used to process acid soluble molybdenum in geochemical samples received from

1. Sample Preparation

- (a) Geochemical soil, silt and rock samples were received in the laboratory in wet-strength 3^{1/2} x 6^{1/2} Kraft paper bags.
- (b) The wet samples were dried in a ventilated oven.
- (c) The dried soil and silt samples were sifted, using an 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.
- (d) The dried rock samples were crushed and pulverized to minus 80-mesh. The pulverized sample was then put in a new bag for later analysis.

2. Methods of Digestion

- (a) 1.00 gram or 0.50 gram of the minus 80-mesh samples was used. Samples were weighed out by using a toploading balance.
- (b) Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concentrated acids respectively).

Continued . .

2. Methods of Digestion (Continued)

(c) The digested samples were diluted with demineralized water to a fixed volume and shaken.

3. Method of Analysis

Molybdenum analyses were determined by using a Techtron Atomic Absorption Spectrophotometer Model AA4 with a molybdenum hollow cathode lamp. The digested samples were aspirated directly into a nitrous oxide acetylene flame. The results were read out on a Photovolt Varicord Model 43 chart recorder. The molybdenum values, in parts per million, were calculated by comparing a set of molybdenum standards.

The analyses were supervised or determined by • Mr. Conway Chun, or Mr. Laurie Nicol and their laboratory staff.

Nicol

VANCOUVEB GEOCHEMICAL LABORATORIES LTD.

LJN/ati

604-988-2172 VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C. CANADA INVOICE: 2913 IN ACCOUNT WITH: Г DATE: June 20, 1974 Hudson's Bay Oil & Cas Co. Ltd., 171 Pemberton Avenue, 21 DAYS TERMS: NET North Vancouver, B.C. 1 ORDER NO. Quesnel Trough 74-46-008 FOR REPORT PROJECT: Job #74-078 143 percussion drill samples for preparations @ \$ 1.00 \$ 143.00 143 geochem analyses for Mo, Cu, Pb, Zn, & Ag @ \$ 2.80 \$ 400.40 Total \$ 543.40 Jem, 379.80 JUN 201974 132/3811 314 OIL & 228 Lt. LTJ. Declared before me at the any V'encender ?? , in the bf 9 .cc of Erifish Columbia, this Pr angust 1974 d , A.D.

A Commissioner for taking Affidavits within British A Motory Public in and for the Province of British

JUN 28 1974

HUDSON'S BAA OIL & CLU CO. 170. d/o Rudd, Goold & Elliott, #200 - 186 Victoria Street, Kamloops, B. C.

June 25, 1974

Centrast , A.D. La La

1974

Declared before me at the H. N. HORNING PERCUSSION DRILLING LTD.

4

, in the

A Commissioner for taking Adidavits without British () A Notary Public in and for the Provide or British Cor

IN ACCOUNT WITH

2

DĨ

day of

Hudson's Bay Oil & Gas Co. Ltd., 171 Pemberton Avenue, North Vancouver, B. C.

Vancenni.

Province of British Columbia, this

		reet	Urillea	
1974	Hole	From	То	Total
lune 10,	Н – 1	0	140	140
11,	H - 1	140	300	160
11,	H - 2	0	240	240
13.	H - 2	240	300	60
13,	H - 3	0	300	300
14,	н – 4	0	200	200
15,	н - 5	0	200	200
16,	н – 6	0	200	200
17,	H - 7	0	200	200
17,	н – 8	0	100	100
18,	н – 8	100	200	100
18,	H - 9	0	200	200
19,	H - 10	0	200	200
19,	н – 11	0	100	100
20,	H - 11	100	200	100
20,	H - 12	0	120	120
21,	H - 12	120	200	80
21,	H - 13	0	200	200
22,	н – 14	0	200	200

3,100

3,100 Feet Drilled @ \$2.75 per foot

\$8,525.00

WESTERN DIVISION
CHARGE TO: Que' to House claims : 2200' to Fly claim
m276-7076-9035-508
m. a. deger
1. TED
TI L HEGOL

Hook. FLY. 2475.00

Page 1 of 2

 \mathbf{x}_{i}^{\prime}

HOLE NO: 74 H-3

87+00N DEPARTURE: 102+00E _____LENGTH: 300' LATITUDE: -90° ACTAS SUP CREEN ELAS DIP TESTS: DIP: AZIMUTH: -June 12, 1974 STARTED: June 12, 1974 COMPLETED: To test I.P. low PURPOSE:

-

.....

ELEVATION:

DRILLED BY: H.N. Horning DRILLED FOR:

CLAIM NO: SECTION: LOGGED BY: D.B. Kilby DATE LOGGED: June 24/74 Daniel B. Killy

FOOT	AGE	DESCRIPTION	SAMPLE	FOO	TAGE	LENGTH		6.m.	ASS	AYS	
from	to		NO	from	to		Mo	Cu	Pb	Zn	Aq
0	10	Overburden					ppm	ppm	ppm	ppm	ppm
10	20	Mixed chips of analcite fragmental and syenodiorite to diorite.	74H-3-1	10	20	10	1	95	46	70	1.4
		Trace pyrite.									
20	30	Mixed chips of porphyritic flow rocks and syenodiorite. Trace	-2	20	30	10	T ·	72	22	63	1.3
		pyrite. Minor hematite. Carbonate epidote alteration.									
30	40	Fine chips of monzonite-syenodiorite?; 0.5% pyrite. Hard to see	-3	30	40	10	2	70	24	73	1.5
		much because material is ground so fine.						S.4			1
40	50	Monzonite with some diorite with some fragments of mafic volcanic	-4	40	50	10	2	72	21	73	1.5
		material. 0.5% pyrite.									
50	60	Same as above. 0.5% pyrite. Carbonate epidote alteration.	-5	50	60	10	3	70	21	77	1.4
60	70	Monzonite to syenodiorite. Possibly weakly brecciated; 0.5%	-6	60	70	10	3	67	37	75	1.5
		pyrite.						· · · · · · · · · · · · · · · · · · ·			
70	80	Monzonite to monzonite porphyry less than 0.5% pyrite	-7	70	80	10	3	70	25	65	1.5
		granular red mineral (hematite?)									
80	90	Syenodiorite porphyry. 1% hematite; trace chalcopyrite.	-8	80	90	10	3	70	30	69	1.5
		Carbonate-epidote alteration.									
90	100	Monzonite to monzonite porphyry. Carbonate epidote alteration.	-9	90	100	10	3	78	28	62	1.4
		2% pyrite; 4% hematite	1								1
100	110	Same as above.	-10	100	110	10	3	70	25	67	1.4

HOOK

PROPERTY:

QUESNEL TROUGH LOCATION:

- -

PROPERTY: HOOK

HOLE NO: 74 H-3

FOO	TAGE	DESCRIPTION	SAMPLE	FOC	TAGE	LENGTH			ASS	AYS	
from	to	Same as above. Appears slightly prophyritic.		from	to		Мо	Cu	РЬ	Zn	Aq
110	120	Same as above. Appears slightly prophyritic.					ppm	ppm	ppm	ppm	ppm
120	130	Same as above.	-11	110	120	10	2	72.	25	65	1.3_
130	140	Same as above but less hematite.	-12	120	130	10	3	91	24	82	1.2
140	150	Pyroxene monzonite-syenodiorite. 2% hematite.	-13	130	140	10	2	84	19	62	1.2
150	160	Same as above.	-14	140	150	10	2	107	25	67	1.1
160	170	Same as above. Carbonate epidote alteration.	-15	150	160	10	3	85	23	63	1.3
170	180	Very finely ground monzonite.	-16	160	170	10	2	94	22	62	1.4
180	190	Same as above.	-17	170	180	10	2	101	20	59	1.3
190	200	Same as above with less hematite.	-18	180	190	10	2	130	22	57	1.5
200	210	Monzonite to sygnodiorite; trace sulphides; carbonate epidote	-19	190	200	10	2	70	20	55	1.3
		alteration.		200	210	10	3	69	19	65	1.2
210	220	Syenodiorite trace sulphides. Green diopsidic pyroxenes.	-21	210	220	10	2	84	20	64	1.4
220	230	Monzonite-syenodiorite; trace sulphides. Hematite up to 1%.	-22	220	230	10	3	73	21	67	1.4
230	240	Same as above.	-23	230	240	10	3	81	23	63	1.2
240	250	Same as above.	-24	240	250	10	2	82	22	60	1.2
250	260	Monzonite-syenodiorite approximately 1% hematite. Strong	-25	250	260	10	2	84	24	60	1.1
		carbonate alteration with epidote.	-26	260	270	10	2	95	21	62	1.2
260	270	Very finely ground sygnodiorite-monzonite; trace sulphides	-27	270	280	10	3	82	22	71	1.3
270	280	Monzonite-syenodiorite; trace sulphides	-28	280	290	10	3	127	32	66	1.4
280	290	Monzonite-syenodiorite; trace_sulphides. Some_secondary_biotite.7	4H-3-29	290	300	10	2	78	23	84	1.2
290	300	Monzonite to syenodiorite; 0.5% pyrite;carbonate-epidote									
		alteration. Possibly some secondary biotite.									
		- cut by carbonate veinlets.									
1		END OF HOLE									

PERCUSSION DRILL RECORD & LOG

106+00E

Page 1 of 3

HOLE NO: 74 H-1

QUESNEL TROUGH LOCATION:

74+00N

-90°

-

LATITUDE:

AZIMUTH:

STARTED: COMPLETED: PURPOSE:

DIP:

June 10, 1974 June 11, 1974 To test I.P. High

DEPARTURE :

300' LENGTH: CORE SIZE: DIP TESTS:

PROPERTY:

ELEVATION:

DRILLED BY: H.N. Horning DRILLED FOR:

CLAIM NO: SECTION: LOGGED BY: D.B. Kilby DATE LOGGED: June 24/74 Daniel B. Killy

FOOT	AGE	DESCRIPTION	SAMPLE	FOOT	FAGE	LENGTH	ASSAYS						
from	to		NO	from	to		Mo	Cu	РЪ	Zn	Ag		
0	10	Overburden					ppm	ppm	ppm	ppm	ppm		
10	20	Weathered analcite frægmental. Mainly pyroxene feldspar porphyry	74H-1-1	10	20	10	2	100	35	85	1.2		
		flow fragments - no sulphides.											
20	30	Fragments of analcite fragmentals mixed with dioritic material.	-2	20	30	10	3	104	74	135	1.2		
(Langertan)		Minor pyrite seen in diorite less than 0.5%.											
30	40	Mixture of andesite amd diorite chips. Minor pyrite seen less	-3	30	40	10	4	93	55	115	1.2		
		than 0.5%. Very little alteration.					9						
40	50	Fragments of fresh dicmrite to diorite porphyry. Can see heavily	-4	40	50	10	3	85	67	115	1.2		
		altered orange-brown chips. Pyrite less than 0.5%.											
50	60	Very similar to above. Very finely disseminated pyrite is seen	-5	50	60	10	3	77	35	92	1.2		
		in diorite. Many pyromenes have been altered to a greenish		_									
		colour. Pyrite less than 0.5%.											
60	70	Very fine chips. Diorite with disseminated pyrite 0.5%. Some	-6	60	70	10	3	75	40	84	1.1		
		epidote present. Get the same altered brown chips seen in											
		previous samples. Note presence of brassy phlogopitic mica.											
70	80	Chips are very fine and covered with dust. Get felsic	-7	70	80	10	2	77	60	91	1.1		
		fragments and diorite to diorite porphyry. Pyrite less than											
		0.5%.	_										

HOOK

PROPERTY: HOOK

HOLE NO: 74 H-1

FOO	FAGE	DESCRIPTION	SAMPLE	FOC	TAGE	LENGTH			ASS	AYS	
from	to	Diorite to diorite porphyry, weakly altered ; 0.5% pyrite,		from	to		Mo	Cu	Pb	Zn	Ag
80	90	Diorite to diorite porphyry, weakly altered ; 0.5% pyrite,					ppm	ppm	ppm	ppm	ppm
-		trace MoS ₂ . Propylitic alteration.	-8	80	90	10	2	90	43	80	1.0
90	100	Weakly altered diorite to diorite porphyry; 0.5% pyrite.	-9	90	100	10	2	75	48	80	1.1
100	110	Diorite porphyry; 0.5% pyrite	-10	100	110	10	3	70	44	75	1.0
110	120	Diorite porphyry. Chips of pyroxene feldspar porphyry flows;	-11	110	120	10	3	77	37	69	1.0
		1 1/2% pyrite; may possibly be a flow rock.	-12	120	130	10	4	71	50	70	1.1
120	140	Very similar to above. Sulphides are mainly fracture controlled.	-13	130	140	10	3	85	65	78	1.2
		1 1/2% pyrite. Sulphide associated with mafics.									
140	150	Feldspar porphyry; approximately 1 1/2% pyrite - mainly fracture	-14	140	150	10	5	85	43	83	1.1
		fillings.									
150	160	Pyroxene feldspar porphyry flow approximately 2% pyrite mainly	-15	150	160	10	4	72	67	78	1.0
		fracture fillings.									1
160	170	Feldspar porphyry. Very finely ground sample.	-16	160	170	10	3	77	44	75	1.3
170	180	Weakly altered pyroxene feldspar porphyry; approximately	-17	170	180	10	3	80	45	105	1.3
		1% pyrite.									
180	190	Feldspar porphyry 0.5% pyrite.	-18	180	190	10	3	80	43	132	1.4
190	200	Same as above	-19	190	200	10	2	73	43	80	1.1
200	210	Same as above; 1 1/2% pyrite, trace chalcopyrite.	-20	200	210	10	3	88	39	85	1.2
210	220	Feldspar porphyry. 1% pyrite mainly fracture coatings associated	-21	210	220	10	4	90	48	89	1.1
		with mafics. Feldspars are mainly chalk white. Note epidote.									
220	230	Feldspar porphyry 1 1/2% pyrite.	-22	220	230	10	3	85	37	85	1.1
230	240	Same as above approximately 2% pyrite.	-23	230	240	10	3	75	40	85	1.1
240	250	Same as above. 2-3% pyrite; note fine bluish metallic mineral.	-24	240	250	10	3	73	35	68	1.0
										1	

Page 2 of 3

.

PROPERTY: HOOK

HOLE NO: 74 H-1

FOO	TAGE	DESCRIPTION	SAMPLE	FOO	TAGE	LENGTH			ASS.	AYS	
from	to		NO	from	to	1 1	Mo	Cu	Pb	7 n	Aq
250	260	Feldspar porphyry. Creamy feldspar lathes set in a light brown	1.00				ppm	ppm	ppm	ppm	ppm
6		aphanitic matrix; approximately 2% pyrite; note fine blue	-25	250	260	10	3	80	55	84	1.1
		metallic mineral.									
260	270	Same as above less pyrite 1-2%.	260	270	10	3	82	46	100	1.1	
270	280	Same as above pyrite approximately 1%.	-27	270	280	10	3	93	50	86	1.1
280	290	Same as above. Pyrite approximately 2%; some biotite, possibly -28 280 290 10						78	38	77	1.1
		secondary.									÷
290	300	Feldspar porphyry; 1-2% pyrite, can seen some brassy phlogopitic	74H-1-2	9 290	300	10	2	75	47	64	1.2
		mica possibly secondary.				125					
						-					
		END OF HOLE									
				a Mara Pasta					AND GROUP		
_											
										-	
								-			
								-			
									Contraction of the second		

•

£.

PERCUSSION DRILL RECORD & LOG

PROPERTY: HOOK

LOCATION: QUESNEL TROUGH

LATITUDE:	81+00N	DEPART	JRE: 10	4+00E		LEN	IGTH :	300'
DIP:	-90					COL	E SIZE	9:
AZIMUTH:	-					DIP	TESTS	5:
STARTED:	June 11,	1974						
COMPLETED	: June 12,	, 1974			101 av 141			
PURPOSE:	To test	transition	between	I.P.	high	and	low	

ELEVATION:

DRILLED BY: H.N. Horning DRILLED FOR: CLAIM NO: SECTION: LOGGED BY: D.B. Kilby DATE LOGGED: June 24/74 Wantel & Kilby

FOOT	AGE	DESCRIPTION	SAMPLE	FOO	TAGE	LENGTH		ASSAYS		YS	
from	to	0 Overburden	NO	from	to	1 1	Мо	Cu	РЪ	Zn	Ag
0	10	Overburden					ppm	ppm	ppm	ppm	ppm
10	20	Coarse mixture of grains of feldspar porphyry. Creamy feldspar	74H-2-1	10	20	10	3	80	27	68	1.3
		lathes in a light brown aphanitic matrix. Possibly part of									
		analcite fragmental seen at surface.				н. Э					
20	30	Mostly feldspar porphyry with some fragments of more mafic material.	-2	20	30	10	1	79	34	80	1.2
		Pyrite approximately 0.5%.									
30	40	Feldspar porphyry. Trace pyrite note pyroxene phenocrysts in the	-3	30	40	10	1	85	35	84	1.4
		porphyry.									
40	50	Pyroxene feldspar porphyry-feldspar porphyry. Some fragments	-4	40	50	10	2	92	34	87	1.4
_		appear brecciated; 0.2% pyrite.									
50	60	Same as above. Some feldspars are bent and broken. Epidote is	-5	50	60	10	3	95	47	93	1.4
		present. Propyllitic alteration.		2							
.60	70	Same as above. Trace pyrite.	-6	60	70	10	3	118	34	90	1.4
70	80	More crowded pyroxene feldspar porphyry to feldspar porphyry.	-7	70	80	10	3	93	31	97	1.4
		Trace pyrite. Some monzonitic fragments.		inter ante							
80	90	Same as above. Trace pyrite.	-8	80	90	10	2	94	37	78	1.3
90	100	Very fine sample, probably pyroxene feldspar porphyry similar to	-9	90	100	10	3	100	28	90	1.4
		that seen above. 0.2% pyrite sulphides associated with mafics.									
							- S	1.000			

Page 1 of 3

HOLE NO: 74 H-2

A REAL PROPERTY AND A REAL

11 12

PROPERTY: HOOK

HOLE NO: 74 H-2

FOOTAGE		DESCRIPTION	SAMPLE	FOOTAGE		LENGTH	ASSAYS				
from	to		NO	from	to		Mo	Cu	Pb	Zn	Aq
100	110	Pyroxene feldspar porphyry. Feldspars and pyroxenes set in a					ppm	ppm	ppm	ppm	ppm
N		light brown aphanitic matrix; 0.2-0.3% pyrite.	-10	100	110	10	2	87	25	86	1.3
110	120	Same as above. 0.5% pyrite.	-11	110	120	10	2	72	23	81	1.0
120	130	Feldspar porphyry with some dioritic grains; 0.5% pyrite. Note	-12	120	130	10	2	95	28	92	1.3
		blue metallic mineral. May be bornite.									
130	140	Transition from feldspar porphyry to monzonite; 1% pyrite.	-13	130	140	10	3	92	62	87	1.5
		Carbonate epidote alteration.									
140	150	Same as above.	-14	140	150	10	3	108	30	105	1.4
150	160	Same as above.	-15	150	160	10	2	110	27	105	1.4
160	170	Same as above. Approximately 0.5% pyrite grading into a more	-16	160	170	10	3	107	48	93	1.5
		monzonitic rock.									
170	180	Feldspar porphyry-porphyritic monzonite; 1-2% pyrite, trace	-17	170	180	10	4	105	28	103	1.3
		chalcopyrite; epidote carbonate alteration.							-E.T		
180	190	Same as above.	-18	180	190	10	3	100	28	96	1.2
190	200	Creamy feldspar lathes in a light brown aphanitic matrix. 0.5%	-19	190	200	10	3	91	27	100	1.2
	and a second	pyrite.									
200	210	Same as above.	-20	200	210	10	1	90	26	93	1.1
210	220	Same as above. Carbonate-epidote alteration.	-21	210	220	10	3	85	31	88	1.0
220	230	Same as above. 1% pyrite all in or on mafics.	-22	220	230	10	3	100	32	87	1.2
230	240	Same as above; 0.5% pyrite.	-23	230	240	10	3	93	18	94	1.2
240	250	Feldspar porphyry; 0.5%-1.0% pyrite. Carbonate epidote alteration.	-24	240	250	10	2	93	20	84	1.1
250	260	Sample very fine and covered with fine dust. Same as above.	-25	250	260	10	3	100	25	91	1.3
260	270	Same as above; 0.5% pyrite.	-26	260	270	10	2	95	21	88	1.2
270	280	Feldspar porphyry; 0.5% pyrite.	-27	270	280	10	2	90	25	82	1.2

Page 2 of 3

PROPERTY: HOOK

HOLE NO: 74 H-2

FOOTAGE		DESCRIPTION	SAMPLE	FOOTAGE		LENGTH	ASSAYS					
from	to		NO	from	to		Мо	Cu	Pb	Zn	Ag	
280	290	Feldspar porphyry; 0.5% pyrite					ppm	ppm	ppm	ppm	ppm	
290	300	Get more equigranular monzonite with only trace sulphides.	-28	280	290	10	2	85	19	75	1.2	
	_	Carbonate-epidote alteration.	74H-2-29	290	300	10	2	110	21	82	1.3	
		END OF HOLE										
									- 5 5			
					12							
in a second	-								10000			

and because a state of the set

