5203 82E/IIE

DRILLING REPORT

CARMI CLAIMS

GREENWOOD MINING DIVISION, B.C.

OWNED AND OPERATED BY

VESTOR EXPLORATIONS LTD.

bу

A. Rich, P. Geol.

October 10, 1974

Department of

Mines and Petroleum Resources
ASSESSMENT REPORT

No. 5203

AA A.D

TABLE OF CONTENTS

		Page No.
	INTRODUCTION	1
	DRILL CONTRACTS	1
	DRILLING	2
	Diamond Drill Core	3
	Sludge Sampling	3
	Percussion Drilling Samples	3
	SAMPLING	3
	Core .	3
	Studge Sampling	3
	CORE STORAGE	4
	ASSAYS	4
	ASSAY PROCEDURES	4
	Molybdenum (MoS ₂)	5
	Copper	5
	SURVEY	5
	GEOLOGY	7
	RESULTS & CONCLUSIONS	8
	Table of Results	9
	CERTIFICATE	11
#1	Index Map	6
#2	MAP 1 - Hole Locations, Survey Bench Marks, Roads & Trenche	es In Pocket
	DRILL LOGS	
	DRILL CONTRACTS	
	SURVEY NOTES	In Pocket

INTRODUCTION

A total of 7,653 feet were drilled by Vestor Explorations Ltd. on claims situated about 3 miles NW of Carmi, B.C. Of this footage, 5,653 feet were diamond drilled with BQ core and the balance of 2,000 feet were drilled by percussion. All holes were vertical. 2,775 feet were drilled on a 200 foot grid, the balance were 'step-out' exploratory holes.

The principal economic mineral on the property is molybdenite which averages .15% in the area of proven tonnage. Chalcopyrite is present, but copper values rarely exceed .1%. Some interesting, if not economic values, of U_30_8 have been received from core, and although not all core has been analyzed, some interestingly high silver values have also been encountered.

The program was successful in that grid drilling, although limited, has proven modest tonnage of good grade molybdenum mineralization, while widely spaced step-out drilling indicates that the tonnage potential could be very large.

Drilling has ceased temporarily but should resume in mid-October, 1974.

DRILL CONTRACTS

During 1974, Vestor entered into three drill contracts. Following are the salient details of each, while copies of each contract are appended to this report:-

1. On April 5th, 1974, Interior Diamond Drilling Ltd., Summerland, B.C., contracted to drill a minimum of 4,000 feet of BQ core at a cost to Vestor of \$9.00 per foot. Interior's liabilities included: costs of drill site construction,

drill sludge sampling, costs of living, accommodation and transportation. Not included in the contract were: casing costs, core boxes, rental of sludge splitter, sludge sample bags.

- 2. On the 19th of August, 1974 the company signed a second contract with Interior Diamond Drilling Ltd. whereby Interior would drill a minimum of 1500' BQ core at a cost to Vestor of \$12.00 per foot. The one difference between this and the previous contract, is that Vestor was required to pay all costs of road and drill site construction. The substantial increase in cost between this and the previous contract was due to, (a) the poor bit footage obtained in the earlier program and (b) sharply increasing costs of steel and diamond products.
- On August 25th, 1974 a contract was signed with Al Miller Percussion Drilling Ltd., whereby Miller would drill a minimum 2,000 feet at a cost of \$2.65 per foot. Vestor was required to bear the cost of drill site construction and sampling containers.

DRILLING

The drilling operation was directed for Vestor by the author and John A. Greig, P.Geol., together with Glenn Hartley, (Geologist, NAIT). Mr. Hartley coordinated all field operations at Carmi.

Both the diamond and percussion drills were truck mounted. A water truck worked in conjunction with the percussion drill. While the truck-mounted units gave necessary mobility to this ambitious drill program, a considerable amount of road construction on the property was required (roads shown on Map 1, pocket). This road construction added considerably to the cost of the drilling.

Casing was rarely required to depths of greater than 20 feet. Most diamond drill casing remains in the holes, as it was necessary to seal the casing with a chemical grout in order to obtain good sludge recovery.

Diamond Drill Core

Core recovery was good – estimated to be about 97%. This is far better than the core recovery of Canadian Longyear, drilling for IMC in 1970, despite the fact that Longyear drilled NQ core.

Sludge Sampling

All sludge from diamond drilling was passed through a Humble sludge splitter which split off 1/26th of the sludge. This fraction was collected directly in a fibre sample bag. Most sludges were collected over a 5' interval, but later 10' intervals were used. Sampling was carried out by the driller.

Percussion Drilling Samples

All holes were drilled vertically between 1 – 300' in depth, which range is optimum for the percussion drill. Samples were obtained over 10' intervals as rather coarse 'sludge', again split by a Humble splitter, except that the split sample was collected in 1 gallon plastic pails then separated with the aid of a flocculant.

SAMPLING

Core

All holes were logged prior to splitting. Cores were split in 5' sections and later, to minimize the cost of the assays, in 10 foot sections. With a few unfortunate exceptions, the core sections correlate directly with sludge sections. Cores were shipped in double, doubly marked bags directly to the assayer in Calgary, by PWA freight from Kelowna.

Sludge Sampling

Sludges from diamond drilling were allowed to dry considerably in the fibre bags in the field before transportation to Carmi. They were allowed to dry even further at Carmi. When dry or 'damp' these fibre bags of sludge were protected in individual plastic bags and shipped to the assayer.

Sludge samples from percussion drilling were flocculated, then transported in pails to Carmi. At Carmi they were transferred to fibre bags and allowed to dry until 'damp' before transportation to the assayer.

CORE STORAGE

All core and unassayed sludge is stored in the lumber kiln at Carmi. All boxes are racked and well marked. The core is available for inspection by the Government and the key is obtainable from Vestor Explorations Ltd. or the Granby Mining Company Ltd., Carmi, B.C.

ASSAYS

All assays on this property were performed by Loring Laboratories Ltd., of Calgary. Loring McIsaac, of Loring Laboratories worked for several years as assayer for Endako Molybdenum Mines Ltd., B.C. and has considerable experience in the assaying of this metal. Occasional samples were checked by Bondar Clegg Ltd. of Vancouver. Checks on pulps averaged ± 0.003% MoS₂. Checks on quartered core showed a greater divergence, due to errors incurred through quartering, but the results nevertheless indicate that the Loring results are reliable.

All cores and sludges were assayed for MoS₂ and Cu. Occasional samples were assayed for Au and Ag. One section of core was assayed for U₃08 (chemical analysis). The uranium results are lower than indicated by the radioactivity, so thorium may also be present.

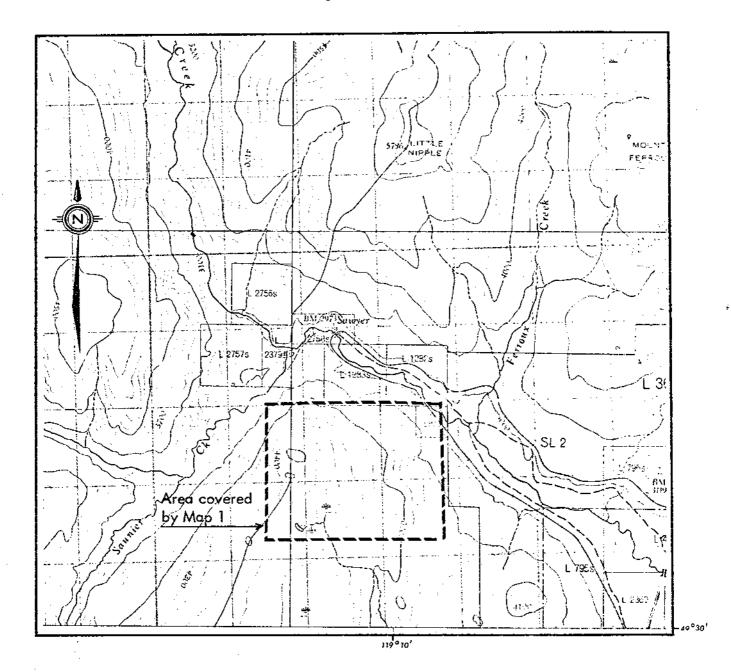
All assay results are tabulated on the drill logs.

ASSAY PROCEDURES

Both cores and sludges were dried at 100°C overnight. Samples for analysis were then screened to -100 mesh.

Molybdenum (MoS₂)

A 2 gram sample was weighed, added to 50 ml of 30% HCl and boiled. This has the effect of dissolving any MoO₃ present, but not MoS₂. This solution was then filtered and the filter paper and it's contents digested in a mixture of aqua regia and perchloric acid. The digestion was taken to fumes. The residue was then taken up in HCl and water, SiO₂ filtered off and the solution made up to volume with the addition of aluminum chloride solution. The resultant solution was analyzed for molybdenum by atomic absorption. The aluminum chloride has the effect of enhancing the molybdenum atom; minimizing it's immediate oxidation to MoO₃ in the flame.


Copper

A $\frac{1}{2}$ gram sample was digested in aqua regia-perchloric acid mixture and taken to fumes. The residue was taken up in HCl and water, SiO₂ filtered off and the solution made up to volume with water. The solution was analyzed for copper by atomic absorption.

SURVEY

The area drilled is one of high to moderate topographic relief. Few distinctive features exist on topographic maps or air photos. A survey was necessary to obtain accurate locations and elevations of drill sites.

A stadia survey of all pertinent features, such as drill holes, roads, etc. was carried out by the author. A DKM 1 theodolite was used. This instrument reads both horizontal and vertical angles directly to 20" – a far greater degree of accuracy than needed for this type of work. Azimuth was carried by use of a tubular compass mounted directly on the instrument. Elevations were carried from a bench mark on the CP Railway bridge over Wilkinson Creek, about 1 mile to the NW. A number of bench marks were established on the property. Horizontal and vertical ties were good, and well within the tolerable limits for this type of survey.

INDEX MAP

(Part of NTS Map 82E/11, Wilkinson Creek)

Duar diment of

Mines and remoleum Resources

ASSESSAIGHT REPORT

No.5203

MAP #

GEOLOGY

No attempt is made here for a far-reaching interpretation of the molybdenum mineralization. The prime purpose of this drilling program was to delineate and infer tonnage of possible ore-grade material.

Most rock types described in the drill logs were identified in hand specimen only. Several field checks were made by independent geologists. The potassium feldspar content of certain rocks was determined in the field using a sodium cobaltinitrite stain after hydrofluoric acid etching. Representative samples of most rock 'types' were identified in thin section by Dr. Roger Morton at the University of Alberta, Edmonton. All rocks are classified according to the: "Classification and Nomenclature of Plutonic Rocks as recommended by the Commission on Systematics in Petrology, Sub-Committee on Sytematics of Igneous Rocks by the International Union of Geological Sciences, August 1972."

The following are the salient geological features observed in core:

Generally, the mineralization appears to be restricted to a gneissic granodiorite breccia.

Breccia fragments are angular and there is often considerable rotation between adjacent fragments. Distance between fragments is generally less than 1" but can be several inches. The breccia matrix consists generally of almost pure quartz or quartz feldspar, with few mafics (or sulphides).

Very generally speaking, the better grades of molybdenum occur where the brecciation is most intense.

Most of the molybdenum occurs as well developed rosettes, disseminated within the breccia fragments. A limited amount of molybdenite occurs in the matrix or close to the margins of the matrix.

Although surface alteration of molybdenum minerals is extensive, alteration in core rarely exceeds a depth of 15 feet.

Pyrite is ubiquitous, however, the pyrite content appears to increase with the molybdenum.

Chalcopyrite occurs throughout the molybdenum section, however assays rarely exceed .1% Cu.

Uraninite has been identified in several sections of core. It was identified by Dr. Roger D. Morton at the University of Alberta, Edmonton, using X-Ray Diffraction. The X-ray pattern indicated a relatively non-metamict (young) uraninite. The mineral is disseminated as grains throughout the granodiorite. It is always accompanied by purple fluorite. (Purple fluorite, however occurs in much of the core which is not radioactive). The occurrence has been reported to the Atomic Energy Commission, Ottawa. The uranium, molybdenum association is being studied at the University of Alberta, Edmonton, by M.Sc. student Michael Kenyon.

Mineralization in the holes generally stopped with the breccia. The rock 'underlying' the breccia is a highly altered (chloritized, epidotized, sericitized) granodiorite gneiss - unbrecciated. This rock type contrasts sharply with the granodiorite fragments of the breccia which are relatively fresh and unaltered.

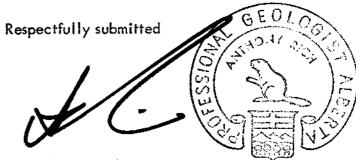
A leuco-syenite porphyry - consisting of Ango phenocrysts in a very finegrained potassic feldspar matrix - was encountered over a considerable thickness in DDH V9. It was noted, over considerably lesser thicknesses, in several of the other holes. No molybdenum values were obtained from this rock type. It is not known how or if this unit is associated with the molybdenum mineralization.

RESULTS AND CONCLUSIONS

All assay results are tabulated on the appendixed drill logs. The following table summarizes the more important MoS2 results:

Hole #	Angle	Total Depth	Mineralized Intersection	Length	Average Grade MoS2
DDH 6	90°	415'	11 - 380 Incl .335-375	369' 40'	0.12% 0.33%
DDH 7	90°	350'	0 - 320 Incl . 0 - 55	320' 55 '	0.18% 0.31%
DDH 8	90°	375'	30 - 345 Incl. 240 - 340 Incl. 305 - 340	35, 100, 312,	0.16% 0.27% 1 lb/ton U ₃ 0 ₈
DDH 9	90°	455'	6 - 415	409'	0.08%
DDH 10	90°	365'	46 - 345 Incl. 115 - 195	299' 80'	0.12% 0.24%
DDH 11	90°	273'	12 - 215 Incl. 12 - 130	203' 118'	0.23% 0.33%
DDH 12	90°	442¹	7 - 410 Incl. 340 - 395	403¹ 55¹	0.20% 0.44%

Average thickness of mineralized intersections within 200' grid, 331 feet.


Average grade 0.15% MoS2,

DDH 15	9 0°	204'	45 - 134	891	0.17%
DDH 17	90°	555'	3 - 135 Incl. 85 - 130	132' 45'	0.15% 0.25%
ΡΊ	90°	100'	4 - 60	56'	0.12%

(All studge corrections are empirical - i.e. only the volumes of the core and anulus were used; for intervals without studge, core assays were used alone.)

The drill programs must be considered quite successful in that the grid drilling has already proven a modest tonnage of good grade molybdenum mineralization. An empirical calculation based on the 200 foot grid and allowing for a 100' circle of influence of the grid holes, gives a tonnage of about 8,000,000 tons of material grading .15% MoS₂. This body of mineralization extends from surface to a depth of 400', while the average thickness is 330 feet.

Although only a fraction of the later step-out holes, intersect 'ore-grade' mineralization, the results are nevertheless very encouraging. The results from V15, V16, V17 and P1 indicate that there is a considerable potential for a large tonnage of molybdenum mineralization – mostly to the WNW of the area of grid drilling.

A. Rich, P. Geol.
Geologist - Vestor Explorations Ltd.

October 10th, 1974

CERTIFICATE

- 1, Anthony Rich of the City of Edmonton, in the Province of Alberta, hereby declare:
- That I am a registered Professional Geologist in the Province of Alberta.
- 2. That I am a graduate of the University of Alberta, Edmonton with the degree of Bachelor of Science, (Geophysics) 1966.
- 3. Since 1969 I have worked as geologist and President of Vestor Explorations Ltd. I have worked continuously in mineral exploration since 1969, principally in Western and Northern Canada.
- 4. This report is based upon personal knowledge of the property.

 I was, in part, responsible for the direction of the entire drilling program described in this report.

DATED at Edmonton, Alberta this 10th day of October, 1974.

Anthony Rich, B.Sc., P.Geol. Vestor Explorations Ltd.

	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	_CAR	WI			нове	DH # VI	<u></u>
	GRIDREF STATED May 2/74.	,	COMPLETED	May 8	/74	-			
•	Assayer - Laring Laboratories Ltd., Calgary	n <u>J.</u> Ir		om Diamon			<u>G. Ha</u> I.	<u>rtley</u>	
]		Core	e Ass	AYS Sluc	dae
FOOTAGE	DESCRIPTION .	SAMPLE NO.	FROM	10	WIDTH	Си		MoS ₂	-
0 - 10	Casing						 		
10 - 83	Fractured Zone, Fragments are mainly Gneissic Diorite, occasionally fine grained and mafic		53	58	5	.01	.003		
	intervals of similar composition		58	64	6	.03	.003		
	Alteration: Epidote Chlorite, some areas contain pinkish feldspars – usually associated with								
	fracture planes and small peg. stringers	1					<u> </u>		
		-	54	64				.003	.02
	Mineralization: Trace disseminated Pyrite, blebs of Pyrite and Magnetite along fracture fills.	<u> </u>	94	104		ļ		.078	.03
	MoS ₂ , trace only along fractures.		124 254	134 264		-	 	.009	.03
	Some fractures are filled with a soft white carbonate.	1	-	 -		 	 	.007	.03
			304 314	314			+	.007	.03
	13.5 - 14 Gougy:rich-epidote, chlorite, magnetite pink feldspars. 19.5 - 19.7 Fractured fine grained mafic Diorite (?)	 	324	334	 	 	 	.003	.08
	20 - 21 Quartz feldspar dyke material, high in feldspars (Mafic poor).	+	334	344		\	1	.009	.05
	24 - 25 Fine-grained mafic digrite	 	344	354			1	.004	.15
	43 - 51 Gougy zone chlorite on fracture planes		354	364				.005	
	58 - 59 Quartz feldspar dyke		364	374				.022	.09
	63 - 66 Fracture zone, pink feldspars, chlorite and epidote, followed by quartz feldspar dyke	,		İ					
	66 - 70 Fine grained mafic diorite		!	1					i
	70 - 72 Quartz feldspar dyke								
	72 - 72.5 Mafic diorite								
	72.5 - 73 Quartz feldspar dyke								

75 - 81 Gaugy, care lost

	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	CA	RMI		HOLE DDH #VI					
	GRIDAEF STARTED May 2/74		COMPLETED	May	8/74	_					
S	ECTION DEPTH 404* DIP90° BEARING	DRILLER <u>L</u>	Cold be	ım	ŧG	KGGED BY	G. H	ırtley			
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	ю	MIDIH	Cor	7	AYS			
		No.		 		Cu	MoS ₂		_		
83 - 160	Fresh Hornblende quartz diorite gradational into fine grained mafic quartz diorite near end of		93.5	98.5	5	.01	.065		_		
	interval.		98.5		5.5	.02	-007				
	Alteration: Epidote, pinkish feldspars near quartz feldspar dykes and along some fracture planes		1	127.5		01	-017		_		
	epidote stringers frequently intercept core at a low angle, carbonate fills along some fractures.		127.5	134	6.5	.03	.003		<u>_</u>		
	Concord strangers requestry litter cept core at a low angle, carbonate titls along some fractures.	-				 			_		
	Mineralization: Small amounts of disseminated Pyrite.								_		
	Blebs of Pyrite and Magnetite; occasionally trace Chalcopyrite along quartz stringers. Trace MoS2					<u> </u>	<u> </u>				
	on slip planes at 55'. Mo shear at 96' (4") Mo and Pyrite at 124.5 - 125 on a quartz vein at 30° to core.										
	92.5 - 93.5 Pink feldspars and a thin quartz feldspar dyke.	<u> </u>							_		
	94 - 95.5 Quartz feldspar dyke at 50° epidote on contact.		<u></u>								
	95.5 - 96 Mo shear pinkish feldspars, large Biatite and Muscovite (sericite?) flakes.		ļ				<u> </u>				
	97 - 101 Quartz Feldspar dyke.										
	104 - 105 Quartz feldspar dyke	 	ļ	<u> </u>							
	106 - 107 Quartz feldspar dyke.										
	109.5 - 109.6 Magnetite blobs in quartz fill. 110 - 112 Quartz feldspar dyke.		 -	ļ			-				
	124.5 - 125 Quartz vein with Pyrite and MoS2			ļ							
	128 - 128.5 Epidote rich fracture zone.					!					
	139 - 143 Friable Zone.										
•	148.5 - 149 Peg. dyke at 60° cuts quartz feldspar dyke. Blebs Magnetite and Carbonate										

٧	ESTOR EXPLORATIONS LTD. DRILL LOG	PROMERTY	CARM	L		HOLE DI				
	CRIDRE STARTEDMay 2/74		COMPLETED .	Ma	y 8/74					
sec	TION DEPTH 404° DEP90° BEARING DRILL	.e	J. Cold	lham ,	1000	EBBY	<u>G. Ha</u>	rtley		
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	τÓ	WIDIN		ASSA	247		
	fracture fill in Peg.					1				
	153 - 153,5 Peg. dyke with blebs of Pyrite.									
	156 - 158.5 Fractured, Epidote veinlets, small Peg. fragments, quartz vein at 45° (Breccia?)					1			
	Very Chloritic along fracture planes.									
0 - 232	Fine grained siliceous (Biotite?) quartz diorite. Gradational into coarser units above and below.									
	· · · · · · · · · · · · · · · · · · ·									
	Alteration: Epidote and Epidote stringers white Mica (sericite)?, blebs of Pyrite along fractures and									
	in disseminations. Magnetite occurs in fractures and in Pegmatite. Some quartz feldspar dykes -	ļ								
	no pinkish feldspars in diorite at contacts with Peg. No MoS ₂ . Carbonate in some fractures.	<u> </u>			 					
		ļ. —		<u> </u>						
=	166.5 – 167 Quartz feldspar dyke, Peg. stringers separates quartz feldspar dyke and diorite.	 								
	167 - 169.5Quartz feldspar dyke, much epidote in fracture planes.									
	169 - 171 Peg., blebs of Magnetite.									
	174.5 - 175 Two barren quartz stringers at 30° to core. Chlorite and Epidote on shear plane	┪			-					
	175.2 - 175.4 Quartz feldspar dyke, Epidote, Hematite stain (after Magnetite?) 176 - 177 Quartz vein ½" wide vertical dip mineralized with blebs Pyrite and Magnetite				-					
		-								
	slightly off-set due to minor movements. 179 - 181 Caarse grained Diorite.	 								
	191 - 191.4 Peg. dyke. No mafics, large blebs Magnetite.	1				-				
	191.5 - 194.5 Quartz feldspar dyke, Diorite inclusions, large pink feldspar phenos, Epidote	 								
	stringers	 								
	209 - 209.4 Quartz vein at a high angle to core, contacts have pinkish feldspars, trace Pyri	 			-					

.

							-			
١	ESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	_CARA	Á!		— HOLE _DDH #VI				
	GRID REF STARRED May 2/74		COMPLETED	May	8/74					
SEC	TION DEPTH 404' DIF -90° BEARING DRILLS		I. Colo	dham	LO	3GED BY	G .Ha	rtley		
FOOTAGE	DESCRIPTION	SAMPLE	FROM	10	WIDTH	Core	A5:	SAYS		
• • • • • • • • • • • • • • • • • • • •		NO.			ļ		-			
	218 - 218.5 Quartz feldspar dyke.		-	-	 					
	227 - 227.5 Quartz stringer - no mineralization, pinkish feldspars at contacts.									
	223.5 - 228.6 Thin Peg. stringers - no mineralization.						-			
	231.6 - 231.7 Thin Peg. stringers - no mineralization.									
232 - 316	Med. to course grained Gne issic Diorite, friable occasional pink feldspar, Pyrite blebs along fracture	S	252	257	5_	.01	.003			
	and in quartz stringers. Epidote(after Biotite?) numerous Epidote stringers, trace MoS2 in quartz		257	264	7_	.01	.003			
	stringers.		303	308	5	.02	.012	<u> </u>		
		<u> </u>	308	314	6	.01	.002			
	235 - 236 Pink feldspars, much Epidote.									
	250,5 - 250,6 Biotite rich section with pinkish feldspars.		<u> </u>	<u> </u>	<u> </u>					
	252.5 - 252.7 Quartz stringers with blebs of Pyrite, trace MoS2.		ļ <u>.</u>	<u> </u>			<u> </u>	Ļ		
	253.5 - 253.7 As above with much white Mica (Sericite?).				<u> </u>		<u> </u>	ļ. <u></u>		
	256 - 258 Quartz feldspar dyke, much white Mica (Sericite?), top and bottom contacts rich			<u> </u>			L			
	in Epidote.	ļ	<u> </u>		ļ					
	258.2 - 258.6 Quartz stringer with blebs of Pyrite and Magnetite.		ļ		ļ <u>.</u>		<u> </u>	<u> </u>		
	258.6 - 264 Gougy, disseminated Pyrite and Magnetite, in some areas Carbonate on fractures.			ļ	ļ		<u> </u>			
	265 - 265.2 Quartz feldspar dyke, Epidote and Chlorite on fracture planes.				ļ <u>.</u>					
	265.3 - 265.4 Quartz feldspar dyke.	<u> </u>	ļ							
	267.5 - 267.6 Epidote on fractures and pink feldspars.		ļ							
	268 - 268.4 Epidote on fractures and pink feldspars.	ļ	<u> </u>		ļ					
	270.4 - 271 Gougy zone, Epidote vein, Pyrite blebs and pink feldspars.	<u> </u>								
	272.4 - 272.5 Hematite stain on fracture planes									

273 - 274 Quartz feldspar dyke, Epidote and Chlorite on fractures.

V	ESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	c	ARMI.		. ,	101EDI)H # VI
	GRID REF	•	COMPLETED	May	8/74			
sec	TION DEPTH 4041 DIP90° BEARING DRILL	_{ER}	Coldh	am_	roc	GGED BY _C	3. Hart	ley_
FOOTAGE	DESCRIPTION .	SAMPLE	FRÓM	το	WIDTH	Соге	A55	AYS
		NO.				Çu	MoS ₂	
	276 - 277 Hematite on fractures, disseminated Pyrite, Epidote after Biotite. 277.5 - 281 Peg 1 foot core lost.							
	281 - 282 Quartz vein at 20° Hematite stain, Pyrite.				-			
	285 - 285.5 Peg. with Diorite fragment.							
	286.5 – 287 Hematite on fractures.							
	287 - 289 Peg., 1 foot core lost.							
	290 - 290.4 Gougy zone, Hematite stain, trace Pyrite.							
	298.5 – 299 Quartz feldspar stringers.							
	300 - 301 Chloritic fracture plane, Hematite stain, disseminated Pyrite.	<u> </u>	ļ					· .
	302 - 302,5 Pyrite veinlet and Pyrite on fracture planes.	ļ. <u> </u>			ļ			
	305 – 316 Peg. Dyke, white Mica (Sericite?) blebs of Magnetite and Pyrite MoS ₂							
	veinlets, Mafic poor – core shattered.	<u> </u>			<u> </u>			
				320.5		.02	.003	
16 - 341	Fine grained gneissic Diorite, Epidote after Biotite, numerous thin quartz stringers @30°, blebs of		320.5			.01	.002	
	Pyrite, Magnetite, Ma\$2 and occasional Chalcopyrite.	 -		330 <u>.5</u>		.11_	_,001_	
		-	330.5		1	.02_	.002	
	318 - 318.5 Three parallel quartz stringers, ½ inch wide, 1 inch separation. Blebs of Pyrite	-	335.5	340	4.5	.01	.001	
	and occasional MoS2.			<u> </u>				
	321 – 321.2 As above with trace Chalcopyrite.	 	-					
	323 - 323.5 Peg. dyke, trace Pyrite.	 -					<u> </u>	
	325.4 - 325.8 Peg. dyke, trace Pyrite.							
	325.9 - 326.5 Quartz.rich Peg. Chloritic.			ļ			·	
	328 - 328.2 Quartz stringer with Pyrite and MoS ₂ 329 - 329.2 Quartz stringer, blebs Pyrite, Magnetita	-	-					

•

VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY		ARML	HOE DDH #VI						
GRID REF ELEVATION 3672.5 STATED		COMPLETED	M	ay 8/74	1					
	ın 			GGED BY G. Hartley						
FCOTAGE DESCRIPTION	SAMPLE	FROM	TO	WIDTH	Core		·vs Co	re		
	NO.				Cu	MoSa	Αu	Ag		
and and A. C. and C. Ling at Linguist Additional Provide	 	<u> </u>	 							
330 - 330.4 Quartz feldspar dyke with disseminated Pyrite. 333 - 333.5 Quartz stringer with Chalcopyrite and Pyrite.	1	<u> </u>								
337 - 337.2 Quartz vein with (Biotite?) flakes.			· · ·	<u> </u>						
338 - 338.1 Quartz veinlet with Pyrite and Chlorite.										
338.1 - 341 Gougy zone.	-									
338.1 - 341 Googy 2011e.			1				ļ	_		
341 - 404 Gauge zone, Parphyritic Granodiarite (?), some areas extremely chloritic, entire interval broken	 	340	345	5	.02	.018				
and fractured.		345	350	5	.27	.003				
dia naciorea:		350	355	5	.03	.002				
341 - 341,2 Peg. with Hematite stain		355	360	5	07	.002				
341.2 - 341.5 Quartz vein, blebs of Pyrite and Magnetite, MoS2 on both contacts of vein.		360	365	5	.01	.002				
342 - 342.2 Peg. fragments, smeared MoS ₂ .		365	368	3	.07_	.003				
342.2 - 345 Dark fine-grained Mafic rock dyke(?)		368	369	1	.01_	.172				
345 - 347 Quartz vein, very Pyritic - chloritic. Trace MaS2.		369	374	5	.01	.018				
356 - 356.1 Quartz veinlet, Muscovite (Sericite?) and Pyrite Chloritic fractures.		374	379	5	.01	.004	Trace	.04		
356.4 - 356.5 As above.		384	389	5	.01	.003	Trace	.06		
365 - 368 Core fractured, 2 feet lost.		389	394	5	.01	.002	Trace	.30		
368 - 369 Quartz material, Chloritic rich MoSo. 9 inches of core lost,		394	399	5_	.01	.004	Trace	.30		
372 - 372.4 Quartz vein, Pyrite, trace Mo, Biotite flakes.		399	404	5	.01	.005	Trace	.02		
376.8 - 377 Peg. trace Pyrite.										
392.6 - 392.8 Peg.								<u> </u>		
404 - End of Hole.						<u> </u>		<u> </u>		
SUT - ENG OF TIOLES										
		Ī								

			_								-		
,	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	C	ARMI		HOLE DDH #V2							
	GRID REF	COMPLETED May 14/74											
SE	·	J.C Inte	oldhan rior Di	amond	Drilling	ing Ltd.							
	Assayer - Loring Laboratories Ltd., Calgary	T		T	!	Τ							
FOOTAGE	DESCRIPTION	SAMPLE NO.	FRÇM	10	WIDTH	Cu		MoSa		Co Au	re Aa		
,						-	19103-7	1410.3-5		A	Au		
0 - 48	O rerburden.			<u> </u>		-							
	·			<u> </u>									
48 - 196	Porphyritic granodiarite (identified in thin section by R. D. Morton), Feldspar phenos to ½ inch.		115	120	5	.04	.024	.010	.03	Trace	Trace		
	Mafic mineral is Biotite with partial alteration to Epidote throughout. Feldspars seem slightly pinkish.		120	125	5	.01	.002	.003		Trace			
	Epidote stringers with local pink feldspars are present. Soft white carbonate fills some fractures.		185	190	5	.01	.003	(.004		Trace	. 18		
			190	195	5	.01	.003	(Trace	.06		
	Mineralization: Care is mostly barren, Pyrite blebs occur along Peg. stringers and occasionally												
	within large Peg. members. Altered gaugy section 115 - 120 contains much Pyrite and some MoSo									Sludg	e		
	Interval 146 - 147 also contains much Pyrite. Trace unidentified metallic mineral.			<u> </u>						Aυ	Ag		
	185 - 195 assayed for Cu, Mo, Au, Ag.		185	190						.01	.16		
				<u> </u>			<u>L</u>						
	Minor Structures			<u> </u>			<u> </u>						
	59 - 59.8 Peg. Hematite stain (after Magnetite)?			ļ	<u> </u>	<u> </u>	<u> </u>						
	78 - 82.5 Peg. accasional Pyrite bleb and Muscovite			<u> </u>					1	<u></u>			
	83 - 89 Fractured gougy zone 1.5' recovered.			ļ ·			<u> </u>						
	90 - 91 Peg. as above.			ļ <u>.</u>		<u> </u>	ļ			<u> </u>	<u> </u>		
	115 - 120 Altered zone much Pyrite and white mica (Sericite?), very quartz rich -	<u></u>		ļ									
	(Feldspars altered to Sericite?) Trace Chalcopyrite, some Moly.					<u> </u>				<u> </u>	<u> </u>		
	120 - 131 Peg. occasional Magnetite bleb and some Muscovite.			<u> </u>			<u> </u>			<u> </u>	<u> </u>		
	131 - 135 Barren white quartz sheared near bottom.	ļ		ļ			<u> </u>						
	145- 146 Pyrite on fracture plane.												
	147 - 147.5 Peg. as above.												
	150 - 163.5 As above very fractured.					<u> </u>							
	163 - 164.5 Gougy zone.					1							

	EXPLORATIONS LTD. DRILL LOG	STARTED May 10/74							
section	DEPTH 196	65ARING —	XILLER J. (Coldhan	<u> </u>	100	3G 80 B Y	Ģ.H	<u>artle</u> y
OTAGE	DESCRIPTION		SAMPLE NO.	FROM	το	WIDIH		ASS	AY5
	168 - 169 Peg. as above with 4" gaugy zone.					ļ			
	195 - 196 Peg. as above.								
	<u> </u>			ļ					
-		·					<u> </u>		
							<u> </u>		
 			\dashv			<u> </u>			
				<u> </u>	 				
-						ļ			
			<u> </u>						
-							<u> </u>		·
-			_	-					
				 					
						i			

.

. :

•

,	ESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	. '	CARM	11	. •	101E	DDH.#V	<u>′3</u>
	GAID REF	4	COMPLETED	Моу	22/74				
sec	Assayer – Loring Laboratories Ltd., Calgary		Coldh for Dias		ioi Filling	scent <u>C</u> Ltd.	G.Hart	ley	
FOOTAGE	OE SCRIPTION .	SAMPLE NO.	FROM	10	WIOTH	Core		AYS SIC	
						Cu	Woy	MoS2	<u>. Cu</u>
0 - 1.6	Casing								
1.6 – 46'	Gneissic diorite epidote after biotite. Stringers of epidote with local pink feldspars. Care fractured-								 =
	poor recovery to 25' numerous quartz veins. Quartz veins and stringers contain much pyrite								
	occasional blebs of magnetite. No MoS2.								
-	Minor Structures:		<u></u>						
	9 - 9.2 Quartz vein with massive pyrite, badly weathered to limonite.								
	9.2 - 12 Core in buttons much limonite.	<u> </u>					-		
	13 - 13.4 Quartz vein showing movement.								
	16 - 16.5 Quartz feldspar vein.								
	18 - 18.5 Mofics highly aftered to epidote and chlorite. Hematite staining.								
	24 - 25.5 Core badly fractured minor quartz and peg. stringers. Quartz has blebs of pyrite								
	and magnetite.								
	34 - 34.3 Quartz vein muscovite flakes blebs pyrite and magnetite. Trace chalcopyrite.		<u> </u>						
	37 - 37.5 Quartz stringer with pyrite and magnetite blebs.	ļ	ļ. <u></u>						
	39 - 41 Peg.		<u> </u>						
	41 - 43.5 Gougy zone much chlorite epidote and pink feldspars.					!			
li de la companya de	43.5 - 44.5 Quartz-feldspar vein, feldspars are red to orange.				ļ				
		<u> </u>							
46 - 224	Breccia complex mainly gneissic diorite, occasional fragments of fine grained mafic gneissic diorite		50	55	5	.03	.025	.024	.04
	and medium grained gneissic diorite, with blebs of feldspar and quartz. Contacts between (obvious)	ļ	85	90	5	.01	.021	.020	.03
	breccia fragments are "healed" by epidote stringers and occasionally quartz Mineralization seems	ļ <u>.</u>	90	95	5	.01	.003	,009	.02
	confined to quartz fillings. MoS2 always appears with pyrite while the converse is not true.	<u> </u>	120	125	. 5	.02	.007	.059	.06

	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY		ARMI			HOLE	DDH#\	/3
	GRID REF		COMPLETED	May 2	2/74	_			
56	CETION DEPTH DIP BEARING DRILL	u <u>].</u>	Coldho	2m	ιo	GGED BY 🗘	3. Har	ley_	
*******				T	WADTH	Core	A55	AYS Slu	dae .
FÓÓTAGE	DESCRIPTION -	SAMPLE NO.	FROM	10	WIDIN	(!	MoS ₂	_
				1					
			160	165	5	.02	.013	,018	.04
		<u> </u>	170	175	5	.02	.030	.039	.03
		-	185	190	5	.005	.011	.012	.03
	Minor Structures:			<u> </u>					
	51 - 52 Quartz fracture fill, blebs pyrite MoS2 and chalcopyrite trace (fluorite?)	-	<u> </u>	<u> </u>		1	 		
	52 - 52.5 Altered diorite, feldspars to sericite? quartz remaining, much disseminated pyrite ar	 		-	 				
	magnetite	-		-	-				
	54.5 - 55 Quartz fill (muscovite?) flakes disseminated pyrite.	_	-	-					
	56 - 57 Peg. with pyrite.	-					<u> </u>		
	68 - 70 Highly altered, red feldspars and epidote. 70 - 70.1 Quartz fill massive pyrite and muscovite(?)	 	1	┼	 -	 			
	82 - 87 Gougy zone very pink feldspars much chlorite and epidote.	 	 	 	 		ļ		
	89.2 - 89.4 Feldspars completely altered to sericite and quartz. Some pyrite, strong MoSo	 	 	 	 	 			
	93.8 - 93.9 Quartz fill much epidote and chlorite.	1			1		 		
	96 - 96.5 Quartz feldspar fragment "healed" with chlorite.			1					
	98 - 105 Gougy zone, pink feldspars chlorite; hematite stain in fractures; mafics to epidote.	 		1	 		<u> </u>		
	108 - 122 Gougy zone as above.	1	1	1	 	 			
	122.5 - 123 Sericitized gneiss, - trace pyrite and MoS2.		1			\vdash	 		
	128.4 - 128.5 Quartz fill with pyrite and magnetite .			1		<u> </u>			İ
	129.5 - 130.5 As above.	1			1		i		
	132 - 132.5 Muscovite chalcopyrite and magnetite, much pyrite in very fractured care.			1					
	140 - 140.1 Pyrite and magnetite on fracture.	1	Ì	1					
	143.5 As above.	1	1	1	<u> </u>				
	145 Massive pyrite along quartz feldspar vein	1		1					

١	ESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY		CARA	ΛI	но	.eJ	DDH #\	/3_
	GRID REF STARTED May 15/74		COMPLETED .	May	22/74				
SEC	TION DEPTH 375 DIP90° BEARING GRILLI	: 1.	Coldh	am	toge	50 ev _G.	. Hart	l ay _	
FOOTAGE	DESCRIPTION	SAMPLE	FROM	10	WIDTH		ASSA	.YS	
		NO.	- FAQAII	, ,	,,,,,,,				
	151 Pyrite along fracture.					- -			
	159.7 Barren guartz vein			-					_
	162 - 162.5 As above.				<u> </u>				_
	163 - 163.4 Quartz fill and sericite, pyrite, chalcopyrite and MoS2.								
	167 - 171 Gougy zone.								
	171.2 - 171.4 Quartz fill as above.								
	182 - 184 Pyrite in Peg.								
	185 - 190 Peg. pyrite and some MoS2.								
	191 - 194.5 Gougy zone.								
	211 - 212 Peg.								
	219 - 221 Peg.						[
	222 - 224 Fractured zone with Peg. veinlets pink feldspars, no mineralization.		ļ						
224 260	Gneissic digrite - little variation through interval. Few epidote stringers and chlorite along fracture	<u> </u> 							
224 200	planes. Biotite is partially altered to epidote, some fractures have hematite staining. Small amounts	ļ · · · · ·	· · · · · · · ·		[
	of pyrite occasionally appear on fractures. Pyrite and magnetite are trace minerals in pegmatites,								
	occasional carbonate stringers and no MoS ₂ .								$\overline{}$
	233 - 239 Gougy zone.								
ŀ	239 - 243 Peg.	1	·····						
	257 - 275.5 Peq.	<u> </u>							
	257.5 - 260 Foliation change, off-set pegmatites indicating movement; fragments healed with								_
	epidote stringers.								
		ļ							_
					, .				4

	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY		ARMI		-	HOLE	DDH#	<u>'V3</u>
	GRID REF STARTED May 15/74		COMPLETED	May	22/74	-			
58	CHON DEPTH 375° DIP -90° BEARING DRIL	.s. <u>J. C</u>	oldhan	n	ιο	GGED BY	−G.Ha	ertley-	
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	00	WIDTH	Cor		MoSa	1 7
260-268	Fine grained diorite extremely mafic. Epidote stringers and epidote after biotite in lower 2 feet of								
	interval. 266 - 267.5 quartz vein with large blebs of pyrite and MoS2 (center barren, contacts are mineralized) same mica flakes.								
268 - 276	Quartz feldspar dyke material - pink feldspars, some micaceous intervals and associated pyrite and MoS2.		265 270	270		.03	.061	.100	+
	275 - 276 Barren quartz vein with mica, pyrite and Mo\$2 on contacts.								
276 - 375	Quartz monzonite (later identified as a granodiorite by R. D.Morton) Porphyritic, mafic's unaltered most of interval gaugy and highly fractured; local pink feldspars along fractures - occasional hematite stain in fractures. 296 - 300 Peg. very gaugy.		275	280		.01	,009	_070	.03
	300 - 301 Core less mafic, more siliceous, blebs pyrite. 302 - 302.2 Peg. 303 - 303.1 Feldspars altered to Sericite. No MoS2.								
	307 = 310 Gougy. 313 = 315 Gougy								
: : : : :	319 - 327 Gougy 326 - 331 Gougy 342 - 344 Peg.								
	344 = 350 Gongy 351 - 353 Peg.								

354 - 354.5 Gougy quartz vein pyrite but no MoS2

VESTO	R EXPLORATIONS LTD. DRILL LOG	ROM		CARMI		н	DI	<u>>H ∦∧3</u>
GRID REF		/74	COMPLETED	_Мау	22/74			
ZECTION	DEPTH 375° DIP 90° BEARING	eriller	Coldhor	n	100	GG60 BY G. Hartley		
EDATO	DESCRIPTION	SAMPL	E FROM	10	WIDTH		ASSA'	YS
		NO.	_					
	355 - 358 Peg Gougy 6" core recovered							
	358 - 375 Gougy							
-	End of Hole.			 				
	that of Hole.		- 	 			-+	
<u> </u>			_	<u> </u>	<u> </u>			
}				<u> </u>				
				 				
-	·			<u> </u>				
			 	<u> </u>				-
		-		<u> </u>				
<u> </u>								
			-	<u> </u>				
					 			
			 	 		1		
-								
				<u> </u>				

. .

	VESTOR EXPLORATIONS LTD. DRILL LOG GEIDREF 4119.8 STARTED May 22/74						коле		
	•			•	9/74				
55		Inter	oldhon ior Dio	mond [Drilling	Ltd.	G. Ho	<u>rtley</u>	
	Assayer - Loring Laboratories Ltd., Calgary	1	r -	1	1	· -			_
AGE	DESCRIPTION .	SAMPLE	FROM	70	WIDIH	Core	1	AYS\$	7
						Cυ	MoS ₂	MoS ₂	ł
			 						1
	Casing								ŧ
26	Light gray granodiorite fine to medium grained; mafic poor - biotite less than 5%. Interval homogeno	s	10	15	5	.01	.007	.011	1
	except for gougy sections. Disseminated pyrite. Occasional disseminated molybdenite rosettes	<u> </u>	15	20	5	.01	.008	.013	1
	12 - 42 and moly, shears along fractures 95 - 105. Fracture planes are occasionally chloritic.		20	25	5	.01	.011	,009	1
	TEL TELLINA MANY MANY MANY MANY MANY MANY MANY MA		25	30	5	.01	.018	.010	7
	7 - 26 Oxidation zone fractured much limonite and pyrolusite on fractures.		30	35	5	.01	.017	.010	7
	42 - 45 3 feet core lost.		35	40	5	.01	.022	.012	٦
	42 - 95 very fractured and gaugy.		40	45	5	.005	.013	.008	_
	95 - 121 Green blotches of chlorite (recrystallized gouge zone?) appears gougy but is hard	<u> </u>				<u> </u>	ļ. <u>.</u>		
	and unfractured.		95	100	5	.01	.012	.006	
		<u> </u>	100	105	5	.005	.009	.006	
	121 - 226 same as above except occasional pinkish feldspar alteration and local chloritization	1	 			1			4
	- surrounding these areas.	ļ		-		-	ļ		-
		 	ļ	ļ					-
		-	-			1			-
									_
		1							į
		1		ļ					
		 							-
									+
		†	 						-
		1			 				_
		 	1	†			 		-

•

. **

•

,	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY		CARA	A!!		HOLE	DDH#.V	<u>/5</u>
	GRID REF		COMPLETED	June	18/74				
. 56	Assayer - Loring Laboratories Ltd, Caigary	Inte	oldhan rìor Die	n omond	Drilling	sseer	G . Hart	ley	
						Core	ASS	AYS Slu	dge
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	10	WIDTH	Cυ		MoSa	
0 - 1.5	Casing				1				
1.5 - 72	Mainly Gneissic Diorite. Some sections highly Chloritized and Epidotitized, entire interval gougy			ļ					-
,,,,	and highly fractured. Much core lost, rusty stain in some areas (Hematite). 29 - 30 black dendritic								
	structure (Pyrolusite?) on fracture piones, very rusty yellow stain.		<u> </u>						
		ļ			ļ <u>.</u>	<u>.</u> .			
	50 - 53 - Breccia fragments.	ļ	ļ		<u> </u>			·	177
	52 - 62.5 Fine-grained dark green, Chloritic dyke,	 -			ļ. <u>.</u>	ļ			
	62.5 - 72 Gaugy zone, chloritic and siliceous pink feldspars disseminated Pyrite; mafics		<u> </u>					<u> </u>	
	completely altered to Epidote Chlorite.	 		 	ļ <u></u>		ļ		
72 - 77	Breccia, fragments of Gneissic Diorite. Epidote after Biotite and in stringers, Epidote and Chlorite		70	75	5	.05	.011	.029	.08
	on fractures, local pink feldspars. Larger fractures are filled with quartz.	ļ <u> </u>	75	80	5	.02	.011	.012	.06
	Mineralization: Blebs of Pyrite in fractures and quartz fills, MoS2 associated with Pyrite in blebs and				<u> </u>				
	shears.								
77 - 124	Gneissic Diorite, Epidote after Biotite, numerous Epidote stringers, local pink feldspars associated.				<u> </u>			<u>'</u>	
77 - 124	Epidote Chlorite and Pyrite along some fractures. No MoS2.								
					ļ	ļ			
	Minor Structures:	-			<u> </u>	<u> </u>	!		
	77 - 81 Gougy zone.				 	 			
	85 - 85.5 Carbonate fracture fills.	 	ļ	 	 	<u> </u>	ļ		
	88.5 - 88.7 Quartz feldspar dyke?	-	-	-	-	ļ			

٠

C

,	VESTOR EXPLORATIONS LTD. DRILL LOG	ROHATY	CAF	MI	<u>. </u>	-	ноце	DB# V	<u></u>
	GRID REF STARTED STARTED		COMPLETED	Jus	ne 18/7	4			
50	CITION DEPTH 2381 DIP SEARING ORBU	LEX	. Calli	ham	£O	GG60 6Y <u> </u>	G. Har	tley_	
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	10	мирти	Core Cu	1 3	^{AYS} S MoS2	udge Cu
					ļ				
	95 - 98.5 Gaugy zone.	 	 	 	<u> </u>	 	ļ		ļ
	104 - 104 .2 Quartz vein with blebs of Pyrite and Magnetite.	ļ	<u> </u>	<u> </u>	-	ļ			
	104-2 - 105.5 Breccia fragments, quartz fill, foliation change.	-	_	<u> </u>		 	ļ		Ĭ
	108 - 108,6 Peg.	ļ		ļ		ļ	ļ		
	109 - 123 Rock appears to be fractured but not rotated. No MoS2.	 			ļ		ļ		ļ. ——
	120 - 123 Pink Feldspars, Epidote after Biotite, Chloritic fractures.				 		ļ		<u> </u>
124 - 219	Brecciated complex fragments, mainly of Gneissic Diorite, atz. Feldspar, and Diorite, Epidote and	 	120	125	5	.02	.004		
	Chlorite on fractures. Quartz fills contain blebs of Pyrite and some MoS2.		125		5	.01	.010	.021	.01
	Minor Structures:	 -							
	125 - 126 Quartz fill with pyrite and MoS2.		<u> </u>	<u> </u>					
	134 - 139 - Gougy								
	141 - 141.5 Quartz fill with Pyrite.		<u> </u>	<u> </u>					
	142 - 143 Barren quartz.		<u> </u>						<u> </u>
	160 - 161.5 Quartz fill massive pyrite and some MoS2.	ļ					ļ		
219 - 238	Gneissic Diorite, hair like epidote stringers. Local pink feldspars epidote after biotite, chlarite and								<u> </u>
	pyrite on fractures. No MoS2.								
# B	Minor Structures:								
	224.6 - 229.7 Quartz vein with pyrite blebs.								
	230 - 238 6" core recovered sludge sample shows fine gray sand.								
ļ									
ğ	1		1]			

 $\{ \zeta \}$

,	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY		RMI			нов	. <u>8∨* H</u> đ¢		
SEC	CRIDREF STARRED JUNE 18/74 CHON DEPTH 415' DIP -90° BEASING CRICU Assayer - Loring Laboratories Ltd., Calgary	<u></u>	Coldho erior D	101	LO	GGEDBY <u>G. Hartley.</u> ng Ltd.				
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	70	WIDIH	Core Cu	22A CZoM	475	_	
0 - 11	Overburden		11	15	4	.03	.024		_	
11 - 163	Brecciated "E Zone" complex consisting of fragments of (1) Gnelssic diorite		15 20	20 25	5	.03	.024			
	(2) Porphyritic quartz monzonite (later identified as aranodiorite). (3) Medium grained quartz diorite.		25 30	30 35	5 5	.04	.072		-	
	(4) Dark green aphanitic basic rock, probably a later dyke. Core recovery is good although entire interval is fractured. Breccia fragments are healed with quartz		35 40 45	40 45	5 5	.05 .04	.030 .036		_	
	fillings. Pyrite is normally associated with fills. MoS ₂ occurs both along fills and disseminated. Mafics are fresh and unaltered to epidote or chlorite.		50	50 55	5	.01	.130		<u> </u>	
	34 - 58 Care gaugy and fractured 51.5 - 53.5 - 1.5 feet care lost.		55 60 65	60 65 70	5 5 5	.02 .04	.066 .037			
	54 - 55 Quartz fill blebs pyrite and MoS ₂ . Muscovite (bleached biotite?) flakes.		70 75	75 80	5 5	.02	.044		_	
	63 - 83 Brecaia predominantly quartz diorite fragments. 91 - 163 As above.		80 85	85 90	5	.02	.030			
	108 - 109 Massive Pyrite or quartz fill 133 - 142 Fine grained basic dyke; poorly developed feldspar phenos some hematite stain.		90	95 100	5	.03	.039		_	
163 - 404	Brecciated interval as above, however individual fragments are considerably larger, approximately 95% of interval is guartz digrite. Epidote and chlorite appear as trace minerals on occasional		100	105 110	5	.03	.059		_	
	fractures - no stringers or stockworks. MoS ₂ appears to be truly disseminated throughout. Pyrite is disseminated and occasionally massive. Intervals rich in muscovite (bleached biotite?) do not		110	115	5	.04	.065		_	
	necessarily contain MoS ₂ as was the case in previous holes.		120	125 130	5	.03	.055		_	
				1.00		,,,,				

. .

	GRIDREF		OMPLETED	June	20/74			
SECT	ION DEPTH 4151 DIP =90° SEASING DRILLI			m			-G _v Hai	rtley
OTAGE	DESCRIPTION	SAMPLE NO.	FROM	to	WIDTH	Cor	e Ass MoSa	AY5
							141032	
	186.5 - 187 Gneissic diorite fragments		130	_135_	5.	.04	.126	
	192 - 193.5 Gougy zone.		135	140	5_	.01	.056	
	194 - 194.5 Gneissic diorite		140	145	5	.03	.084	
	208 - 212 Breccia fragments, interval is very micaceous (bleached biotite?) large irregular		145	150	5	.03	.069	
į	masses of pyrite, trace chalcopyrite, magnetite and fluorite, MoS2 is disseminated.	_	150	155	5	.02	.042	
	225 – 233 Pinkish feldspars		155	160	5	.02	.022	
	235 - 240 Gneissic diorite fragments		160	165	5	.02	.043	
	262.5 - 263 Epidote stringers, very pink local feldspars.		165	170	5	,05_	.027	
	273 - 273.5 Gneissic fragment		170	175	5	.03	,076	
	278 - 278,5 Same as above.		175	180	5	.02	.108	
	280 - 290 Numerous quartz veins		180	185	5	.02	.152	
i	302 - 302.5 Fine grained mafic diorite fragments		185	190_	5	.02	.172	
	302.5 – 307.5 Quartz monzonite fragments		190	195	5	.02	.099	
	307.5 - 308 Gneissic diorite fragments		195	200	5	.02	.080	
	325 - 378 High degree or brecciation, small fragments filled with quartz - similar to top of ho	le.	200	205	5	.02	.083	
	378 – 404 Brecciated slightly; mainly gneissic diorite, trace pyrite, no MoS2. Epidote		205	210	5.	.02	. 133_	
	stringers with local pink feldspars epidote afterbiotite.	<u> </u>	210	215	5	.03	.075	
			215	220	5	.03	.154	
415	Gneissic biotite-diorite, pinkish feldspars and chlorite; fracture planes. Epidote after biotite.Interval		220	225	5	.02	.091	
	shattered but not brecciated, few pyrite stringers, no MoS2.	<u> </u>	225	230	5	.01	.093	
	End of Hole		230	235	5	.02	.038	
			235	240	5	.01	.084	
;			240	245	5	.01	.064	
		į.	245	250	5	.02	.102	1

VE3	STOR EXPLORATIONS LTD. DRILL LOG						HOLEDDH
G	RID REF STARTED JUNE 18/	/74	COMPLETED	Jung	20/74		
\$9CTHON	DIP	onun <u>J.</u>	Coldho	ım	ros	5GED S Y	G. Hartley
OTAGE	DESCRIPTION	SAMPLE NO.	FROM	FO	WIDTH	Core	1
 -							MoS ₂
-			250 255	255 260	<u>5</u>	02	.050
<u> </u>			ľ	·		i	
			260 265	265 270	<u>5</u> 5	.005	.009
		1	270	275	5	.005	.065
			275	280	5	.02	.099
			280	285	5	.01	.065
			285	290	5	.01	.057
			290	295	. 5	.06	.075
	Note - Core sample checks - Bondar Clegg		295	300	5	.01	.053
	295 - 300 .052 MoS ₂ (Loring pulp samples)	Ì	300	305	5	.01	.091
	340 - 345 .21 MoS ₂ (Loring pulp samples)		305	310	5_	.01	.052
	345 - 350 . 13 MoS ₂ (Quartered Core)		310	315	5	.01	.054
_	350 - 355 .11 MoS ₂ (Quartered Core)		315	320	5	.01	.067
ļ <u>. </u>			320	325	5	.02	.034
	Additional - Laring Assays 'Sludges'	<u> </u>	325	330	5	.01	.130
<u> </u>	Erom To Cu MoS ₂		330	335	5	.01	.073
<u> </u>	380 385 .01 .046		335	340	5	.01	.158
\vdash	385 390 ,02 ,042		340	345	5	.01	.216
<u> </u>			345	350	55_	.01	.126
-		.	350	355	5	.01	. 185
<u> </u> -			355	360	5	,01	.226
\vdash			360	365	5	.02	.176
			365	370	5_	.01	.535
		·	370 375	375 380	5 5	.01	.980

VESTOR EX	PLORATIONS	LTD.	DRI	LL	LOG
-----------	------------	------	-----	----	-----

PROPERTY CARM!	HOLE	DDH # V
----------------	------	---------

STARTED __JUILE_20/74

COMPLETED June 23/74

SECTION _____

оерти _____350_____

BEARING

Interior Diamond Drilling Ltd.

Assayer - Loring Laboratories Ltd., Calgary

ы» _ 90°

FOOTAGE	DESCRIPTION	SAMPLE FROM		то	WIDTH	Core ASSAYS Sludge				
		NO.		<u></u>		Cu	MoS ₂	MoS ₂	Cυ	
0 - 264	Typical "E Zone" breccia complex common to holes, IMC #'s 1, 13, 12 & V6 fragments are:		0	5	5	.02	.600			
	(1) Quartz diorite		5	10	5	.05	.515			
	(2) Gneissic diorite		10	15	5	.03	.288	.180	.05	
	(3) Granodiarite		15	20	5	.03	. 137	. 176	.05	
:	(4) Mafic fine-grained diorite		20	25	5	.06	.149	.206	.05	
	All fragments are healed with quartz. MoS2 is disseminated and in quartz fills pyrite either massive,		25	30	. 5	.03	. 180	.293	.04	
	in stringers or disseminated in various sections over interval. Purple fluorite occurs in somequartz		30	35	5	.03	.128	.203	.05	
	fills. Large blebs of pyrchotite and pyrite occur at 21 and 28 feet. Biotite is fresh and unaltered in	<u></u>	35	40	5	.03	. 194	.318	.05	
	most fragments with exception of the gneissic diorite where epidote after biotite occurs.	<u> </u>	40	45	5	.05	.112	. 282	.05	
			45	50	5	.03	.118	.238	.05	
	0 -25 Oxidation zone	ļ	50	55	5	.02	.458	.640	.05	
	30.5 Purple fluorite and black blebs of uraninite up to 1200 c.p.s. from core (measured on	<u> </u>	55	60	5	.06	,078	.200	.04	
	a SRAT SPP2 scintillometer)	ļ	60	65	5	.03	.091	.256	.04_	
	50 - 52 Altered breccia chlorite on fractures, epidote stringers local pink feldspars.	ļ	65	70	5_	.05	. 124	.191	.04	
	52 - 53 Very rich disseminated MoS ₂		70	75	5	.01	. 133	.315	.03	
	58 - 59 Very rich feldspar fracture fill	ļ	75	80	5	.02	.075	.156	.03	
	105.5 - 106 Very mafic fine-grained diorite		80	85	5	.06	.158	.176	.oz.	
	130 - 170 Core very fractured, pinkish feldspars		85	90	5	.06	.214	.128	.07	
	136 - 137 Quartz fill massive pyrite and some fluorite.	ļ	90	95	5	.04	.085	.104	.06	
	168 - 174 Gougy very chloritic		95	100	5	.05	.208	. 191	.05	
	211 - 214 Quartz very massive pyrite rich MoS ₂ , Few large biotite flakes "T" shaped inter-		100	105	5	.03	.178	. 189	.05	
	growth of bladed crystals identified as uraninite -(R.D. Morton - XRD Identification) 350 cps	<u> </u>	105	110	5	.04	.208	.141	.05	
	233 - 234 Black to dark green aphanitic dyke. Few tiny rounded inclusions (quartz?)	<u> </u>	110	115	5	.02	.120	,106	.03	
	(poorly developed feldspar phenos?) speck of red hemative stain.	<u> </u>	115	120	5	.04	.118	.122	.05	
<u> </u>	1	1	!	1		!		!	1	

VESTOR EXPLORATIONS LTD. DRILL LOG

MOPERTYCARM!	HOLEDDH#V7
--------------	------------

SECTION DEPTH 3501 DIP 90° SEARING DRILLER J. Coldhom LOGGED BY G. Hartley

FOOTAGE	DESCRIPTION .	SAMPLE				10	WIDTH	Ca	udge	
		NO.				Cυ	MoS ₂	MoSo	Cu	
	234 – 235 Quartz vein pyrite and rich MoS ₂		120	125	. 5	.02	.203	. 194	.03	
:i	243.5 - 244 Gougy		125	130	5	.04	.070	.116	.05	
	250 – 254 Gougy in some sections, thin dyke at the top of interval same as the above dyke		130	135	5	.03	.095	.093	04_	
	252.7 - 253 Dyke as above.		135	140	5	.01	.058	. 149	.03	
	256 = 256.5. Quartz feldspar vein.		140	145	5	.01	.093	.191	.02	
	260 – 261 Muscovite (bleached biotite?) rich MoS ₂		145	150	5	.05	.110	. 128	.03	
ē.	261 - 261.5 Peg. some pyrite and large muscovite flakes.		150	155	5	.03	.114	182	.03	
İ	262 – 264 Fractured gaugy zone, chlorite and carbonate stringers.		155	160	5	.03	,143	, 102	.02	
			160	165	5	_01_	.120	.200	.04	
264 - 325	'Lower grade'brecciation only a few true breccia fragments. Mainly a quartz diorite with homblende		165	170	5	.03	.066	147	03	
	and biotite, extremely mafic. Rich disseminated MoS2 - few blebs pyrite - trace fluorite.		170	175	5	.02	.043	.147	.03	
		ļ <u>.</u> i	175_	180	5	.01	.046	.149	.03	
	266 – 274 Pinkish feldspars		180	185	5	.03	.093	.200	.05	
	278 - 278.5 Quartz vein with blebs of pyrite, cuts core at a high angle.]	185	190	5	.01	.046	. 147	,02	
	280 – 280.2 As above.		190	195	5	.01	.085	156	.02	
	292 - 297 Fine-grained mafic (hornblende) diorite as above.		195	200	5	.01	.038	.112	.02	
	310 - 311 Quartz vein at high angle blebs of pyrite.		200	205	5	.03	.099	.126	.02	
ļ	311.5 - 312.5 Gougy zone very chloritic; fragments of quartz.		205	210	5	.03	.214	160		
	314 - 314.5 Fractured zone carbonate stringers MoS ₂ on fractures.		210	215	5	.02	.278	.430		
	317 - 319 Gaugy zone muscovite - large blebs pyrite and purple fluorite.		215	220	5	.02	.089	. 128	.03	
			220	225	5	.02	.030	. 128	.03	
325 - 350	Gneissic diorite epidote after biotite. Epidote stringers and local pink feldspars. Occasional quartz		225	230	5	.01	.015	.097	.02	
	feldspar dykes, no MoS ₂ , trace pyrite.		230	235	5	.005		.076	_	
	325 – 328 Chloritic gneiss, pink feldspars, epidote stringers.		235	240	5	.01	.093	. 156		
	,	1								

	VESTOR EXPLORATIONS LTD. DRILL LOG GRID REF STATEO_JUNE 20/74_		COMPLETED June 23/74									
SECTION	350' 90°		COMPLETED June 23//									
OOTAGE	DESCRIPTION	SAMPLE NO.	FROM	TO	WIOTH		7	Sludge				
-		NO.	<u> </u>	-		Cu	MoS2	MoS ₂				
	330 = 330.5 Peg.		240	245	5	.02	.076	.124	<u> </u>			
	333 - 333.5 Peg.		245	250	5	.03	.087	. 128	i			
	334 - 334.5 Quartz feldspar dyke		250	255	5	.01	.033	100	1			
	339 - 339.5 Quartz feldspar dyke		255	260	5	.01	.169	T —				
	343 - 345 Fine-grained gneissic fragments		260	265	5	.01	.108	.238				
	349 - 349,5 Peg.		265	270	5	.02	.156	.160				
	350 - 350.5 Quartz monzonite (Granodiorite)	·	270	275	5	.02	.149	.200				
L			275	280	5	.01	. 163	.208				
	End of Hole.		280	285	5	.01	.160	.120				
			285	290	5_	.01	.108	. 163				
-			290	295	5	.03	. 130	.141	_			
L			295	300	5	.03	.083	.191	7			
L			300	305	5	.03	.049	.154	L			
-	· · · · · · · · · · · · · · · · · · ·		305	310	5	.02	348	256	_			
-			310	315	5	.02	.264	.309	1			
-			315	320	5_	.02	.023	.218	•			
<u> </u>	Note: Core sample checks - Bondar Clegg		320	325	5	.01	.031	.078				
-	35 - 40 . 18 MoS ₂ (Loring pulp samples)		325	330	_5	ļ	ļ	.070	T-			
-	185 -190 .045 MoS ₂ (Loring pulp samples)		330	335	5	<u> </u>		.075	ļ.,			
-					<u> </u>			-	\vdash			
}-			 	 	<u> </u>	ļ	 		\vdash			
-				 					\vdash			
-			 		├	 	 	-	├			
-			 	 		 	 -	 	-			

· :

VESTOR EXPLORATIONS LTD. DRILL DDH #V8 CARMI 3903.7 COMPLETED June 25/74 STARTED JUDG 23/74 J. Coldham LOGGED W G.Hartley
Interior Diamond Drilling Ltd. Assayer - Loring Laboratories Ltd., Calgary Core ASSAYS Sludge SAMPLE NO. FOOTAGE DESCRIPTION MoSa MoSa 0 - 7Casing 7 - 105"E Zone" Breccia complex of 15 .005 10 5 .01 (1) Gneissic diorite .045 .02 15 .02 (2) Granodiorite .02 .036 .031 .03 (3) Quartz diorite .033 .03 .01 020 Intense brecciation healed with quartz, MoSo content is variable. Most is disseminated, some in .01 .087 .03 fracture fills. Pyrite throughout interval with occasional magnetite, trace chalcopyrite, 35 .02 093 malachite stain at 28', pyrolusite appears on fractures to 37 feet. Biotite is mostly unaltered .01 095 141 .03 50 .02 .073 45 <u>hut accasional epidote stringers exist.</u> 26 - 26.1 Narrow mafic fine-grained dyke at a high angle. 50 55 .01 056 .124 28 - 28.2 Chalcopyrite blebs and a trace malachite stain. .01 095 55 40 - 40.1 Blebs pyrite trace chalcopyrite. 60 06 058 44 - 44.5 Quartz fill with white feldspar .02 058 49 - 49,5 Quartz fill with white feldspar 01 075 70 145 .03 54 - 54.3 Fine-grained mafic dyke at a high angle. 80 .02. 75 .120 72 - 72.5 Fine-grained mafic dyke at a high angle. 80 85 .01 .078 128 75.1 - 75.4 Quartz feldspar dyke (as in DDH #VI) 90 .091 85 .01 .139 .03_ 95 5 .02 80 - 81 Fine-grained mafic dyke 90 .073 128 .05 84 - 84.2 Chloritic section 95 100 .02 .059 .02 98.5 - 99 Gougy chloritic section, pink feldspars, trace pyrite and MoS2 105 5 .039 .037 .02 100 .01 110 5 .077 105 .02 .085 .02 102 - 103 Quartz and feldspar fill - flakes muscovite carbonate on fracture planes. 5 110 135 .02 .110 .076 .02

.095

149

115

.02

VESTOR EXPLOR	ATIONS LTD.	RILL LO	OG		PROPERTY <u>CARM</u>	HOLEDDH # V8
GRIO REF	<u> </u>	ELEVATION3903.	7	STARRED June 23/74	COMPLETED June 25/	<u>74 </u>
SECTION	Depth _	372'	DIP90°	BEARING	DelitesJ. Coldham_	LOGGED BY G. Hartley

.

FOOTAGE	DESCRIPTION .	SAMPLE	FROM	10	WIDTH	Core	ASSA .	AYS C	ludge
		NO.				Cu	MoS2	MoSa	Cυ
			120	125	5	,02	.081	.083	.02
105 - 163	Quartz diorite slightly fractured and filled with quartz occasionally gougy and chloritic, few epidote		125	130	5	10.	.055	. 122	.03
	stringers and local pink feldspars disseminated pyrite and MoS2, smeared MoS2 throughout rarely found		130	135	5_	.01	.053	. 158	.03
	without pyrite.		135	140	5_	,02	.077	. 124	.04
	113 - 114 Chlorific gougy		140	145	5	.03	.055	.100	.04
	116 - 116.5 Chloritic gougy		145	150	5	.02	.185	.236	.04
	121 - 122 Chloritic gougy		150	. 155	5	.02	.118	. 163	.05
	124 – 125 Chloritic and very fractured MoS ₂ on fractures		. 155	160	5	.06	.590	.620	.06
]	134.7 - 135 Epidote vein and local pink feldspars		160	165	5	.03	.267	.450	.04
	146 – 148 Gaugy and fractured		165	170	5_	.03	.037	. 147	.05
1			170	175	5_	.02	.042	.128	.05
163 - 225	Fine-grained granodiarite same as found in DDH #7 pinkish feldspars. Near end of interval chloritic		175	180	5	.21	.050	.093	.46
ì	in gouge and on fractures. MoS2 disseminated and occasionally in guartz-feldspar veins (appears		180	.185	5	03	.055	.116	.05
1	lower grade)		185	190	5	.02	.033	.085	.05
	167 - 171 Broken and gougy		190	195	5	.03	.023	.093	.08_
	176 - 190 Broken and gougy		195	200	5	.02	.059	.028	.02
	176 - 177 Muscavite and masses of friable pyrite.		200	205	5	.02	.029	.036	.03
j	192 - 200 Chloritic on fracture planes, some hematite stain.		205	210	5	.03	.076	.058	.03
	203 - 210 Chloritic on fracture planes, some hematite stain.		210	215	5	.04	.063	.083	.04
!	211 - 213 Dark stringers (smeared sulfides?)		215	220	5	.02	.033	.068	.03
1	214 - 215 Gougy and fractured		220	225	5	.02	.087	050	.03
			225	230	5	.03	.104	.091	1
225 - 270	Quartz diorite gaugy and fractured, epidote stringers and local pink feldspars, chlorite on fracture		230	235	5	.03	.085	.100	
	planes, very rich gougy MoS2. 225 – 261 dissemination of MoS2 and pyrite throughout.		235	240	5	.02	.106	.128	.03
	236 - 238 Gougy zone.		240	245	5	.03	.258	. 172	
	,								

DRILL LOG VESTOR EXPLORATIONS LTD. ELEVATION __3903.7 COMPLETED June 25/74 STARTED JUILE 23/74 mus 1. Coldham LOGGED BY G. Hartley. 3721 Соге ASSAYS Sludge WIDTH Sample NO. FOOTAGE DESCRIPTION 245 242 - 243 Gougy zone. .03 250 255 .04 149 .156 260 .531 .04 250 - 250.6 Quartz vein with large muscovite, gougy and smeared MoS2 and pyrite. 255 .07 .306 250.6 - 266 Gougy zone smeared MoS2 gougy quartz veins granules of pyrite, much chlorite and 265 .08 .519 260 red feldspars.

i	268 - 270 Gougy smeored sulfides.	<u> </u>	270	275	5	.04	.100	.218	.05_		
1		<u> </u>	275	280	5	.07	.165	.226	.05		
270 - 310	Typical "E Zone Breccia" fragments of quartz diorite gneissic diorite, fine-grained mafic diorite		280	285	5	,05	.100	. 178	.04		
1	blebs of pyrite in quartz fills MoS2 is disseminated; chlorite along some fractures.		285	290	5	.01	.081	.203	.03		
	284 - 284.2 Large pyrite mass in quartz.	<u> </u>	290	295	5	.02	.128	.206	.03		
	286 - 287 Hematite staining on fractures.		295	300	5	.02	.078	.200	.04		
	297 - 306 Core very fractured.	<u> </u>	300	305	5	.02	.141	165	.02		
	309 – 310 Gougy and chloritic.		305	310	5_	.02	.194	.284	03 _	.004	
		1	310	315	5	.02	.104	.218	.03_	.006	
310 - 331	Pink granodiarite similar to DDH #V4 but with very pink feldspars much purple fluorite.	1 1	315	320	5	.02	.523	.249	.03	.072	
1	Entire interval 200 c.p.s. max counts in box 1200 c.p.s. individual pieces to 500 c.p.s.		320	325	5	.03	.540	. 194	.03	.044	
Ì	Pyrite and MoS2 well disseminated trace chalcopyrite (& muscovite) on fractures.	1	325	330	5_	.03	.327	362	.04	.053	
	314 - 315 Very rich muscovite (bleached biotite ?), some purple fluorite.		330	335	5	.02	.401	.405	04	.113	
	320 - 322.2 Very rich muscovite (bleached biotite?) some purple fluorite.		335	340	5	.02	.262	.309	.04.	.023	
	327.5 - 329 Gougy zone.		340	345	5_	.02	.053	.223	.02		
	·		345	350	5	<u> </u>		.139	.02		
331 - 342	Breccia "E Zone Type" of:		350		5			.169	.03		
ļ	(1) Fine-grained quartz diorite.										
	(2) Fine-grained mafic diorite.										İ
1	(3) Gneissic digrite.										
ŀ											

\	ESTOR EXPLORATIONS LTD. DRILL LOG	PROYERTY			\ <u>I</u>	. •	HOLE	DH#V8
	GRID REF	ſ	OMPLETED .	June	<u> 25/74</u>			
sec	TION DIP90° DEPTH3721 DIP90°	ence <u>I.C</u>	aldhan	L	roc	5G€0 8Y <u></u>	<u>3. Har</u> '	ley
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	τó	WIDTH		A55	AYS
								
	Some disseminated MoS2 small amount pyrite.							
	334 - 336 Gougy muscovite purple fluorite.				1		<u> </u>	
42 - 372	Gneissic diorite chloritic fractures but many epidote stringers; epidote after biotite; occasional			<u></u>				
	carbonate stringers; little pyrite. No MoS2. 369 - 369.2 Quartz feldspar dyke.	1						
	370 - 372 Quartz feldspar dyke.							
	End of Hole							
			ļ	<u> </u>				
			ļ	-			ļ <u> </u>	
		-		 				
								<u> </u>
]	ļ			 	<u> </u>
		- 	j 	-			 	
		 	<u>-</u>	 -			-	
				 	 	-		

.

•

HOLE __DDH #V9 PROPERTY CARMI DRILL VESTOR EXPLORATIONS LTD. COMPLETED July 8/74 ELEVATION ____3913.9 STARTED June 26/74 LOGGED BY G. Hartley Dentes J. Coldham Interior Diamond Drilling Ltd. Assayer - Loring Laboratories Ltd., Calgary ASSAYS Sludge Core SAMPLE NO. FOOTAGE DESCRIPTION MoSa MoSa 0 - 6Casina 6 10 .03 .064 Typical "E Zone" breccia complex, Fragments almost entirely gneissic diorite - foliation changes not 6 - 1615 10 15 .01 .152 quite apparent. Some fragments have well developed epidote after biotite some do not. No epidote 5 .04 .165 .081 .05 15 or chlorite stringers are present. All fragments are healed with quartz and quartz and feldspar. .04 .019 20 02 015 Extremely large irregular masses of pyrite to 12" are associated with quartz fillings throughout. 25 30 .03 .027 .032 .05 MoSo is in small irregular disseminations within or near quartz fills; occasionally in fractures and 30 35 5 04 .022 .038 06 smears. Chalcopyrite magnetite and fluorite occur in small irregular blebs near pyrite. 05 108 133 09 No muscovite (bleached biotite) in interval. Pyrolusite occurs in oxidation zone. 40 45 5 .07 .112 100 09 5 45 50 .05 180. 083 15 - 16 Much MoSo in quartz fill 50 07 .07 6 - 35 Oxidation zone. 55 60 5 .02 .038 .055 04 37 - 38 Soft green material Cu mineral? occurs in quartz fill and breccia around pyrite 5 .03 059 .06 60 65 050 70 5 .087 65 .04 .064 .05 trace pyrchotite. 44 - 46 Quartz feldspar dyke some hornblende 70 75 .03 .052 09 75 80 5 .05 .093 68 - 72 Gaugy fractured zone. 083 .05 80 85 .03 .042 100 .05 85 - 86 Gougy fractured zone. 90 5 85 .05 054 114 .05 91 - 91.5 Gougy fractured zone. 95 - 113 Very fractured chloritic gougy in some sections. 90 95 .01 081 076 .03 129 - 136 Fractured, gaugy chloritic. 95 100 5 .01 .011 081 .03 105 .026 . 116 .03 136 - 161 Extremely gougy chloritic: MoSo in smears. 100 .01 . 137 .04 110 .074 105 .03 Quartz diorite. Chief mafic is homblende, some quartz veining and sections of mica alteration 110 115 5 .02 .043 076 .04

(bleached biotite?) and associated McS2. Some pyrite trace chalcopyrite, chloritic fractures

120

115

5

.04

.023

.068

.04

161 - 177

_DDH # V2 CARMI DRILL LOG VESTOR EXPLORATIONS LTD. ELEVATION ___3913.9 COMPLETED ______July 8/74_ LOGGED BY G. Hartley neutra J. Coldham 455 Core. Sludge DESCRIPTION SAMPLE NO. FROM 70 WIDTH FOOTAGE MoSa Occasional carbonate stringers. 120 125 5 .07 .06 165 - 166 Gougy section. 5 .085 .04 125 130 .04 031 130 5 .04 .050 135 .084 .05 176 - 177 Gougy section 135 140 5 .03 .060 .087 .04 Granadiorite as in DDH #V4 fine to medium grained mafic poor; disseminated MoS2, very little 177 - 2095 .055 .04 145 .04 039 140 5 10. .062 150 .077 .02 pyrite. Trace magnetite. Some mica alteration and pinkish feldspars. Interval fractured and friable. 145 5 .02 150 155 .064 .071 .02 209 - 365"Fault Breccia" large fragments mainly quartz diorite (hornblende chief mafic) occasional fragment 155 160 5 .02 049 .085 .03 of biotite rich gneissic digrite. Epidote after biotite. Epidote stringers and local pink feldspars. 160 165 .02 .031 070. .03 5 .02 .054 Occasional micaceous section. 165 170 .063 Pyrite and MoSo through much of care in very small disseminations and fractures. Trace chalcopyrite. 175 5 .02 .060 170 5 020 180 .01 .03 175 .02 047 048 .04 209 - 330 Very fractured. 185 180 218 - 218.4 Very mafic fine-grained (quartz diorite?) 185 .04 045 .048 .05 190 080 227 - 228 Peg. 190 195 .04 .079 .05 .02 026 066 .04 245.5 - 247 Mica alteration. 195. 200 5 249.5 - 250 Mica alteration. 200 205 .03 .048 .055 .03 260 - 261 Gneissic diorite. 205 210 .02 073 089 .03 .01 264.5 - 271 Gougy 210 215 049 069 .02 5

273 - 278 Gougy

280 - 286 Gougy

297 - 299 Peg, much pyrite trace MoSo

309 - 313 Hematite stain on fractures.

299 - 300 Gougy and fractured.

220

225

230

235

240

215

220

225

230

235

.02

.05

.01

.02

.02

5

5

5

5

085

.078

.081

.071

.108

.070

.093

. 102

104

.02

.03

.02

.02

.02

VESTOR EXPLORATIONS LTD. DRILL LOG

PROPERTY CARM! HOLE DDH #V9

STARTED June 26/74

SECTION _______ DEPTH 455' DIP 90° SEARING DIFFLEX J. Coldham LOGGER BY G. Hartley

FOOTAGE	DESCRIPTION	SAMPLE	FRÓM	10	WIOTH	Core	ASS	AYS SI	udge
		NO.				Cυ	MoS ₂	MoSo	Cu
			240	245	5	.01	. 194	.084	.02_
	329 - 330 Quartz vein massive pyrite.		245	250	5	.01	.077	.067	03_
ļ	330 - 332 Micaceous disseminated pyrite and MoS2.		250	255	5	.01	.139	.089	02_
	332 - 336 Quartz vein.	<u></u>	255	260	5	.01	.091	.079	.01
	336 - 341 Very biotite rich quartz diorite. Little disseminated MoS2 and Pyrite.		260	265	5	.02	.100	.084	.02
	346 - 351 Gougy	<u> </u>	265	270A	5	.01	.076	.104	.03
	346 - 365 Fragments mainly micaceous quartz diorite and gneissic diorite.		270	275	5	.01	.053	.141	.03
		<u> </u>	275	280	5	.01	.059	.099	.04
365 - 415	Micaceaus quartz diorite; biotite poor, less than 1%. Disseminated pyrite; small disseminations		280	285	5	.02	.076	.102	.03
	(and on fractures) of MoS2 trace fluorite; carbonate fracture fills occasional quartz and quartz-	<u> </u>	285	290	5	.02	.124	.128	.04
	feldspar veins.		290	295	5	_01	.047	.116	.04
			295	300	5	.005	.016	.064	.03
415 - 416.5	Dark green basic dyke aphanitic to fine-grained. Inclusions of hematite and small white to pink		300 -	305	5	.005	.011	.063	.03
	feldspar phenocrysts. Carbonate in fractures.		305	310	5	_005	.003	.063	.01
		↓	310	315	5	.01	.004	.047	.01
416.5 - 437	E Zone breccia, micaceous quartz diorite and gneissic diorite fragments fillings are quartz and		315	320	5	.01	.021_	.082	.02
	feldspar. Pyrite is disseminated in some areas and massive in others MoS ₂ is in small disseminations		320	325	5	.005	,006	.059	.01
	and rosettes; trace purple fluorite.	<u> </u>	325	330	5	.01	.055	.048	.01
			330	335	5	.01	.081_	.066	.01
437 - 455	Gneissic diorite epidote after biotite epidote stringers and local pink feldspars. Much chlorite.		335	340	5	.02	.032	.040	_10.
:	Occasional bleb pyrite no MoS2.	<u> </u>	340	345	5	.01	.033	.050	.02
			345	350	5	.01	.076	.084	.03
	338 - 441 Chloritic gougy zone.		350	355	5	.02	.034	.074	.02
	441 - 441.5 Quartz feldspar dyke pinkish feldspars and white mica.		355	360	5_	.01	.021	.070	.04
	443- 444 Gougy with blebs pyrite.		360	365	5	.01	.017	.058	.04
!	1		1					[

TROMAGE TROM	
A44.5 - 445 Peg. 365 370 5 .01	G.Hartley.
Mo. Cu Cu Cu Cu Cu Cu Cu C	ore Assays Sig
450 - 455 Gougy and fractured chlorite and pinkish feldspars. Hematite stain on fractures. 370 375 5 .01 375 380 5 .02 5 5 .02 380 385 5 .02 380 385 390 5 .04 380 395 400 5 .02 380 395 400 5 .02 400 405 5 .04 405 410 5 .02 410 415 5 .03 415 420 5 .	MoS2 MoS2
450 - 455 Gougy and fractured chlorite and pinkish feldspars. Hematite stain on fractures. 370 375 5 .01 375 380 5 .02 5 5 .02 380 385 5 .02 380 385 390 5 .04 380 395 400 5 .02 380 395 400 5 .02 400 405 5 .04 405 410 5 .02 410 415 5 .03 415 420 5 .	.013 .051
End of Hole. 375 380 5 .02 385 390 5 .04 390 395 5 .02 395 400 5 .03 400 405 5 .04 400 405 5 .02 410 415 5 .03 415 420 5 .03	
385 390 5 .04 390 395 5 .02 395 400 5 .03 400 405 5 .04 405 410 5 .02 410 415 5 .03 415 420 5 .	1
390 395 5 .02 395 400 5 .03 400 405 5 .04 405 410 5 .02 410 415 5 .03 415 420 5 .	1 - 1
395 400 5 .03	
400 405 5 .04 405 410 5 .02 410 415 5 .03 415 420 5 .	
405 410 5 .02 410 415 5 .03 415 420 5 .	
415 420 5 .	.284 .290
	1 1
	.097
	1.0/6
	<u> </u>

· .

. . .

\	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY.	c	ARMI			IOLE _D	DH #VI	10_
	GRID REF STARTED Luty 9/74		OMPLETED -	Joly 1	4/74				
SEC	TION	lnterio	<u>Coldhan</u> r Diama	n ond Dri	ια Hing Li	3660 b Y	G. Ho	rtley	
_ 	Assayer - Loring Laboratories Ltd., Calgary					Cor	ASSA	vs Slud	 lae
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	10	WIDTH		i — T	MoSa	Cυ
		-, -	46	50	4	.05	.120		
0 - 49	Casina		50	55	5	.04	.116		.06
0 = 47	Casing		55	60	5	.01	.078	.038	.03
46 - 236	Typical "E Zone" breccia complex containing:		60	65	5	.02	. 172	.126	.03
40 - 250	(1) Quartz diorite.		65	70	5	.03	.106	.112	.04
	(2) Gneissic diorite.		70	75	5	.03	.052	.108	.03
İ	(3) Fine grained gneissic diorite.		75	80	5	.03	.071	.145	.04
	Fractures healed with quartz and quartz-feldspar. Occasional epidote rich fractures, pyrite is not as		80	85	5	.02	.128	. 141	.02
	abundant as in other holes in this area. Occasional chalcopyrite and magnetite and trace hematite.		85	90	5	.04	. 167	.216	.04
	MoS ₂ values may be better in upper 100'. Green stains around pyrite and chalcopyrite suggest better		90	95_	5	.02	.220	.230	.02
	Cu values in lower sections.		95	100	5	.03	. 106	. 133	.05
			100	105	5	.06	.154.	.273	.05
	46 - 46.1 Large blobs of pyrite and pyrihatite in quartz till.	<u>.</u>	105	110	5	.03	.093	. 169	.03
	46 - 51 Core ground and broken.		110	115	5	.03	.116	,116	.03
	58 - 58.2 Gougy	ļ <u> </u>	115	120	5	.02	.523	. 198	.03
	62 - 62.2 Chloritic fractures planes.		120	125	5	.01	.093	.174	.02
	63 - 64 Epidote stringers at a low angle.	ļ	125	130	5	.03_	.318	.172	03
	65 - 66 Chloritic fractures hematite stain	ļ	130	135	5	.03	.214	.214	.03
	70 - 71 Greenish material near quartz fill	ļ	135	140	5	.03	.163	.200	.03
	75 - 75.5 Quartz feldspar vein.		140_	145	5_	.03	. 135	.185	.03
	79 - 80 Chloritic fracture with hematite stain	<u> </u>	145	150	5	.03	.348	.371	.05
	82 - 83. Very micaceous fragment rich in MoS2	ļ	150	155	5	.05	.238	.238	.04
	85 - 85.2 Unhealed fragment contact rich pyrite and MoS ₂		155	160	5	.05	. 198	.218	.06
	97 - 98 Epidote stringers and local pink feldspars.	<u> </u>	160	165	5	.04	.312	.228	.05
	113.5 - 114 Very fractured.		165	170	5	.05	.100	.176	.03

DDH#.V10 VESTOR EXPLORATIONS LTD. DRILL COMPLETED July 14/74 ELEVATION 4003.2 STARTED July 9/74 LOGGED BY _ G. Hartiey J. Coldham Core ASSAYS Sludge SAMPLE NO. FOOTAGE DESCRIPTION Cu 170 175 156 116 09 175 180 5 .03 104 .04 120 - 125 Gougy interval chloritic in part 145 - 176 Core fractured and friable. 180 185 5 03 .093 .145 .04 172 - 175 Much pyrite MoS2 trace chalcopyrite, pyrrhotite (bornite?) green aureole around 185 190 5 05 .253 .194 .05 190 195 04 .539 .267 .05 pyrite (Cu mineral?) 195 200 .06 .078 .118 .07 225 - 232. Vein structure nearly parallel to core; euhedral and subhedral quartz and feldspar particles, large fragments of reddish parphyritic dyke (see below), all in a very soft frey-200 205 .04 083 .120 .07 green chloritic ground mass trace pyrite vein thickness varies from 3" to greater than core. 5 205 210 .01 .093 880. .02 210 215 5 02 081 .108 .02 232 - 236 Very fractured. 220 .04 028 072ء .03 215 Very acidic feldspar porphyry dyke as in 1.M.C. DDH #12, well developed K-feldspar phenos to .01 042 236 - 365220 225 5 .076 .03 225 230 .01 .032 .03 1" white to pinkish, in a brown to dark brown fine-grained ground mass; tiny subhedral quartz(?) less than 1% biotite; trace magnetite and pyrite. Upper contact with breccia slightly chilled. Some 230 235 5 .02 .041 .071 .02 phenos appear zoned? Occasional epidote stringers. 240 235 01 .014 .059 02 240 245 .01 .013 .089 .02 236 - 244 Gray green chloritic gougy dyke as previous with angular dyke fragments. 5 005 005 .01 245 250 .045 241.8 - 242 Fragment of DDH #V4 granodiarite in gaugy dyke bleached biotite trace pyrite. 250 255 005 .003 .042 .02 255 260 005 .003 .027 .02 254 - 274 Gougy and fractured. 5 260 265 01 .011 .027 .01 275 - 277 Lighter brown ground mass. 277 - 288 Granodiorite as in DDH #V4, much pyrite; micaceous. Some MoS2 bottom dyke 5 265 270 .005 .004 .026 .01 270 275 5 005 .007 .028 .01 contact very chilled 297 - 302 Breccia chloritic fractures local pink feldspars some MoS2 and pyrite. 280 .01 006 .033 .01 275 .02 020 308 - 309 Gougy 280 285 5 .030 .03 5 .02 066 .078 .03 285 290 309 - 314 Breccia trace MoSo pyrite.

332 - 340 Breccia MoSo along fracture.

365 - End of Hole

290

295

.01

.003

.017

.01

VESTOR EXPLORATION	DNS LTD. DRILL LOG							HOLE D	DH ₹ V
GRID REF	61EVAFION 4003.2	STARTED July 9/74		COMPLESED	July	14/74			
SECTION	OFFTH 365' DIF -90°	SEARING	DAILLER	Coldhar	n	ιò	Q ve 0300	.Hartle	ty
DIAGE	DESCRIPTION	•	SAMPLE NO.	FROM	το	W101H		MoSo	
							Co	10000	moss
				295	300	5	.07	133	.063.
				300	310	5	.01	.027	.035
				310	315	5	.01	.143	.068.
				315	320	5	.01	.009	.041
				320	325	5	.01	.003	.035
		·		325	330	5	.01	1	.049
	<u> </u>	·		330	335	5_	.02	· · · · · · ·	.104
			<u> </u>	335	340	5	.03	1	.218
				340	345	5	.01	,005	,066
				345	350	5	 	-	.021
				350_	355	5	-		.021
					1	 			
				1				1	
						ļ			
						<u> </u>	ļ	<u> </u>	
				<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ
		 		<u> </u>	<u> </u>		<u> </u>		<u> </u>
					 	ļ			ļ
				-			ļ	1	
				ļ	1	<u> </u>	<u> </u>		<u> </u>

•

ſ	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	CA	RML		. 1	HOLE	DDH #V	11
	GRID REF STARTEDJuly 14/74_		COMPLETED .	July 1	7/74				
St	CHON		<u>Coldha</u> erior D	<u>m</u> iamond	Drillin	egebby ig Ltd.	<u>G. Har</u>	<u>tley</u>	
	Assayer - Loring Laboratories Ltd., Calga	Y				Core		AYS Stud	
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	10	WIDTH		T	1	
			12	15	3	.01	.282	MoS2	<u>Co</u>
0 - 12	Casing		15 20	20 25	5 5	.04	. 139 .321	.124 .278	. 13 . 09
0 - 12	Casing		25	30	5	.02	.244	.297	.03
12 - 94	"E Zone" breccia complex of:		30	35	5	.03	.112	.194	.09
,	(1) Gneissic diorite		35	40	5	.06	.382	.388	.06
	(2) Hornblende rich guartz monzonite.		40	45	5	.05	.321	.371	.06
	(3) Very micaceous gneiss (?)		45	50	5.	.06	.124_	.241	.05
	(4) Fine-grained mafic gneissic diorite.		50	55	5	.05	.348	.445	.06
	(5) Porphyritic granodiarite.		55	60	5	.07	.309	.450	.08
			60	65	5_	.03	.256	388	.04
	Some gneissic diorite fragments contain epidote after biotite and some do not.		65	70	5	.05	.203	.258	.06
	Matrix is quartz and quartz feldspar veinlets occasionally pyrite and fluorite, trace magnetite		70	75	5	.07	.097	.160	.08
	occurs with pyrite.MoS2 is in fracture fills; disseminated and on or near quartz and feldspar veins.	<u> </u>	75	80	5	.03	.345	.392	.04
		1	80	85	5	.03	. 145	. 189	.C4
	12 - 17 Core very broken much pyrite and limonite.		85	90	5	.02	.378_	267	.05
	17 - 18 Quartz feldspar dyke, rich disseminated MaS ₂ ,	ļ	90	95	5	.05	. 130	.163	.05
	18 - 23 Small breccia fragments in a quartz and quartz feldspar matrix.	-	95	100	5_	.03	062	.149	.05
	23 - 37 Very micaceous, some sections seem to be entirely mica (biotite and muscovite)		100	105	5	.05	.097	.198	.06
	33 - 35 Fractured quartz vein, trace pyrite and magnetite.		105	110	5	.06	.061	. 126	.06
	37 - 39 Fractured micaceous chloritic; gougy in sections little disseminated MoS2.	-	110	115	5	,06	.048	.126	.06
	39 - 66 Gneissic diorite in breccia; mafics to chlorite, chlorite on fracture planes healed	1	115	120	5	.06	.114	.760	.06
	with quartz and quartz and feldspar, pyrite stringers, occasional purple fluorite MoS2 on slip	-	120	125	<u> </u>	.07	.185	2.88	.07
	planes.		125	130	5	.06	.047	.640	.07
		+	130	135	5_	.06	.030	.359	.06
1		1	135	140	5	.04	.042	.185	.06

	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	—	CARMI		•	HOFF	DH #VI	<u>l</u>
	GRID REF STARTED HILLY 14/74		COMPLETED	ا برایال	7/74				
SE	CTION DEPTH DIF BEARING DRILLE	<u>.</u> <u>J.</u>	Coldh	Om_	ιο	GGED BY _	G.	Hartley	
				l		Co	re Ass	avs \$lu	dge
FOOTAGE	DESCRIPTION	NO.	FROM	70	MIGIW	Cu	MoS ₂	MoS ₂	Cυ
			140	145	5	.03	.052	.167	.05
	68 - 94 Care very fractured gougy intervals very chloritic. Very pink feldspars, occasional		145	150	5	.03	026	.130	.05
	pyrite stringers.		150	155	5	.04	077	.124	.05
			155	160	5	.05	124	.293	.08
94 - 273	"Fault Breccia" same general constituents as "E Zone Breccia" except for the following:		160	165	5	.04	033	. 137	.05
	Foliation changes are not so pronounced.		165	170	5	.06	076	.133	.06
	Numerous epidote stringers on fractures.		170	175	5	.07	076	.145	.07
	Individual breccia fragments are healed by thin epidote stringers, in most cases.		175	180	5	.05	056	.120	.08
	Pyrite and MoS ₂ decrease, although occasional sections do have much MoS ₂ .		180	185	5	.05	032	. 108	.06
			185	190	5	.04	046	.093	.06
	91 - 147 "E Zone Breccia" gradational to fault breccia, chlorite and epidote stringers, some		190	195	5	.02	256	.176	.05
	pyrite and MoS ₂ some fractures healed with epidote some with quartz and quartz and feldspar.	<u> </u>	195	200	5	.01	044	.303	.04
	98 - 100 Much pyrite, large irregular masses of MoS ₂ .		200	205	5	.02	025	. 152	.03
	116 - 117 Very fractured epidote on fracture planes.		205	210	5	.03	085	. 185	.04
	119 - 122, 4" quartz feldspar dykes top and bottom of interval with micaceous interval betwee	<u> </u>	210	215	_5	.03	033	. 139	.03
	much MoS ₂ ,]	215	220	5	ļ <u>.</u> .	ļ	. 133	.03
	134 - 140 Fractured gougy.	ļ <u>.</u>	220	225	5			.135	.03
	152 - 152.5 Quartz vein, rich MoS2 much mica on both contacts.	<u> </u>	<u> </u>	ļ			<u> </u>		
	185 - 186 Quartz feldspar dyke.	<u></u>				<u> </u>			
	186 - 187 Very micaceous MoS ₂ pyrite and chalcopyrite.					<u> </u>			
	198 - 199 Gougy and very chloritic.								
	199.5 - 203 Very fractured quartz vein, trace pyrite.								
	203 - 205 Very fractured biotite rich diorite.								
d	205 - 205 4 Biotite rich reddish rock pyritic rock. Radioactivity 450 c.p.s.	1							

205.4 - 206 Broken quartz vein much pyrite.

SECTION	2721	STARTEDLULY_34/74		COMPLETED		17777			
<u>-</u> -	DEPTHZ/3	OIP90°	ORILLER					G.H	artley
OOJAGE	DESCRIPTION		SAMPLE NO.	FROM	FØ	HIOW		ASSA	YS
209 - 20	2.2 Mafic vein entirely biotite and ho	rnblende.							
209.2 -	·	apidote stringers and local pink feldspars.							
	245 Fractured and gougy much chlori	te and local pink feldspars.							
1	232 Fractured Peg.			<u> </u>					
254 - 25	4.5 Quartz vein with micaceous zone	s on both contacts trace MoS2.							
	of Hole.			ļ <u>.</u>	<u> </u>				
				<u> </u>	<u> </u>				
				ļ	<u> </u>	ļ			
					1				
					ļ	···			
	· · · · · · · · · · · · · · · · · · ·				-		i	-	
<u> </u>				-	ļ	ļ			
			-						- 1
						 			1
				· · · ·					
				 -		-			
									
				-					
		 			1	1			

,	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	C.A	ARM!_	HOLE DDH #V12				
	GRIDREF ELEVATION4015.3 STARTED STARTED		COMPLETED	July	21/74				
SE	Interio	or Dian	<u>Coldhar</u> nond D	m rilling		GGED BY G	.Hartle	'	
.,	Assayer - Loring Laboratories Ltd., Calgary		<u> </u>	ļ				AYS Slu	
FOCTAGE	DESCRIPTIONS	SAMPLE NO.	FROM	10	WIOTH	Core		MoS ₂	
_			7	10	3	.02	.015		
0 -	Casing		10 15	20	5	.05	.045 .030	.059 .032	.05 .03
•			20	25	5	.04	.091	.087	.06
7 - 230	Typical "E Zone Breccia" fragments are gneissic diorite, quartz diorite, very mafic diorite. Fragment	\$	25	30	5	.08	.108	. 158	.09
	are mainly gneissic near top grading to mainly quartz diorite near the bottom. Breccia matrix		30	35_	5	.10	.160		
	often contains pink and white feldspars with more quartz than previous holes. Few fillings are		35	40	5	.06	.122	. 145	.07
•	only quartz. Pyrite occurs more often within quartz fills than the feldspars and quartz fills. Small		40	45	5	.02	.100_	. 158	.03
	amounts are present throughout interval. Occasional blebs of chalcopyrite are in quartz fills.		45	50	5	.03	.097	.116	.03
	MoS ₂ throughout entire interval, disseminated and in fractures, in or near quartz and feldspar		50	55	5	.04	.044	.099	.04
	fillings.		55	60	5	.03	.036	.106	.04
			60	65	5	.03	.145	.163	,03
	7 - 33 Oxidation zone pyrite to limonite, some pyrolusite.		65	70	5	.04	.049	.093	.03
	16 - 18 Much quartz and limonite feldspars, altered to clay minerals (?)		70	75	5	.01	.039	.066	.02
	21 - 22 Core is a soft mush trace pyrite and much chlorite.	ļ	75	80	5	.02	.085	.112	.03
	27 – 28 Large irregular masses of pyrite in quartz fracture fillings.	<u> </u>	80	85	5	.04	.070	.116	.04
	29.5 - 31.5 Gougy with chlorite and clay minerals.		85	90	5	.02	.063	.104	.03
	36 – 39.5 1 foot recovered, chlorite and quartz fragments.	<u></u>	90	95	5	.05	.076	.126	.04
	42 - 43 Quartz vein trace pyrite and muscovite.	<u> </u>	95	100	5	.04	.060	.118	.04
	61 - 105 Numerous quartz and feldspar fillings.	<u> </u>	100	105	5	.04	.066	.081	.05
	104 - 105 Gougy		105	110	5	.03	.058	.045	.03
	114 - 116 Fractured and very micaceous.	ļ <u>.</u>	110	115	5	.02	.087	.060	,02
	125 - 126.5 Fractured, chloritic trace hematite stain.		115	120	5	.03	.104	.076	.03
	220 - 223 Quartz vein with irregular masses of pyrite.		120	125	5	.03	.118	.104	.03
	150 - 215 Brecaia uniform and unfractured.		125	130	5	.04	.233	.247	.03
			130	135	5	.03	.182	.214	.04
1									

		-							
v	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	CAR	RMI		. ,	101E _D	DH #VI	2_
	GRIDREF STARTEDJULY 17/74		COMPLETED .	July 2	1/74				
SECT	TION DEPTH 442 ⁴ DIP BEASING DRILL	us <u> </u>	Coldha	ım	100	GGED BY	3. Har	lley	
		.	,		,	,			
		SAMPLE	FROM	10	WIDTH	Core	Core ASSAYS Stude		
FOOTAGE	DESCRIPTION .			10	WILLIA	Cu	MoS2	MoSo	Cu
· · · · · · · · · · · · · · · · · · ·			135	140	5	.04	.220	.303	.0.
230 - 244.5	Quartz vein large irregular masses of pyrite and chalcopyrite, small blebs brown sphalerite around	1	140	145	5	.04	.345	.323	.0
			3.45	3.00	_	00	202	255	

. :

		135	140_	5	.04	.220	.303	.05
230 - 244.5	Quartz vein large irregular masses of pyrite and chalcopyrite, small blebs brown sphalerite ground	140	145	5	.04	.345	.323	.04
	pyrite. Magnetite occurs similarly but not with sphalerite.	145	150	5	.02	.293	.355	.03
		150	155	5	.02	.074	. 139	.03
244.5 - 310	Breccia as above mostly quartz diorite fragments larger than before in a quartz and feldspar matrix.	155	160	5	.06	.218	.284	.04
	Much pyrite in irregular blebs. MoS2 in small disseminations and on fractures.	160	165	5	.03_	.267	.223	.07
		165	170	5	.04	.269	.371	.05
	Occasional chloritic fractures and epidote stringers with local pink feldspars.	170	175	5	.03	.238	.288	.05
	263 - 264 Quartz feldspar dyke.	175	180	5	.03	.194	.365	.05
	275 - 283 Reddish feldspars numerous quartz stringers, smeared sulfides.	180	185	5	.02	.258	.345	.03
	290 - 290.5 Very micaceous fragment hematite along fractures, much MoS ₂ ,	185	190	5	.03	.426	.580	.06
	299 - 310 Gougy and very chloritic.	190	195	5	.03	.180	.276	.04_
		195	200	5	.01	.108	.238	.03
310 - 347	Breccia as above, many foliation changes irregular shaped hornblendes give a "mottled" look,	200	205	5	.02	.214	.340	.03
	basically a quartz-diorite, numerous growths of biotite to 2" diameter. Much disseminated magnetite,	205	210	5	.03	.189	.450	.04
	some pyrite, trace chalcopyrite, little MoS2 on fractures or disseminated.	210	215	5	.03	.182	.306	.04
		215	220	5	.02	.189	.163	.03
	333 – 334.5 Quartz feldspar dyke, white feldspars, mafic poor, large biotite leaves to ½" on	220	225	5	.03	. 198	.203	.04
į	contacts.	225	230	5	.02	.172	.187	.03
		230	235	5	.13	.004	.030	.18
347 - 348.5	Parphyry dyke fragment as in #10, brown ground-mass with large reddish feldspar. Phenos and	235	240	5	.09	.004	.035	.15_
	smaller rounded quartz phenos. Definitely a fragment, healed with quartz stringers. Smeared MoS2	240	245	5	.31	.007	.076	.32
	in quartz.	245	250	5	.04	.156	. 133	.11
		250	255	5	.05	. 149	.172	.09
348.5 - 405	Breccia as above numerous foliation changes, no more MoSo after 396'.	255	260	5	.08	.097	.091	.12
d j	,				i		[]	. –

v	VESTOR EXPLORATIONS LTD. DRILL LOG					HOLE _DDH # V12				
	GRIDREE CLEVATION 4015.3 STARRED LULY 17/74		COMPLETED .	july	21/74					
SECT	SON DEPTH 442' DIF -90° SEARING DEPTH	DANLER COLUMN LOGGED BY CHOL								
					HIDIH	Core	Core ASSAYS Studge			
POOTAGE	, DESCRIPTION	SAMPLE NO.	FROM	10	MIDIH	Сn	Mo52	MoS2	Cu.	
			260	265	5	.16	.149	.128	.13	
	348.5 - 349 Chloritic gouge.		265	270	5	.05	.460	.365	,04	
	350 – 364 Core fractured and gougy in sections.		270	275	5	.05	.300	.300	.05	
	376.5 -378 Fragments of porphyry dyke as above.		275	280	5	.07	.158	.218	.06	
<u> </u>	385 - 389 Fractured.		280	285	5	.03	.054	.099	.05	
	390 - 391 Gougy fractured.					.06	.191	.180	.06	
	397 - 404 Gougy chloritic very fractured, much hematite on fracture planes.		290	295	5	.07	.233	. 249	.06	
1			295	300	5	.06	.167	.206	.07	
404 - 442	Fault breccia fine to medium quartz diorite and gneissic diorite fragments, epidote after biotite,		300	305	5	.04	.076	.118	.05	
<u> </u>	accasional epidote and feldspar stringers with local pink feldspars, hematite and chlorite on fractures	<u>. </u>	305	310	5	.02	.037	.097	.03	
		<u> </u>	310	315	5	.02	.076	.122	.03	
	404 - 405 Peg.		315	320	5	.03	.055	.114	.03	
1	419 - 424 Peg.		320	325	5	.02	.085	.104	.03	
	441.5 - 442 Peg.		325	330	5	.04	.089	.141	.04	
1	End of Hole		330	335	5	.03	.042	.122	.04	
ļ		<u> </u>	335	340	5	.05	.149	.203	.05	
		<u> </u>	340	345	5	.03	.218	.202	.04	
			345	350	5	.03	.208	.198	.03	
			350	355	5	.02	.334	. 293	.05	
			355	360	5	.03	.116	.120	.04	
ļ			360	365	5	.02	.551	.315	.03	
Ĭ			365	370	5	.05	. 135	. 165	.03	
			370	375	5	.04	.630	.401	.04	
		1	375	380	5	.02	.508	.423	.03	
ļ			380	385	5	.03	.610	.531	.04	
}	,		1	1						

VESTOR EXPLOR	ATIONS LTD. DRILL LOG	• • • • • • •	PROPERTY		ARMI			HOLE _D	DH ∦V	12_
GRID REF	ELEVATION <u>4015.3</u>	STARTED July 17/74		COMPLETED	<u>الا بالك</u>	/74				
SECTION	Derth	BEARING	DRILLER	<u>Coldha</u>	<u>m</u>	LO!	SGED BY _	3.Hartl	ey	
DIAGE	DESCRIPTION		SAMPLE NO.	FROM	io	WIDTH	Core	22A €	AYS SIE	udge
				385	390	5	.02	.685	.450	1
<u> </u>				390 395	395 400	5	.03	.845 .037	.665 .256	
		 		400	405		.00	1.007	.158	
			i.	405	410	5			.154	1
				<u> </u>						
				ļ	-			ļ!		
				-	1			 		\vdash
<u> </u>		<u> </u>						 		-
		· · · · · · · · · · · · · · · · · · ·				<u>.</u>				\vdash
		··· ··· · · · · · · ·		ļ	ļ	ļ	<u> </u>	ļ		↓_
· · · · · · · · · · · · · · · · · · ·				 	<u> </u>	<u> </u>				-
				 						
				 	1				·	+
				1	ļ <u>.</u>					\vdash
				<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>		<u> </u>
					<u> </u>			 	<u> </u>	
					-	<u> </u>	 -		-	+-
		, ,		 	+				-	+
		,		+	 			†		+-

r...

VESTOR EXPLORATIONS LTD.

DEPTH_265'

DRILL LOG

GRID REF_____ ELEVATION 4201.6 STARTED Aug 28/74 COMPLETED Aug 30/74

BEARING_

DIP 90°

PROPERTY .	Carmi, 8.C.	HOLE_	DDH V13
RILLER <u>Interior Dian</u>	ond Drilling, Summe	rland, B.C.	

ASSAYER Loring Laboratories Ltd., Calgary, Alberta LOGGED BYG. S. Hartley

FOOTAGE	, DECCRIPTION:	SE	CTIC	N	Core StudgeSSAYS						
FOOTAGE	DESCRIPTION	FROM	то	WIDTH	Cu	MoS ₂	MoS ₂				
0-3	Overburden	5	15	10	.01	.004	.005				<u> </u>
		15	25	10	01	.006	.007				ļ
3 - 63.5	"E Zone" type breccia, fragments mainly gneissic diarite. Most fragments have partially epidotized	25	35	10	.01	.014	.014				
	or chloritized matics and occasional epidote stringers. Pyrite occurs on fractures and in small	35	45	10	.02	.036	.033			<u> </u>	<u> </u>
	mosses in quartz fills. MoS ₂ occurs in quartz fills, in disseminations and on fractures. Pinkish	45	55	10	.05	.086	.022	ļ			<u> </u>
	"K" feldspar alteration increases with depth.	55	65	10	.01	.014	.039				<u> </u>
		65	75	10	.01	.083	.050			<u> </u>	
	3 - 6 - 1 foot recovered	_75	85 _	10		<u> </u>	.026			<u> </u>	<u> </u>
	6 - 15 - 6 inches recovered	85	95	10	ļ <u> </u>	<u> </u>	.167	<u> </u>		ļ!	ـــــ
	22 – 23 Gougy and chloritic		ļ	ļ	ļ						
	30 – 33 Gougy, chloritic, epidote and pinkish "K" feldspars	ļ	<u> </u>	ļ	<u> </u>	<u> </u>	-			ļ!	ļ
	38 – 38.1 Massive pyrite and purple fluorite	 		<u> </u>		-		ļ			
	38.1 – 63.6 Quartz rich breccia, pinkish "K" feldspar, epidote stringers, MoS ₂ usually			ļ		-	ļ			ļ'	
	in quartz.	<u> </u>		<u> </u>		 	<u> </u>	ļ			
	63 - 74 Gouge zone 1 foot recovered.		<u> </u>	<u> </u>							
74 – 75	Gneissic diarite chloritic with disseminations of MoS ₂ sericite and some pyrite, pinkish K feldspars.										
72 - 265	Leuco granite as in DDH #4 - pinkish, mafic poor, disseminated pyrite and trace MoS ₂ . Core										
	very broken. Occasional quartz stringer with pyrite and magnetite. Occasional disseminated	<u> </u>				ļ		<u> </u>	 	ļ	<u> </u>
	magnetite. Same fractures very chloritic				_			-		<u> </u>	-
	88 - 89 Fragments of gneissic diorite, epidate after biotite contacts chloritic.										

VESTOR	EXPLORATIONS	LTD
4 mol OI		- 1 -

PROPERTY	Carmi, B.C.	HOLE DDH V13

GRID REF ELE	VATION 4201.4	STARTED Aug 28/74	COMPLETED August 30/74 DRILLER Interior Diamond Drilling, Summerland, B.C.
DEPTH 265'	DIP_90°	BEARING	ASSAYER Loring Laboratories Ltd., Calgary, Alberta LOGGED BY G. S. Hartley

ECCTACE!	DECCRIPTION !	SI	ECTIC	NC			Α	SSAY	S	
FOOTAGE	DESCRIPTION	FROM	то	MIDIH						
	91 - 92 As Above									
	105 - 107 Gray to green leuco granite (Chloritic ?)		<u> </u>							
	112 - 140 Core very broken									
	165 - 175 Sericite pyrite stringers, MoS ₂ in quartz stringers		ļ. <u>.</u>							
ļ	175 - 200 Numerous pyrite stringers			 	-		-			
	240 - 265 Care very fractured		ļ	.						
<u> </u>	265 End of Hole		ļ							
ļ						-				
l			ļ	ļ			-			
ļ <u> </u>										 <u> </u>
		·····	 	-	<u> </u>					
<u> </u>			-	1						
⊢				-						
ļ			-	+		-				
			├	 		-+				<u> </u>
		-	-	+			-			 ļ
ļ.—				-						
. —			-	-						
<u> </u>			ļ		 					
[-						<u> </u>	
				-					<u> </u>	 ļ
_			-							 <u> </u>
<u> </u>		<u>l</u>	<u> </u>							 <u></u>

VESTOR EXPLORATIONS LTD.

ROPERTY	Carmi, B.C.	HOLE DOH!	V14

GRID REF	ELEVATION 3919.9	STARTED Aug 30/74 C	MPLETED Sept 2/74 DRILLER Interior Diamond Drilling, Summerland, B.C.
DEPTH278'	DIP 90°	BEARING	ASSAYER Laring Laboratories Ltd., Calgary, Alberta LOGGED BY G. S. Hartley

COOTACE	DESCRIPTION		SECTION			Core SludgesSAYS					
FOOTAGE	DESCRIFTION	FROM	τO	WIDTH	Cυ	Mo52	MoS ₂		·		<u> </u>
		33	35	2	.01	.010					ļ
0 - 33	Overburden	35	40	5	.01	.003					L
		37	45	8			.014				ļ
33 - 92	E Zone quartz breccia mainly gneissic diorite. Obvious rotation, foliation changes and quartz	40	45	5	.01	.035					
. [45	50	5	.01	.001					
	in quartz fillings. Occasional purple fluorite associated. Numerous epidote stringers. Hematite	45	55	10		<u> </u>	.015				
92 - 115 teuc disse 115 - 128 Fine stain 128 278 Folia	stain on fractures. Occasional MoS2 present on fractures and in quartz fillings.	50	55	5	.01	.004					
		55	60	5	.01	.005					
	33 - 57 Core gougy	55	65	10			.012				<u> </u>
	80 - 86 Hematite stain on fractures	60	65	5	.01	.004				igsqcut	<u> </u>
,	86 - 98 Intense brecciation, muchquartz, contact with unit below has 2 inch section of	<u>65</u>	70	5	.01	.075					<u> </u>
	chloritic gouge.	65	75	10		<u> </u>	.060	ļ <u>.</u>		<u> </u>	ļ
		70	75	5	.01	.021					ļ
92 - 115	Leuco granite as in DDH #4, pyrite and magnetite in stringers and disseminations. Occasional	75	80	5	.01	.004		<u> </u>			ļ
	dissemination of MoSq.	75	85	10		ļ <u>.</u>	.010			!	<u> </u>
	<u> </u>	80	85	5	.01	.003					
115 ~ 128	Fine grained diorite, no apparent foliation, epidotized mafics. Epidote on fractures, hematite	85	90	5	.005	.014	1 .			ļ	<u> </u>
	stain on fractures. Occasional pinkish K feldspar vein. Disseminations of pyrite and magnetite on	85	95	. 10		<u> </u>	.010		ļ	<u> </u>	<u> </u>
		90	95	5	.01	.011					<u> </u>
	and sericite with a trace of MoS2.	95	105	10		<u></u>	.034				
		105	115	10			.028				
128 278	Foliated gneissic diorite, epidote after biotite, very very chlorite-epidote rich in some sections.	115	125	10			.009				
	Unmineralized, trace hematite stain and magnetite stringers. Occasional quartz and feldspar	125	135	10			.006				
]	stringers and epidote stringers with local pink feldspars.	135	145	10			.007		<u> </u>		

|--|

PROPERTY	Carmi, B.C.	HOLE_	DDH V14
----------	-------------	-------	---------

GRID REF ELI	EVATION 3919.9	STARTEDAug 30/74	COMPLETED_Sept 2/74	DRILLER Interior Diamond Drilling,	Summerland, B.C.
DEPTH 278'	DiP 90°	BEARING	ASSAYER Loring La	boratories Ltd., Calgary, Alberta	LOGGED BY G.S. Hartley

5007405	DESCRIPTION	SI	CTIC	Z	SludgeSSAYS						
FOOTAGE	DESCRIPTION	FROM	το	WIDTH	Сu	MoS2					
						ļ		1			
	153 - 200 Much epidate chlorite, pinkish K feldspar	145	155	10			.003				
,	175 – 185 Gougy chloritic numerous K feldspar veins	155	165	10	<u> </u>		,004				
	217 - 225 Care lost Gauge?	165	175	10		<u> </u>	.004				
	238 - 240 Feldspar veinlet parallel to core.	175	185	10	<u> </u>	<u> </u>	.006				
FOOTAGE	250 - 251 Fine grained mafic diorite	185	195	10		<u> </u>	.005				
	251 – 252 Quartz and feldspar dyke	195	205	10	.	ļ	.003				
	266 - 270 Gougy, chloritic	205	215	10		ļ	.015				
		215	225	10		<u> </u>	.006				ļ -
		225	235	10		<u> </u>	.007				
		235	245	10		<u> </u>	.012				
		245	255	10		ļ	.004				
,		255	265	10	<u> </u>	<u> </u>	.003				·
		265	275	10		ļ	.004				
		275	285	10	<u> </u>		.005				<u> </u>
					<u> </u>	<u> </u>					<u> </u>
				<u> </u>	<u> </u>	<u> </u>					
					<u> </u>						
					<u> </u>		<u> </u>				
											<u> </u>
											<u> </u>
											

VESTOR EXPLORATIONS LTD.

	PROPERTY	Carmi, B.C.	HOLE .	DDH V15	
--	----------	-------------	--------	---------	--

GRID REF	ELEVATION 3649.5	· STARTED Sept 2/74	COMPLETED Sept 4/74	DRILLER <u>Interior Diamond Dril</u>	ling, Summerland, B.C.
DEPTH 204'	DIP90°	BEARING	ASSAYER Lo	ring Laboratories Ltd., Calgary, Albe	erta LOGGED BY G. S. Hartley

39 - 149 "E unf of dio cor	DESCRIPTION				Core Sludge SSAYS						
FOOTAGE	DESCRIPTION	FROM	TO	WIDTH	Cυ	MoS ₂					
			<u></u>]	
0 - 39	Overburden	39	45	6	.03	.034					
		43	55	12			.067				
39 - 149	"E Zone " Breccia complex, fragments of well foliated gneissic diorite and very sericitic, relatively	45	55	10	.02	.076]				<u></u>
	unfoliated diorite. All fragments are healed with quartz, occasional epidote stringer near bottom	55	65	10	.06	.102	.072				
	of interval. Epidote after biotite and chlorite on fracture planes, occurs within the well foliated	65	72/6	7/6	.10	.076					
	diorite fragments. Pyrite in irregular masses occurs in quartz fills with no apparent quantitative	65	75	10	<u> </u>		.108				
	correlation with MoS2. Small blebs of fluorite and magnetite occur near pyrite masses. MoS2	80/6	91	10/6	.04	.460					
	occurs in disseminations and slip plane faces. Occasional quartz and feldspar vein with pyrite	75	85	10			.226				
	and MoS2+	85	95	10	<u> </u>		.423				
		91	98	7	.04	.223					
<u> </u>	39 - 61 Zone of oxidation sericitic and limonitic	95	105	10	 	ļ	.315				
Ì	63 – 63.5 Quartz and feldspar vein. Pinkish K feldspar. Pyrite and MoS ₂	98	108	10	.02	. 198					
!	70 - 70.5 Gaugy micaceous pegmatite	105	115	10		ļ	.327				
	70.5 - 71 Very pyritic	108	118	10	.04	. 156					
	71 - 71.5 Pegmatite	115	125	10	ļ	ļ	.264				
1	73.5 - 74 Pegmatite, Trace MoS ₂	124	134	10	.05	.147					
	74.5 – 75 Quartz and K feldspar fill	135	145	10	<u> </u>	<u> </u>	.062				
	75 - 91 Core fractured, rich MoS ₂ in fractures and disseminations. Fracture fillings	134	144	10	.05	.039					
	are mostly quartz and pinkish K feldspar.	145	155	10	<u> </u>	ļ	.024				
1	87.5 - 88 Pinkish K feldspar and quartz. Very rich MoS2 on slip planes. Carbonate	144	150	6	.01	.005	ļ . <u></u>				
•	on fractures.	155	165	10	<u> </u>		.043				
	106 - 107 Pegmatite	165	175	10	<u> </u>		.035				
	114 - 115.5 Gougy pegmatite	175	185	10		<u> </u>	.028				

VESTOR	EXPLORATIONS	ITD
V LUI UK		L; U

GRID REF	ELEVATION 3649.5	_ · STARTED Sept 2/74	COMPLETED Sept 4/74	DRILLER Interior Diamond Drilling	Summerland, B.C.
DEPTH	DIP 90°	BEARING	ASSAYER Loring La	boratories Ltd., Calgary, Alberta	LOGGED BY G. S. Hartley

-00TAGE	DESCRIPTION I	SECTION			Core Sludge SSAYS						
OOTAGE	DESCRIPTION	FROM	10	WIDTH	Cu	MoS ₂				-	
					<u> </u>						
		185	195	10		-	.018				
٠		195	205	10			.017				
	133 - 134 Core very fractured. Fine grained mafic diorite. Much pyrite and carbonate				ļ <u>.</u>	<u> </u>					<u>-</u> .
	on fractures.	!			 						
İ	136 – 138 Gougy quartz vein	ļ		ļ	<u> </u>	<u> </u>				-	
	117 - 117.4 Epidote rich fragment. Pinkish K feldspars. 126.7 - 127.2 Gaugy quartz vein 133 - 134 Core very fractured. Fine grained mafic diorite. Much pyrite and carbo on fractures. 136 - 138 Gaugy quartz vein 140 - 143 Epidote stringers and local pink feldspars. 143 - 145 Coarse grained granodiorite, called "quartz monzonite" by IMC 145.8 - 149 Pegmatite	ļ		<u> </u>	<u> </u>		<u> </u>				
			<u></u>	<u> </u>		ļ					
	145.8 - 149 Pegmatite	<u> </u>	ļ <u> </u>		<u> </u>	ļ					
		<u> </u>		ļ	ļ						
149 - 204	Medium to coarse granodiorite (quartz monzonite in IMC logs) epidote around mafics. Pyritic	<u> </u>		<u> </u>		<u> </u>					
	stringers. Ma MoS2. Pinkish sections of potassic alteration.	<u> </u>			ļ	<u> </u>	ļ <u> </u>				
						<u> </u>					
						<u> </u>					
			_			<u> </u>					
		1									
		1									
					1	1					
		†	ļ	 	i -	 	1				
		+	├-	 	1	 					-
		1-		-	1-	<u> </u>	 	 			-
		╂	 	 	 		-		-		\vdash
		\vdash	├	 	 	 		 			
		j	L	<u> </u>	<u> </u>		<u> </u>	1			ot

VESTOR EXPLORATIONS LTD.

PROPERTY	Carmi. B.C.	HOLE DDH V16	+
	-		

GRID REF	ELEVATION4188	STARTEDSept 4/74	COMPLETED Sept 9/74	DRILLER Interior Diamond Drilling,	Summerland, B.C.
DEPTH 204'	DIP 90° _	BEARING	ASSAYER Loring L	aboratories Ltd., Calgary, Alberta	LOGGED BY G.S. Hartley

FOOTAGE	DESCRIPTION		CHO	N.	Cor	es	Sludgi	722 VA	>		
POOTAGE	DESCRIPTION	FROM	10	WIDTH	Cυ	MoS2	MoSz				
						ļ					
0 - 3	Overburden	3	10	7	.02	.066					
		10	15	5	.01	.010					
3 - 37	Leucogranite as in previous holes, light gray to pink rounded quartz and plag phenos. Mafic poor.	7	15	8		ļ	.003				
	Sericitic disseminated pyrite. Occasional large rasettes of MoS2. Trace chalcopyrite. Chloritic	15	25	10	.03	.036	.033				
	mafics. Core recovery poor.	25	35	10	.03	.018	.039	1			
		35	45	10	.01	.052	.055				
37 - 116	E Zone type brecciated complex. Mainly medium grained gneissic diarite. Occasional fragments	45	55	10	.01	.036	.042				
	of fine grained gneissic diorite. All fragments healed with quartz. Occasional secondary biotite	55	65	10	.01	.021	,029				
	crystals. Pyrite appears along fractures and in quartz fillings. MoS2 disseminations usually near	65	75	10	.01	.032	.033				ļ i
	pyrite.	75	85	10	.01	.093	.093				
		85	95	10	.01	.137	.051				
	48.5 - 49 Chloritic gaugy zone	95	105	10	.01	.032	.047				
	58 - 58.2 Fractured chloritized zone	105	115	10	.01	.023	.043				
	68 - 69 Gougy chloritic section	115	120	5	.01	.039				. <u></u>	
	74 - 74.2 Rich MoS ₂ disseminations and fracture fills	115	125	10		ļ	.034				
	80.7 - 80.9 Pyrite stringers, purple fluorite along edges of pyrite.	125	135	10			.027				
	90 – 91 Very rich disseminated MoS ₂ and pyrite. Rusty speckles hematite?	135	145	10	<u> </u>	<u> </u>	.018				
		145	155	10		ļ. <u></u>	.013				
116 - 204	Genissic diorite. Very chloritic. Hornblende rich in some areas. Some mafics altered partially	155	165	10	<u> </u>	<u> </u>	.007	<u> </u>			
	to chlorite and epidote. Few epidote stringers. Quartz and feldspar dykes. Much chloritic gouge.	165	175	10			.004	ļ			
	Pinkish K feldspar near end of hole. Few pyrite stringers. Hematite stain in gouge and on fractures	175	185	10		ļ	.083				
	Little MoS ₂	185	195	10	<u> </u>		.024		<u>.</u>		
		195	215	10			.006	<u> </u>			

VFSTOR	EXPLORATIONS	1TD
A COLOK		

PROPERTY .	Carmi, B.C.	HOLE DDH V16	

GRID REF	ELEVATION 4188	_ · STARTED Sept 4/74	COMPLETED Sept 9/74	DRILLER Interior Diamond Drilling,	Summerland, B.C.
DEPTH <u>240'</u>	DIP_ <u>90°</u>	BEARING	ASSAYER Loring Lo	phoratories Ltd., Calgary, Alberta	LOGGED BY G.S. Hartley

	DESCRIPTION I	SE	SECTION			ASSAYS					
FOOTAGE	DESCRIPTION	FROM	TO	WIDTH							
FOOTAGE											
	120 - 120.5 K feldspar vein						<u> </u>				
	127 - 130 K feldspar vein						<u> </u>				
	132 – 133 K feldspar vein					_	ļ			<u>. </u>	
	134 - 134.5 Gouge chloritic and hematite stain		ļ				<u> </u>				
	138 – 138.1 K feldspar and quartz veinlet. Pyrite chalcopyrite fluorite magnetite							ļ <u>. </u>			
	139 - 139.5 K feldspar vein		<u> </u>	ļ <u>.</u>			<u> </u>				
<u> </u>	143 – 144 Fractured gougy section. Chloritic. Some K feldspar vein material.		<u> </u>								
	144 - 150 K feldspar rich vein. Trace magnetite. Bladed crystals (tourmaline?)		ļ <u>.</u> .			<u> </u>		<u> </u>			
	hematite on fractures		ļ				<u> </u>				
	155 - 157 Gouge, very chloritic and hematite rich										
1	155 - 166 Numerous K feldspar veinlets						ļ				
	168 - 169 K feldspar and quartz veinlet. Magnetite stringer on contact		 	<u> </u>		_	ļ				
	178 - 179 Quartz veinlets with Mo and pyrite ½" wide		<u>.</u>]			ļ	ļ			
	184 - 195 Gougy very chloritic						ļ	-			
	204 End of Hole						_				
<u> </u>			<u> </u>				ļ				
			<u> </u>	ļ			ļ	ļ			
							<u> </u>				
			<u> </u>								
							1				

VESTOR EXPLORATIONS LTD.

PROPERTY	Carmi, B.C.	HOLE DDH V17

GRID REF ELEY	vation <u>4343.4</u>	STARTED Sept 9/74 COMPLE	TED Sept 18/74	DRILLER Interior Diamond Drilling, Summerland, B.C.
DEPTH555'	DIP90°_	BEARING	ASSAYER Loring Lo	aboratories Ltd., Calgary, Alberto LOGGED BY G. S. Hartley

FOOTAGE	DESCRIPTION	SE	CTIC	N	Core		Słudge	şSSĄ Υ	Ş		
FOOTAGE	DESCRIPTION	FROM	TO	WIDTH	Cu	MoSa	MoS ₂	Aυ	Ag		
		3	5	2	.01	.054		trace	.16		
0 - 3	Overburden	5	10	5_	.01	.030		.016	.25		
		10	15	5	.005	.011		.010	.29	\perp	
3 - 135	Brecciated, gneissic diorite. All fragments are the same rock type. Large quartz fillings. Large	15	20	5	.005	.012	<u> </u>	.020	.34	<u></u>	
	irregular masses of pyrite throughout interval in quartz. Some fragments altered to sericite.	20	25	5	.005	.058		.020	.16		
	MoS2 appears along sericite quartz contacts and on numerous fractures within quartz. Quartz	25	30)	5	.01	.045		frace	20		
	fills grade to quartz and feldspar fills near end of interval. Quartz very vugay in some sections.	30	35)	5	.01	.028	.056	.010	.03		
	Occasional carbanate inclusions (source of Vugs?) No mineralization occurs in the epidote rich	35	40)	5	.01_	.206		trace	.10		
	gneiss.	40	45)	5_	.01	.116	.258	trace	.08		
		45	50)	5	.005	.042	ļ	.010	trace	\rightarrow	
	3 - 25 Core broken, recovery poor	50	55)	5	.01	.047	.097	.010	trace		
	41 - 41.1 Purple fluorite and a hard metallic, bluish mineral (not bornite) occurs on a	55	60)	5	.005	.093		trace	. 18		
	fracture.	60	65)	5	.01	.089	.124_	.020	.04		
	45 - 45,2 Black magnetite smear	65	70)	5	.005	.112		.030	.31		
	42.2 - 45.3 Fragments of quartz-feldspar dyke healed by MoS2 - rich quartz.	70	75 }	_5_	.005	.095	.104	.020	.12		
	72 - 73 Tiny orange crystals of irregular habit in a vug in quartz.	75	80)	5	.005	.060		.010		_	
	64 – 119 Much sericite, pyrite and MoS2 in quartz near quartz fillings	80	85)	5	.005	.124	.133	.010	. 13		
	103 - 104 Purple fluorite and bornite in large Vug	85	90)	5	.005	.216		.020	.10	_	
İ	113 - 114 Purple fluorite in Vug	90	95)	5	.005	.290	.194	.010	.07		
	123.8 - 124 Purple fluorite and pyrite in quartz	95	100) 5	.005	.176	ļ	.020	trace	\rightarrow	
		100	105	5	.005	. 139	.284	trace	trace	\longrightarrow	
135 - 555	Gneissic diorite. Epidote stringers, epidote after biotite. Chloritic fractures. Occasional quartz	105	110) 5	.01	. 176		.010	.05	\bot	
	feldspar dykes.	110	115) 5	.005	.174	.297	.040	.04		
		115	120) 5	.005	.284	<u> </u>	.010	.11		

VESTOR EXPLORATIONS LTD.

PROPERTY	Carmi, B.C.	. HOLE_	DDH V17

GRID REF	ELEVATION 434	3.4. STARTED Sept 9/74	COMPLETED Sept 18/74	DRILLER Interior Diamond Drilling	, Summerland, B.C.
DEPTH555'	DIP90°	BEARING	ASSAYER Loring Lo	aborataries Ltd., Calgary, Alberta	LOGGED BY G.S. Hartley

FOOTAGE	DESCRIPTION		SECTION		Core SludgeASSAXSe						
COTAGE	DESCRIPTOR	FROM	то	WIDTH	Cυ	MoS2	MoS ₂	Aυ	Ag		
		120	125)	5	.01	.233	.345	trace	.02		<u> </u>
	135 - 155 Slight fracturing and movement healed with epidate stringers.	125	130)	5	.005	.278		trace	trace		
	170 - 171 K feldspar veinlet parallel to core- cut off indicating movement healed with	130	135)	5	.02	.076	.247	.010	.27		
	135 - 155 Slight fracturing and movement healed with epidote stringers. 170 - 171 K feldspar veinlet parallel to core- cut off indicating movement healed with epidote. 226 - 259 Numerous wide k feldspar dykes some have a "Graphic Granite" texture. 264 - 264.5 K feldspar veinlet showing vertical movement. 266.5-267.5 Feldspars altered to sericite. Quartz with irregular masses of pyrite. 267.5 - 271.5 K feldspar and quartz dyke. Graphic granite texture. Very broken. Pyrite and chlorite on fractures. 271 - 274 Dark fine grained diorite 274 - 277.5 K feldspar dyke as above 277.5 - 281 Fine grained diorite as above 281.5 - 304 K feldspar and quartz dyke. Graphic granite texture, dark needle like crystals, tourmaline? 331 - 335 K feldspar dyke as above. 335 - 336 Very sericitic zone. Much purple fluorite. 337 - 386 Occasional quartz veins at various attitudes to core. Sericitic boundaries usually pyrite in quartz. 411 - 412 Quartz vein with pyrite and purple fluorite, sericite and trace MoS ₂ 427 - 427.2 Quartz vein massive pyrite sericite and purple fluorite. 443 - 470 Quartz vein. Large irregular masses of pyrite. MoS ₂ along one fracture 475 - 480 Intermittent quartz veining with sericite envelopes, pyrite and trace magnetite	135	140)	5	.01	.024		.020	.22		
		140	145)	<u> </u>			.052				ļ
		145	155	10			.028				
		155	165	10			.018				
		165	175	10	<u> </u>		.016	<u> </u>			
Pyrite and 271 - 274	Pyrite and chlorite on fractures.	175	185	10			.013				
	271 - 274 Dark fine grained diorite	<u> </u>					<u> </u>				
	274 - 277.5 K feldspar dyke as above							ļ			ļ
	277.5 - 281 Fine grained digrite as above	ļ				<u> </u>	<u> </u>				<u> </u>
	281.5 - 304 K feldspar and quartz dyke. Graphic granite texture, dark needle like	<u> </u>					<u> </u>		1		<u> </u>
	crystals, tourmaline?				ļ		<u> </u>				<u> </u>
	331 – 335 K feldspar dyke as above.			ļ	<u> </u>				<u> </u>		
274 - 277.5 K feldspar a 277.5 - 281 Fine grained 281.5 - 304 K feldspar a crystals, tourmaline? 331 - 335 K feldspar dyk 335 - 336 Very sericitic 337 - 386 Occasional qu usually pyrite in quartz.	335 - 336 Very sericitic zone. Much purple fluorite.	<u> </u>									
<u> </u>	337 - 386 Occasional quartz veins at various attitudes to core. Sericitic boundaries	ļ	<u> </u>	<u>-</u>	<u> </u>						
	usually pyrite in quartz.			<u> </u>	<u> </u>			ļ	İ		
	411 - 412 Quartz vein with pyrite and purple fluorite, sericite and trace MoSo	<u> </u>			<u> </u>	<u> </u>					
<u> </u>	427 - 427.2 Quartz vein massive pyrite sericite and purple fluorite.	ļ . <u> </u>			<u> </u>				ļ		_
	463 - 470 Quartz vein. Large irregular masses of pyrite. MoS ₂ along one fracture	<u> </u>				ļ	<u> </u>				
	475 – 480 Intermittent quartz veining with sericite envelopes, pyrite and trace magnetite					ļ <u> </u>					
	500 - 517 K feldspar and quartz dyke. Pinkish K feldspar, trace magnetite and pyrite										<u> </u>
	540 - 541 Dark fine grained diorite										

VESTOR	EXPLORATIONS	ITD
ACOIOK	EXPLORATIONS	

PROPERTY Carmi, B.C. HOLE DDH V17

GRID REF	ELEVATION4343_4 STARTED_Sept 9/74	COMPLETED Sept 18/74 DRILLER Interior Diamond	Drilling, Summerland, B.C.
DEPTH555'	DIP90° BEARING	ASSAYER Loring Laboratories Ltd., Calgary, Al	berta LOGGED BY, G. S. Hartley

67.465	DESCRIPTION	SI	ECTIC	N	ASSAYS					
OTAGE	DESCRIPTION	FROM	τO	WIDTH						
	545 – 550 As above									
	554 - 555 Gougy]				
		•								
						_				
	•									
									[
						- L				
										
										
										•
-										
			1			-				-
			1	1			1			
ļ										
			1						·	
			+	 						
							 			

VESTOR	EXPLORATIONS	ITD
4 LUI VI		

DOC DEDITY	C	LICIE BI
PKOPEKTY	Carmi, B.C.	HOLE_ <u>P1</u>

GRID REF	ELEVATION 4095.9	STARTED Sept_10/74 COMPLETE	D <u>Sept. 10/74</u>	DRILLER Al Miller Percussion Drilling Ltd., Kamloops, B.C.
DEPTH	DiP	BEARING	ASSAYER Loring Lo	aboratories Ltd., Calgary, Alberta LOGGED BY

OTAGE	DESCRIPTION	5	SECTION			ASSAYS						
FOOTAGE	DESCRIPTION	FROM	τO	WIDTH	Cυ	MoS ₂						
		4	10	6	.03	.085						
		10	20	10	.01	.080						
		20	30	10	.02	.075						
		. 30	40	10	.01	.284					· · · · ·	
		40	50	10	.02	.120						
		50	60	10	.02	.057						
		60	70	10	.01	.027						
		70	80	10	.01	.021						
		80	90	10	.01	.013			!			
		90	100	10	.01	.015						
											j	
									_		<u> </u>	
						1						
						<u> </u>						
			ĺ	-								
<u> </u>			1			<u> </u>						
						ļ						
			1	 		 						
, ,			<u> </u>		-	 		ļ <u> </u>				
			┼──	+		1						
				<u> </u>	<u> </u>	!						

VESTOR	EXPLORATIONS	ITD
A COLOIV		LIC

PROPERTY _	Carmi, B.C.	HOLE_	P2
------------	-------------	-------	----

GRID REF	ELEVATION 432	21.5 STARTED Se	pt 11/7	COMPLETED Sept 11/74	DRILLER Al Miller Percussion Dril	ling Ltd., Kamloops, B.C.
SCRIU	5/10	BE ADING		ASSAVER Laring Lai	baratories Ltd., Calcary, Alberta	LOGGED BY

	DESCRIPTION I		SECTION			ASSAYS						
FOOTAGE	DESCRIPTION	FROM	ŦΟ	WIDTH	Cυ	MoS ₂					ļ	
		10	20	10	.005	.003						
		20	30	10	.01	.002						
-		30	40	10	.005	.001						
		40	50	10	.005	.001						
		50	60	10	.01	.001						
<u> </u>		60	70	10	.005	.002					<u> </u>	
		70	80	10	.01	.006		,				
		80	90	10	.01	.003						
		90	100	10	.01	.002						
		100	110	10	.01	.003						
		110	120	10	.01	.007						
		120	130	10	.01	.004					<u> </u>	
		130	140	10	.01	.004						
		140	150	10	.01	.005						
		150	160	10	.01	.003						
		160	170	10	.01	.003						
		170	180	10	.01	.003						
		180	190	10	.01	.002						
		190	200	10	.01	.001					l	
1		200	210	10	.01	.002						
		210	220	10	.01	.003						
		220	230	10	.01	.002						
		230		10	.01	.003						
		240	 	10	.01	.003						

vestor ex	(PLORATIONS	LTD
-----------	-------------	-----

PROPERTY.	Carmi, B.C.	HOLE <u>P2</u>
FROTERII.	Carriery ares	11OLL <u>. * - </u>

GRID REF	ELEVATION 4321.5	_ STARTED_Sept_11/74 COM	APLETED Sept 11/74	DRILLER Al Miller Percussion Dril	ling Ltd., Kamloops, B.C.
DEPTH	DIP	BEARING	ASSAYER Loring Lat	poratories Ltd., Calgary, Alberta	LOGGED BY

500TAGE	DESCRIPTION I		SECTION			ASSAYS						
FOOTAGE	DESCRIPTION	FROM	то	WIDTH	Cu	MoS ₂						
		250	260	10	.01	.009						
		260	270	10	.01	.005						
		270	280	10	.01	.004						
		280	290	10	.01	.003						
		290	300	10	.01	.003						
			<u> </u>			<u> </u>						
			ļ <u> </u>							<u> </u>	ļ	
				ļ		ļ						
<u> </u>			<u> </u>			ļ	<u> </u>				<u> </u>	
				<u> </u>							Ĺ	
				<u> </u>							ļ	
						ļ						
			ļ	ļ .		ļ			ļ			
					<u>-</u>	ļ					<u> </u>	
<u> </u>				ļ	<u> </u>	<u> </u>						
			ļ			<u> </u>	ļ <u> </u>		<u> </u>			
			ļ	ļ		<u> </u>	ļ		ļ		<u> </u>	
			ļ	<u> </u>		ļ]			
			<u> </u>			ļ	ļ			<u> </u>	<u> </u>	
				<u> </u>	ļ	<u> </u>			ļ		<u></u>	
			1								<u> </u>	

VESTOR	EXPLORATION	K I.	TD
VLンIVハ		J	ľ

PROPERTY <u>Carmi. B.C.</u> HC	LE	P3
--------------------------------	----	----

GRID REF	ELEVATION 4289.2	STARTED Sept_11/74 CO	OMPLETED Sept 11/74	DRILLER Al Miller Percussion Drill	ing Ltd., Kamtoops B.C.
DEPTH	D!P	BEARING	ASSAYER Loring Lo	boratories Ltd., Calgary, Alberta	LOGGED BY

	OFFICE TO LA	St	CTIC	N			ASS,	4YS		
FOOTAGE	DESCRIPTION	FROM	то	WIDTH	Cυ	MoS ₂			 	
		10	20	10	.01	.002		_	<u> </u>	<u> </u>
		20	30	10	.01	.001				
		30	40	10	.01	.002				<u> </u>
		40	50	10	.01	.001				<u> </u>
		50	60	10	.02	.001			_	<u> </u>
		60	70	10	.01	.003			-	<u> </u>
		70	80	10	.01	.001			 	ļ
		80	90	10	.01	.001				—
		90	100	10	.01	100.			<u> </u>	<u> </u>
		100	110	10	.01	.002				<u> </u>
		110	120*	10	.01	.002			<u> </u>	<u> </u>
		120	130	10	.01	.002			ऻ	ļ <u>.</u>
		130	140	10	.01	.002		_	 	ļ
		140	150	10	.005	.001			—	<u> </u>
		150	160	10	.005	.002			\bot	
		160	170	10	.005	.001				
		170	180	10	.005	.001			1	<u> </u>
		180	190	10	.01	trace			 	
		190	200	10	.01	.001		_	<u> </u>	
		200	210	10	10.	.001				<u> </u>
		210	220	10	.01	.001				
		220	230	10	.01	.001				
		230	240	10	.01	.003				
		240	250	10	.01	.002				

VESTOR	FXPI	ORAT	IONS	17	\Box
VLJICM		シット	IVI VJ	- 6-1	

PROPERTY Carmi, B.C. HOLE P3

GRID REF	ELEVATION 4289.2	STARTED <u>Sept 11/74</u> C	OMPLETED Sept 11/74	DRILLER Al Miller Percussion Drill	ing Ltd., Kamloops, B.C.
DEPTH	DIP	BEARING	ASSAYER Loring L	aboratories Ltd., Calgary, Alberta	LOGGED BY

	DEC CONTION !	SE	SECTION		ASSAYS						
FOOTAGE	DESCRIPTION	FROM	ťΟ	WIDTH	Çυ	MoS ₂					
		250	260	10	.01	.001			.		
		260	270.	10	.01	.001	,				
		270	280	10	.01	.001					
		280	290	10	.01	.001					
		290	300	10	.02	.002					
			ļ		ļ.—						<u> </u>
			ļ	<u> </u>		<u> </u>					
			ļ					ļ		-	
			ļ	<u> </u>	<u> </u>					· · · · · · · ·	
ļ			-		 						
			 	ļ—	<u> </u>						
ļ			}	}		 					
			+	 	 	 		<u> </u>			
			 	├	 .	-	 -	-			
<u> </u>				1	 		 				
			-	 	 	<u> </u>					
			ļ	-	 	 					
				 	<u> </u>				<u> </u>		
			1				 		 		
	· · · · · · · · · · · · · · · · · · ·		 -	1	 	 	 		 		
				<u> </u>	 	-	-			-	
			 	-	 	-	ļ	} —			·
			 	-	 	 	 				
		<u></u> _	<u> </u>	<u> </u>		1		<u> </u>	L	<u>. </u>	

VESTOR	EXPLORATIONS	ITD
VL・ントレンハー		LIV

PROPERTY	Carmi, B.C.	HOLE P4
----------	-------------	---------

GRID REF	ELEVATION 4185.4	STARTED Sept 12/74 COMPLETED	Sept 12/74	DRILLER Al Miller Percussion Drilling Ltd., Komloops, B.C.
DEPTH	DIP	BEARING	ASSAYER Loring L	aboratories Ltd., Calgary, Alberta 10GGED BY

COSTACE	DECCRIOTION)	SE	CTIC	N	ASSAYS							
FOOTAGE	DESCRIPTION	FROM	10	WIDTH	Cu	MoSo						
		6	20	14	.01	.002						
		20	30	10	.01	.030				L		
		30	40	10	.005	.008		ļ	-			
		40	50	10	.01	.028						
		50	60	10	.01	.114		.]		<u> </u>		
		60	70	10	.01	.033		<u> </u>		<u> </u>		
		70	80	10	.01	.012		ļ <u></u>	<u> </u>	<u> </u>		
		80	90	10	.005	.015			ļ	ļ		
		90	100	10	.01	.020		ļ	<u> </u>	<u> </u>		
		100	110	10	.04	.007		<u>.</u>		ļ		
		110	120	10	.02	.006		 	<u> </u>	ļ <u>.</u>		
		120	130	10	.01	.002		<u> </u>	<u> </u>	<u> </u>		
<u> </u>		130	140	10	.005	.003				ļ		
		140	150	10	.01	.002		<u> </u>	ļ	<u> </u>		
		150	160	10	.01	.003		<u> </u>		ļ		
		160	170	10	.01	.004			-	 		
		170	180	10	.01	.006		<u> </u>	ļ	<u> </u>		
		180	190	10	.01	.004		1		ļ		
		190	200	10	.01	.009		J	<u> </u>	<u> </u>		
		200	210	10	.01	.009		<u> </u>		↓		
		210	220	10	.01	.006			<u> </u>			
		220	230	10	.01	.005						
		230	240	10	.01	.007			ļ	<u> </u>		
		240	250	10	.005	.015			1			

VESTC	OR EXPLORATIONS LTD. DRILL LOG GRID REF ELEVATION_4185.4 STARTED Sept 12/74 COMPLETED Sept 12/74	DRILLER	Al M	iller Pe	rcussion	n Drilli	ng Ltđ.	,Kamla	ops, 8	<u>.c.</u>	
	DEPTH DIP BEARING ASSAYER Loring Lab	<u>ratorie</u>	s Ltd.,	Calga	iry, Alb	<u>erta</u>	LOGG	ED BY_	,. -		
COOTAGE	DESCRIPTION	SE	CTIO	N			Д	SSAY	S		
FOOTAGE	DESCRIPTION	FROM	τo	WIDTH	Сυ	Mo\$2_					
		250		10	.005						
		260	 	10	.005	•					
		270	<u> </u>	10	.005					\longrightarrow	
		280		10	.01	.008					
		290	300	10	.01	.006				\longrightarrow	
				ļ							
		<u> </u>	<u> </u>	<u> </u>	ļ.,		:				
		-	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
		<u> </u>				ļ					-
		<u> </u>	ļ		<u> </u>	ļ					
		1	ļ	-	<u> </u>	ļ .	-				
		<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>					
		<u> </u>		ļ	<u> </u>	<u> </u>		<u>.</u>		<u> </u>	
		<u> </u>		<u> </u>		ļ		<u></u>			· · · · · ·
		<u> </u>	<u> </u>		<u> </u>	ļ	<u> </u>			<u></u>	
		1		↓	<u> </u>	ļ		<u> </u>			
		<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ				
							ļ				
			ļ . <u>.</u>		<u> </u>						
					ļ. <u>.</u>		<u> </u>	ļ			
i			ļ						1	i 1	I

C

Vestor ex	(PLORATIONS	LTD.
-----------	-------------	------

PROPERTY _	Carmi, B.C.	_ HOLE P5
FROILNI -		_ 110/66

GRID REF	ELEVATION 3882.0	STARTED Sept 13/74 C	MPLETED Sept 13/74 DRILLER ALA	Miller Percussion Drilling Ltd., Kamloops, B.C.	
DEPTH	DIP	BEARING	ASSAYER Loring Laboratories Ltd.	, Calgary, Alberta LOGGED BY	

OOTAGE DESCRIPTION	ا بدممیر ا		SECTION			ASSAYS								
	FROM	τO	WIDTH	Cυ	<u>Μο\$2</u>									
	10	20	10	.01	.003									
	20	30	10	.01	.013									
	30	40	10	.01	.042		.							
	40	50	10	.01	.023									
	50	60	10	10.	.010									
	60	70	10	.01	.014]						
	70	80	10	.01	.033									
	80	90	10	.005	.014									
	90	100	10	.01	.007	·								
	100	110	10	.01	.033									
	110	120	10	.01	.039									
	120	130	10	.005	.007									
	130	140	10	.006	.004					 }				
	140	150	10	.01	.006									
	150	160	10	.005	.005									
	160	170	10	.01	.005									
	170	180	10	.01	.004									
	180	190	10	.01	.005									
	190	200	10	.01	.004				·					
	200	210	10	.01	.003				<u></u>					
	210	220	10	.01	.006									
	220	230	10	.01	.010									
	230	240	10	.01	.005									
		 	10	.01	.005									
· · · · · · · · · · · · · · · · · · ·		40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200	40 50 60 50 60 60 70 70 80 80 90 90 100 110 110 110 120 130 140 150 150 160 170 180 180 190 190 200 210 220 230 230 240 230 240 230 240 230 240 230 240 230 240 240 230 240	40 50 10 50 60 10 60 70 10 70 80 10 80 90 10 80 90 10 100 110 110 110 110 120 10 1	40 50 10 .01 50 60 10 .01 60 70 10 .01 70 80 10 .01 80 90 10 .005 90 100 10 .01 100 110 10 .01 110 120 10 .01 120 130 10 .005 140 150 10 .01 150 160 10 .005 160 170 10 .01 170 180 10 .01 180 190 10 .01 190 200 10 .01 190 200 10 .01 200 210 30 .01 210 220 10 .01 220 230 10 .01 220 230 10 .01 220 230 10 .01 220 230 10 .01 220 230 10 .01 220 230 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 10 .01 230 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 2	30 40 10 .01 .042 40 50 10 .01 .013 50 60 10 .01 .013 60 70 10 .01 .013 70 80 10 .01 .033 80 90 10 .005 .014 90 100 10 .01 .005 100 110 10 .01 .033 110 120 10 .01 .033 110 120 10 .01 .035 120 130 10 .005 .007 130 140 10 .005 .007 130 140 150 10 .005 .005 140 150 10 .01 .005 150 160 170 10 .01 .005 150 160 170 10 .01 .005 150 160 170 10 .01 .005 150 160 170 10 .01 .005 150 160 170 10 .01 .005 150 160 10 .01 .005 150 160 10 .01 .005 150 160 10 .01 .005 150 160 10 .01 .005 150 100 101 .005 150 100 101 .005 150 100 .005 .005 150 100 .005 150 100 .005 .00	30 40 10 .01 .042	30 40 10 .01 .042	30 40 10 .01 .042	30 40 10 .01 .042				

DRILL LOG

PROPERTY Cormi, B.C. HOLE P5

GRID REF______ ELEVATION 3882.0 STARTED Sept 13/74 COMPLETED Sept 13/74

DRILLER Al Miller Percussion Drilling Ltd., Kamloops, B.C.

DEPTH______ DIP_____ BEARING____ ASSAYER Loring Laboratories Ltd., Calgary, Alberta LOGGED BY______

OOTAGE	DESCRIPTION	S	ECTIC	N	ASSAYS						
OOTAGE	DESCRIPTION	FROM	то	WIDTH	Сυ	MoS ₂					
		250	260	10	10.	.007					
		260	270	10	005	.004					
		270	280	10	_,01	.012					<u> </u>
		. 280	290	10	.01	.012					<u> </u>
·		290	300	_ 10	.01	.009					L.
			ļ		_						
	· · · · · · · · · · · · · · · · · · ·		ļ								ļ
			<u> </u>								_
			<u> </u>	<u> </u>							ļ
				<u> </u>							
<u> </u>			<u> </u>								
			<u></u>								-
			ļ <u>.</u>			ļi					<u> </u>
			ļ								_
·											$oxed{oxed}$
						L					
							i				L

VESTOR.	EXPLORATIONS	ITD
V LOI OK		LIU

DRILL LOG

PROPERTY	Carmi, B.C.	HOLE_	96	
11/01/2011		11000		

GRID REF	ELEVATION 4238	STARTED Sept 14/74	COMPLETED Sept 14/74	DRILLER Al Miller Percussion Drilli	ng Ltd., Kamloops, B.C.
DEPTH	DIP	BEARING	ASSAYER Loring Lab	oratories Ltd., Calgary, Alberta	LOGGED BY

FOOTAGE	GE DESCRIPTION			SECTION			ASSAYS						
POOTAGE	DESCRIPTION		10	WIDTH	Cυ	MoS ₂							
		16	30	14	.01	.027							
		30	40	10	.02	.057							
		40	50	10	.01	.036		<u> </u>					
		. 50	60	10	.02	.017							
		60	70	10	.03	.024							
		70	80	10	.02	.024			:				
		80	90	10	.02	.030	<u></u>						
		90	100	10	.01	.027							
		100	110	10	.02	.070							
		110	120	10	.02	.027				!	Ĺ <u> </u>		
		120	130	10	.01	.034			<u></u>		Ĺ		
		130	140	10	.01	.010		<u></u>					
		140	150	10	.01	.009		<u> </u>			<u></u>		
		150	160	10	.01	.006							
		160	170	10	.01	.006							
		170	180	10	.01	.009			l	<u> </u>	İ		
		180	190	10	.01	.006		 [
		190	200	10	.01	.004							
		200	210	10	10,	.013							
		210	220	10	.01	.015							
		220	230	10	.02	.009							
		230	240	10	.01	,007							
		240	250	10	.01	.004			<u> </u>				
<u> </u>		250	260	10	.01	.007							

VESTO	OR EXPLORATIONS LTD.	DRILL						, B.C.					
	GRID REF ELEVATION_4238 DEPTH DIP												
FOOTAGE		DESCRIPTION		SE	CTIO	Ν			A	SSAY	S	,	
roorage		DESCRIPTION		FROM	10	MIDTH	Сu	MoS ₂					
				260	270	10_	.01	.004					
	<u> </u>			270		10	.01						
				280		10	.01	1					<u>-</u>
	· · · · · · · · · · · · · · · · · · ·			290	300	10	.01	.006			-		-
			<u> </u>	╁									
				+		<u> </u>							
					-								
									-	-		-	
								<u> </u>					
				1	<u> </u>								• • • •
·				<u> </u>		 		<u> </u>					
					-		ļ			- · · -			<u></u>
				 	<u> </u>		 						
				-				-					
				-			 	+			-		
				 	 -	<u> </u>	 -	1					
i					1	 	₩	 	-	 	<u> </u>		

VESTOR	EXPLORATIONS	ITD
V LUI UN		

DRILL LOG

PROPERTY	Carmi, B.C.	HOLE _P7

GRID REF	ELEVATION 3967.0	STARTED Sept 15/74	COMPLETED Sept 15/74	DRILLER Al Miller Percussion Drill	ing Ltd.,Kamloops, B.C.
DEPTH	DIP	BEARING	ASSAYER Loring La	boratories Ltd., Calgary, Alberta	LOGGED BY

	DECCRIPTION I	SI	CTIC	N	ASSAYS						
OOTAGE	DESCRIPTION	FROM	то	WIDTH	Cu	MoSo					
		6	20	14	.05	.126					
		20	30	10	.04	180.					
· · · · · · · · · · · · · · · · · · ·		30	40	10	.07	.143					
		40	50	10	.07	.100					
<u> </u>		50	60	10	.04	.078					<u> </u>
		60	70	10	.05	.085					<u> </u>
		70	80	10	.05	.104				ļ	<u> </u>
		80	90	10	.04	.102					<u> </u>
		90	100	10	.06	.099					Ĺ
	,	·	<u> </u>								<u> </u>
			<u> </u>	1	<u> </u>						<u> </u>
											<u> </u>
			<u> </u>	<u> </u>							_
			<u> </u>							ļ <u>. </u>	<u> </u>
										ļ!	<u> </u>
'										<u> </u>	<u> </u>
				1							<u> </u>
											<u> </u>
					<u> </u>					ļ	辶
					<u> </u>	<u> </u>					L
									ļ —		
					l						
											
									ļ		1_

Vestor i	EXPLORATIONS	LTD
----------	--------------	-----

DRILL LOG

PROPERTY	Carmi, B.C.	HOLE P8	
FROFERIT	Custos D.C.		

GRID REF	ELEVATION 4174.3	STARTED_Sept 16/74	COMPLETED Sept 16/74	DRILLER Al Miller Percussion Dril	ling Itd., Kamloops, B.C.
DEPTH	DIP	BEARING	ASSAYER Loring L	aboratories Ltd., Calgary, Alberta	LOGGED BY

50074.05	DECCRIPTION !	SI	ECTIC	N			ASSA	YS		
FOOTAGE	DESCRIPTION	FROM	то	WIDTH	Сυ	MoS ₂				$oxed{oxed}$
		10	20	10	.005	.003				<u> </u>
***		20	30	10	.01	.009				
		30	40	10	.01	.002				
		. 40	50	10	.005	.001		<u> </u>		╙
		50	60	10	.005	.006		1	<u>.</u>	<u> </u>
		60	70	10	.005	100.			<u> </u>	<u> </u>
		70	80_	10	.005	.016			<u> </u>	
		80	90	10	.01	.003				_
		90	100	10	.01	.003				1_
		100	110	10	.01	.003			ļ	_
		110	130	10	.01	.007	<u></u>		<u> </u>	<u> </u>
		120	130	10	.01	.002				
		130	140	10	.005	.003				
		140	150	10	.005	.010				
		150	160	10	.005	.012		<u> </u>	<u> </u>	
		160	170	10	.005	.017		<u> </u>		
		170	180	10	.005	.010			<u></u>	
		180	190	10	.005	.017		<u> </u>		<u>L</u>
		190	7	10	1	.009				
		200		1	T	.006				Ţ
		210	1		T	.102				T
		220	1	1	1	.012				T
		230	1		i -	.010			 	1
 		240	T	`		.012			 	1
		, 240	250	1 10	000	11.012]			ــــــــــــــــــــــــــــــــــــــ	<u> </u>

VESTOR EXPLORATIONS LTD.	DRILL LOG	PROPERTY Carmi, B.C. HOLE P8
GRID REF ELEVATION 4174.3	STARTED Sept 16/74 COMPLETED Sept 16/74	DRILLER Al Miller Percussion Drilling Ltd., Kamloops, B.C.
DEPTH DIP	BEARING ASSAYER Loring	Laboratories Ltd., Calgary, Alberta LOGGED BY
DE 1111		

.

,

0

	DECCRIPTION !	SE	CTIO	N			A	ASSAY	S		
FOOTAGE	DESCRIPTION	FROM	τO	WIDTH	Cυ	Mo52					
		250	260	10	.01	.007	-		ļ <u>.</u>		
		260	270	10	.005	.005		<u> </u>			
		270	280	10	.005	.004					
		· 280	290	10	.005	.006					
<u> </u>		290	300	.10	.005	.006					
			1								
				1							
					-						
i											
			1								
				 			<u> </u>	† · · · ·			
			 -	 		ļ		 			_
			 	-					 		·—
! i		i	11	Į.	l	l	l <u>.</u>	l	L	L	i

VESTOR EXPLORATIONS LTD. ADDENDUM TO DRILLING REPORT #5203 CARMI PROPERTY - GREENWOOD MINING DIVISION

DRILLING

		•		
1. (Contr	actor Costs		
((A)	Diamond Drilling		
		4114' @ \$9.00/ft.	\$37,026.00	
•		1505'@\$12.00/ft.	18,060.00	
	1+	Casing-Casing shoes core boxes - sludge sampler rental - sample		
		bags	4,969.76	
	iga. N		60,055.76	\$ 60,055.76
((B)	Percussion Drilling		
		2000' @ \$2.60/ft.		5,200.00
((C)	Tractor Costs	e .	4,356.75
2. :	Salar	ies of field personnel and supe	ervision	17,489.22
3. <i>l</i>	Mobi	lization – Demobilization–Fre Truck Transporta		5,083.62
4. i	Field	Accommodation-Food-Fuel-S	upplies	1,965.14
5.	Comn	nunications		1,641.50
6.	Maps	-Air Photos-Publications-Rep	ort Preparation	736.50
7.	Assay	vs		13,548.21
		· TOTAL		\$110,076.70

VESTOR EXPLORATIONS LTD.

SCHEDULE OF EMPLOYEES CARMI PROPERTY

Name & Address	Period Worked	Salary Rate
Glenn S. Hartley 7319 – 89 Street Edmonton, Alberta	April 1 - Sept. 30/74	\$850/mo.
Brian Meyer 75 Furrman Crescent Regina, Saskatchewan	April 15 - August 23/74	\$450/mo.
Oakley Michelin P.O. Box 23 Happy Valley, Labrador	August 21 - October 1/74	\$450/mo.
Michael McDonald P.O. Box 51 Porquis Jct., Ontario	August 28 - October 1/74	\$400/mo.
John A.Greig #1502, 11111 - 87 Avenue Edmonton, Alberta	April 20 – May 10/74 June 9 – 23/74 July 22 – September 10/74	\$1499/mo.
Anthony Rich #1502, 11111 - 87 Avenue Edmonton, Alberta	April 10 – May 5/74 May 29 – June 30/74 July 15 – September 10/74	\$1499/mo.

AGREEMENT

This agreement made this 5th day of April, 1974

BETWEEN

Vestor Explorations Ltd. #1502, 11111 - 87 Avenue Edmonton, Alberta

(hereinafter referred to as the 'Company')

and

Interior Diamond Drilling Ltd.
Powell Beach Road, Rural Route 2
Summerland, British Columbia

(hereinafter referred to as the 'Contractor')

WHEREAS, the Company has requested the Contractor to perform certain Diamond Drilling and other services as hereinafter set forth:

SPECIFICATIONS

- The Contractor agrees to drill or cause to be drilled a total of four thousand (4,000) lineal feet on the Company's mineral property near Carmi, B.C.
- The Company guarantees to the Contractor a minimum footage of four thousand (4,000) lineal feet.
- 3) The drill holes are to be vertical and must exceed two hundred (200) feet in depth.
- 4) That all holes be drilled with a 'BQ' wireline core barrel and that all holes be measured from ground level.

PRICE

5) Price for all drilling will be nine (\$9.00) dollars per drilled foot on holes up to one thousand (1,000) feet. Beyond that depth this contract will be renegotiated.

TRANSPORTATION

6) The contractor will supply and operate all vehicles for mobilization and demobilization of drilling equipment and transportation of the contractor's personnel.

MOVING

7) The cost of moving the drilling rig to all drill sites will be assumed by the contractor.

BOARD AND LODGING

8) The contractor agrees to provide all board and lodging for their personnel.

WATER SUPPLY

9) The contractor agrees to supply all water required for drilling.

CEMENTING

10) It is agreed that if a hole requires cementing to allow the drilling to proceed, the contractor will make application of cement and drill out same in co-operation with the company's representative at no cost to the company.

BULLDOZING

11) The contractor agrees to supply a bulldozer to provide access to, and build all required drill sites. The company will assume all costs of building branch roads greater than one quarter mile.

DRILLING FLUIDS

12) The contractor agrees to supply all drilling fluids and flocculants required to insure the most accurate core and sludge recoveries.

GENERAL

- 13) The contractor agrees to take sludge samples at the request of the company's representative.
- 14) The company agrees to supply all core boxes and sludge sample bags as required.

- 15) The contractor shall be responsible for and will pay promptly all wages, dues and assessments payable under any Workmen's Compensation Act, or other similar act whether Provincial or Federal in respect of it's employees.
- 16) Under the foregoing terms and conditions the contractor does not guarantee to drill any hole to any specified depth, but the contractor will expend every reasonable effort to complete all holes to the satisfaction of the company.

PAYMENT

- 17) The company agrees to advance the contractor, twenty percent (20%) of the total minimum footage cost (\$7,200.00).
- 18) The company will make payment within thirty days of billing.
- 19) The company will reserve the right to withhold twenty percent (20%) of the total minimum footage cost (\$7,200.00) for thirty (30) days after completion of contract.
- 20) Time and core recovery shall be the essence of this agreement.

IN WITNESS WHEREOF, the parties hereunto set their hands and seals the 5 Day of April, A.D. 1974.

Signed, Sealed and Delivered

For The Company

Witness

For The Contractor

Witness

Rober Dander

AGREEMENT

This agreement made this 19th day of August, 1974.

BETWEEN

Vestor Explorations Ltd. #1502, 11111 - 87 Avenue Edmonton, Alberta

(hereinafter referred to as the "Company")

AND

Interior Diamond Drilling Ltd. Powell Beach Road, Rural Route 2 Summerland, British Columbia

> (hereinafter referred to as the "Contractor")

WHEREAS, the Company has requested the Contractor to perform certain Diamond Drilling and other services as hereinafter set forth:

SPECIFICATIONS

- 1) The Contractor agrees to drill or cause to be drilled a total of four thousand (4,000) lineal feet on the Company's mineral property hear Carmi, B.C.
- 2) The Company guarantees to the Contractor a minimum footage offour thousand (4,000) lineal feet.
- 3) The drill holes are to be vertical and must exceed two hundred (200) feet in depth.
- 4) That all holes be drilled with a "BQ" wireline core barrel and that all holes be measured from ground level.

PRICE

5) Price for all drilling will be twelve (\$12.00) dollars per drilled foot on holes up to seven (700) feet. Beyond that depth this contract will be renegotiated.

TRANSPORATION

6) The contractor will supply and operate all vehicles for mobilization and demobilization of drilling equipment and transportation of the contractor's personnel.

MOVING

7) The cost of moving the drilling rig to all drill sites will be assumed by the contractor.

BOARD AND LODGING

The contractor agrees to provide all board and lodging for their personnel.

WATER SUPPLY

 The contractor agrees to supply all water required for drilling.

CEMENTING

10) It is agreed that if a hole requires cementing to allow the drilling to proceed, the contractor will make application of cement and drill out same in co-operation with the company's representative at no cost to the company.

BULLDOZING

11) The company agrees to supply a buildozer to provide access to, and build all reguired drill sites.

DRILLING FLUIDS

12) The contractor agrees to supply all drilling fluids and flocculants required to insure the most accurate core and sludge recoveries.

GENERAL

- 13) The contractor agrees to take sludge samples at the request of the company's representative.
- 14) The company agrees to supply all core boxes and sludge sample bags as required.
- 15) The contractor shall be responsible for and will pay promptly all wages, dues and assessments payable under any Workmen's Compensation Act, or other similar act whether Provincial or Federal in respect of it's employees.
- 16) Under the foregoing terms and conditions the contractor does not guarantee to drill any hole to any specified depth, but the contractor will expend every reasonable effort to complete all holes to the satisfaction of the company.

PAYMENT

17) The company agrees to advance the contractor, twenty percent (20%) of the total minimum footage cost (49,600.00).

J.12.

3,600.00
18) The company will make payment within thirty days of billing.

My,

- 19) The company will reserve the right to withhold twenty percent (20%) of the total minimum footage cost (49,600.00) for thirty (30) days after completion of contract.
 - 20) Time and core recovery shall be the essence of this agreement.

IN WITNESS WHEREOF, the parties hereunto set their hands and seals the 3 day of August, A.D. 1974.

Signed, Sealed and Delivered

For The Company

Witness

For The Contractor

Witness

tener Mras

1. Startony

Al Miller Percussion Drilling

637
BOX BOX - KAMLOOPS, B.C.

CONTRACT FOR 4000 It, MINIMUM

DRILLING COMPANY TO BE REIMBURSED FOR THE FOLLOWING:

- (1) CHEMICAL GROUT IF REQUIRED. AT COST
- (2) COVERAGE FOR CASING LOST AFTER 50 FEET. AT COST
- (3) COVERAGE FOR DRILL RODS LOST AFTER 300 FEET. AT COST
- (4) WAITING TIME OR STAND BY TIME \$ PER HOUR IF MINING COMPANY AT FAULT.
- (5) DRILLING MUD IF REQUIRED. AT COST
- (6) MOBILIZATION AND DE-MOBILIZATION WILL BE \$\frac{1.70}{\text{PPR}}\$ PER MILE. NO CHARGE IN KAMLOOPS AREA.

NOTE: Water truck to be included in basic price. Water supply or source and cost of water to be the responsibility of the Mining Company. Drill sites and roads to be the responsibility of the Mining Company. If Cat required for assistance in moving drill, this also will be the responsibility of the Mining Company.

THE DRILLING COMPANY WILL CARRY PUBLIC LIABILITY INSURANCE IN THE AMOUNT OF \$500.000.00 DOLLARS.

SIGNATURE

AL MITTLER PERCUSSION DRILLING

STADIA SURVEY - Carmi, Greenwood Mining Division, British Columbia

The survey was run in conjunction with a diamond drilling and percussion drilling program.

Instrument: Kern DKM1 Theodolite

The instrument is direct reading to 10" and the telescope has a magnification of 20x. Although the DKM1 is capable of accuracy which is far greater than that required for this type of survey, it was chosen on account of it's light weight and portability. Horizontal control was effected, using a tubular compass, permanently mounted on the instrument and used in conjunction with the horizontal circle. Prior to use the instrument was thoroughly checked and adjusted. It was field checked several times on the property. At all times the error was found to be immeasureable.

Rod: 12 feet by 2 inches, collapsible. 'E' type with each E=1 foot.

With this type of rod it was easily possible to read stadia ± one foot at 1,000 feet and the rod ± 0.01 foot.

Elevation Calculations: All made using equation for vertical rad:

diff elev = stadia $\times \frac{1}{2} \sin 2\theta$

Horizontal Distances: All corrected to: stadia x cos 8

Closures: Vertical:

Most of the traverses were left 'hanging' for the present and few closures were effected either vertical or horizontal. Vertical closures are acceptable but cannot be considered good. For the most part the survey consisted of short steep shots – far from ideal for a stadia survey.

Horizontal:

The few closures effected were good and well within allowable limits. The maximum horizontal tie was 36 feet. Magnetic declination is 22°00' east.

Bench Marks and Temporary Bench Marks:

Elevations were carried from a geodetic bench mark set into the pier of the C.P.R. bridge at Wilkinson Creek. To date, 25 Temporary Bench Marks (TBMs) have been established on the property. Most of these TBMs take the form of a 10 inch spike driven into a large tree beside the road. Each TBM, drill site, etc. is identified with an embossed aluminum tag nailed to a tree.

Comments:

It is hoped to improve some of the poorer vertical ties with later traverses. As the program continues, more roads will be constructed and surveyed and most 'hanging' traverses will thereby be tied.

A. Rich, P. Geol

π ₀	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF. ELEV.	H.1.	ELEVATION	STATION & REWARKS
_							Take of	y Bri	- long rad	North of Wi	Kirson Corek logging mod
Ó										2961.68	Roin
7	63 915	1804	3608	M	10.70	15°00'	¥902.00	1912.70	3875·58		-
			3608	B	13.30	-14°40'	438376	4915-10	<u>;</u>		
	· .	<u> </u>	00				<u> </u>	- 5 2	<u>.</u>	3870 4	
<u>o</u> .	273°34		102	M	593	1400	17.10	+117	i	3876 75	
Ĩ	/22.00		182	M	1513	−8°00′	+25 03	-35-21	3911.96		
<u>O</u>	233 00 1		-89	~	326	+1300	119.51	+16.23		3928-19	TEN VII
		<u> </u>	l	_	ļ			<u> </u>			
		<u> </u>	ļ. <u> </u>	ļ	 					<u> </u>	
		·	<u> </u>	_	<u> </u>	<u> </u>				ļ <u>-</u>	
	·			 -	ļ 						
		<u> </u>	ļ	-		ļ	ļ	ļ -—			\
		<u></u>	 	ļ	<u> </u>						
	<u> </u>	<u></u>	{ <u> </u>		ļ <u>.</u> .		ļ	-			
]		}		ļ		<u> </u>

					<u>.</u>			Mos De	d 22°	··	LINE 'NO PAG
π.,	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLÉ	OLFF.	DIFF. ELEV.	H-J-	ELEVATION	STATION & REMARKS
											
				ļ		Take	.0//	TBM	V-4.	Spike in tre	2
<u>_</u>		<u></u>	·	†		7	77			3762.93	Page - comy to page
0	105 301		ZZo	7	8.45	- 3°00'	+11.50	+ 19.95	3762-88		Woles was
7	100 00		00	'-	- '	· · · · · · ·		- 5.1		3777.8	4 Road oschward
	319*		- 00	1-		+7°1'40"					TBM@ DOKIZ Y 4
			304	1,,	2.12	 		+33.78		3821-66	± rd
<u> </u>	277 20' 110° 26'		235	<u>, , , , , , , , , , , , , , , , , , , </u>	984	-10°00'	740-19	150.03	3871 <u>69</u>		
不.	110 20	 -	00	-	1			-5.2		3866.5	∉ rd
<u>()</u>	Z79°00′	·· ·	154	A-1	0.96	+13 00	+3376	132.80		3904.49	TBM V-9 Siside had
<u>~</u>	191020	T .	168		11.34			+ 12 22	3916.71		
	Z/2°00'		171				+894	-2.82		3913.89	DDH
	-/2		00	1				- 5.q			
	61000	1	104.	M	11-22	-1060	-1:81	- 13-03	<u></u>	3903.68	
-	203000	1	56	/1	<i>q</i> ·3			- 4.3		· ·	Cente distruction
0	291°36'		61	M	4.33	+12°60	+12 40	+8.07		3924 78	<u>É</u>
۲	168°25		192	V	10.61	-10000	+3283	143.48	3968.26		0/d, Nii
┌~	178°30'		250	_				-31.96		3936.30	DDHT-12
	1		<u></u>	' . <u>-</u>							VESTOR EXPLORATIONS LTD.

π ₀	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF. ELEV.	H.I.	ELEVATION	STATION & REMARKS
				-					396826		
	182°2°		150	7	/073	-5°00'	-13:02	- 23 75		3944.51	DDH: 6 ground star
	186%		50	+-	11.65	-200	-174	-13.39		3954.87	DDH
}	106 10		00	-	,, <u> </u>			-53		3963.0	5'E &
	62°30^		34	M	3.00	+3°00'	+1.77	-1.23		3967.03	DDII · I - 1 Approx
			41	M	337		-962			3967.01	DDH 27 - KB. 5.00'
	354°Zai 284°20'		197	+	9.93			-55.98		4024.24	'E of DON 12 0
<u></u>	332 '40'	·	29	1	0.24		+2.02	i		3970 04	TEM -V-10 Stile in large for
<u> </u>	322 10		 '	1							
π	179°00		104	1 ~	7.68	+ 160	-1.81	+ 5.87	3975.91	<u> </u>	<u></u>
/3	230°	·	31	14	3.20			-3.20		3972-71	c of interection
	290°32		2/3	M	040	+900'	+3291	+32.51		4008.42	ted on band
	270 33		00				Ī	-5.4		3970.5	ed atteredim - track east
	358060	-	1/0	M	10.92	-3000	- 5.75	-16.67		3959.24	
0	27°36	1	118		88.11	-9°00'	-18.23	-32-11		394580	4
T	279'60'		128		1:	14°00'	1	-1239	3933.41		Toke Off from logi.
Λ-	324°00		108			41°60'	-	-5-22		3928 19	Toke Off from Pogs TEMV II Spike in small spince
	302		92		4.6	T		- 46	<u> </u>	3728.8	cof intersection-

DATE JUGE 18 1814 PROSPECT Carmi SURVEYOR TRICK RODMAN B. Meyer. LINE NO. PAGE 6 DIFF. STATION & REMARKS ELEVATION H . t . DIFF. ANGLE ROD V2 STADIA STADIA ELEV. AZIMUTH 3933.41 39280 & road -54 60 3909 40 | DDH - 11 -4%01 -1204 -24.01 11.97 173 () 170°30 282 416.00 - 43 45 + 10.63 3868 77 164 316"40' 38634 End. -5.4 00 3833.41 TBM VZ 5'N of DBM-2 M 1124 -12001 -1912 -30-36 109°20' 94 392619 TBM W-11 Page 0 -21 26 13.22 3909.97 + 13°00' 91 M 3.04 237 % 3904.9 Niller -5.1 00 3853.44 DDH .5 n 11.88 -8°00'-4465-56.53 Ō 12500 324 VESTOR EXPLORATIONS LTD.

DATE April 30 1074 PROSPECT Carmi SURVEYOR TRICL RODMAN G. Hartley LINE NO. PAGE 7 DIFF. STATION & REMARKS **ELEVATION** H . L . DIFF. π_{α} ANGLE 200 V2 STADIA STADIA HAIR AZIMUTH ELEY. 3836.41 TBM . V Z , New DOIL I.2 0 M 10.02 + 10°00' - 196 00 -185.75 3652.42 275°40 3646.76 Galue's surey hab - 566 M 5.66 14° 3649.50 DDM. I 13 - cibbir, beside hole - 292 197 % M 2.92 29 3665.47 Bdy of Dar Clarai M 770 +5 000 +2075 +1305 16020 239 3672 47 DDH V-1 M 676 +5000 +2700 +2004 156"30 +10.68 3683.15 M 1068 298010 97 367580 TBM VI Rock on North -4:35. 69 M 435 131°20' Rood to DOIL V 2 368450 Tie -570' !

πο	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF. ELEV.	я.т.	ELEVATION	STATEON & REMARKS
		}									·
		 				Take.	off.	TBM	V /		Page 7
								West	of DDH VI	·	
0			<u> </u>							367880	
T	212°30		109						3661-06	<u> </u>	
0	350 60		70					-2424		3636.82	
\overline{X}	188°Za		163	М	5 50	+18°00'	-47.91	-42.41	3594-91		<u> </u>
	0°30′	<u> </u>	161	-				-44.21		355020	
0	34300	<u> </u>	106	M	11 90	-700	-12.82	-24.72		3569.69	TBM. V3 - Spike 2'up
				ļ	<u> </u>			<u> </u>			North ride of large larch
人	150°20		135	M	1.19	+15000	-33.75	-32.56	3537.13		sa. W side of riel
ļ	1	ļ. 	00		<u> </u>		<u> </u>	-51		3532.0	
10	3100	<u> </u>	68	M	11.15	-/2°05'	-13.83	-24.98		3512 15	DDH V-Z
			ļ	<u> </u>			<u></u>	<u> </u>			<u> </u>
					<u> </u>	<u> </u>	<u> </u>	<u> </u>			
						<u> </u>	<u> </u>	<u> </u>			<u> </u>
1	,		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>		1

π,	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF. BLEV.	9.1.	PLEVATION	STATION & TEMARKS
				 							<u> </u>
				-	Toke	. 0/1	T611	v 1 _ C	n mask · N s	te of road	
) .										3684.50	Page 7
<u>0</u>	73 %	<u> </u>	139	<u></u>	10.88	-12°00	+2627	+39.15	3723 65	T	
7	1220		188	m	10.9		-32.15	i		3680-6-	Inside hourger head
	166	 	Do		1			-5.4		3716.3-	S. side od.
0	280°36		310	л	488	1700	13750	+32.62		375627	Int oft side to
T.	2		210	M	1074	-		+ 13 74	3767.01		6 1 1 1 1 1 1
	307°30	1	154	M	4.08			-4.08		3762 93	TEM Y4 N. side of road
	227.77		00					-5.4		3761-6-	TGM Y4 N. side of road N. side of road N. side of road N. side of road
0	1600/01		128	M	1.07	+5°00'	+11:11	110.04		3777 05	Esido mbes
7	33°36'		203	n	1042	-6°00	+2110	+31.50	380857		
			60	_			<u> </u>	- 5-3	<u> </u>	38033-	25'8 of bend
	309° 30°		47	74	0:31	+2°00	+164	1133		3809.90	TBM V. 5 Spike in land
0	300 40	i .	230	M	2.89	+500	+19.97	1 +17.08	<u> </u>	3825.65.	S. side road
1	T		184.	1	11:56	-2 000	1643	417.98	3543.63		1

を からなる

DATE June 5 1974 PROSPECT Carmi SURVEYOR TRICL RODMAN B Mayer LINE NO. PAGE 10

π _Θ	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF.	HE.S.	ELEVATION	STATION & REMARKS
									3843-63		
	178°		<i>2</i> o	m	5.83			-583		3837-80	DBH 18 - grand elev
			00					-51		3333.5	end of mad
0	232%		133	M	8 45	+1500	4 33 25	+24·80		3865.43	
π·.	17°30'		90	M	10.98	-800'	+12.40	+23.38	3891.61		
	17:32	1	00					~5.3		33355	
0	26500		190		1.41	+14000	+44 60	143.19		3935.00	
T	83°40'		2//	и	9.50	-12°00'	+42.91	152.41	3987:41		
			٥٥			İ		-51		3982.3	On Due Bdy
0	251845	ł	72.	m	450	+12°00'	+14.64	+10.14		3997.55	,
7	57°20'		55	7	8.8¢	-7°00′	+ 6.65	+15.49	4013 04		
0	2160		3z	n	1.23	+1000	+5.47	+4.24		4017.28	
7	Z6°10'	67	134	ß	262	-600	+13.93	≠23 22	404050		Bifficult buch shot. Last post post
			00					-5.5		40350	
0	203 45		136	M	10:49	+ 900	+2101	110.52		4051:02	- \
T	32*30		58	24	10 12.	-3°00.	+3.03	+13.15	\$064.17		
			04					-5.4		4058.7	
0	203'30'		100	M	871	18000	+B.78	+5.01		4069 18	XV

.

πο	AZMAUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFE. ELEV.	Hali	ELEVATION	STATION & REMARKS
									4036.92		
	347036		64	m	2:15			-2.15		4034.77	Topof survey pin of C. Gahar
					<u> </u>						brike post 1. Dos 3/4
	246		75	n	3. ₡			- 3:4		4033.5	Middle of Dan
٥	243*201		347	м	471	16°60'	+36 07	+31.36		4068.28	£ road
エ	11600		107	M	11.32	- 4°00'	47.44	+18.76	4087.04		·
			0 ∞]		ļ]	-5.4		4081.6	£ 11
0	3/8°30		151	M	1.09	+600'	415 70	+ 14.61		4101.65	TBM V-12 Tor Longe dea
ズ	12.50		222	M	830	~ 7°66'	1,2685	+35.15	4136.80		"
			00					-5.4		41314	W. Sill rd
Ω	192 00		224	M	830	+6°00	+23.29	114.49	ļ !	4151.29	Gehue's his 569
		1	<u> </u>	_	<u> </u>	ļ	<u> </u>				
				1_	ļ	<u> </u>	 				
	<u> </u>				ļ. <u></u>		<u> </u>	ļ	ļ		<u> </u>
			ļ			ļ	<u> </u>		<u> </u>	<u> </u>	(
	<u> </u>							ļ	ļ	<u> </u>	
	<u> </u>			_	\	ļ	<u> </u>	ļ. <u>. </u>			
			}				}	}	<u> </u>	<u> </u>	M

SURVEYOR TO RICH RODMAN DELICATION LINE NO. PAGE 185 DATE July 17 1974 PROSPECT CG: PA 1 STATION & REMARKS DIFF. ELEVATION H . I . DIFF. ANGLE HAIR ROD AZIMUTH V2 STADIA STADIA ELEV. 4174.48 su side nod 4177.70 +200 +732 +3.22 4.10 310010' 210 4192-79 -200 4373 45.09 M 1136 102020 107 4187-6 -5.2 00 4193.59 Swed of heal 41°00' | +190 +0.80 331 1.10 104 419796 interesting 2005d to dead 120001 45.44 15.17 M 027 330°10' 156 -600 +13.41 172.54 927050 M 9.13 12.9 18000 4201.08 DDH site (undilled) -7 72-19.42 -8001 M 1170 110000 56 4215.4 -3-1 00 4210.2 Cente of beach -103 10.3 48 1970 4227.5 New Alast. Sphere 16.3. 14.81 120 + 2 °00' n 12.8 287 30 138 - 4.39 -14.60 M 10:21 -300 84 Ø 15040 at interesting VESTOR EXPLORATIONS LTD.

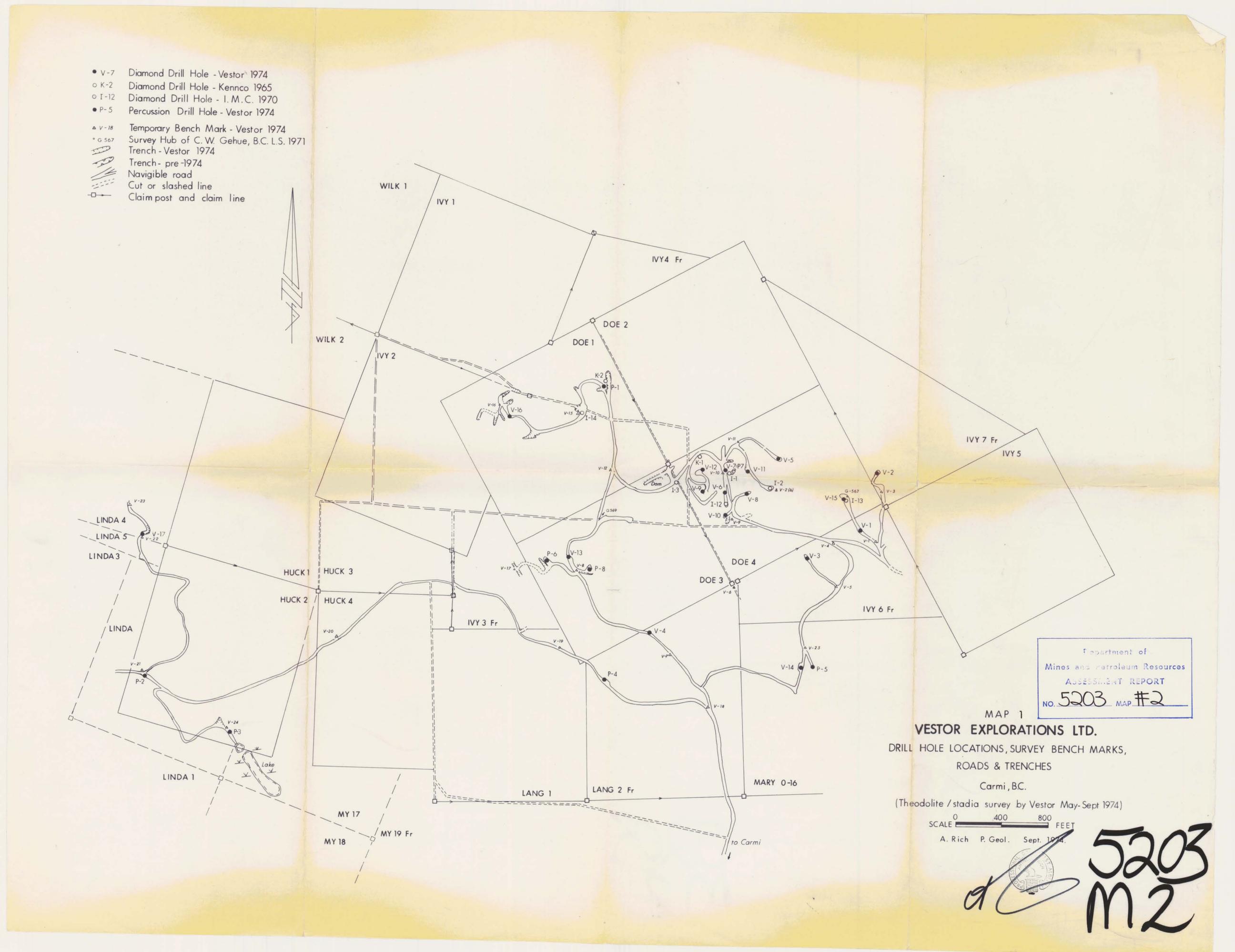
πο	AŽIMUTH	V2 STADIA	STADIA	FIAH	ROD	ANGLE	DIFF.	DIFF. FLEV.	н. г.	ELEVATION	STATION & REMARKS
							Tako.	9H 7	En V-8	P 11	
0										419768	
_7i`	34.000		73 169		11:31		12.55 -26-11		4211.74	4174.33	Dall Site P. B
	68°%'		00	-	70			-5.1		42066	
0	329°40		103		116	+ 2°60'	+3.59	+2.43	1	4214 17	Muedy had.
#	(10 43		00		11 97			-5.2		4225.1	101
	235° 230°00'		13.6	M	1.70		+1213	T	1	4249.31	SE El Apad:
\(\frac{\)\}}}}}}}}}}}}\) \right)}} \right)}}} \right)}}} \rightarrow\{\(\frac{\)\}}}}}}}}}} \right)} \right)} \right)} \right)}} \right)}} \\ \(\frac{\(\frac{\in\{\in\circ{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\in\circ{\in\in\in\circ{\(\frac{\(\frac{\in\circ{\in\{\in\{\in\{\in\in\in\{\in\{\in\{\i	17.4		75	+ -	7.65	772 00	72.02.0	47.65			
	70242		120	M	2.20	1/ "00"	+12.4	4-12.29		4251.9-	<u> </u>
0	Z83°36'	1	65	-+	10 83	7.0 00	1772.4	≠/ 5:83	T	7007 -7	

	<u>-</u>	V2 SIADIA	STADIA	PAIR HAIR	ROD	ANGLE	01. 22°E	DIFF. ELEV.	н. 6	ELEVATION	STATION & REMARKS
0 '	HTUMILA	V2 SIADIA		-			<u></u>				
_							Take	0/4	TBM V	7	Page 11
-										4./19.38	
0				-		-1-1 °0-1	-537	+2.05	4121.43		
71	3:60201		303	1~	7.42	71 00	<u> </u>	-51		4116.3	E side rd
-+			97	71	440			-4.40			NE side rd
- $+$	135°50' 136°40'		208	51	1.50	-	 	-150	413100		
7	62°40		81	M	11.15			+11 15	413103	41.38.84	TBN VIB well Protection
	122°20	/	70_	<u> </u>	0.90	+3000	+3 66	+2.76			NE side und
		\	00	+	 		2551	+1.75		4/32.9	3
0	Z79°40	- i	168	17	4-11	- 3000	+22 g	7+1667	4:4750		
7	8390		4-50	- -	1022		<u> </u>	-5-1			2 15'su of 100d
	301 4	,	253	1	2.5	48°00	+34 8	7+32.32		 	
0	137 %		226	~	8 22	-6°00	+23 9	77-31-71	421353	41.85	Percussion Hale NE Side
 	/30"/0		14.8	ام ا	10.2	- 7000	-17 9	0 -2815	 	42084	20' SWy mad

				, ,							
πο	AZIMUTH	V2 STADIA	STADIA	HAIR	8OD	ANGLE	DIFF.	DIFF. ELEY.	H . (.	ELEVATION	STATION & REMARKS
				 -					421353	<u> </u>	
	309.00		/30	M	896	+5°00'	+11:29	+2.83		4216.36	€
0	113%0'		303	T	943			+35-74	425210		Spike in med
T	108°35	 	96	$\overline{}$	8 68			- 663		-i 	TBM.V19 NESILE rood.
	100 33		00					-5.1			5° 5 63 0 \$
0	285°20'		272	м	6.91	+500	+ 23-61	+1670		4268 30	10'5 Wal mad
<u>γ</u>	161°30	 	230	بر	10.80			11080	4279.60		
	160%		208	м	10 30	[- 1030		4269.30	
	7,00,70	<u> </u>	60			 		-51			(NE silo rd) 6'NE &
0	321°40	1	150	М	413	4/°06		-1.51	·	4275.09	10 NEV med
7	96°30	,	305	74	8.31	-4°00'	+21 27	129.53	430762	23.3.5	
			00			<u> </u>	<u> </u>	-51	 	43025 430662	-
0	297 00	<u> </u>	80	1,~	1.00	ļ	<u> </u>	-1.00	43.6.64	430662	- Y
x	107*40		47	10	8.02	ļ	<u> </u>	+3·02 -5·56	4319.64	4309.08	E at lat" will cutting
	<u> </u>		00			ļ			 	0370.76	Toget Gohar His 559
	181°40	<u>'</u>	93		0.35			1 + 6-12		4323.96	Top of Clair Part NY 3 F.
	354010	<u>'</u>	298	44	11.62	+¢°00	74014	1932		73/2.75	10'NE &

τ _o	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF. ELEV.	H . F .	ELEVATION	STATION & REMARKS
+									4323.05		
3	307°20'		268	M	1.17	+1000	+4 68	+2.91		4.325.96	TBM V 21 stint scorche
	25/°45'		296	14	10.68	-/1°00	+55 44	+66.12	4392.08		
7	251-4.5		00	<u> </u>				-4.9		4387.2	10'SE d
0	41*30'		208	M	0.90	+500'	+1806	+17.16		4409.24	15'No Pd.
()	160%0		416		3 00			+300	9412.24		
	760 70		00					-52			Zo. 34 €
0	34030		210	M	11-18			-11:18		4401.06	20 € €
<u>у</u>	101°30′	<u> </u>	331	М	8.77	+400	-2303	-14.26	4386.80	1	
· · · · · ·		<u> </u>	00					-5.1	· ·	4381-7	<u>'' </u>
0	322"20	1	167	м	10 91		 	-28.27		4358·53	25'S &
r	167.25	7	136	111		 		-0.81	435752	43 3 3 12	<u> </u>
	25*30		790	M	190	+12°00'	11607	+ M . 17		4343.35	DDH V-17
	39.30	1	49	M	0.4-1		-9.97				7877 V 22 E 31de 14
<u>()</u>	17°20	T	79	M	2.23	+9000	+1221	+ 9.98		4367 70	Sw side od
て.	223%		95	M	1.92		-	+192	436962	03/0 -	+
			00		<u> </u>		ļ	-51	·	4364.5	IS'NE &
	1		ļ	╝.		<u> </u>		<u> </u>	1	<u> </u>	VESTOR EXPLORATIONS LTD.

π _o	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF. ELEV.	H - I -	ELEVATION	STATION	& REMARI	· S
			·;;=	 					4369.62		<u>-</u>		
0	309 30		181	14	11.32	-2°00′	-6.31	-17.63		435159	DDH .	site.	
7	12790		30	М	4.62	-		t 4 82	4356 81			··· ···	
	127.10		00					-51		4351.7 4356.29		34.55	Spike in de
O	359°01		50	М	0.26	+ 2°00'	+174	41.49		435629	TBIN	V 23	As F. Sale
<u></u>					<u> </u>	 				<u> </u>	<u></u>		
				<u> </u>	<u> </u>	ļ ·	<u> </u>	<u> </u>	<u> </u>		-		
	<u> </u>	ļ <u> </u>		-	 		 	<u> </u>	<u> </u>				
	ļ	<u> </u>	 	 -	ļ.—-							· · · · · · · · · · · · · · · · · · ·	
	 			+-	 	 	ļ. -	- · ·					
	 -	 		+-	 	 	 	- 					
	 				 							<u></u>	
<u> </u>	 	 	 	+	 								
\vdash	 		 	+					<u></u>	<u> </u>			
<u> </u>	-		<u> </u>	I					ļ				
├	-	1		\top		<u> </u>	<u> </u>		<u> </u>	 			


Fri Sept	13 li 19	74- PR	OSPECT	Ca	ymi.		SURVEYOR_	T. R.L	RODMAN	M. McDorald	LINE NO PAGE
πο	KTUKISA	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF. ELEV.	И.t.	ELEVATION	STATION & REMARKS
							Take	D <i>FF</i> 7	"BM V Z	Pare	20
	·									4 325.96	
ж-	32436		185	м	1.77	+120'	-3.23	-1 46	4324.50		
	301°30'		147	м	2.97		<u> </u>	-2.97		4321:53	Percussian Hole P.Z.
			<i>დ</i> 0		<u> </u>			-51		43194	
	129045		67	M	635	-		- 6.35		4318-15	1N >0
0	2/3°00'		76	M	11-47			-11.47		4313.03	1
*	323 93%		387	M	9-65	+/°08′	-675	-2.10	4310 93		
			00	L	<u> </u>			-51		4305.8	₹
0	158%		(35	h	7.67			- 767		9303 26	15 'se &
7	234356		240	14	2 43	≠ 2°50°	<u> - 8-37</u>	-5.89	429737		
			00	_			<u> </u>	- S-Z		42922	IONE E
0	9000		175	н	0 63	_		-0 63		429679	TBM VZ4 Spike in lance to
ス	333°on		67	M	0.69	13°00	-3.50	-2.86	4293 88		<u> </u>
	349 00		3/	~	471		<u> </u>	- 4.71		47.89.17	Percussian I lale P3
0	144°00'		95	м	7.10			-710		i	Elev. Water NWs. 10/ loke.

T ₀	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIEF.	DIFF. BLEV.	H.I.	ELEVATION	STATION & REMARKS
$\overline{}$		<u> </u>	,	-							
			 				Take.	H - 1	ntersection o	I Roods 50	ul of TBM V.7
_+										4117.03	Page 17
<u>O</u>	2/3°00'	 	191	<i>M</i>	5-91	+600'	-1986	-13.95	4103:08		
^+	2/3 00		50	-	7-2-			-5.0		4108.1	30'NF 4
0	83°30'		/80	M.	889	-7°00'	-21.77	-30-66		407242	10' 5 &
	28z 336		300	M	6.40	+10.00	-51.30	-4.4-90	4027.52		<u></u>
T	202 30	<u> </u>	00	\ <u>\</u>				-52		40223	₫
0	1/230'		268	M	11.95	-13 00'	-56 74	-70.69		3956 83	
ر	196.40	,	321	14	6.23	+ /1 00	-6013	-53.90	3902-93		
-^-	201°40		12.8		2.83		+1978				DOH: V- 19.
	153%6		127		9.96	Τ	-1/ 02			3881.95	Percussian Hole P5
·!	12200		00					-50		3897.9	Between roods. Spiker large fire
	351000	1	58	M	3.07			-3.07		00,700	1277
Ó	347 60	 	254.	m	10.90	-		-10 90		3992 03	15 wd James to
	2.09°50'	1	139	M	1.92	+ 9000'	-21:48	-19.56	3872.47		
	20,00		00				·	-50		3867.5	10'set.

... .. - ...

πο	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIFF. GLEV.	н. t.	ELEVATION	STATION & REMARKS
									3872.47		//
0	52000		276	7	10 59	-/0°06'	-4720	-57.79		3814-68	€ /
7	223°56'		80	м	0.70	+500	-6 95	-6.25	3808·4 <u>3</u>		V
			00					-51		3803.3	
0	295°30'		2.7	м	025	+2000	+094	+ 6.69	· · · · · · · · · · · · · · · · · · ·	3807.12	TBM V 5
						<u> </u>				3809.90	Page 9. Tie -0.78
0			-	-			ļ <u>-</u>			4158 19	Gehrer Hupsby P 11
7	2.72.°60°	,	269	M	3 45	+14 = 20	-(315	-59.70	909849	1	
			00	-				-5.5°c		4092.99	Percussion Site - Uhiral
0		<u> </u>	ļ 							419769	TBM-V8 711
'n	<u> </u>		5 2.	M	299		<u> </u>	+2.94	4200.62	<u> </u>	
			166		1.92	+10001	+2.93	+1.01		420/-63	DDH V 13
_	 	-		-		<u> </u>		ļ		<u> </u>	

