5352

ELK PROJECT

GEOCHEMICAL PROGRAM

24 MILES WEST OF PORT HARDY AIRPORT, B. C. LAT. 50° 45' N. LONG. 128° 04' W.

N.T.S. 1021 & 92L

102 I/9E & 16E

BY

D. ARSCOTT, P.ENG.

FOR

CHEVRON STANDARD LIMITED MINERALS STAFF

Department of Mines and Petroleum Resources ASSESSMENT REPORT NO. 5352 MAP

Vancouver, B. C. November 30th., 1974. CONTENTS

3

Ð

.

Page

INT	RODUCTION	:						•																			
	General		•	•	•	•		•				•		•		•		•		•	•	•		•	•	•	1
	Location																										1
	Ownership	an	d	C1	lai	ms	5			•		•	•			•		•		•	•					•	2
	Geography																										2
	Geomorpho																										2
	History o																										3
RE(GIONAL DES	CRI	PI	CIC.)N :	:																					
	Geology	٠	•	•		•	•	•	•	•	•	-		•		٠	•	٠	٠	•	•	•	•	•	٠	•	3
	Magnetics		•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	-	•	•	•	-	•	٠	٠	4
	Mineraliz	ati	or	1	٠	•	.•	•	•	٠	•	•	•	.•	•	٠	•	٠	•	٠	•	•	•	•	•	•	4
LO	CAL DESCRI	PTI	ON	1:																							
	Geology	٠				•	•	•	•	-	•			•	•			•	٠	•	•	•	•	•		٠	5
	Magnetics																										6
	Geochemis	try	,	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	•	•	•	•	•	6
DIS	SCUSSIONS:										•																
	Target Ty	pe	Sc	ug	sht		•	•	•		•		•	•	•	•	•	•	-	•	•	•	•		•	•	8
	Targets I																										9
	Explorati																										10
COI	CLUSIONS	•	•	•	•	•	•	•		•		•	•		•	•	•	•	•		•		•			•	11
עמ	COMMENDATI	ONS	,											_	•	_		_		_	_		_		_	_	12
	NOT THE OWNER TO	one	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	

APPENDIX

References Geochemical Techniques Geochemical Analyses Expenditure Statements Certificate

LIST OF ILLUSTRATIONS

О

C

TABLE	I	Metal Content vs. Depth in Overburden
	II	"B" Horizon vs. Basal Till
	III	Basal Till vs. Diamond Drill Holes
	IV	Basal Till vs. Bedrock Chips
	v	Total Minus 80 Mesh US Heavy Mineral Fraction
	VI	Statistically Based Thresholds

FIGURE	1	H / Location and Access
	2	#2 Topography
÷	3a 3b	Regional Geology Regional Magnetics
	4	Statistical Distribution of Soil-Metal-Content
		(In Pocket)
	5	^{#5} Geology of Elk Claims
	6a 6b 6c 7	# 2 Computation

Elk Claims 1974 Campsite

Elk Claims - View North from Camp

Elk Claims

Elk Claims. Former Homestead

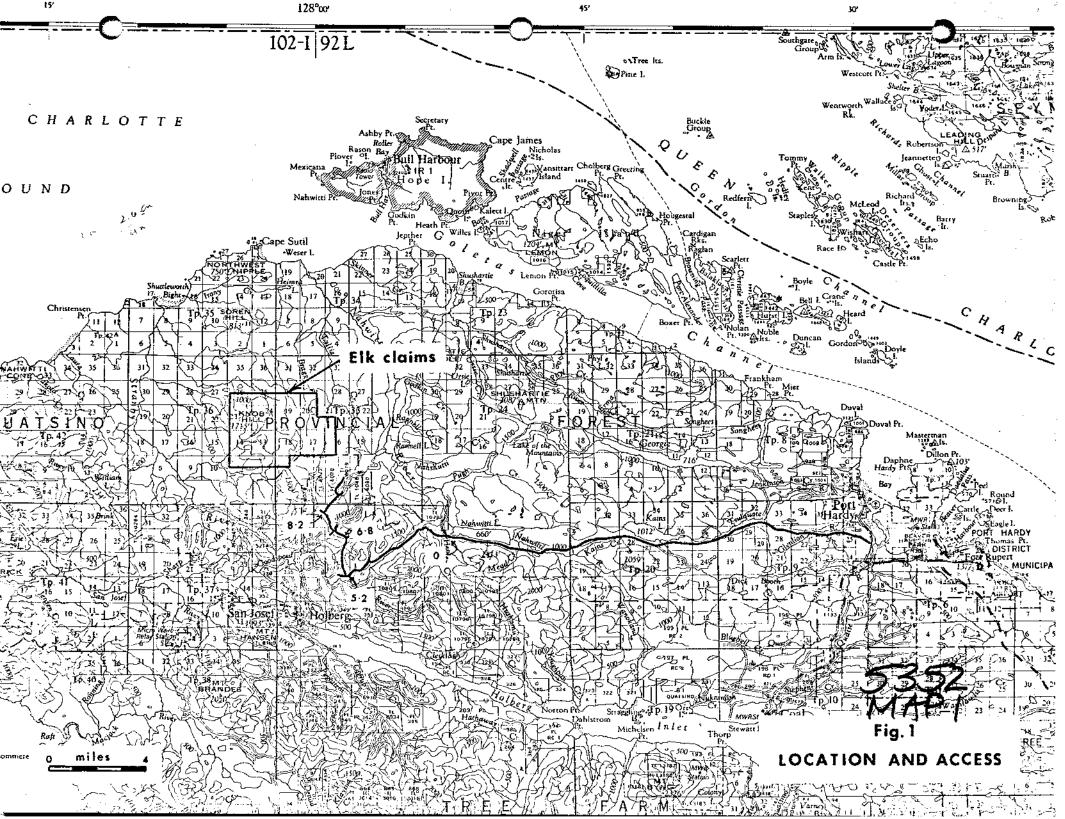
INTRODUCTION

GENERAL

A variety of features on the Elk mineral claims suggest an environment suitable for the discovery of a low-grade Cu-Mo deposit of the Island Copper type. With this principal target type in mind, a reconnaissance exploration program was designed to further establish the potential of the property.

Certain features, including a scarceness of outcrop, a moderately acid, peaty, surface soil and the widespread occurrence of pyrite and pyrrhotite, weighed against the otherwise valid techniques of soil sampling and induced polarization, at least, at the reconnaissance stage. Instead, a program of basal till sampling was conducted, using special equipment developed by Christopher Gleeson and Roch Cormier. This method had the advantage of reducing secondary geochemical dispersion effects, measuring overburden depths, and, in 20% of the holes, providing bedrock chips. The drilling and sampling done was under the direction of Roch Cormier by Phillip Brameld of Adcura Ltd., Ottawa.

Some regular (surface) soil sampling was carried out by Bernie Corrigan of W. Meyer & Associates, but restricted to the southern edge of the property where soil development is more normal.


In addition, the previous geological mapping was extended by Michael Fox, of Chevron, and the old drill core re-examined by Brad Pearson, an independent consultant.


LOCATION & ACCESS

The Elk property is centered on Knob Hill, a subtle topographic high, 24 air miles west of Port Hardy Airport on Vancouver Island, B.C.

Access is either via Vancouver Island Helicopters of Port Hardy (Bell Jet Ranger), or via logging roads to within a three-hour hike of Knob Hill. The latter route is shown in detail on Figure 1. The hike is not especially strenuous except for a half-hour climb from the end of the logging road which takes one up through thick timber to the "plateau" surrounding Knob Hill.

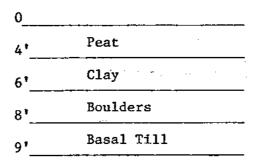
Port Hardy is serviced twice daily from Vancouver by Pacific Western Airlines, weather permitting.

OWNERSHIP & CLAIMS

The Elk claims are held under option by the Standard Oil Company of British Columbia Ltd., from Cominex Holdings Ltd. The 158 claims currently held are:

Name	<u>.</u>	C	Record No.
Elk	3	- 42 incl.	34624 - 34663 incl.
	43	- 62 **	37794 - 37813 "
	63	- 90 #	34684 - 34711 "
	95	- 104 "	34712 - 34721 "
	117	- 136 "	34730 - 3 4747 "
	341	- 400 "	34996 - 35037 "

GEOGRAPHY


The terrain of the area is unusual for the Coast. The property covers what is essentially a plateau at an elevation of 1,300 feet. Relief across most of the property does not exceed 500 feet.

The vegetation is also unusual. It consists mainly of widely-spaced scrub jackpine on a boggy, puddle-riddled surface that is not unlike muskeg. Labrador tea in some of the scrubby groves and our pH measurements attest to a fairly high surface soil acidity (pH's 4.9 to 6.5).

The climate, on the other hand, is typical of the West Coast. Precipitation is high, fog is common, and frequent high winds rip across the plateau in autumn. However, the low elevation restricts what would otherwise be a heavy snowfall.

GEOMORPHOLOGY

Glacial till covers 80% of the property. Its depth averages 8.8 feet and rarely exceeds 17 feet. A typical profile looks like this:

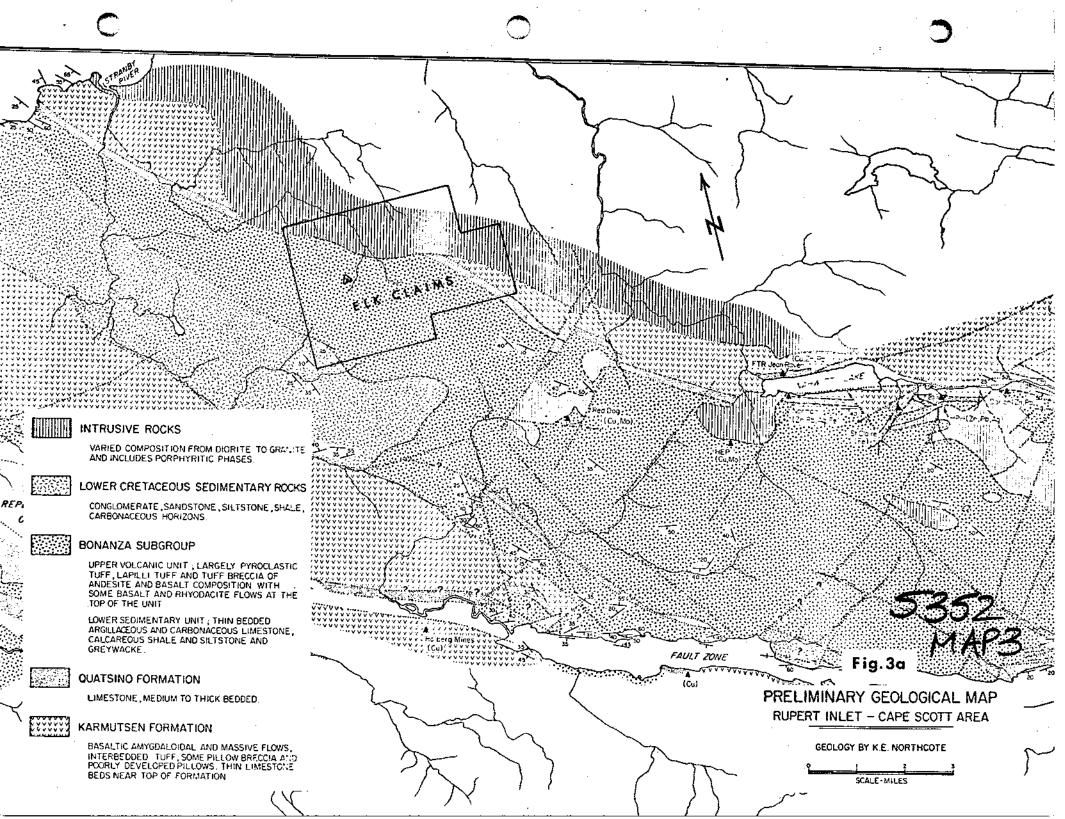
The clay and boulder layers may interchange and, at times, be absent. The boulders, where present, are quite densely packed and severely hamper drill penetration at numerous stations.

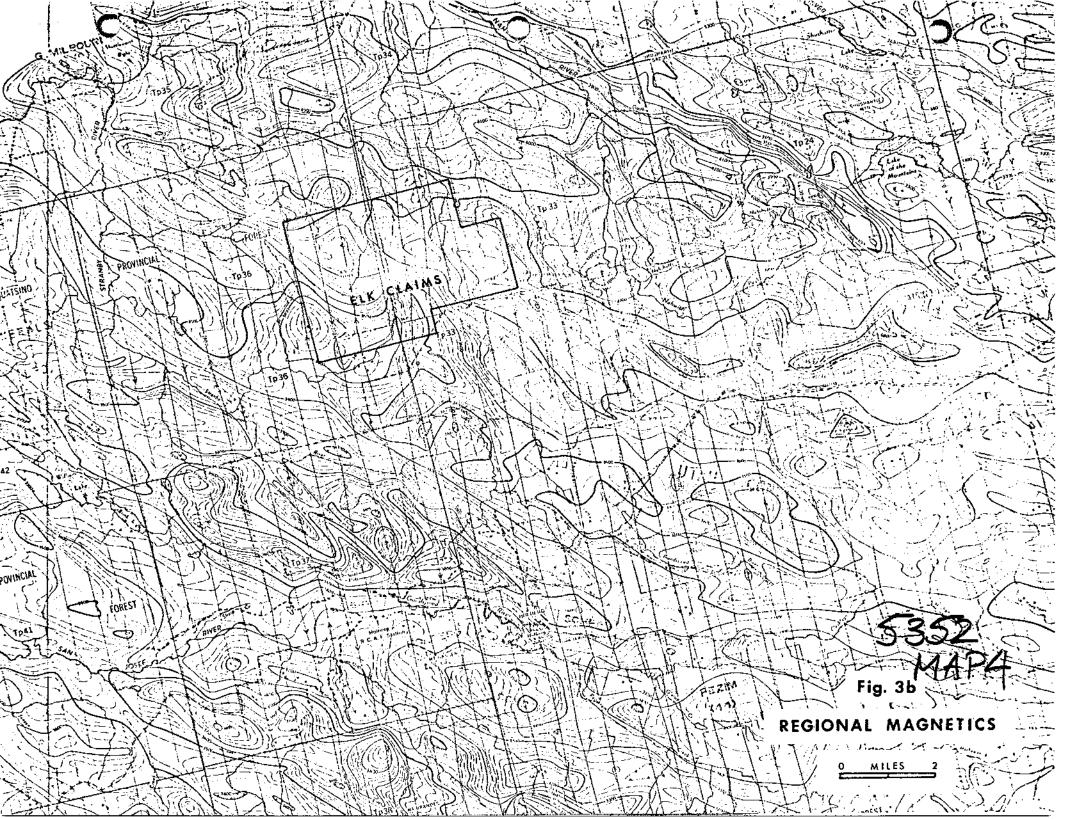
The direction of ice movement is uncertain, but large erratics are present near the centre of the Elk property which appear to have a source one mile to the northeast.

An interesting feature of the geomorphology is the radial drainage from Knob Hill, which was at first suggested as representing either a shallow underlying intrusive stock, or a volcanic dome. Neither interpretation now seems likely. The hill may simply represent a patch of rather resistant ignimbrite.

HISTORY OF PREVIOUS WORK

The discovery of the 280 million ton Island Copper orebody initiated interest in the Bonanza volcanic belt in 1968, and exploration has since remained at a relatively high level.


The staking of the Elk mineral claims in February 1972 was quickly followed by a magnetometer survey, rock chip samplin g and geological mapping.


These surveys revealed a high degree of rock alteration, anomalous rock-chip metal contents, and two areas of disturbed magnetism, all of which led to a drilling program in the Fall of the same year. A total of 3,177 feet of diamond drilling was carried out, comprising four widely-spaced, vertical BQ size holes. Large amounts of disseminated sulphide were encountered in all holes, but the best intersection did not exceed 0.1% Cu over 80 feet.

REGIONAL DESCRIPTION

GEOLOGY (See Figure 3a)

The essential feature is a belt of Bonanza volcanics (Upper Triassic to Lower Jurassic) which trend northwesterly 25 miles from the Island Copper deposit at Rupert Inlet to the sea. These volcanics are approximately calc-alkaline in general type, and mainly andesitic in composition. They have been subjected to low-grade regional metamorphism (zeolite sub-facies) and have been intruded by intermediate to felsic stocks with which they may be co-magnetic.

The predominant regional structure appears to be one of gentle folding, and broad scale block faulting. Bedding attitudes are rare and difficult to discern in the volcanics, but are believed, in general, to strike northwesterly and dip to the southwest.

Brad Pearson makes an interesting reference to the pyrite-clay-silica alteration zone which appears to extend the entire length of the volcanic belt. (See references.)

MAGNETICS

The belt of Bonanza volcanics is well outlined on the aeromagnetic map (Figure 3b). In fact, quite distinctive levels of magnetism are associated with each rock type, as follows:

Cretaceous sediments	- 3300 to 3600 gammas
Bonanza sediments & volcanics	- 3300 to 4000 "
Island intrusions	- 3600 to 4200 "
Karmutsen volcanics	- 4000 to 6000 "

Also, it is interesting to note that all four Cu - Mo deposits plotted by Northcote within the belt lie between the 3900 and 4000 gamma levels, and all seven skarn deposits between 4100 and 4500 gamma levels. It seems likely that this represents a fairly consistent expression of intrusive contacts rather than a particular stratigraphic horizon.

Our higher priority targets on the Elk (Areas #1 and #2) coincide with the 3900 gamma regional contour.

MINERALIZATION

A number of metallic mineral deposits are present within the Bonanza volcanics. They have been categorized principally as Cu - Mo porphyries or as Cu - Fe and Fe - Pb - Zn skarns, although some Au and Cu quartz veins are also present. The Island Copper orebody (280 million tons grading 0.5% Cu and 0.03% MoS_2) consists mainly of disseminated pyrite, chalcopyrite, and molybdenite, in what has been referred to as a silicified andesite. A substantial portion of the ore occurs within and at the margins of a quartz monzonite dyke, and all rock types present do contain minor amounts of Cu. The configuration of

the ore is complicated by two series of faults, with associated phyllitic alteration. However, the overall trend of the mineralization is N 70[°] W, parallel to the strike of both the volcanics and of the quartz monzonite dyke. The Island Copper deposit may not actually be of the "porphyry copper" type. (See report by Brad Pearson).

LOCAL DESCRIPTION

GEOLOGY

The overall picture is one of highly altered Bonanza volcanics, intruded to the northeast by diorites, and unconformably overlain to the southwest by cretaceous sediments. Small felsic to intermediate dykes are fairly common within the Bonanza.

The Bonanza rocks are altered to a high degree and wide extent but zoning is difficult to define because of the paucity of outcrop. Alteration products include sericite, chlorite, clay minerals, epidote, biotite, quartz, pyrite and pyrrhotite. The pervasiveness of the alteration makes lithologic identification difficult within the volcanics. However, a comprehensive set of thin sections, provided by the earlier work of Peter Folk, differentiates the rock types fairly well.

Almost all rock specimens contain 1% to 5% pyrite, and pyrrhotite is very common. Chalcopyrite and sphalerite are seen occasionally in minor amounts. One diamond drill hole (72-1) showed 80' of 0.10% Cu, 0.09 oz./ton Ag. Some float has been found (by P. Folk) in Area #2 (Figure 7) which assayed 0.2% Cu, consisting of a highly altered lithic tuff mineralized with chalcopyrite and pyrrhotite.

Structure remains difficult to delineate. Except for the rhyodacite unit, bedding attitudes are almost non-existent. Attitudes in the rhyodacite imply a north to northwesterly strike but dips vary radically in both directions. This fact, as well as magnetic and geochemical indications, denies the simplicity implied by the lithology and geomorphology. For example, the magnetic and geochemical patterns suggest northwesterly trending faults, in one case, with a possible 5,000 foot right lateral off-set. An important structural relationship is present in diamond drill hole 72 - 1, where the volcanic beds are seen to be dipping 55° , and the sedimentary beds, 30° . This has several implications. First, it tends to support the evidence that the latter beds are indeed sedimentary, the dip difference of 25 ° being most reasonable. Second, the sedimentary bed, if extrapolated to the surface using a reasonable strike direction, should outcrop within the rhyodacite unit. The importance of this latter relationship is immediately apparent when we remember the higher Cu values in the sedimentary section of the hole, and the better geochemical results over the rhyodacite.

MAGNETICS

The 1972 property magnetometer survey revealed quite distinctive patterns, both in relation to average magnetic level, and to magnetic relief. For example, the contacts of the Bonanza rocks with the intrusives and with the Cretaceous sediments both show up quite well. So also does some apparent faulting. The previously mentioned major fault, with a possible 5,000 foot offset, is interpreted as lying along the SE side of Area #2 (Figure 7). In fact, there is an exact coincidence of anomaly boundaries along this line. The possible offset results if one compares the "disturbed" magnetic pattern of Area #2 with that of the Knob Hill vicinity. They are similar. Although these disturbed patterns could be of surficial origin (magnetite-rich boulders) they could equally be due to magnetite in bedrock and/or intrusive complexity. Core in diamond drill hole 72 - 3 (near Knob Hill) shows 15% magnetite at a 192' depth, diorite dykes at 155', 170', and 795', and what appears to be a major diorite body at 861'. Finally, there are variable amounts of magnetic pyrrhotite observable in outcrop, and in small amounts throughout drill hole 72 - 3.

It is clear that magnetometer work will be one of our better exploration tools on this property providing we can remove any surficial interference effects, either by statistical filtering, or by "off-ground" measurements.

GEOCHEMISTRY

(i) GENERAL

The geochemical analyses are not as high as one would wish, although grouping of high values is generally good. Correlation of anomalous metal contents was fair between Cu and Mo, poor between Cu and Zn, and nil between Mo and Zn. Fifty-one of the 653 samples were re-run for Pb, Au and Ag without significant results.

(ii) COMPARISON OF SAMPLE TYPES

Data showing various available comparisons are presented in Tables I to V. Cu content is very low in the "surface" soil, that is, immediately below the organic surface layer. It tends to be moderate and uniform throughout the till layers, and slightly lower in the underlying bedrock. Zinc shows a similar pattern except that there is little difference between basal till and bedrock.

Molybdenum, on the other hand, is often concentrated at the surface, variable and low in the till, and of unpredictable content in the underlying bedrock. Its mode of dispersion is obviously more complex.

Copper and molybdenum show an appropriate, and fairly uniform, enrichment in heavy mineral separates, but Zn is similar or less in this fraction. There would seem to be no special advantage in analysing heavy mineral fractions on this property with such mineralogical information as we have.

(iii) ESTABLISHMENT OF THRESHOLDS

The available empirical data is not especially encouraging. With overburden and bedrock metal contents generally similar, it would seem that none of the geochemical values are high enough to reflect underlying mineralization of ore grade. However, it is important to remember that:

- (a) The available comparisons are few and are certainly in background areas. The same relationships would not necessarily hold, or at least not to the same extent, over any ore that might be present.
- (b) Island Copper Mines reports a relatively modest 880 ppm Cu in "C" horizon immediately over their orebody, and
- (c) Typical thresholds over volcanics on Vancouver Island are normally considered to be between 100 and 150 ppm.
- (d) Ore would not necessarily intersect the bedrock surface.
- (e) The sample spacing is quite wide. Statistical methods were used to establish a threshold for plotting purposes. In most cases, the cumulative log probability plots (see Figure 4) indicated a different type of distribution for about the upper 10% of the metal values.

LOCATION	DEPTH FT.	MATERIAL	Cu PPM	Mo <u>PPM</u>	Zn PPM
OE/ON	7	Gravelly till	76	1	147
51	8.5	н н	85	ND	136
Ħ	10.5	Basal till	78	1	128
1 1	11.5	** **	74	ND	133
t1	12.0	Bedrock Chips	32	5	107
8W/19N	1.5	Clay	7	1	18
н	2.0	Sub-outcrop	99	1	71
11	2.5	Bedrock chips	54	2	78

METAL CONTENT VS. DEPTH IN OVERBURDEN

TABLE II

SURFACE SOIL VS. BASAL TILL

		NO OF SA		<u> </u>		Mo, p	pm	Zn, p	pm
LOC/	TION	SURFACE	TILL	SURFACE	TILL	SURFACE	TILL	SURFACE	TILL
16E	20S	1	1	30	51	3	ND	45	140
*1	28S	1	1	17	53	1	3	30	137
11	32S	1	1	3	66	1	3	40	82
8E	8S	1	1	31	136	1	2	21	136
**	285	1	1	15	75	-3	2	21	260
	all rage * ground	460	193	32	75	5.0	2.3	45	160

* The "surface" soils are mostly from steep topography at the S end of the grid.

TABLE III

BASAL TILL VS. DIAMOND DRILL HOLES

LOCATION	Ca	1, ppm	M	o, ppm	Zn, ppm		
(VICINITY)	TILL	UPPER HOLE	TILL	UPPER HOLE	TILL	UPPER HOLE	
DDH 72-1	280	128	4	1	280	392	
DDH 72-2	130	160	1	८ 1	130	89	
DDH 72-3	160	118					

TABLE IV

BASAL TILL VS. BEDROCK CHIPS

LOCATION	SIZE FRACTION	Cu,	ppm	Mo,	ppm	Zn,	ppm
	OF TILL	TILL	CHIPS	TILL	CHIPS	TILL	CHIPS
0E/ON 0E/12N 0E/20N	-100 mesh "	51 44 260	32 20 40	1 ND 1	5 1 4	108 83 103	107 62 90

TABLE V

TOTAL MINUS 80 MESH VS. HEAVY MINERAL FRACTION

LOCATION	TYPE	<u>Cu,</u> -80	<u>ррш</u> Н.М.	<u>Mo,</u> -80	<u>ррт</u> Н.М.	<u>Zn,</u> -80	ppm H.M.
16E/205	Surface soil	30	148	3	10	45	110
" 28S	11	17	175	1	8	30	70
" 328	31	3	145	1	. 7	40	78
16E/24S	Basal till	63	115	2	5	186	142
" 32S	41	66	170	3	ND	82	90
" 36S	t1 ¹	53	110	1	6	178	76
" 39S	11	50	138	NÐ	5	160	133
OE/ON		51	62	1	6	108	86

The following table shows the thresholds chosen and the associated percentage of values thereby rendered "anomalous":

TABLE VI

STATISTICALLY BASED THRESHOLDS

	"SURF	ACE" SOILS	BASAL TILL				
METAL	THRESHOLD	% ANOMALOUS	THRESHOLD	% ANOMALOUS			
- Cu	65 ррт	11	120 ppm	10			
Мо	10 ppm	14	4.8 ppm	10			
Zn	105 ppm	7	320	7			

Contouring on Figures 6a, b and c could thus be correlated between surface soils and basal till samples.

(iv) MOBILITY

The evidence from a limited number (30) of pH determinations suggests that Cu mobility should be moderate in the basal till. On the other hand, the presence of a slight enrichment of Cu values in basal till over bedrock indicates a low Cu mobility. Since the latter relationship is an empirical one, we can give it greater credence and therefore be fairly confident of a minimum secondary dispersion of Cu in the till.

Zinc, as it theoretically should, shows a slightly greater but not excessive mobility in the till.

By contrast, both these metals on empirical as well as theoretical evidence are highly mobile in the surface soil confirming our original suspicions. The situation with Mo is reversed. It appears to be mobile in the till and concentrated at the surface. It is also more erratic in distribution.

DISCUSSIONS

TARGET TYPE SOUGHT

Our primary objective has been the discovery of a low-grade Cu-Mo deposit of the Island Copper type usually classified, on the basis of grades, alteration and intrusive association, as a "porphyry copper" deposit.

However, for several reasons, our concept of what we are looking for should be enlarged. To begin with, there is a possibility that the Island Copper

orebody is a re-mobilized sedimentary copper deposit. The evidence for this is summarized by Brad Pearson in his current report. Secondly, we should not overlook the favorability of the environment for deposits of volcanogenic type. The evidence for this possibility (partly plagiarized from Brad Pearson), can be formulated as follows:

- The Bonanza volcanics are sub-aqueous with compositions ranging from andesite to rhyodacite. The sequence, though not classic in "Kuroko" form, is nevertheless permissive of this type of deposit.
- 2. The felsic Island intrusions may well be co-magmatic with the Bonanza volcanics, the intrusive stocks representing former volcanic centres.
- Fragmental pyrrhotite, in one case associated with a bleb of chalcopyrite, has been observed in diamond drill holes, 72 - 1 and 72 - 3.
- 4. The only geochemical Zn highs on the Elk property are in the vicinity of the rhyodacite unit and the best "grouping" of Cu, Zn and Mo occur in this vicinity.

The main, and important objection to the possible presence of volcanogenic deposits in this belt is the lack of any massive sulphides not identifiable as of either skarn or vein origin but the possibility should not be overlooked.

TARGETS IDENTIFIED

Specific drill targets have not yet been identified but our area of interest has been considerably narrowed.

In a general sense, the most promising target is the rhyodacite unit. It correlates structurally with the highest grade drill section, shows a fairly good geochemical response in Cu, Mo and Zn, and lies close both to the important regional magnetic contour and to the main intrusive. Finally, it represents the possible locus of volcanogenic sulphide deposition.

On a principally geochemical basis, we may identify higher priority areas as follows:

<u>Area #1</u> consists of a series of Cu, Mo and Zn highs strung along the sub-outcrop trend of the rhyodacite. Most of the Mo rock chip highs and a fair degree of

pyritization are present along this trend. Peak values in the basal till are 218 ppm Cu, 58 ppm Mo, and 920 ppm Zn.

<u>Area #2</u> has the most known Cu mineralization. Poorly correlated Cu and Zn highs occupy an area of high magnetic relief just outside, and probably stratigraphically above, the rhyodacite unit. Peak values in this case are 300 ppm Cu, 5 ppm Mo, and 410 ppm Zn.

<u>Area #3</u> is characterized by coincident Cu and Mo basal till anomalies, both open to the west and lying in an "embayment" in the magnetic relief. It is at the south edge of the area of high magnetic disturbance referred to previously as the "Knob Hill Anomaly". Some trace chalcopyrite-molybdenite mineralization has been located 2000 feet to the southwest in one of the rare outcrops in this vicinity.

<u>Area #4</u> consists of a hodge-podge of Cu, Mo and Zn anomalies in heterogeneous "B" horizon soil on steep terrain at the south end of the grid.

Although there is somewhat more outcrop in this area, and it is fairly highly pyritized and otherwise altered, no more than a trace of cahlcopyrite has been observed. Also, the high mobility of Cu and Zn in the surface soils, which establish the anomalies in this area combined with the appearance of these anomalies on the low slopes of a drainage basin, make the results somewhat questionable. Copper is particularly low with a peak of 98 ppm, Zn peaks at 365 ppm, and Mo at 15 ppm. Correlations between metals are fair.

EXPLORATION TECHNIQUES

The <u>overburden drilling</u> approach achieved its purpose in that it has supplied useful information in an area where the surface soils would undoubtedly have given us rather poor results although at rather high cost. The cost per hole averaged \$70.00, and the cost per foot of depth, \$8.00 (total cost exclusive of mobilization and helicopter servicing). These costs are attributable to the high density of boulders in the till and labor problems, in that order. The equipment itself functioned well but it would behoove us to use heavier duty drill rods in this terrain.

With the desirability of improving our knowledge of structure and lithology, some thought has been given to light-weight (Winkie) drilling but, presumably, the boulder problem would remain a severe one and costs could also be very high.

It might be possible to sample geochemically restricted areas of the plateau surface by <u>ordinary geochemical</u> means. There are occasional small mounds of "B" horizon soil at the surface which remind one of the frost boils found in colder regions. In general, though, their frequency of occurrence is too low for anything but broad scale reconnaissance.

<u>Magnetometer</u> work is promising in that it reflects intrusive activity. However, as mentioned earlier, there is some possibility of interference from surficial materials.

<u>Induced Polarization</u> could prove useful on a very local basis provided we can first learn more about the distribution of the abundant non-productive sulphides.

<u>Electro-magnetic</u> methods are valid if we accept the possibility of volcanogenic massive sulphides being present, and, perhaps, to aid interpretation of structure.

CONCLUSIONS

Although this year's work has narrowed the area of interest, the mineral potential of this property remains somewhat enigmatic.

It is unlikely that any major tonnage of low-grade Cu - Mo mineralization reaches the bedrock surface anywhere in the area surveyed. However, the possibility of a non-outcropping low-grade deposit, or of zones of massive sulphide, is by no means ruled out and exploration should be continued.

Further work should focus principally on the rhyodacite (and/or argillite) unit with guidance provided by the basal till sampling.

RECOMMENDATIONS

Overburden Drilling

1.

		U										
	(a)	Fill-in, Areas 1, 2, and 3	100	holes	0	\$77.00	\$	7,700				
	(b)	Extension along rhyodacite	90	11	0	\$77.00		6,930				
	(c)	Fill-in along (b)	30	**	@	\$77.00		2,310				
2.	Geop	hysics										
	(a)	"Raised" ground magnetometer 50 line miles @ \$150/line mi	volcanics		7,500							
	(b)	(b) Ground E.M. over rhyodacite 28 line miles @ \$400/line mile										
	(c)											
3.	Addi	tional line-cutting: 36 line a	miles	s @ \$2(00/	line mile		7,200				
4.	Addi	tional mapping: 1 month @ \$1,3	500					1,500				
5.	Petr	@ \$20.00 ea.		1,000								
6.	Assa	y costs: 220 assays @ \$3.00 ea	ł.					660				

7. Mobilization and servicing costs for all above work 8,000

Contingencies	10%	\$ 54,000 5,400
Total Program	Estimate	\$ 59,400

David Amatt

APPENDIX

•

ŧ

-,**a**

REFERENCES

REGIONAL GEOLOGY

- Northcote, K. Rupert Inlet, Cape Scott Area, Geology Exploration & Mining
- Muller J., Northcote, K., and Carlisle, D. Geology and Mineral Deposits of Alert Bay - Cape Scott Map Area, G.S.C. Paper 74-8, 1974.
- Muller, J., & Carson, D. Geology and Mineral Possibilities of Vancouver Island, Canadian Mining Journal, May 1969, p. 66.
- Muller, J. Northern Vancouver Island, G.S.C. Papers 70-1, Pt.A p.44 and 69-1 Pt.A.
- Jeletsky, J. Mesozoic and Tertiary Stratigraphy of Northern Vancouver Island, G.S.C. Paper 69-1, Pt. A., p. 126.

Island Copper Deposit

- Northcote, K. Island Copper Deposit, Geology, Exploration & Mining, 1970, p. 267.
- Young, M. & Rugg, E. Island Copper Deposit A paper presented at CIM Annual Convention, Kamloops, B.C. October, 1970.

Red Dog Deposit

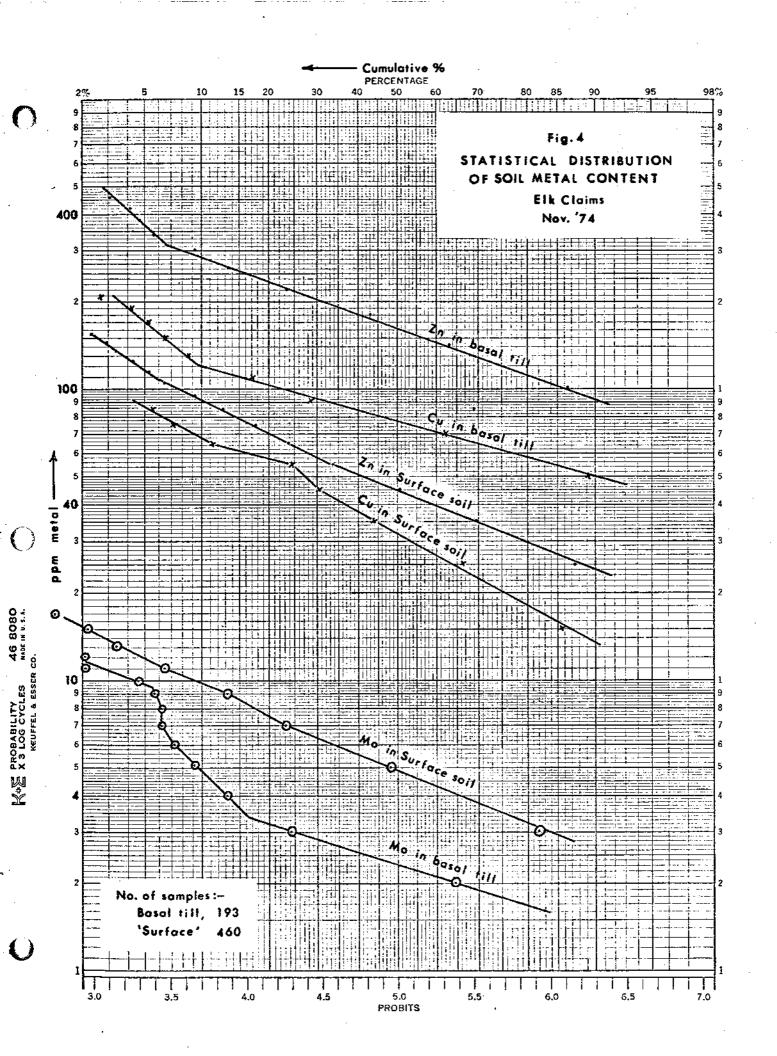
Northcote, K. Red Dog, Geology, Exploration & Mining, 1970, p. 259.

Elk Mineral Claims

- Pearson, B.C. Report on Elk Group, December, 1974.
- Veerman, H. Final Report for 1972, Elk Property, November 1972.
- Folk, P. Geological Report Elk Property, July 1972.

Overburden Drilling

Gleeson, C., & Cormier, R. Evaluation by Geochemistry of Geophysical Anomalies and Geological Targets Using Overburden Sampling at Depth.


SAMPLING

Overburden drilling for <u>basal till</u> sam; ling made us of Pionjar hammer drills and a specially designed sampling tool, the major advantages of this equipment being portability and the acquisition of uncontaminated samples. The method is described more fully in the report by Gleeson and Cormier (See references.)

"B" horizon sampling was carried out by using a small hoe, samples being taken from just below the organic layer and then transferred to standard paper geochemical bags for transportation.

ANALYSES

The majority of the analyses involved hot aqua regia extraction and atomic absorption analysis of the -80 mesh fraction of the samples. All laboratory work was conducted by Bondar-Clegg & Co. Ltd. (Vancouver, B.C.)

							ļ	$\underline{(415)}$	- 	
			R-CI	_EG			NY	LTC	<u>).</u>	
1500 PEMBE	RTON A	VE. NO		NCOUV	'ER, B.C. PHONE: 96	35-0681	TELEX	04-545	54	
					Lab Report		050 1074			
Pb, Ag; Ho Au: Fire A	ot Aqua I Assav & I	Regia Hot Aqua	Regia		24 -	896		1.11 SL.1		
Extraction ALORIC	Absorpti	lon			Report No. 24 - From <u>Chevron St</u>	andard	Ltd.	CAR DI HO		
Fraction Used				Date						
	Pb	Ag	Au	рН		Pb	Ag	Au	рН	
SAMPLE NO.	ppm	ppm	ppb	pir	SAMPLE NO.	ppm	ppm	ppb	pn	
4BR - 3091	13	1.1	L10	6.5	16E - 52S	16	2.4	15	4.9	
3092	36	1.3	10	6.4	538	14	7.0	L10	4.9	
3093	24	1.1	L10	6.0	558	12	1.0	L10	4.9	
3094	. ⁶⁵	2.6	15	6.4	568	9	0.8	L20	5.0	
3095	24	1.4	L10	5.5	578	13	0.8	10	4.9	
3096	40	1.0	L10	6.6	585	14	1.2	10	5.1	
4RV - 3001	37	1.6	L10	5.5	59S	12	1.0	15	5.0	
4BR - 3052	24	1.1	10	5.7	60S	11	1.1	10	4.9	
3053	39	1.0	L10	4.5	615	13	1.1	10	5.3	
3054	14	1.0	30	6.1	625	14	1.1	L20	5.1	
3055	22	1.0	L10	6.1	638	8	0.7	L10	5.0	
3056	24	1.4	15	6.4	645	14	0.9	10	5.1	
3057	27	1.3	20	6.3	658	40	1.6	10	5.4	
3058	78	2.4	15	6.0	665	33	1.4	L10	4.9	
3059	19	1.2	180	6.0	675	40	1.2	L10	5.1	
3060	19	1.1	L10	6.4	685	50	1.3	L10	5.1	
3061	24	1.0	120	4.8	· 69S	62	1.4	L10	4.9	
3062	22	1.6	L10	5.8	705	48	1.0	10	5.1	
. 3103	21	1.3	10	5.7	715	27	1.2	15	5.0	
3102	8	1.0	L10	4.8	725	48	1.2	L10	4.9	
3101	16	1.8	L10	5.2	735	135	1.3	10	4.4	
3100	40	1.9	10	5.9						
3099	53	1.2	15	5.7					<u> </u>	
3098	16	1.3	L10	6.2						
3097	16	1.2	L10	5.7						
3049	21	1.3	L10	6.0						
3141	100	2.0	25	5.4	L denote	s 'less	than'			
3140	20	1.1	L10	5.6						
3139	20	1.1	L10	6.5						
3138	20	1.1	L10	7.0						
						·				

					G & CO1				
					Lab Repor			SCETV1 F1 5 19	
_	Wat Agu				Report No. 24 - 73				•
Extraction					From <u>Chevron</u>	tandard	CHEVRON USAN	United to	
Fraction Used					Date				
	· · · · · · · · · · · · · · · · · · ·	1						<u>, , , , , , , , , , , , , , , , , , , </u>	9 <u>74</u>
SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm		SAMPLE NO.	ppm ppm	2n ppm	Mo ppm	
BL 0 - 55S	1	16	1		4E - 66S	21	43	8	
56S	80	55	12		675	27	26	7	
588	26	32	3		685	25	28	6	
598	50	30	10		695	57	52	4	
605	54	61	10		705	50	35	6	
615	30	24	10		715	24	39	7	
62S	76	37	8		725	46	44	5	
635	57	34	6		735	23	19	7	
645	ND	4	2		745	22	23	4	
658	66	35	6		758	64	46	8	
66 E	65	37	8		765	34	43	5	
675	21	24	7		775	38	22	22	
68S	50	59	5		785	48	25	4	
695	58	82	4		795	40	26	6	
705	20	17	11		80\$	62	65	5.	
715	48	46	16		825	16	55	8	
725	72	72	21		835	20	41	_5	
735	88	74	12		848	32	84	3	
748	12	28	4		8E - 52W	73	35	. 7	
758	7	13	1		538	78	26	8	
768	24	14	4		54S	10	15	1	
785	58	50	4		565	38	91	2	
798	40	62	5		585	70	20	9	
80S	38	37	7		<u>583</u>	57	14	7	
4E - 59S	20	35	2_	F	61S	50	71	4	·
<u>46 - 595</u> 605	10	56	5		615	20	20	2	
	23	90	1	<u> </u>	638	8	30	3	
<u>61S</u>							1		
<u>638</u> 64S	<u>28</u> 7	80 26	4	†	<u> </u>	104	<u>112</u> 24	6 2	
658	12	14	4	†	665	35	77	5	
		†				<u> </u>			
			s					1	

GONDAR CLEGG & CONTANY LTD.

Geochemical Lab Report

Report No. 24 - 731

Page No.-____2____

82 - 6759383168 - 635981 686 721105 645 27683 698 5620 658 981506 708 15241 668 802004 718 881823 677 481305 $122 - 518$ 42313 688 842085 535 53225 698 792553 538 40335 708 861882 548 48425 718 77814 598 100443 723 27705 568 23425 738 61957 578 12255 $208 - 448$ 41238 588 10202 4455 48346 598 443610 4488 12101 668 553315 4783 30286 633 56278 4888 12101 648 4491 4988 52375 668 37382 5588 10242 668 37382 5588 10242 668 37382 5588 1024 </th <th>SAMPLE NO.</th> <th>Cu ppm</th> <th>Zn ppm</th> <th>Mo ppm</th> <th>-</th> <th>SAMPLE NO.</th> <th>Cu ppm</th> <th>Zn</th> <th>Mo ppm</th> <th></th>	SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm	-	SAMPLE NO.	Cu ppm	Zn	Mo ppm	
698 5 6 20 658 98 150 .6 708 13 24 1 6668 80 200 4 7113 68 182 3 675 48 150 5 12E - 518 42 31 3 688 84 208 5 528 53 28 5 698 79 255 3 538 40 33 5 708 86 188 2 548 48 42 5 718 77 81 4 558 100 44 3 728 27 70 5 568 23 42 5 738 61 95 7 578 12 25 5 2002 + 448 41 23 8 598 44 36 10 468 12 10 1 608 55 33 15 478 30 28 6 633 56 <	8E - 67S	9	38	3		16E - 63S	9	8	1	
708 15 24 1 668 80 200 4 7115 88 162 3 678 48 150 5 12E - 515 42 31 3 688 84 208 5 528 53 28 5 699 79 255 3 538 40 33 5 7708 86 188 2 548 48 42 5 7718 77 81 4 558 100 44 3 728 27 70 5 568 23 42 5 738 61 95 7 578 12 25 5 202 445 41 23 8 988 10 20 2 478 30 28 6 608 55 33 15 4478 30 28 6 6453	685	72	110	5		64S	27	68	3	
113 124 13 675 48 150 5 $12E - 518$ 42 31 3 685 844 208 5 528 53 28 5 695 79 255 3 538 40 33 5 708 86 188 2 548 48 42 5 7118 77 811 4 555 100 44 3 7225 27 70 5 568 23 42 5 738 611 95 7 578 12 25 5 $202 - 4485$ 41 23 8 998 44 36 10 468 15 20 44 608 55 33 15 478 30 28 6 638 56 27 8 488 12 10 1 648 4 <	69S	5	6	20		<u>65S</u>	98	150	6	
12e - 518 42 31 3 6685 84 208 5 528 53 28 5 6985 79 255 3 538 40 33 5 708 86 188 2 548 48 42 5 7115 77 81 4 558 100 44 3 723 27 70 5 568 23 42 5 718 61 95 7 578 12 25 5 $202 - 448$ 41 23 8 988 10 20 2 4458 48 34 6 998 44 36 10 4685 15 20 4 603 55 33 15 478 30 28 6 633 56 27 8 4688 12 10 1 6448 4 9 1 4988 52 37 5 658 18 13 2 506 10 24 2 665 37 38 2 518 20 61 5 678 127 40 2 558 58 39 9 688 39 118 3 538 24 22 12 695 51 144 2 556 82 26 15 733 60 123 3 $57w$ 7	7 0s	15	24	1		665	80	200	4	
525 53 28 5 698 79 255 3 538 40 33 5 708 86 188 2 548 48 42 5 718 77 81 4 555 100 44 3 722 27 70 5 568 23 42 5 718 61 95 7 576 12 25 5 $202 - 448$ 41 23 8 985 10 20 2 4458 44 34 6 595 44 36 10 4658 15 20 4 608 55 33 15 478 30 28 6 633 56 27 8 4855 12 10 1 6468 4 9 1 4988 52 37 5 658 18 13 2 5068 10 24 2 668 37 38 2 5183 20 61 5 678 127 240 2 558 58 39 9 718 47 166 5 568 82 26 15 738 60 125 3 5798 58 39 9 718 47 106 5 568 82 26 15 738 60 125 3 5798 28 29	715	88	182	3		675	48	150	5	
538 40 33 5 705 86 188 2 548 48 42 5 718 77 81 4 558 100 44 3 725 27 70 5 568 23 42 5 733 61 95 7 575 12 25 5 208 - 448 41 23 8 588 10 20 2 455 48 34 6 595 44 36 10 468 15 20 4 608 55 33 15 475 30 28 6 633 56 27 8 488 12 10 1 646 4 9 1 498 52 37 5 658 18 13 2 508 10 24 2 668 37 38 2 528 20 28 9 6685 39 118	12E - 51S	42	31	3		685	84	208	5	
54S484257187781455S1004437282770556S234257386195757S1225520E - 44S4123858S1020245S4834659S44361046S1520460855331547S30286633562784881210164S49149S5237565S181325061024266S3738251S20615567S127240252S2028968S39118333824221269S51144254S62351170S56140255S5839971N47106556S82261573S60125357W72311416E - 52S7237758S61301353S4818659S2829855S3322960S4437655S332295659<	528	53	28	5	:	6 9S	79	255	3	
5581004437282770556823425738619575781225520E - 4454123858810202458483465984436104681520460855331547530286633562784881210164849149852375658181325081024266837382518206156781272402528202896883911833382422126985114425486235117085614025585839971N471065568822611573860125357W72311416E - 5287237758861301353848186598282985583322960544376558332296054437673860125357W <td>538</td> <td>40</td> <td>33</td> <td>5</td> <td></td> <td>70\$</td> <td>86</td> <td>188</td> <td>2</td> <td></td>	538	40	33	5		70\$	86	188	2	
568 23 42 5 738 61 95 7 578 12 25 5 $20E - 448$ 41 23 8 588 10 20 2 458 48 34 6 998 44 36 10 468 15 20 4 608 55 33 15 478 30 28 6 633 56 27 8 4483 12 10 1 648 4 9 1 498 52 37 5 658 18 13 2 508 10 24 2 668 37 38 2 518 20 61 5 678 127 240 2 528 20 28 9 668 39 118 3 538 24 22 12 668 39 118 3 538 24 22 12 668 39 118 3 538 24 22 12 698 51 144 2 548 62 35 11 708 56 140 2 558 58 39 9 $71N$ 47 106 5 568 82 26 15 738 60 125 3 $57W$ 72 31 14 $16E$ 525 72 37 7 668 32 </td <td>548</td> <td>48</td> <td>42</td> <td>5</td> <td></td> <td>715</td> <td>77</td> <td>81</td> <td>4</td> <td></td>	548	48	42	5		715	77	81	4	
57812255 $20E - 448$ 4123857810202 458 41238598443610 468 15204608553315 478 3028663356278 488 12101648491 498 52375658181325081024266837382518206156781272402528202896883911835382422126985114425486235117085614025585839971N471065568822615738601253 $57W$ 72311416E - 52872377588613013538481865982829855533227628321005585773216638189855954227126441340260823278658132835563322960	55S	100	44	3		728	27	70	5	
57812255 $20E - 448$ 41238 588 10202 458 48 34 6 598 44 36 10 468 15 20 4 608 55 33 15 478 30 28 6 633 56 27 8 488 12 10 1 644 4 9 1 498 52 37 5 658 18 13 2 508 10 24 2 668 37 38 2 518 20 61 5 678 127 240 2 528 20 28 9 668 39 118 3 538 24 22 12 668 39 118 3 538 24 22 12 668 39 118 3 538 24 22 12 668 39 118 3 538 24 22 12 698 51 144 2 558 82 26 15 $71N$ 47 106 5 568 82 26 15 738 60 125 3 $57W$ 72 31 14 $16E - 528$ 72 37 7 588 61 30 13 538 48 18 6 598 32 9 668 <td>568</td> <td>23</td> <td>42</td> <td>5</td> <td></td> <td>73\$</td> <td>61</td> <td>95</td> <td>7</td> <td></td>	568	23	42	5		73\$	61	95	7	
59844361046815204 608 55331547830286 633 5627848812101 644 49149852375 655 1813250810242 668 3738251820615 678 127240252820289 668 391183538242212 695 511442548623511 708 56140255858399 $71N$ 471065568822615 733 60125357W723114 $16E - 528$ 72377588613013 538 4818659828298 558 3322960844376 558 77321663318985 595 42271264513402 608 2327865813283 608 2327865813402 608 2327865813402 608 2327 <td>578</td> <td>12</td> <td>25</td> <td>5</td> <td></td> <td></td> <td></td> <td>ł</td> <td>8</td> <td></td>	578	12	25	5				ł	8	
608 55 33 15 478 30 28 6 633 56 27 8 488 12 10 1 648 4 9 1 498 52 37 5 658 13 13 2 508 10 24 2 668 37 38 2 518 20 61 5 678 127 240 2 528 20 28 9 685 39 118 3 538 24 22 12 698 51 144 2 548 62 35 11 708 56 140 2 558 58 39 9 $71N$ 47 106 5 568 82 26 15 738 60 125 3 $57W$ 72 31 14 $16E - 528$ 72 37 7 588 61 30 13 538 48 18 6 598 28 29 8 558 33 22 9 608 44 37 6 568 40 136 7 618 49 25 9 578 52 32 7 628 32 100 5 588 77 32 16 638 18 98 5 599 42 27 12 648 13 40 <td>585</td> <td>10</td> <td>20</td> <td>2</td> <td></td> <td>455</td> <td>48</td> <td>34</td> <td>6</td> <td></td>	585	10	20	2		455	48	34	6	
608 55 33 15 478 30 28 6 633 56 27 8 488 12 10 1 643 4 9 1 498 52 37 5 655 18 13 2 505 10 24 2 668 37 38 2 515 20 61 5 678 127 240 2 525 20 28 9 685 39 118 3 538 24 22 12 695 51 144 2 535 58 39 9 708 56 140 2 556 82 26 15 708 56 140 2 556 82 26 15 $71N$ 47 106 5 565 82 26 15 738 60 125 3 $57W$ 72 31 14 $16E - 525$ 72 37 7 588 61 30 13 538 48 18 6 595 28 29 8 555 33 22 9 608 44 37 6 556 40 136 7 618 49 25 9 578 52 32 7 628 32 100 5 588 77 32 16 638 18 98 <td>598</td> <td>44</td> <td>36</td> <td>10</td> <td></td> <td>465</td> <td>15</td> <td>20</td> <td>4</td> <td></td>	598	44	36	10		465	15	20	4	
648491 498 52 37 5 658 18 13 2 508 10 24 2 668 37 38 2 518 20 61 5 678 127 240 2 528 20 28 9 688 39 118 3 538 24 22 12 695 51 144 2 548 62 35 11 708 56 140 2 558 58 39 9 $711N$ 47 106 5 568 82 26 15 738 60 125 3 $57W$ 72 31 14 $16E - 525$ 72 37 7 585 61 30 13 538 48 18 6 599 28 29 8 555 33 22 9 608 44 37 6 565 40 136 7 618 49 25 9 578 52 32 7 625 32 100 5 588 77 32 16 638 18 98 5 595 42 27 12 645 13 40 2 605 23 27 8 655 13 28 3 605 23 27 8 655 13 26 5 <td></td> <td>[</td> <td></td> <td></td> <td></td> <td>475</td> <td>30</td> <td></td> <td></td> <td></td>		[475	30			
635 18 13 2 508 10 24 2 666 37 38 2 518 20 61 5 678 127 240 2 525 20 28 9 688 39 118 3 538 24 22 12 698 51 144 2 548 62 35 11 708 56 140 2 558 58 39 9 $71N$ 47 106 5 568 82 26 15 738 60 125 3 $57W$ 72 31 14 $16E - 528$ 72 37 7 588 61 30 13 538 48 18 6 598 28 29 8 558 33 22 9 608 44 37 6 565 40 136 7 6118 49 25 9 578 52 32 7 6258 32 100 5 588 77 32 16 638 18 98 5 595 42 27 12 645 13 40 2 605 23 27 8 658 13 28 3 605 69 75 9 668 62 320 5	635	56	27	8		485	12	10	1	
6581813250810242 668 3738251820615 678 127240252820289 688 391183538242212 698 511442548623511 708 56140255858399 $71N$ 471065568822615 738 60125357W723114 $16E - 528$ 72377585613013 538 4818659528298 558 3322960844376 568 40136761849259 578 52327628321005 588 77321663818985 598 42271264813402 608 2327865813283 618 69759665623205	645	4	9	1		49S	52	37	5	
668 37 38 2 518 20 61 5 678 127 240 2 528 20 28 9 685 39 118 3 538 24 22 12 698 51 144 2 548 62 35 11 708 56 140 2 558 58 39 9 $71N$ 47 106 5 568 82 26 15 738 60 125 3 $57W$ 72 31 14 $16E - 525$ 72 37 7 588 61 30 13 538 48 18 6 598 28 29 8 558 33 22 9 608 44 37 6 558 40 136 7 618 49 25 9 578 52 32 7 628 32 100 5 588 77 32 16 638 18 98 5 598 42 27 12 645 13 40 2 608 23 27 8 658 13 28 3 618 69 75 9 665 62 320 5	655	18	13	2		50\$	10	24	2	
688 39 118 3 538 24 22 12 698 51 144 2 548 62 35 11 708 56 140 2 558 58 39 9 $71N$ 47 106 5 568 82 26 15 738 60 125 3 $577W$ 72 31 14 $16E - 528$ 72 37 7 588 61 30 13 538 48 18 6 598 28 29 8 558 33 22 9 608 44 37 6 568 40 136 7 618 49 25 9 578 52 32 7 628 32 100 5 588 77 32 16 638 18 98 5 598 42 27 12 648 13 40 2 608 23 27 8 658 13 28 3 618 69 75 9 668 62 320 5							1			
69S 51 144 2 548 62 35 11 70S 56 140 2 558 58 39 9 71N 47 106 5 568 82 26 15 73S 60 125 3 57W 72 31 14 16E - 523 72 37 7 585 61 30 13 53S 48 18 6 595 28 29 8 55S 33 22 9 605 44 37 6 55S 32 7 62S 32 100 5 5 58S 77 32	675	127	240	2		528	20	28	9	
69S 51 144 2 54S 62 35 11 70S 56 140 2 55S 58 39 9 71N 47 106 5 56S 82 26 15 73S 60 125 3 57W 72 31 14 16E - 52S 72 37 7 58S 61 30 13 53S 48 18 6 59S 28 29 8 55S 33 22 9 60S 44 37 6 55S 32 32 7 61S 49 25 9 57S 52 32 7 62S 32 100 5 58S 77 32	685	39	118	3		538	24	22 .	12	
71N 47 106 5 $56S$ 82 26 15 $73S$ 60 125 3 $57W$ 72 31 14 $16E - 52S$ 72 37 7 $58S$ 61 30 13 $53S$ 48 18 6 $59S$ 28 29 8 $53S$ 33 22 9 $60S$ 44 37 6 $56S$ 40 136 7 $61S$ 49 25 9 $57S$ 52 32 7 $62S$ 32 100 5 $58S$ 77 32 16 $63S$ 18 98 5 $59S$ 42 27 12 $64S$ 13 40 2 $60S$ 23 27 8 $65S$ 13 28 3 $61S$ 69 75 9 $66S$ 62 320 5	695	51	144	2			1	1		
738 60 125 3 $57W$ 72 31 14 $16E - 528$ 72 37 7 588 61 30 13 538 48 18 6 598 28 29 8 558 33 22 9 608 44 37 6 565 40 136 7 618 49 25 9 578 52 32 7 628 32 100 5 588 77 32 16 638 18 98 5 598 42 27 12 648 13 40 2 608 23 27 8 658 13 28 3 618 69 75 9 668 62 320 5	705	56	140	2		55S	58	39	9	
738 60 125 3 $57W$ 72 31 14 $16E - 528$ 72 37 7 588 61 30 13 538 48 18 6 598 28 29 8 558 33 22 9 608 44 37 6 565 40 136 7 618 49 25 9 578 52 32 7 628 32 100 5 588 77 32 16 638 18 98 5 598 42 27 12 648 13 40 2 608 23 27 8 658 13 28 3 618 69 75 9 668 62 320 5	71N	47	106	5		56S	82	26	15	
16E - 52S 72 37 7 58S 61 30 13 53S 48 18 6 59S 28 29 8 55S 33 22 9 60S 44 37 6 56S 40 136 7 61S 49 25 9 57S 52 32 7 62S 32 100 5 58S 77 32 16 63S 18 98 5 59S 42 27 12 64S 13 40 2 60S 23 27 8 65S 13 28 3 61S 69 75 9 66S 62 320 5								<u> </u>	14	
535 48 18 6 595 28 29 8 555 33 22 9 605 44 37 6 565 40 136 7 615 49 25 9 578 52 32 7 625 32 100 5 585 77 32 16 635 18 98 5 595 42 27 12 645 13 40 2 605 23 27 8 658 13 28 3 615 69 75 9 668 62 320 5	16E - 52S	72	37	7			ľ			
558 33 22 9 608 44 37 6 568 40 136 7 618 49 25 9 578 52 32 7 628 32 100 5 588 77 32 16 638 18 98 5 598 42 27 12 645 13 40 2 608 23 27 8 658 13 28 3 618 69 75 9 668 62 320 5	538	48	18	6			I	1		
56S 40 136 7 61S 49 25 9 57S 52 32 7 62S 32 100 5 58S 77 32 16 63S 18 98 5 59S 42 27 12 64S 13 40 2 60S 23 27 8 65S 13 28 3 61S 69 75 9 66S 62 320 5				1		605	44	37	6	
578 52 32 7 62S 32 100 5 58S 77 32 16 63S 18 98 5 59S 42 27 12 64S 13 40 2 60S 23 27 8 65S 13 28 3 61S 69 75 9 66S 62 320 5		1	1							
58S 77 32 16 63S 18 98 5 59S 42 27 12 64S 13 40 2 60S 23 27 8 65S 13 28 3 61S 69 75 9 66S 62 320 5		1								
598 42 27 12 648 13 40 2 608 23 27 8 658 13 28 3 618 69 75 9 668 62 320 5	585	77	32	16			18	98	5	
60S 23 27 8 65S 13 28 3 61S 69 75 9 66S 62 320 5			1	1						
61S 69 75 9 66S 62 320 5			1				1			
	615	69	75	9			62	320	5	
	·		1	<u> </u>	·		82	365	4	
		<u> </u>		<u>-</u>			†		· · · · · · · · · · · · · · · · · · ·	1

CONDAR CLEGG & CONTANY LTD.

Report No.-

24 - 731

Geochemical Lab Report

Page No.-

3

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	155 80 54 99 56 56 20 53 40 39 41 40 40 40 75	5 6 3 5 4 3 2 7 6 10 8 11	24E - 75S 28E -49S 50S 52S 54S 54S 55S 56S 57S 58S 58S 59S 60S	2 32 61 17 28 37 37 18 36 26 13	12 16 38 72 51 60 43 39 108 80	1 8 6 1 5 4 3 1 5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	54 99 56 56 20 53 40 39 41 40 40 40	3 5 4 3 2 7 6 10 8 11	50S 52S 54S 55S 56S 56S 57S 58S 58S 59S	61 17 28 37 37 18 36 26	38 72 51 60 43 39 108 80	6 1 5 4 4 3 1	
74S 28 75S 32 24E - 41S 20 42S 5 43S 86 44S 48 45S 62	99 56 56 20 53 40 39 41 40 40 40	5 4 3 2 7 6 10 8 11	52S 54S 55S 56S 56S 57S 58S 59S	17 28 37 37 18 36 26	72 51 60 43 39 108 80	1 5 4 4 3 1	
758 32 24E - 41S 20 42S 5 43S 86 44S 48 45S 62	56 56 20 53 40 39 41 40 40 40	4 3 2 7 6 10 8 11	54S 55S 56S 57S 58S 59S	28 37 37 18 36 26	51 60 43 39 108 80	5 4 4 3 1	
24E - 41S 20 42S 5 43S 86 44S 48 45S 62	56 20 53 40 39 41 40 40	3 2 7 6 10 8 11	558 568 578 588 598	37 37 18 36 26	60 43 39 108 80	4 4 3 1	
42s 5 43s 86 44s 48 45s 62	20 53 40 39 41 40 40	2 7 6 10 8 11	56S 57S 58S 59S	37 18 36 26	43 39 108 80	4 3 1	
43S 86 44S 48 45S 62	53 40 39 41 40 40	7 6 10 8 11	57S 58S 59S	18 36 26	39 108 80	3	
44S 48 45S 62	40 39 41 40 40	6 10 8 11	58S 59S	36 26	108 80	1	
45S 62	39 41 40 40	10 8 11	 598	26	80		-
	41 40 40	8				5	
46S 72	40 40	11	60S	13			
1 1 1	40				72	1	
478 35			 615	45	46	5	
48S 17	75	11	625	58	65	5	
495 21		3	635	6	33	1	
508 25	62 -	6	64S	36	30	11	
518 61	40	7	65\$	58	68	3	
52S 28	85	5	665	20	142	2	
538 22	113	9	675	63	119	.5	
54S 56	61	8	685	18	72	1	
55S 57	46	8	69S	28	39	2	
56S 13	50	5	70n	13	40	2	
57S 60	124	8	715	73	60	4	
58S 44	32	9	725	32	85	2	
59S 59	57	10	735	6.	13	ND	
60S 32	87	2	74S	2	28	ND	
61S 25	158	2	758	20	36	3	
62S 7	73	1	76S	20	36	1	
<u>65S</u> 90	170	3	775	6	27	ND	
678 32	56	2	785	35	47	1	
68S 31	76	2	795	36	49	1	
695 12	77	2	805	30	55	2	
718 41	72	4	815	22	26	3	
725 42	78	3	825	20	28	1	
738 16	51	3	835	52	53	2	
745 4	39	2	84S	41	.48	2	
		· 1					

CONDAR CLEGG & CON ANY LTD.

Geochemical Lab Report

Report No. 24 - 7 31

Page No.—

SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm	 SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm	
28E - 85S	16	34	ND	32E - 71S	20	60	1	
865	18	36	ND	725	16	52	1	
885	28	64	1	73S	46	90	2	
895	14	48	ND	3 4S	26	60	3	
- 90S	27	84	1	758	44	79	2	
32E - 39S	26	28	4	76N	36	58	4	
405	4	28	ND	778	25	41	3	
415	42	72	2	785	33	50	3	
425	3	17	1	798	22	47	3	
438	35	42	4	805	28	46	3	
44S	70	48	5	815	50	58	3	
455	41	55	5	825	38	59	2	
475	50	55	2	835	26	32	4	
48S	36	60	3	845	- 28	32	5	
49S	27	58	2	 855	20	38	3	
515	12	37	.3	865	22	39	2	
528	6	30	2	895 .	10	20	1	
538	44	50	5	908	14	30	3	
54\$	44	. 42	3	36E - 51S	13	23	3	
558	28	25	1	528	17	22	3	
568	26	40	3	538	28	26	1	
575	23	32	2	54S	28	34	3	
585	12	39	7	558	21	17	3	
595	22	26	3	56S	14	12	1	
60S	26	38	2	575	15	17	3	
615	36	38		58\$	32	36	3	
625	28	40	10	595	43	35	5	
635	25	36	5	60 <u>S</u>	32	38	4	
648	57	52	8	615	20	24	5	
658	46	96	7	625	26	60	4	
668	96	102	6	635	6	23	3	
675	53	85		648	21	18	3	
685	60	87	4	658	32	9 8	3	
695	12	57	3	665	36	45	4	
705	29	82	3	675	17	34	3	

GONDAR CEGG & CON ANY LTD.

Geochemical Lab Report

Page No.

5

SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm	-	SAMPLE NO.				
36E - 68S	36	34	2						
698	8	30	1						
705	6	13	5						
715	12	28	1						
725	11	40	2						
738	16	46	2						
40E - 49S	36	52	2		· .				
505	5	25	1						
515	21	24	5						
528	1	17	1		ND denotes 'no	t detect	ed '		
538	29	40	4						
54\$	4	20	4		•				
558	52	48	8		· · · ·				
565	27	36	3						
575	40		7						
585	32	38	6					<u> </u>	
595	30	32	3						
605	38	40	4						
615	22	48	5						
62S	41	[,] 56	4		· ·				
635	NS	NS	NS		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
645	59	54	6					ļ	
65\$	8	18	2		•				
665	12	11	1			· .			
675	14	42	2					 	
685	16	26	2			-	· 		
705	16	22	3				 		
715	36	36	5		· · · · · · · · · · · · · · · · · · ·				
725	19	73	3						
738	6	24	5					i 	:
12E - 72S	66	134	2						
	 								
	<u> </u>	ļ	[
	 		 		· · · · · · · · · · · · · · · · · · ·	ļ		<u> </u>	
L									

	BON			LEG				(41)	<u> </u>
			•		ER, B.C. PHONE: 9				
· .		G	eoche	emical	Lab Repor	t	01	072510	77
Extraction Hot Aq	ua Regia		· · ·		Report No. 24 - 8	14	ז - 1000 איני - 1		1
Method Atomic	Absorptio	on			From <u>Chevron St</u>	andard_	Vis.	Josen Un	TCE
Fraction Used	tion Used <u>-80 mesh</u> Date							24, 1	19_74
SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm'	-	SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm	
4RV - 3001	90	3 50	3		4BR - 3095	30	205	4	
3002	53	195	1`		3096	30	138	ND	
3003	37	205	1		· · · · ·				
	40	160	2				L		
3005	38	160	1						
3006	56	75	1		ND denote	s 'not	detected	5	
3007	30	920	12						
3008	135	460	2						
3009	180	170	25						
3010	37	100	ND						
3011	39	89	ND						
3012	44	68	2						
3013	43	290	1						
3014	53	152	1						
. 3015	90	57	10 3						
3016	39	100	1						
3017	74	82	2						
3018	68	58	5						
3019	74	75	1						
3020	40	76	1		· · · · · · · · · · · · · · · · · · ·				
3021	60	80	1						
3022	19	295	ND			2			
3023	45	170	1		· · · · · · · · · · · · · · · · · · ·				
3024	80	175	1						T
3025	60	195	1						
3026	44	165	2		· .				
3027	56	200	1						1
3028	105	132	1		<u> </u>				
3029	47	74	1						
3030	92	170	38		•		[
		1				-		[·····	

v-10

BONDAH-CLEGG & CON PANY L

SONDAR-C'LEGG & CORF'NY LTD.

Geochemical Lab Report

Report No. 24	<u>- 767</u>					Page N	ge No		'n
						1 1			
SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm		SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm	
48E - 70S	6	18	ND		52E - 88S	26	39	6	
71	10	18	ND		89	3	24	1	
72	24	44	3		56 E - 6 28	26	66	3	
73	22	60	2		63	21	20	1	
74	38	78	3		65A	34	50	4	
75	44	98	2		65B	26	34	4	
	70	90	1		67	40	52	5	
77	15	32	ND		68	7	30	1	
78	40	60	4		69	43	64	6	
79	7	16	ND		71	3	34	ND	
80	38	124	1		72	12	50	2	
52E - 64S	48	60	5		73	52	80	4	
	2	12	1		74	3	10	ND 14	
66	39	46			75	6	12	ND	
67	23	98	3		76	4	7	1	
68	34	42	3	۹	77	47	60	3	
					78	4/	3	1	
<u> </u>	14	4	ND		79	23	33	2	
	14	30	3						
71	24 8	68 · 28	14 19		80	27	52	2	
					<u>81</u> 82	18 19	<u>32</u> 127	1 1	
73	3	19	5						
<u> </u>	<u>18</u> 18	<u>31</u> 21	1			60	200	2	
75	21	61	1			40 7	76	2 ND	
70	2	7	1			56	<u>13</u> 55	4	
78	4	8	ND		86				
	<u> </u>					56	48	<u>3</u> 2	
79	ND	5	ND		88	20	14	1	
80	17	61			<u> </u>	43 39	42	4	
81	16 2	18	1			52	38	4	
	†	12	1		41 - 053 66	70	62	7	
83	13	30	2				1	 	
	21	26	3		67	12	26	2	
85	38	51	5		68	29	40	8	- , .
86	31	42	3		69	28	38	10	
	16	20	3		70	32	40	8	
							<u> </u>	<u> </u>	

CONDAR-FLEGG & COMFINY LTD.

•

Geochemical Lab Report

Page No.------3

SAN	MPLE NO.	Cu ppm	Zn ppm	Mo ppm		SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm .	
4	W - 71S	25	100	4		12W - 72S	16	45	3	
	72	30	88	3		73	19	30	3	
	73	42	86	4		74	16	20	5	
	74	18	72	1		75	15	37	5	
· `	75	30	96	2		16W - 64S	43	44	5	
	76	19	21	3		66	10	7	. 2	
	77	38	55	3		67	100	13	3	
	78	20	73	3		68	26	36	7	
		46	77	6		69	9	26	3	
	80	17	28	2		70	24		5	
8	W - 60S	34	8	· 1		71	18	20	4	
	62	16	16	2	·	72	14	21	3	
ļ	64	18	24	1		73	10	20	2	
	65	6	12	1		74	24	40	8	
	66	23	36	5		75 _	50	45	5	
	67	52	50	6	[
	68	27	34	4						
	69	26	23	3		ND denotes not dei	ected!			
	70	11	47	3		·				
·	71	3	23	1						
	72	12	48	2						
	73	2	6	ND						
	74	6	10	2						
ļ	75	4	12	1	· · · ·					
	76	20	16	3	 					
	77	36	36	8	<u> </u>					
	78	32	20	5				 		
L	79	32	34	6						
12	W - 65S	56	47	5	 					
	66	21	29	6				 		
	67	9	13	2						
	68	32	86	2						
ļ	69	15	34	3		· · · · · · · · · · · · · · · · · · ·				
	70	9	47	4	· · · -					
	71	10	27	2				 		
						<u> </u>		1		

1500 PEMBERTON AVE., NORTH VANCOUVER, B.C. PHONE: 885-0881 TELEX: 04-54554

Geochemical Lab Report

Extraction Hot Aqua Regia

Atomic Absorption Method_

Report No. 24 -- 821 From Chevron Standard Ltd.

1

Fraction Used __

Date __

4.15

October 21 19 74

1111

1).

SAMPLE NO.	Cu	Zn	Мо		SAMPLE NO.	·			
	ppm	ppm	ppm						
4BR-3033 S 16E	148	110	10	/	16E / 205 (5)				
3034 16E	115	142	_5		2.45				
3035S 16E	175	70	8	·					
3036 16E	170	90	ND		32.5				
3036S 16E	145	78	7		325(5)				
3037 16E	110	76	6		365				
3038 16E	138	133	5		395				
					ND denotes	'not de	ected!		
		<u></u>			<u> </u>			[]	
		4 - 730	Octobe	r 3 fo	r Comparative Valu				
		4 - 750	, 002000	1 5, 10	r comparacive vait	co.			
· · · · ·			; 						
<u> </u>								· 	
								· · ·	
						······································			
·									
							<u> </u>		
· · · · · · · · · · · · · · · · · · ·					•				
					· · · · · · · · · · · · · · · · · · ·		<u>.</u>		
	<u> </u>								
·····							•••		
		1 							
	· · · · · ·						<u></u>		
			、 、						
	 							 	ļ
L									V-10

			<u> - CI</u>	EG	<u>68</u>		'n∕ĪĒ	$\frac{ELK}{2ANY LTD}$
								681 TELEX: 04-54554
		G	oche	mical	l ah	Repo	vrt	RECEIVED OCT 1 5 1974
								Minc
			나라는 말에 나는 것					CHEVEON VAN
raction Used					Date	CILEVION	DLanua	<u>rd Ltd.</u> <u>October 11 19 74</u>
SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm					REMARKS
4BR + 3067 - 40E+28S 17'	20	112	1					
4BR + 3068 - 40E + 24S 11'	60	210	3					
4BR + 3069 - 40E + 20S	144	200	3					
4BR + 3070 - 40E + 16S	102	445	4	L				
4BR + 3071 - 40E + 12S 23'	101	265	5					
4BR + 3072 - 40E + 8S 17'	58	295	2	Želove,				
4BR + 3073 - 40E + 4S 18'	50	160	1					
4BR + 3074 - 40E + BL0+00 20'	111	215	2	1				
4BR + 3075 - 40E + 5+50N 6'	32	136	1					
4BR + 3076 - 40E + 8N 6'	52	410	2					
4BR + 3077 - 40E + 12N 5.6'	61	116	2					
4BR + 3078 - 40E + 16N 5.5	37	138	2					
4BR + 3079 - 40E + 20N 6'	60	118	1					
4BR + 3080 - 40E + 24S 6'	112	156	3			. SH		
4BR + 3081 - 40E + 28S 5*	63	105	2					
4BR + 3082 - 40E + 32N 5'	38	60	1					
4BR + 3083 - 40E + 36N 7'	42	64	3					
4BR + 3084 - 40E + 40N 6.5'	63	65	2					
4BR + 3085 - 40E + 44N 5'	52	51	1					
4BR + 3086 - 40E + 48N 6'	30	52	1					
4BR + 3087 - 40E + 48N 6'	32	47	1					
4BR + 3088 - 40E + 44N 5'	44	46	<u>1</u>					
4BR + 3089 - 40E + 40N 6.5'	44	50	1					
4BR + 3090 - 40E + 36N 6'	132	208	2	V.				
4BR + 3091 - 40E + 32N 5'	44	84	1					
4BR + 3092 - 40E +24N 5'	88	245	3					
4BR + 3093 - 40E + 20N 5'	77	134	4					
4BR + 3094 - 40E + 16N 6.5'	218	300	9					
								Q-15

	BON	DAr		LEG	G & (ЛРА	NY	LTC	J . ()
1500 PEMBE		VE., NO			'ER, B.C. PH	ONE: 98	35-0881	TELEX	ETVID 04-545	5 4
								UĻ	C 1474	
	ot Aqua	Ponin			Lab R	U.L.	• () - 720	EVRON STA	nis Malt RDADE LUA REALINE	teo
Extraction H									or or rut	
raction Used		•							ber 3 1	0 74
	·		_	 r						9 <u>19</u>
SAMPLE NO.	Cu ppm	ppm Ppm	Mo ppm	 	SAMPLE N	NO.	Cu ppm	Zn ppm	Mo ppm	
4BR - 3001	66	130	2		4BR - 3	8028	124	310	1	
3002	74	161	ND		3	029	78	164	1	· · · ·
3003	65	96	2		3	3030	95	181	2	
3004	51	128	2			3031	53	140	ND	
3005	63	183	1		3	3031 S	50	55	3	
3006	46	113	1		3	3032	84	157	1	
3007	71	205	1		3	3033	51	140	ND	
3008	65	113	1		3	3033 S	30	45	3	
3009	41	216	2		3	3034	63	186	2	
3010	49	141	ND		3	3035 S	17	30	1	
3011	82	144	2			8036	66	82	3	
3012	60	43	4		3	036 S	3	40	1	
3013	91	205	1		3	3037	53	178	1	
3014	78	69	10		3	038	50	160	ND	
3015	71	128	2					_		
3016	57	231	1							
3017	76	308	2							
3018	58	196	1		N	ID denot	es 'not	detect	ed'	
3019	57	272	1							
3020	75	260	2							
30205	15	21	3							
3021	79	172	1				·			
3022	58	150	1							
3022 S	27	47	1				-	:		
3023	63	130	1							
3024	68	104	2		-					
	71	130	2							
3025 S	31	21	1							
3026	57	142	2			· · · · ·				
3027	136	_136	2		,					
										, – 1

	BON	DAr		_EG	<u>G 8</u>		5. Л F		<u>r lt</u> e	<u>)</u> .
1500 PEMBE	RTON A	AVE., NO		NCOUV	ER, B.C.	PHONE	: 985-9		X:04-845	54
(n_{n})		-			• •				n (1 1 1 1	
Extraction	Ho	t Aqua R	legia		Report N	0	<u>24 - 40</u>)2	STR. UDINED OFFICE	· ·
Method	Atomi	c Absorp	tion		From	Chevro	n Stand	la <u>rd</u>		
Fraction Used -80 m	iesh &	-100 mes	sh		Date			Ju	<u>1y 26</u> 19	
SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm						REMARKS	
4 AL 3006	77	98	1							
3007 .	60	125	ND							
3008	44	83	ND							
3009	⁻ 55	74	1							
3010	260	103	1							
3011	72	122	2							
3012	64	96	1							
3013	53	86	3 ·							
3014	54	86	ND							
3015	67	78	3	<u>.</u>						
3016	53	79	2							
3017	29	101	1							
3018	57	99	1							
3019	61	74	1						·	
3021	76	103	3							
3022	73	91	1						 _	
3015R	_25	46	5							
L8W - 19+10N	13	15	ND					ND denot	es not de	etected
								cc Mr.	R. Cormien	
						·				
· · · · · · · · · · · · · · · · · · ·		[5			
					······					
							~	<u>}</u>	<u></u>	
					· · · · · · · · · · · · · · · · · · ·					
				·						
		<u> </u>			· · · · · · · · · · · · · · · · · · ·			<u>}</u>	<u> </u>	
*	[<u> </u>						1		
· · · · · · · · · · · · · · · · · · ·		•	•		· · · · · · · · · · · · · · · · · · ·	•	ι	3		0-18

	ON	DAr	- Cl	EG	G &		J. JF	PANY LTD.		
1500 PEM8E	RTON A	VE. NO	RTH VA	NCOUV	ER, B.C.	PHONE	: 985-0	681 TEEEEJYED 0 1074		
		Ċ		.,		-		JUL 3 6 1914		
Extraction Hot Aqua I	legia			•	Report N	•	24	Minerals Staff CHEVRON STANDARD LIMITED - 387 VANCOUVER OFFICE Company		
Method Atomic Abso					From	hevron S	Std. 01]	Company		
Fraction Used								July 23, 19 74		
SAMPLE NO.	Cu	Zn	Мо					REMARKS		
4AL 3001	<u>ppm</u> 76	ppm 147	_ ppm 1					ND denotes 'not detected'		
3002	85	136	ND					AD danoted not detected		
3003	78	128	1				,			
3004	74	133	ND							
3005(-80)	68_	134	1							
3005(-100)* 51	108	1					*Sample split crushed		
<u> </u>	32	107	5					to - 100 mesh		
3008 R	20	62	1			·		····		
3010 R	40	90	4							
<u>1.0+20W_24+00N</u> 4AL 3005 HM (-10+8		_124 	2							
4AL 3020 L8W STN										
19+00N 2.5' 4CM2 L8W STN	54	78								
19 N B Zone 4CM3 L8W STN	7	<u>18</u>	1							
<u>19 N 2 - 2.5'</u>	99	71	1							
	· ·						···			
				· · · · ·						
	·									
						· · · ·	· · · · · · · · · · · · · · · · · · ·			
						· · ·				
· · · · · ·						·				
	[
			1							
							- -			

:

				FG			лЛЕ	PANY LTD.		
1500 PEMBE	RTON A	VE. NO			<u>ЕЯ, В.С.</u>	PHONE	: 985-08	1 TELEX: 04-54554		
·. · ·		Ge	eoche	mical	Lab Report Report No. 24 - 855 From Chevron Standard Ltd.					
Extraction	Hot A	qua Regi	a		Report No. 24 - 855					
Method	Atomic	Absorpti	on		From Chevron_Standard_Ltd.					
Fraction Used	-8	0 mesh	·	_	Date			Nov. 1 19 74		
SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm					REMARKS		
4BR 3142	25	226	2	1600/05						
3143	97	180	1	125						
3144	100	189	1	165	:					
3145	80	180	2	205						
3146	66	260	2	245						
3147	58	192	1	28 S						
3148	68	156	2	32 5	-					
3149	60	ī2 4	1	365						
3150	52	72	4	405						
31.51	96	71	9	<i>44 s</i>						
3152	84	61	10	48S						
31.53	92	186	3	8W 485						
3154	94	89	10	400						
3155	74	128	2	405				· · · · ·		
3156	52	114	1	355						
3157	90	128	3	325						
3158	50	111	2	285						
3159	69	185	2	155						
3160	106	176	2	125		· · · · ·				
3161	170	215	2	85						
							· ·			
· · · · · · · · · · · · · · · · · · ·	<u> </u>									
· · · · · · · · · · · · · · · · · · ·										
		 			,					
	<u> </u>						 	· · · · · · · · · · · · · · · · · · ·		
······································					 					
<u>.</u>						·				
		;	<u> </u>		· · · · ·					
	1	<u> </u>	I]			

3134 50 107 1 325 3135 3135 19 49 1 755 3136 3136 77 249 1 245 245 3137 116 225 2 $2^{\circ}5$ $2^{\circ}5$ 3138 62 230 1 165 230 3139 87 200 2 175 26			DAF	<u> - Cl</u>	EG	<u>68</u>			PANY LTD.
Freden Used Pop $\frac{7}{20}$	1500 PEMBE	RTON A	-	-		•			HEC.7., 1019
Freden Used Pop $\frac{7}{20}$	ExtractionHot	Aqua R	egia			Report No)	24 -	846
Freden Used Pop $\frac{7}{20}$	Method <u>Atomi</u>	c Absor	ption			From	Chev	ron Star	dard Ltd.
SAMPLE NO. ppm	Fraction Used	80 mesh				Date			November 1 19 74
3112 144 82 3 $37n'$ 3113 60 84 2 $21n'$ 3114 52 100 2 $26n'$ 3115 60 176 2 $2n'$ 3115 60 176 2 $2n'$ 3116 95 124 2 $1/k'$ 3117 53 115 1 $172n'$ 3118 184 124 6 $9n'$ 3119 135 124 4 $-3n'$ 3120 320 102 2 $0n'$ 3121 58 112 1 $32n'_25$ 3123 65 172 2 $2e5$ 3124 </th <th>SAMPLE NO.</th> <th>Cu ppm</th> <th>Zn ppm</th> <th>Mo ppm</th> <th></th> <th></th> <th></th> <th>1</th> <th>REMARKS</th>	SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm				1	REMARKS
3113 60 84 2 $21n'$ 1 3114 52 100 2 $24n'$ 1 3114 52 100 2 $24n'$ 1 3115 60 176 2 $24n'$ 1 3116 95 124 2 $16n'$ 1 3117 53 115 1 $12n'$ 1 3118 184 124 6 $8n'$ 1 3119 135 124 4 $3n'$ 1 3110 320 102 2 $0n'$ 1 3121 58 112 1 $32n'/5$ 1 3122 68 206 1 $/65$ 1 3123 65 172 2 $2e_5$ 1 3124 35 129 1 285 1 3125 70 144 1 325 1 3126 84 116 2 $3i_5$ 1 3127 62 <t< td=""><td>4BR 3111</td><td>66</td><td>182</td><td>2</td><td>32 W/361</td><td>/</td><td></td><td></td><td>· · ·</td></t<>	4BR 3111	66	182	2	32 W/361	/			· · ·
3114 52 100 2 2.4n/ Image: state	3112	144	82	3	32 N				
3115 60 176 2 $2 + n/$ Image: style s	3113	60	84	2	2.8N				
3116 95 124 2 $l64/$ Image: stress of the stress	3114	· 52	100	2	24N				,
3117 33 115 1 $12/1$ Image: style sty	3115	60	176	2	20N				
3118 184 124 6 $2n/l$ Image: stress of the stress	3116	95	124	2	16 N				
3119 135 124 4 J_{11} 3120 320 102 2 ON	3117	53	115	1	12 N				
3119 135 124 4 $J_{1/2}$ Image: style	3118	184	124	6	8N				
3121 58 112 1 $3247/25$ Image: style styl	3119	135	124	4	JN				
3121 58 112 1 $3247/25$ Image: state stat	3120	320	102	2	. ON				
3123 65 172 2 2 vs	3121	58	112	1	32W125		•		
3124 35 129 1 285	3122	68	206	1	165				
3125 70 144 1 325 $and constraints 3126 84 116 2 345 and constraints and constraints 3127 62 148 1 4\sigma 5 and constraints and constraints 3128 71 117 2 445 and constraints and constraints and constraints 3129 107 148 3 455 and constraints and constraints and constraints 3130 86 145 3 24wess and constraints and constraints$	3123	65	172	2	· 205			·	
3126 84 116 2 345 345 3127 62 148 1 455 $$	3124	35	129	1	285				
3127 62 148 1 $4o5$ 3128 71 117 2 445 3129 107 148 3 455 3130 86 145 3 $24wrss$ 3131 110 174 445 3131 110 174 445 3131 110 174 445 3131 110 174 445 3131 110 174 445 3132 68 116 2 405 3133 40 149 ND 365 ND denotes 'not detected 3134 50 107 1 725 3136 77 249 1 745 3138 62 230 1	3125	70	144	1	325				· · · · · · · · · · · · · · · · · · ·
3127 62 148 1 $4o5$ 3128 71 117 2 445 3129 107 148 3 455 3130 86 145 3 $24wrss$ 3131 110 174 445 3131 110 174 445 3131 110 174 445 3131 110 174 445 3131 110 174 445 3132 68 116 2 405 3133 40 149 ND 365 ND denotes 'not detected 3134 50 107 1 725 3136 77 249 1 745 3138 62 230 1	3126	84	116	2	355				
3120 117 1277 1277 1277 1277 1277 1277 1277 1277 1277 1277 1277 1277 1277 12777 12777 12777 12777 12777 12777 127777 12777 12777 <td>3127</td> <td>62</td> <td>148</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	3127	62	148	1					
3129 107 148 3 455 455 3130 86 145 3 241445 $$	· 3128	71	117	2	44.5				
3130 86 145 3 24W455	·		148	3	485				
3131 110 174 1 445			145	3	2.410495				
3132 68 116 2 40 S ND 3133 40 149 ND 365 ND denotes 'not detected 3134 50 107 1 37.5 100 3135 19 49 1 78.5 100 3136 77 249 1 24.5 100 3137 116 22.5 2 26.5 100 3138 62 230 1 16.5 100 3139 87 200 2 17.5 100		· · · · · ·		1	445	:			
3133 40 149 ND 365 ND denotes 'not detected 3134 50 107 1 32.5									
3134 50 107 1 325 3135 3135 19 49 1 785 3136 3136 77 249 1 245 245 3137 116 225 2 $?e5$ $2e5$ 3138 62 230 1 165 2175 3139 87 200 2 175 26		1		ND	365				ND denotes 'not detected'
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						·			
3136 77 249 1 245 $$				1	285				
3137 116 225 2 ? • \$ 3138 62 230 1 16 \$ 3139 87 200 2 17 \$			·						
3138 62 230 1 16 5 3139 87 200 2 17 5			1		205			1	· · · · · ·
<u>3139</u> 87 200 2 17.5		1 .			165			1	
					12.5				
	3140	63	208	1	20				
3141 430 269 25 45		1		1	45				

1 Alexandre	<u></u>	BONDAR-CLEGG & COMPANY LTD.											
15	OO PEMBE	RTON A	VE., NO		NCOUV	ER, B.C. PHONE: 9		, TELEX	04-545	54			
			Ge	eoche	mical	Lab Report 1415 NOV. 157							
Extraction	,	Hot Ag	ua Regia	L	-	I Lab Report C.413 Report No. 24 - 831 CHEVEN MEN 1974							
		tomic A	bsorptic	n .		From Chevron Standard Limited							
	ed	-80	mesh			Date 19_74							
SAMP	LE NO.	Cu ppm	Zn ppm	Mo ppm		SAMPLE NO.	Cu ppm	Zn ppm	Mo ppm				
4RV -	· 3031	130	620	. 4		4BR - 3108	34	76	2				
. <u>.</u>	3032	85	110	20		3109	33	86	1				
	3033	57	148	6		3110	54	92	1				
	3034	46	69	13									
	3035	126	87	58									
	3036	55	83	2									
	3037	55	80	2									
	3038	56	94	2									
	3039	50	57	3		· · ·							
	3040	68	90	4									
	3041	58	. 80	2									
	3042	48	65	1									
	3043	39	46	2									
	3044	68	100	1									
	3045	66	90	2									
	3046	34	26	1		· · · · · · · · · · · · · · · · · · ·							
	3047	200	120	5				İ					
	3048	53	80	2									
	3049	88	125	3									
4BR -	· 3097	74	110	4		· · · · ·							
	3098	74	120	3									
	3099	85	142	1									
	3100	160	128	4									
	3101	55	90	3									
	3102	30	30	6									
	3103	68	112	3									
	3104	110	255	1		······································							
	3105	63	208	1		· ·		j					
	3106	69	120	2		· · · · · · · · · · · · · · · · · · ·							
	3107	100	144	2		<u> </u>							
	<u>, , , , , , , , , , , , , , , , , , , </u>					· · · · · · · · · · · · · · · · · · ·							
	***		·			· · · · · · · · · · · · · · · · · · ·		•	•				

_____<u>.</u>

			CERTIFICATE OF ASSAY Results compollowing are the results of assays made by us upon the herein described										
	MARKED	Ounces per Ton	Value per Ton	SILVER Ounces per Ton	Percent	Percent	Percent	Percent	Percent	Percent	ANCOUVER Percent	TOTAL VALUE PER TON (2000 LBS.)	
	PE 1 (Brad Pearson	trace		0.02									
	• .												
•	. •												

sk.

Ο

O

Registered Astayer, Province of British Columbia

.

1974 ELK PROGRAM

EXPENDITURES BREAKDOWN

FIELD EXPENSES

 \mathbf{O}

 \mathbf{O}

Freight Costs <u>399.14</u> \$ 6,3	341.53
LABORATORY EXPENSES	
Analyses 1,896.01 Petrographic 282.00 2,1	L78.01
TRAVEL EXPENSES	
Air Fares3,461.00Air Charters6,740.53Truck Rentals676.64Hotels, Meals, Taxis1,443.3012,3	321.47
OFFICE EXPENSES	
Reproduction88.20Telephone109.47Accounting245.40Consulting Fees100.00Miscellaneous30.25	<u>573.32</u>
TOTAL EXPENSES \$ 21,4	14.33
LABOUR COSTS	
Adcura Ltd., Ottawa - overburden drilling fees 13,360.00	·
W. Meyer & Assoc soil sampling fees 10,675.00 Vancouver	
Chevron Standard - mapping & management 4,459.78 Limited	·
B. D. Pearson - consulting fees <u>1,800.00</u> <u>30,2</u>	94.78

TOTAL 1974 PROGRAM COST

Savid Arreatt

1974 ELK PROGRAM

CHEVRON STANDARD LIMITED

LABOUR COSTS

Name	Position	Address	* Effect- ive Daily <u>Rate</u>	No. Days	Cost
E. D. Dodson	- 1	833-355 Burrard St., Vancouver,B.C. V6C 2H3	\$ 164.90	4	\$ 659.60
David Arscott	Super- visor	do	99.138	33	3,271.56
Michael Fox	Geologist	do	81.07	4 ¹ 2	364.82
Ian A. Brooks	Field Asst	. do	40.95	4	163.80
			Total		\$4,459.78

I hereby certify that the above figures represent labour costs of work carried out during the 1974 Elk Mineral Claims program by personnel of Chevron Standard Limited.

* This figure is the effective daily rate calculated from the actual internal company accounting cost which is shown in the last column.

David Ascott

DAVID ARSCOTT, P.ENG.

Vancouver, B.C. December 31st., 1974.

(

ADCURA LTD.

A DIVISION OF BONDAR-CLEGG & COMPANY LTD.

-

TELEPHONE (613) 237-3110 764 BELFAST ROAD OTTAWA, ONTARIO, CANADA K1G 0Z5

RECEIVED.

11.41722

ي. موجود مي المراجع

.....

VANS

CHEVER

January 6, 1975.

Mr. David Arscott, Chevron Standard Limited, 833 Marine Bldg., 355 Burrard Street, Vancouver 1, B.C.

Dear Mr. Arscott:

Re: Assessment work, Elk Mineral Claims, 1974

This letter is to confirm that the following individuals were employed by Adcura Ltd., and that they conducted a geological survey on the above mentioned claims during the period July 1, 1974 to October 31, 1974:

	NAME & ADDRESS	DAILY RATE	TOTAL DAYS	GROSS PAY
1)	ALLARD, Leo, 1253 5th Street, Val D'Or, Quebec.	\$32.00	5	\$160.00
2)	BRAMELD, Philip, Box 107, RR #1, Hammond, Ontario.	50.00	47	2,350.00
3)	CAMPBELL, Craig, 2386 Joliffe Street, Ottawa, Ontario.	30.00	23	690.00
4)	CHRISTENSON, Peter, 63 - 10th Street, Roxboro, Quebec.	23.00	5	115.00
5)	CORMIER, Roch, 239 Beaudoin Street Gatineau Mills, Quebec.	65.00	13	845.00
6)	JOHNSON, Hugh, 228E 20th Street, North Vancouver, B.C.	30.00	14	420.00

	NAME & ADDRESS	DAILY RATE	TOTAL DAYS	GROSS PAY
7)	VAINOLA, Robert, 2101 St. Laurent Blvd Ottawa, Ontario.	., \$30.00	23	\$690.00
		TOTAL	130	\$5,270.00

I hereby certify, that to the best of my knowledge, the above information is correct.

SIGNED Malcolm Clegg, Secretary-Treasurer.

MC/cj

O

APPENDIX 2

AFFIDAVIT re COST of SURVEY

I, W. Meyer, do solemnly declare that the linecutting and soil sampling survey on the ELK Claims was done during July, September and October 1974. The work was carried out by W. Meyer & Associates Ltd. for Chevron-Standard Ltd. at a total labour cost of \$10,675.00.

I make this solemn declaration conscientiously believing it to be true, and knowing that it is of the same force and effect as if made under oath and by virtue of the "Canada Evidence Act".

* Mega

W. MEYER, P. ENG. W. Meyer & Associates Ltd.

PERSONNEL and DATES

Ł

Ο

Name	Dates of Work	Days
P.W. Dunsford 2564 Panorama Dr. North Vancouver, B.C.	July 11–15; 24, 25 Sept. 6	8
B. Corrigan 787 East óth Avenue Vancouver, B.C.	July 12-31; Sep. 9-26	38
M. Folk 2858 128th Street White Rock, B.C.	July 12-31; Sep. 9-26	38
M. McKillop 1443 Crown Street Vancouver, B.C.	July 12-31	20
C. Czerwinski 3744 W. 18th Avenue Vancouver, B.C.	July 12-31	20
R. Newby Box 12 Coal Harbour, B.C.	July 12-24	13
P. Christensen 63–10th Street Quebec	July 16-23	9
W. Mitchell 444 Carrall Street Vancouver, B.C.	Sep. 11–30 Oct. 1–29	51

CERTIFICATE

I, David Philip Arscott, am a Professional Engineer registered in British Columbia, presently employed by Chevron Standard Ltd., 833 - 355 Burrard Street, Vancouver, B.C.

I was responsible for the direction and co-ordination of the described property program on the Elk claims between May and October, 1974, and certify all stated costs to be correct to the best of my knowledge.

D. ascott

D. ARSCOTT, P.Eng. 30 November 1974

DIAMOND DRILL CORE LOGGING

ELK MINERAL CLAIMS

PORT HARDY AREA VANCOUVER ISLAND, B. C.

BY

B. D. PEARSON, P.ENG.

Vancouver, B.C. September 1975

١

Ì

.

O

Ca Ca	ole No. Ground Elev: asing Collar Elev: Ground Elev: o-Ordinates: N. E. nclination: Bearing:	Proje Elk Date Started: Date Finished: Total Depth: 718'	Page No: 1 OF 12 Core Size: B Scale: $1^{H} = 10^{1}$ Logged By: $B, D, Performance$
l O Section	ALTERATION ALTERATION COMMENTS: Comments:	Re	%%%
20 20 30 30	Overburden	verburden - net recovered.	
	Apparently =Lengt	-37: Coarse fragmental Dacit Anderite Cream to light grey ce Some augular Pyrch. Frogs. to a with dissem. Pyrch. Augular to rounded volc. Frogs. to +1". Pyrc '-76': Strong zeolite alteration a Rock near top is probably Pig. A toff, with groundwass pervesively itige is Lenne purts appear to 1 by tragmental.	elor. O.5" dizm. i to sub-

c c	así o-0 ncl	ng (rdin ina	nate tion	:	Ele	v: Groun N. Bearing:	nd Elev: E.	Project: Elk Date Started: Date Finished: Total Depth:	Page Core Scal Logg	Siz	:e: 1"3	8 10')		<u>+</u>	
Section	AL P.T.		Chlowing Chlowing	ing	Geology	COMMENTS: Mineralogy &			Ave Core Rec'y/Hole	Sulphides	rilling terval	Core	umple cervaltNo.	% Rec'y. Sample Int.	Assay	2 Assay	Assay	Assay
S 60	1 4 C		51 51	Yeary Werls Fr		Structure	De 37-76	(Ceed.)		~			Int	% F San	Cu.	MOS ₂	Au	Ag
1-70 				Vev y	1	- Bontite voix zoue at 150 to cave axis.	~			< 0'2	-67-							
1.20 1.20				Week		2" zohr af fig. discom. Distito.	Sobr (Ex lars app fro sow	": Coorse Fragmenta ownerd fragments ceptionally, to 3".) So per, but diam. of co acar as layers. Com w Andesite to Rhyc actimes observed by recepter of the Same	to 1" diam. me may be vo matres them position vonges slite. Cutlines pervoscibe		• 77- - <7-					*		
1	1		1 1 1 1 2 2 4 4	Very Strondate		Blocky Frags in Fracture zone. File grain Louded toff at 37° to cove axis. Guides down- word into proven	Note vec Mix cer zow	iss alteration. Sown tain up to 50% dr iverage sulfide coute a on Bistite: Where the is light-chocolat crat is very fine gra- chainly secondary. In the Fragments are a c lor. Pyrite is dissemin	it occurs, e brown color. ined, almost chloritized distinctive tan	04	-96 -							
						energy and a li	Lon	Chlovitic Joke,			-102.							

Hole No. Casing Collar El Co-Ordinates: Inclination:	ev: Grou N. Bearing: COMMENTS:	nd Elev: E.	Proje: Elk Date Started: Date Finished: Total Depth:	Core Scal	e: No; e: No; ed By	*: 73 **= /: 13.	٥,		Assay	Assay	Assay	Assay
Section Section Zealite Caurioni Eistile Chevite Fractur	Mineralogy & Structure	n	acorintivo Contern		% St		Samp Samp Inter	k Rec	Cu. A	MOS ₂	Au As	Ag As
120 120 130 130 130 140 140 140 140 140 140 140 140 140 14	Toffer of forgerat offer at forgerat offer indictivet. Toffer on Landing, with chieffle, conten offer a softward offer on Landing with chieffle, conten offer of the content offer of the content full access banding ist of the formal. Tuff-Looving court of grad of isnal.	76'-12 Note fragm Pourt 127'-124 Altera May L 109'-125 (Bioth 122'-144 122'-144 June'-159 June'-144 Gist 144'-159 June'-144 Supe At 15 Note 159'-112 June 15	escriptive Geology 11: Continued. and sulfidge: Prevent is a ends with the arrivation ends with the arrivation is Feldeptor Mileroprop to gives it a strongly b tion the stand boundari e to long the boundari e to long the powert. Maccine grow (Chland His) frequential Rhy: Da Core mission Frequents 1940 : Maccine groy-green Core mission frequents 1940 : Maccine groy-green Core mission groy-green Core mission groy-green Color inte- ': Coare frequential, and of freqs. Rocks er 21 (157-1591) into ': Melled, light grey f ain size diminishes do aving charpel loce at 60 1791: Toff, grey, brown merpos small gray felds tow contact gradetion 6: Melled by Chlorite bardened by Chlorite	ck, Pyvite is es. hypy. Much wown rolov. es indistinct. tic) and twom is. Frags. to 2". http://www. istic. Mattling / Hyrits - w 5. f.g. vecks cveon to hight of york cveon to hight of york with Electic in green with green with green with of Burth, ave		127 137 137 157 47.5			0		Υ	

Hole No Casing Collar El Co-Ordinates: Inclination:	N. Bearing:	d Elev: E. Date Started: E. Date Finished: Total Depth:	Core Scal	No: Size e: ed By	: 13 " = 10)			*
Section Zrait Chile Biotite Fracturing Geology	COMMENTS: Mineralogy & Structure	Descriptive Geology	Ave Core Rec'y/Hole	% Sulphides Drilling	Interval.	Sample Sample IntervaltNo. Rec'y.	sample int. Cu. Assay	22 S	Au Assay	Ag Assay
	- Oll" point at 15° (Preb. have ontite) Clearly pocked ango- lar is invests depr- charly completeron generous. Pyrch. prodom. in matrix of brecois, as patches and dissem. sorround- ed by Chlority.	179'-510': Valcanic breccia, s avely developed. Frogments sobrowndrad, up to several a Some sections have Pyruk ments and in matrix. and 296'-298'). At 195' rounded tyruch. Fragment one enall patch of Cha shout sections are dom tuffaceous (228'-234' 296'). There are high-angle Zee and alteration in the 182'-185' and 301'-303' (vagmends above 298' heterogeneous. Invegator of Pyrch. are completed conducted fragments. 190'-192': Some of fro very fine-grained and lig a whittish altered border orthoclase with later alt In sections which are dom tuffaceous, fragment bound generally indistinct.	augular to inches across. . 25 Frag- (188-196' one sub- t contains loopyrite. timently and 291'- dite veins intervists are more totoirs us at by confined guents are ht tan with . sospect eration. inputly	-}2	28 28	J 11 62 (2	V	V

Hole No Casing Collar Ele Co-Ordinates: Inclination:	N. Bearing:	ProjQ: Elk Elev: Date Started: E. Date Finished: Total Depth:	Core	No: 5 Size: e: 1"= ed By:	B)	. ,		
Section Zeolite Biotite Biotite Fracturing Geology	COMMENTS: Mineralogy & Structure		Ave Core Rec'y/Hole	% Sulphide Drilling Tritervel	% UCLYAL Recovered Sample IntervaltNo % Rec'y. Sample Int.	Cu. Assay	MOS2 Assay	Au Assay	Ag Assay
-240 -250 -250 -260 -260	Structure 1" thick some of very thin, parallel geolite verus at 25° to core axis. 25° to core axis. 25	Descriptive Geology 179'-510': Volcanic Breccia Most of this section is very 276.5'-278' is exception, b dark grey, save for several hight streaks.	light grey.	-246 ~ -258 		Ö	W	Y	P
		295.5'-298'; lyreg, patches and Byrch, in dark (probably Chlo mass. Some Biotite develops	whisps of ritic) ground- edi	10-298					

	Ca: Co- Inc	sin Or :li	din nat		:			B	l. Seari		Ind	Elev: E.		Da Da	ate Sta	nished				Cor Sca	e No e Si le: ged	ze; J ^u ; By:	В = 10 В, і	ט'	12	2		, ,	
	5		Τ		별)MMEN				T		·							Core y/Hole	lphídes	Drilling	ored bred	4 9 9 2 1	이	Assay	Assay	Assay	Assay
-30		Zeolite	Kp1006	0.41	4 i		S	ralog truct	ure					Descr	iptive	e Geol	logy				s'	Dri	Recover	Sam	% Rec Sampl	Си. /	MOS ₂	Au As	Ag As
31	0	-			風き たいたい / / *		zeolii to ca of se	f this te vei ve as intiou ved to	ius z Xis, . ent	t 10° Part Welly		17		3'- 316 Van tret sha	6': Su clowly tions rations	lfides avier (as op	Brec es Pyvvl nted p posed t veins. sests f	h. di Ianar to d	ssem cou iscret	., and Cen- C	2-4 5-10 1	-307							
	20	-			Nel Velo V			at veri Rage. . prom										•	•	there b Buch		-315							
- 33	c		م		Virtuelly	<u>د</u> ۱	eiztit Program	r sug ents,	ુસ્ટર્સ ક											or Psinte scattered	-	-828				**			
	0											·	843' ·	Felds	ian phe	PNPS, BI	ly anherse const induces	ricuo		. 1		- 332						-	
					100								249 293	265' : Istania Vegale	Black Ne Acti S. Mino	ivregn inolite v farr	23'-129' Hadr (Patches (?) as w h. insid un in u ment.	s of a radiat	ting ei Isters.	rystallin	- 2	-348 -358							

Ca: Co- Inc	-Ord	; Co lina nati	11an tes: on:	r El	.ev	: Grour N. Bearing:	nd Elev: E.	Proje: Elk Date Started: Date Finished: Total Depth:	Core	e No e Si: le: ged 1	ze: /"= By:	B 10' B.	D. P.)		,	
c	ALTE 2 colite			Fracturing Geoloov		COMMENTS:			Ave Core Rec'y/Hole	Sulphide	illing	Core .	sovered ample	% Rec'y. Sample Int.	Assay	32 Assay	Assay	Assay
	1002	10.00	हि	Fra	7	Mineralogy & Structure		Descriptive Geology		8	Ľ,	1	Rec Sa	San San	Cu.	MOS ₂	Αu	Ag
-360					 }		רו	9'-510': Volcanic Breccia	(cont.)									
-370		5.4.	e .	11.11		groundward much darker in this section.		Fragmental texture much below 363', groundmass w hight gray again by 370'.	wore obvious such darriver.		-36	٤						
-380			1			Patalay chlorite developed in ground- mass, often with Pyrch.		. ·		2-4		3						
-390						- Thin (<1") Biolitic tuffaceous Lind at 65			•	1 (20)14.	-388							
-400						Prominent patches of Pyrrh. 			¢	7.11 [] 11-2 2.11 []	- 39	8						
			*			0.5" Zeolite vein at 15°				2 - 4		ž						
								,			- 41	8						

on C ogy	: Ground N. Bearing: COMMENTS:	ProjO: Elk Elev: Date Started: E. Date Finished: Total Depth:	Core Scale	No: % Sulphides e: 1,	B 10' B.D.F	0		Assay	Assay	Assay
Section Section Zeolite Epidote Bictife Chlorite Fracturi Geolog	Mineralogy & Structure	Descriptive Geology		% Su Dril	Recov	Intervalé N % Rec'y. Sample Int	Cu.	MOS ₂	Au As	Ag A
-420 -430 -430 -440 -440 -440 -440 -440 -44	by Oil" Zeolitz vein s. parallel with axis.	Bolow 448', core is genera in color. Although obviously of toff and breecia, many have indistinct outlines. H are sharply outlined. Robally significant is the fo of Epidete below 460'. India marks and this streety s are 4. there are postably linewith.	lly diartier y a mixture Pragments lowever, some inst appearance no all income	-42 -42 -43 -44 -45	8 8 8 8					

,	Ca: Co·	sin -Or	No og C dir .nat	ol: nate		Ele	≩v:	Grour N. Bearing:	nd Elev: E.	Proj O : E Date Starte Date Finish Total Depth	d: ed:	Page Core Scal Logg	Siz	:e: ` !"≖	В 10'	0f .P.	2)		,	
	Ì	ALT	ER/		- 1 원	ogy	COMMENTS:	<u></u>	· · · · · ·			Ave Core Rec'y/Hole	Sulphides	ing val	e red	e al¢No.	y. Int.	Assay	Assay	ay	say
1	Section	Teslite	Epidor	Bie - i fo	Fracturi	Geology		ogy & cture		Descriptive G	eology		% Sul	Drill Threr	% Cor Recove	Sample Interval¢N	sample	Cu. As	MOS ₂ A	Au Assay	Ag Ass
بعبيه أيبيع أيبيع البقي المستابين والمستر والمسترين والمسترين والمسترين	190 190 520 520		+		Wesk Mad. Wesk Mederate Wess			vervitet with previets.		508: 110': Larg stall fragme SID'- 562': Epid locally with Below 520' c black, presone content of fig. Encelly some formatile.	is Thereis (is Thereis (ints of Pyroh. ints of Pyroh. is subrounded to subrounded to bly due to in mafice. slight	Tuff, for Tuff, Arogenetics	1-2 except locally where shown. 1	-498							

C C	ole asin o-On ncl:	ng (rdin	ol nati	≥s:	El	ev: Grou N. Bearing:	nd Elev: E.	ProjQ: Elk Date Started: Date Finished: Total Depth:	Page Core Scal Logg	Si: .e:	ze: !" <i>=</i>	B 10'		12)			,
Section		TERA	<u></u>	turine	Geology	COMMENTS :			Ave Core Rec'y/Hole	Sulphides	ílling	Core	Sample IntervaltNo.	ec'y. ple Int.	Assay	2 Assay	Assay	Assay
-540	2001	1. 2.		Frac	9 U	Mineralogy & Structure		Descriptive Geology	~ ^^	~	占,		Int Int	% R Sam	cr.	MOS ₂	٩n	Ag
						Sharp ornited at 20" to core tria "Zeolite point at 7" to core tria 1" blooded zone on either eide. "Zone with Strong Pyruh. discent. See vole on contect.	5(.2 Ti 3 5(: 577 577 577	- 562': Exercu (Bietilie) and off with Ploidal banding at xis. of core. Some poorly do ents at top. - 577': Parchyritic Toff, i f.g. Biotite. - 577': Parchyritic Toff, i f.g. Biotite. - 577': Solfides disse (Fragmente?) Solfides disse Price grained, and generally small elots. - Contact zohn is peculia Price overlying C.g. toff. Does to be a cub-aqueous pheno - 606': See over	id churry f.g. 60°-90° to timed ivego a point will, infrequent icm. wax) em., very sparse, Rare air. Augular wit sit within a het affer.v	2-4	-54:1 -55: -57: -57: -57:							

Hole No. Casing Corlar Ele Co-Ordinates: Inclination:	v: Ground N. Bearing: COMMENTS:	Elev: Elev: Date Started: E. Date Finished: Total Depth:	Core Scal Logg	No: $ 0$ Size: \mathcal{B} e: $ ''= \circ'$ ed By: \mathcal{B} .D.	F IR O	
Section Zeolife Eistife Bistife Chlorite Fracturing Geology	Mineralogy & Structure	Descriptive Geology	Ave Core Rec'y/Hole	% Sulphide Drilling Interval. % Core Recovered	LutervaleNc % Rec'y. Sample Int. Cu. Assay	MOS2 Assay Au Assay Ag Assay
Cove See Leen split, but allowedd, west, and with with a subsecutly west. A with with a subsecutly west.	Contact charp but highly invegolar. Grey Tuff helows contact is portially Bistitized within 1/2" of contact. -Contact sharp and planar at 22° to core whis. Contact sharp and planar at 30°. Contact sharp and planar at 60°. Contact sharp and planar at 60°.	 S98'- 606': Parphyritic Fragmer (0,1"-0.5") and only or defined. Note : Block at 608' is labelled 618' by drille cubsequent blockie wis caverded filmere authors for a verthis log. 606'- 620': Grey tuff with irrey. Green patches and microphenocrysts. Infreg fragments rounded to ange the opper foot and low file grained. 620'- 623' and 625'- 663': Fragments Biotite diminiterval Gui-652' and b 620'- 623' and 625'- 663': Fragments Biotite diminiterval Gui-652' and b 622'- 225': Andesite - Dike?-green. Shorp contacts. Vecke are identicat and ove choosed of or so find the grainets of or so find the file file file file file file file fil	nte small rasionally vell- pas mistakenly vs. bud all labelled. guimm in small ((0.02") Feldspan vent scatlerod ilar K 1" across. on 2" are mental tuff. Biotiti: miches during elow 654! A.g. light Enclosing in Alforitie alforitie si M. Antosile al Wistile diffication as (court.) h in Biotite.			

Hole No. Casing Collar Elev: Co-Ordinates: Inclination:		Proje Elk Date Started: E. Date Finished: Total Depth:	Core S Scale:	No: 12 Of 12 Size: 13 : 1"= 10' d By: -B.D.P.	<u>о</u>	•
Section Section Zeellie Ebidote TBiotite Chiavite Chiavite Geology Geology	COMMENTS: Mineralogy & Structure	Descriptive Geology	Ave Core Rec'y/Hole	% Sulphides Drilling Interval % Core Recovered Sample Interval No. % Rec'y.	Cu. Assay MOS2 Assay	Au Assay Ag Assay
	Sedimentary Earding contact overnetain but abroph Fully developed. Two opeciments taken at 687' for this-section study, indicate that this unit is an argillite, w 30%- 50% f.g. actine 30% alkali Feldspar, Chlorite,	625'-564': Fregmental T This unit appears to in the sense used b 664-718': Andesite, very dark greg-green, with mean inreg, veinlets intermixes minor Pyri Pides also occur as Rock appendix to be Rock appendix to be resting to one of the host-rests at Island At 683' sodimentary are beoutifully deve This curatically origination greg guarts veins developed in this ro a parallel with Islav contain a moderate of sulfide.	toff (cont.) be a Tuffile y Ridler. Pike grain, the grain, the grain, of Pyrch. and ite. Both sol- disseminations. Almost the important Copper. Isminations dispod. Atrid dark are sparsely ek type (again as Copper) and (SPO) armount nerty appearance. For a left) it hould be thin -	-642 -672 -673 -683 -573 -573 -703 -713 -712		

Ca	ole No asing p-Ordi nclina	Cori inate	ar El s:	.ev: Groun N. Bearing:	d Elev: E.	Proj O: Elk Date Started: Date Finished: Total Depth: 759',	Page Core Scal Logg	Siz e:	e: 1":	B : 10		13)		,	
Section	Flidete Brande		Fracturing Geology	COMMENTS: Mineralogy & Structure		Descriptive Geology	Ave Core Rec'y/Hole	% Sulphides	Drilling	% Core Recovered	Sample Interval€No.	% Rec'y. Sample Int.	Cu. Assay	MOS2 Assay	Au Assay	Ag Assay
0 0 0 100000000000000000000000000000000			Weak		-	17.5': Epidote-altered A Tuff-Breccia. Numerous in moule (most of them rich in a medium-green f.g.w often porphyvitic in Feldo sulfide is Parite.	ndecite veg. frag- in Epidate) Natrix ipar.		- 6							
· · · · · · · · · · · · · · · · · · ·				set of weak closely- spaced seclite using with red (Hematitic ?). stain.		• • •		increaside	- 28	-					-	
- 1			Weak	" 30ne at Caleitie and Zualite voius at 20°-229 (Veius are monomiumatic)		Perphyritic Mostly fine - grained, Poupl	n. in sections.	2-3	-38							
			12 MA 12			o'- Thin-section identified Audesite flow with Plagioclas Epidote veinlets seveloped in of breccia.	a phone custe	1	-58							

Hole No. Casing Collar Elev Co-Ordinates: Inclination:	r: Ground N. Bearing:	Elev: E.	Project: Elic Date Started: Date Finished: Total Depth:	Core Scale	No: { Size: e: !" ed By:	。 13 = 10'	Df 13)		•	
Section <u>Equivate</u> Zeolite Fracturing Geology	COMMENTS: Mineralogy &			Ave Core Rec'y/Hole	% Sulphides Drilling	Interval. % Core Recovered	Sample Interval\$No. % Rec'y. Sample Int.	Cu. Assay	MOS2 Assay	Au Assay	Ag Assay
Wesk Start S	Structure Steep (15t to core Bais) zong of Zeclity verning and day struction pocsility come Paulting. Chloridie slip at 45% Irrog. contact.	6 - 117, Most	Actually, an as S', Epidote - Altered Programme altered to Programme altered to Notice Pelsice ics, Matices an Porphyvies with 118.2': Estrophical Ate (classical) in spars in otata. Some thin, as it opper content. 22', 123-126': Heterogeneon ided to subrounded, of vol- banded rock, to 2" dia	soutment of eluding pouphy- e ware, now. Epidote rare white forag- e Chi; vite Chlavitic ous Pragments, leanic and	· · · · · · · · · · · · · · · · · · ·	58 8 8					

Hole No. Casing Collar Ele Co-Ordinates: Inclination:	v: Ground N. Bearing:	Proje Elk Elev: Date Started: E. Date Finished: Total Depth:	Page No: 3 Of 13 Core Size: B Scale: $i'' = 10^{\circ}$ Logged By: T3. D. P.
Section Kivide fe Zee lite Fracturing Geology	COMMENTS: Mineralogy & Structure	Descriptive Geology	Ac Core Sample Intervalé No. % Sulphides Intervalé No. % Core Sample Int. % Recovered % Rec 'y. % Rec 'y. % Rec 'y. % Assay Au Assay Ag Assay
	- gradational contact	122'-123': Rhyodacite with may be large boulder. 126'-197': Audesite Tuf to 6'-117.5'. Unit bi colar downward. 73 abrupt at 38° to co by thin sheared up Groundwass generis to white below to only hazily defined oury vauch of this i	f-Breccia similar . 138 ecomes lighten in ottom contact in.

Hole No 2 Casing collar Ele Co-Ordinates: Inclination:	ev: Ground N. Bearing:	Pro t: Elk Elev: Date Started: E. Date Finished: Total Depth:	Core Scal	e No: 4 e Size: 73 .e: 1" = 10 ged By: 73	``	>	,	
Section Section Khidofe Zevite Fracturing Geology	COMMENTS: Mineralogy & Structure	Descriptive Geology	Ave Core Rec'y/Hole	% Sulphides Drilling Juterval	<pre>% COLE Recovered Sample Intervalt No. % Rec'y. Sample Int.</pre>	Cu. Assay	MOS2 Assay	Ag Assay
- 190 L - 190 L - 200 L - 197 L - 201	Contact abrupt at 38% - contact sharp at 26% - Contact sharp at - Sphrox. 15% - Sontact sharp at 109	126'-197': And Tuff Breccie Fragmental texture more defined over bottom sever seattered danker firagments of material, 200'-205': Dacite crystal tuff Andesite fragments to 2" in 205'-210': Same as 197'-200'. 210'-224': Same as 200'-205' some rounded Andesite fragme 6" in diam, Where darker, with rocks at collar. 224'-225': Probably same but dart (Qtz-Cal.) vein material. Prob 221'-245': Andesite Tuff, fine-s grey, slightly porphyritic. F Surg sughtly porphyritic. F Dart small (XC-2") momentous	sharply al Peet. desite, with f similar with scattered diam. , but with ents up to identical ker. white . some Beolite rained dark					

Hole No. Casing Corla Co-Ordinates Inclination:	: N.	Proje Elk Elev: Date Started: E. Date Finished: Total Depth:	Core Scale	No: Size: e: 1" <u>-</u> ed By:	В	E 13	3		
ALTERATION			Ave Core Rec'y/Hole	ulphides lling	Interval. % Core Recovered Sample	rval¢No. c'y. le Int.	Assay	2 Assay	Assay
ວຍ ອີ. - 240	Mineralogy & G O Mineralogy & G Structure	Descriptive Geology 227'-245': Andesite Tuff (cont.)		% S Dri	Record	Inte % Re Samp	Cu.	MOS2	- I - I
- 245	* Contact sharp at 55°	245'-262': Dacite Crystal Tuff, sam Some f.g. Andesite Nagments to a Fine-grained (chill?) border at b:	4" diam.	- 24	7				
-260	. Contact sharp but ivveg. It sporax. 450.	262'-270': Andesite Toff, f.g. dark g several large, ivreg. subrounded of overlying unit near top.	ivey, with fragments						
	en e-Sharp but irveg.	270'-282': Dacite Crystal Toff, but veined. Dirty-looking. Sheared	oltered and 3 276'-278'.						
- 280 - 282 - 282 - 270 - 270 	gradational over 1"	282'- 321': Dacite to Andesite. S tion, shearing, veining. Very comp with Feldspar phenocrysts.							

Hole No. Casing Colla Co-Ordinates Inclination	3:	ev: Groun N. Bearing:	Project: Elk Date Started: E. Date Finished: Total Depth:	Core Scal	No: Size: e: i" ed By:	: B = 10')	,	
ALTERATION	Fracturing Geology	COMMENTS: Mineralogy & Structure	Descriptive Geology	Ave Core Rec'y/Hole	% Sulphide: Drilling	Interval. % Core Perovered	Sample Sample IntervaltNo. % Rec'y. Sample Int.	Cu. Assay	MOS2 Assay	Au Assay Ag Assay
300 300 300 310 310 310 310 310		- Sedimentary contact at approx. 55°. - Svd. contact at 50°.	321'-325': Frech Andesite Cry 325'-389': Porphyritic Daci Upper 2' compler with and silica (?).							

Hole No. Casing Collar Elev Co-Ordinates: Inclination:	N. Bearing:	d Elev: E.	Proje Elk Date Started: Date Finished: Total Depth:	Core Scal Logg	No: Size: e: 1"= ed By:	13 16		2		•	
ALTERATION Sec tion Fracturing Geology	COMMENTS: Mineralogy & Structure		Descriptive Geology	Ave Core Rec'y/Hole	% Sulphide Drilling	Interval. % Core Recovered	Sample Interval¢No % Rec'y. Sample Int.	Cu. Assay	MOS2 Assay	Au Assay	Ag Assay
-340 -370 -380 -380 -380 	l" Otz. (chevt?)-pyvite zone at coe.	389'- sin	89': Porph. Darite to Ande 397': Same as overlying milar to Top 2' of averly 423'; Same, with variable eld your pheno. development pper foot as in top of ou his section may contain seve	unit. Top 2' ing unit.							

Casin Co-On Incl:	No. ng Corar Ele rdinates: ination:	N. Bearing:	ad Elev: E.	Proje Elk Date Started: Date Finished: Total Depth:	Core Scal	No: Size: e: 1": ed By:	B = 10'		0			
Section	Fracturing Geology	COMMENTS :	r		Ave Core Rec'y/Hole	% Sulphides Drilling	rral. re ered	le valé No. 'y. e Int.	Assay	Assay	Assay	Assay
Sec	Fractu Geol	Mineralogy & Structure		Descriptive Geology		% Su Dril	Lute % Co	Sample Sample Interval % Rec'y. Sample 1	Cu. A	MOS ₂	Au As	Ag As
-423		gradational contact.	423'- 5 with Yea to day gradat fragmi	03': Andesite, porphyriti ssonably consistently fine gu k green groundwass. Uppe rional. At 503' there are ents.	c in Feldspar, rained medium in contact is a few angular							
- - - - - - - - - - - - - - - - - - -				· · · · · · · · · · · · · · · · · · ·								
- - - - - - - - - - - - - - - - - - -				·								
-460						-						
				· · · · · · · · · · · · · · · · · · ·								

Cas Co-	le No sing Co Ordinat	ílar tes:	Ele	v: Ground N. Bearing:	i Elev: E.	Proj : Elk Date Started: Date Finished: Total Depth:	Page Core Scal Logg	Siz e: /	e: ''=	13 10°				•	
Section	ALTERAT	acturing	Geology	COMMENTS:	·		Ave Core Rec'y/Hole	Sulphides	illing	Core	Sample Interval&No. % Rec'v.	ple Int.	Assay	Assay	Assay
มั เร - 483		Frad	ŏ	Mineralogy & Structure	De	escriptive Geology		%	片		Sal Sal R R R	Sam	MOS 2	Αu	Ag
-480			14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		488' - Th extros plagiool	in section indicates re ive Trachyte porphyry lase phenocuysts.	with altered								
1 1 1 1 5 <u>0</u>					bodhy altera Belon aeur	": Andesite - some as shalloved, faulted and ation. us SIG', rock appears ecus with possible f ibly an ash flow.	with Chloritic								
				Gtr. verning sut discont. Ostoite.											

Co-O Incl	No C .ng Coll Ordinate .ination	s: :	N. Bearing:	nd Elev: E.	Date Started: Date Finished: Total Depth:	· · · · · · · · · · · · · · · · · · ·	Core Scal Logg	e: ed B	(* = }y: 1	10' 13.D	.P.			<u></u>	<u></u>
	TERATIO	ac tur ing Geology	COMMENTS:		· · · · · · · · · · · · · · · · · · ·		Ave Core Rec'y/Hole	ulphides	lling	erval. ore vered	Sample Intervalt No.	c'y. <u>le Int.</u>	Assay	Assay	Assay
다. Section		Fract Geo	Mineralogy & Structure		Descriptive Geol	ogy		% S	ЧЦ.		Sam	% Re Samp	Cr.	MOS ₂	Au A
540 547 550					· 548' : Andresite · 627' : Andresite		Ash-flow								
660					offs.										
575						. •									
580							/								

Ca Co	ole No ising C o-Ordin iclinat	oila nates	::	lev:	N. Bearí	Ground	Elev: E.		Pro Ot: Date Star Date Fini Total Dep	ted: ished:		Cor Sca	e No: e Siz le: ged B	:e: \"=	13 10'	0£ 5.[?]	13	>		, ,	
Section	ALTERA	TIO	04	COMMENTS:								Ave Core Rec'y/Hole	Sulphides	Drilling	Core overed	mple erval¢No.	% Rec'y. Sample Int.	Assay	2 Assay	Assay	Assay
			Fra		logy & ucture			De	scriptive	Geology			24	보는	Rec /	Sa Int	% R Sam	S.	MOS ₂	Αu	Ag
-615 -615							-548	3-627		site to D	acite f	Istr Flows									
627 627 623 637 640								75 87'- 7	H. Uppe	esite, fini	e-grain	e Crystal led. ed. dorth erous in reg									

Co-Ordinates: N. Inclination: Bearing	ound Elev: E. Date Started: Date Finished: Total Depth:	Page No: 12 Core Size: B Scale: 1"= 10 Logged By: 3	s' .Ъ.₽. —————————————————————————————————	
ALTERATION COMMENTS:		Ave Core Rec'y/Hole Drilling % % %		52 Assay Assay Assay
	Descriptive Geology 637'-703': Andesite (co			AU A
-670 				
-690		•		
-700 -703 -703 -705 -710 -710	703'-708': Chloritized Fault and Calcite Filling. Rock s ilized Fram. 675' to 712! 708'-784': Audesite (came	hattered and Chilor-		

Ca Ca	asing o-Ord	cori inate ation	ar El s:	ev: N. Beari	Ground Elev: E. ng:	Proj O: Elk Date Started: Date Finished: Total Depth: 759'	Core	No: / Size: e: !"= ed By:	13 10'	of 13	2			
íon	ALTE	RATIO		COMMENTS:			Ave Core Rec'y/Hole	ulphides 11ing	erval. ore vered	Sample Sample Interval&No. % Rec'y. Sample Int.	Assay	Assay	Assay	Assay
Section			Fracturing Geology	Mineralogy & Structure		Descriptive Geology		% Si Dri		Sam Sam Samp	Cu.	MOS ₂	Au A	AGA
- - - - - - - - - - - - - - - - - - -					734'- Þi	-750': Andesite (cont.) -750': Andesite - some voo st sericitized and chlorit powder.	ek as above, izeid. Almost							
						- 759': Andesite - Some as 738' - 734'. Unaltored.	637'- 703' oud							

Hole No Casing Cerlar Elev Co-Ordinates: Inclination:	N. Bearing:	d Elev: E.	Proj O: Elk Date Started: Date Finished: Total Depth:	Core Scal	No: Size: e: !" ed By:	B = 10	Of 1	5 1501	-		
Section Fracturing Geology	COMMENTS:	······	·	Ave Core Rec'y/Hole	ulphides 11ing	erval. ore vered	Sample Interval¢No. % Rec'y. Sample Int.	Assay	Assay	ssay	ssay
C Sec	Mineralogy & Structure	De	scriptive Geology		% S Dri	Reco	Sam Inter Ree Sam	Cu.	MOS2	Au As	Ag As
-10 13 -25 -30 -40 -40 -43 -50 -50 -50	1' Zeolite univ at 2.30	0-13' 13'-25': Srogn Volu	Andesite Crystel T aents to 0.1", less th me. Gredes down into Andesite Tuff-Break stinct, varely to 1" in								

Hole No. Casing Collar Elev: Co-Ordinates: Inclination:	Ground Elev: N. E. Bearing:	Proj : Elk Date Started: Date Finished: Total Depth:	Core Scale Logge	No: 2 Size: B e: 1"=10" ed By: 3.0	». P.)	· ·
ALTERATION COMMENTS COMM			Ave Core Rec'y/Hole	% Sulphides Drilling Interval. % Core	umple imple iervali No tec'y. iple Int.	Assay 37 Assay	
	alogy & D	escriptive Geology			Int San San San	Cu. A	Au Ag
-70 -70 - 20 - 20 - 11 - 500 - 11 - 500 - 11 - 500 - 11 - 500 - 11 - 500 - 11 - 500 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	25'- 90 act gradational 90'- 11 dav dif	: Andesite Toff-Brecc 6': Decite Ereccia. Frag ker than groundmass, irr fose borders.	v et 22°.				

Hole No. Casing Corlar Elev: Co-Ordinates: Inclination:	Ground Elev: N. E. Bearing:	Proj O: F1k Date Started: Date Finished: Total Depth:	Core Scale	No: 3 Size: :: 1"= :d By: 7	ני יכו	C:	¢	- -
ALTERATION U U U U U U U U U U U U U U U U U U U	:	· ·	Ave Core Rec'y/Hole	ulphides [ling erval.	% Core Recovered Sample IntervaleNo.	c'y. le Int. Assay	Assay	Assay Assay
J J J O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O	llogy & ructure	Descriptive Geology		Dr f]	Recov Sam	% Rec Samp	MOS ₂	Au Ai Ag Ai
$= \frac{122}{130}$ $= \frac{130}{130}$ $= \frac{1410}{150}$ $= \frac{1410}{150}$ $= \frac{150}{160}$ $= \frac{160}{110}$ $= \frac{160}{110}$ $= \frac{1100}{100}$ $= \frac{100}{100}$ $= \frac{100}{100}$ $= \frac{100}{100}$ $= \frac{100}{100}$ $= \frac{100}{100}$	123'- 129'- 129'- 129'- sharp ut 20'- sharp ut 20'- IS4' this ctimolity veinlet uncas i wich yeite. Prob- hart causing it is.	-123': Crystal Tuff (con -129': Complex zone with which discour. Pyrichatite and cluster's of coarse Activality similar sections accound at and 242'-255' and in DDI 365'. -147': Dacite tuff with m lives. Programs and which discouringtions and which discouringtions and using Pyurhotite. -163': Rhyodacite Crystal I Folded an phone syst: and sm o,2") dark green matic Bottom contact is shirt and isregolar, marked by 011" swall cluck Activities coyst '-170': Andecite Tuff - say 154': Crude Walstingt bu '-186': Rhyodacite Crystal I Complex - 154': 152'.	h siliez nd vodiating e crystals. 2501-2261 H-1 at 3521- nottled dark Pyrite as 12. Minor grog fo sly welded. Toff White hall (0.1"- elats. using toff we as 1411- nding toff toff highly					

	lo-	e No ing Ordi lina	Collanate: tion	ar E s: :	lev	: Groun N. Bearing:	d Elev: E.	Proj : Elk Date Started: Date Finished: Total Depth:	Core Scal	si: le:	ze: ≀"=	13 10	оf , Д. Р.	71)			· · ·
ion	ſ	LTER	ATIO	ring	01089	COMMENTS:			Ave Core Rec'y/Hole	Sulphides	ling	rval. re ared	le Valé No.	·y. e Int.	Assay	Assay	Assay	Assay
T Section				Fract	CeC	Mineralogy & Structure		Descriptive Geology		" Sn	D-11		Sample Interval¢N	% Kec Sampl	Cu. A	MOS ₂	Au As	Ag As
						Coalact is some inreg- Ont Actinolity unit- let as at 1631.	186'- 196' 187'-	186': Rhyodacite Coysta 198': Andreite Toff- 1471-154', 163'-170' All flow attitudes. Contor and by Litvary over seve Order lying section is port of came conting 266': Decite to Rhyod Brechie. Frie-grainsed, whetrix with 20% dar Pragnings (to 1" more d diffuse borders. Relow 202' matrix co spor phenocrysts. Relow 219', Fragments and are indistinct. This section identified som centre of flow or ma This-section identified as Ash tuff. Note: This species 872 Apatite, 60% series wetite, 15% Alkali Fell This rock is exposed where Folle called it brite. Magnetite conten appear very basic.	Same as sorts of t gradultional walfret. creating on it. acity Toff- light grey he ivergular iam.) with intains Feld- affersu varely as Trachyte rgin of sill. s sericifized nen contains ite. 15 % Mag- dspar. in outcoop an Iguin-									

Hole No C Casing Collar Elev: Co-Ordinates: Inclination:	Ground El N. E Bearing:	Date Started:	Core Scale	ک Size: : ا"ع d By: "	B 10'	£ 17 1?		,	,	
c tion c turing cology	MENTS: Mentogy & Structure	Descriptive Geology	Ave Core Rec'y/Hole	% Sulphides Drilling	% Core Recovered	Sample Intervale No. % Rec'y. Sample Int.	Cu. Assay	MOS2 Assay	Au Assay	Ag Assay
	Bee not a su canduct	1981-266': Decite to Rhyode Toff-Breecis (cont.) Contact at 266' is sharp bo irrespelor, with irrag, seam waderlying f.g. black rack up 4"-s" into coerlying v 2.65' 241': Andreite, light to gerne. Groundmass five ger both margins for 8' at top ot bottom. Well-developed structore internally. Cryste max. 0.02". Several frage at 222'. Rother thick fo <u>Prol. bly sill</u> .	t bights s or penetrating wit, wit, and bt and bt crystal als autodist ments voted							

Cast Co-(e No. (ing Colla Ordinates lination	ar Ele s:	ev; Grou N. Bearing:	nd Elev: E.	Projee: Kilk Date Started: Date Finished: Total Depth:	Core Scal	No: (Size: e: /"; ed By:	B	r;	ر			
Section		ring ogy	COMMENTS:			Ave Core Rec'y/Hole	% Sulphides Drilling	Interval. % Core Recovered Samole	Interval¢No. % Rec'y. Sample Int.	Assay	Assay	Assay	Assay
		<u>Fractu</u> Geol	Mineralogy & Structure		Descriptive Geology		Drj	Reco	Inte % Re Sam	C	MOS ₂	Au /	AB.
200 			Sharf verse. contact.	-3 4(1)-	"I': Audersite (cont.) Si stat: (Phyodocite ? - ight gory, locally with phyodustry locally with phyodustry live size in so 266'. So live from 240 identical with contiant 10 2221, contains root of flack remains root 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Medium to Feldspor o Darito to ection 1981- lito 3551 France 2501							

Hole No. Casing Colar Elev: Co-Ordinates: Inclination:	Ground N. Bearing:	d Elev: E.	Proj : Lilk Date Started: Date Finished: Total Depth:	Core Scale	No: Size: 2: 1' 2d By:	B "= 10		د ر.			
ction cturing ecturing	MMENTS:	· · · · · · · · · · · · · · · · · · ·		Ave Core Rec'y/Hole	Sulphides rilling	core.	Recovered Sample Interval&No.	mple Int.	S2 Assay	ເ ທາ	Assay
-320	Contact shart at 45°. In the bad sirves at approved of the	- 34 % . 	Descriptive Geology 19151: (Rhyoducity (cent Fine-gramment at margine, st admire in dive, or 6701: (Rhyoducity t- 1 6701:	2661-2411 orystalling urrystalling urrystalling urrystalling of Jud Sam- with 2801- ing systematic twolder existally of Jud Same	2r		Rec Sa Int	A 9 Sam	MOS ₂	Au	Ag

c c	o-Or	din	Ŋ3 611a ates ion:	:	lev	v: N. Beari	nd Elev: E.	Date Date	Dt: Elk Started: Finished: 1 Depth:		Core	e Siz le:	:e: ":	E - 10		ļ,				,
Section	LIA	ERA	TION	ъđ	Geology	COMMENTS :					Ave Core Rec'y/Hole	lphídes	ling rual	re ered	Sample Intervalt No.	'y. e Int.	Assay	Assay	Assay	
Sec.				Fract	č	Mineralogy & Structure	 	Descrip	tive Geology		фн,	"S "	Dril Inte	% Co Recov	Samp Inter	% Rec Sampl	Cu. A	MOS ₂	Au As	!
								3481-5701 : (cont.)	Rhyodacite)	-10	Daries					- "				
-48. 																		i - I		
																	-			
لىسىلىدى <u>ت</u>							·		•									- -		
											· . ·									
 									anter - constanting data			4					ļ			

-	Ca Co In	le No sing -Ordi clina	Col inat inat	lar es: on:		N. Be	d Elev: E.		Proset: Date Sta Date Fir Total Da	nrted: nished:			Core Scale	Size	9 : 12 * = 10 : 13	ი'	>	•	, 	· · · · · · · · · · · · · · · · · · ·
	Section	ALTEI	TA	ON	<u>Fracturing</u> Geology	COMMENTS:	 					Ave Cor Rec'y/H		Sulphide	Interval. A Core	Sample Interval¢No.	c'y. le Int.	Assay	Assay	Assay
	Seci				Frac Geo	Mineralogy Structu				e Geology		• ,		S %		Sam	% Re Samp	Cu.	MOS 2	Y Y Y
								3'a'- 5 (75': 181 (cont)	lyadacite	to D.	acite								
	مربع المربع مربع المربع ا لمربع المربع ال										·									
	<u></u>																			

Hole No Casing C11 Co-Ordinate Inclination	25: 1:	N. Bearing:	d Elev: E. Date Started: E. Date Finished: Total Depth:	Core Scal	e Siz le:	: 10 :e: 7 1''= y: 1	3. 10'	: ا ب)		,
Section	Fracturing Geology	COMMENTS: Mineralogy & Structure		Ave Core Rec'y/Hole	sulphides	Drilling Juterval	Recovered Sample	Interval¢No. % Rec'y. Sample Int.	. Assay	MOS2 Assay	Assay
			Descriptive Geology 298'-570' : Rhyddaeita te (cart.)	b Davity	6		Re	11 %	C	OW	Au
70		Highly invege contact.	570'-588': Chalk-White F.g. R. glowing-ash deposit? To centact <u>orderwidg</u> inarga 6' some, with 3' section 2ite containing Oil" word 57.'. 510': Silico-rich wolthe Graders down into- 590' 604': Mattled Anderile, with nemerous dook street congregenised Actinction	Bottom tor over of fig. Dar fie clato. d verter davk gray							

ing: Total Depth:		e: 1"						
	Ave Core Rec'y/Hole	lphides ling	re re ered	valt No. 'y. e Int.	ssay	Assay	say	Assay
Descriptive Geology		Dril	Recov	Inter 7. Rec Sampl	Cu. A	MOS ₂	Au As	Ag As
6001-6221: Rhyodacite (Ca Gord-6221- light gray gramm north 1 patches ouit are tight gray with phenes. At GOG offer contact we direct the hower contact therp bloc surve 1' off core standing. Offer cont iv only, afferently fraintly wight side 6231-6321: Andrith (flow 6331-6321: Dark grain Acc	vychal Turiti) with di Turiti Maugine off the swall felderar widdeling widdeling but highly iverge heugth. Ne act lighter yuched in size. op.							
	 Descriptive Geology 540'- SC4': Notifed Ander Gove- S22': Rhyodacite (Construction S22': Rhyodacite (Construction S22': Rhyodacite (Construction S22'- Hight grow and the second of the second structure of the second stru	Ave Core Rec'y/Hole	Ave Core Rec'y/Hole State 6 Bescriptive Geology State 540'-522': Abstiled Andesite (cont.) 600'-522': Abstiled Andesite (cont.) 600'-522': Abstiled Andesite (Cont.) 600'-522': Abstile distance 600'-522': Abstiled Andesite (Cont.) 600'-522': Abstile distance 600'-522': Abstile distance 600'-522': Abstile distance 600'-522': Abstile distance 600'-500': Assisted and the distance 600'-522': Abstile distance 600'-500': Assisted and the distance 600'-522': Abstile distance 600'-500': Assisted and the distance 600'-522': Abstile distance 600'-500': Dack grown Andride Tost.	Ave Core B & Rec'y/Hole B & B B B B B </td <td>Ave Core Rec'y/Hole Ave Core Rec'y/Hole Ave Core Rec'y/Hole 6 6 7 6 7 7 7 8 9 9 10 11 12 14 15 15 16 17 17</td> <td>Ave Core Rec'y/Hole But and a site (could) 6 10 6 10 11 12 12 13 14 14 15</td> <td>Ave Core Rec'y/Hole By and a start 6 1 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 2 3 2 3 3 3 3 4 4 4 4 4 4</td> <td>Ave Core Rec'y/Hole Ave Core Rec'y/Hole Ave Core Rec'y/Hole Ave Core Rec'y/Hole 5 Bescriptive Geology 5 Set ave State /td>	Ave Core Rec'y/Hole Ave Core Rec'y/Hole Ave Core Rec'y/Hole 6 6 7 6 7 7 7 8 9 9 10 11 12 14 15 15 16 17 17	Ave Core Rec'y/Hole But and a site (could) 6 10 6 10 11 12 12 13 14 14 15	Ave Core Rec'y/Hole By and a start 6 1 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 2 3 2 3 3 3 3 4 4 4 4 4 4	Ave Core Rec'y/Hole Ave Core Rec'y/Hole Ave Core Rec'y/Hole Ave Core Rec'y/Hole 5 Bescriptive Geology 5 Set ave State

C.	asing o-Ord nclin	o. Coli inate ation	ar El s: ;	ev: Groun N. Bearing:	nd Elev: E.	Proje Filk Date Started: Date Finished: Total Depth:	Core Scal	Si:	ze:	12 13 14 16 16	, ¹		2		•	•
ton	ALTE	RATIO	Fracturing Geology	COMMENTS:			Ave Core Rec'y/Hole	Sulphides	ling	Interval. % Core Recovered	·le val€No.	ارہ 🛥	Assay	Assay	ssay	Assay
Section			Fract	Mineralogy & Structure	·	Descriptive Geology		% Su	Dril	Lote Recov	Samp Inter	% Rec Sampl	Cu. A	MOS ₂	Au As	Ag As
					۲۳ <i>۵</i> ۲	- Still: Production Bre. Site. Top fact and lower t show trown waters; rest green.	e to Ande- two Prot ic light									
	ił			ervia fostado al 535 Milio de como de	,1;fl, ••	Lewer constant diliceous.	- 11-									

Hole No. Casing Collar Elev: Co-Ordinates: Inclination:	Ground Elev: N. E. Bearing:	Proje	Core Scale	No: Size: e: / ['] ed By:	73 5 1 6		0		•	•
ALTERATION COMMENTS:		· · · · · · · · · · · · · · · · · · ·	Ave Core Rec'y/Hole	ling	rrval. Dre vered	le valt No. 'y. e Int.	Assay	Assay	ssay	Assay
5 1 0 1 1 0 1 1 0 2 0 0 3 0 0 4 0 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 6 1 0 7 1 1 6 1 1 7 1 1	ture	Descriptive Geology		% Su Dril	Lute % Co Recov	Sample Sample IntervaleN % Rec'y. Sample Int	Cu. /	MOS ₂	Au As	AB As
-735 -745 -745 -745 -755 -755 -755 -775 -77	1727'- 1919, at 201 743'- au clo 1953'- 29 29 29 29 29 29 29 29 29 29 29 29 29	7421: Andersite Cogatal 7571: Andersite Cogatal 7571: Andersite Plans Norm Plan grained in 7521: Andersite Flow Pre- de Enadoring with light at our intering with light at our intering with light at our intering to be paris still the ing filled, a phen in the ing filled a phen ing filled a phen in	tol tory, control, control, chlaritic fi subrook and corrysts and corr							

Casi Co-O Incl	No. ng Cora rdinates ination:	:	ev: Grou N. Bearing:	nd Elev: E.	Proje Elk Date Started: Date Finished: Total Depth:	Core Scal	e No: e Size e: ed By	e:]: ''= 10	j.		0		•	,
Section	TERATION	<u>Fracturing</u> Geology	COMMENTS:		:	Ave Core Rec'y/Hole	Sulphides	UTILLING Interval.	vered ole		Assay	Assay	Assay	Isay
- 03T-		Era C	Mineralogy & Structure	De	scriptive Geology		"S"		Recover Sample	% Rec Sampl		MOS ₂	Au As	Ag As
-					14': Diorite (con	+)								
-710														
-501														
-Cut						•								
814		~		need. Stoped	": Androite (TUFF) howev appears to L >. 45". Possibly a regimal attraction	e player of								
231			en Santa ann an Ann An Ann an Ann	CARA 221 W.ore 2121 2124 2124 2204 2212 2212 2212 2212	i Dirivita, but now wates than section but uny unviate that on the private and group with grown that grown but grown that grown but grown	Aplex Moch From 7754 Lower contest at appendix 455								

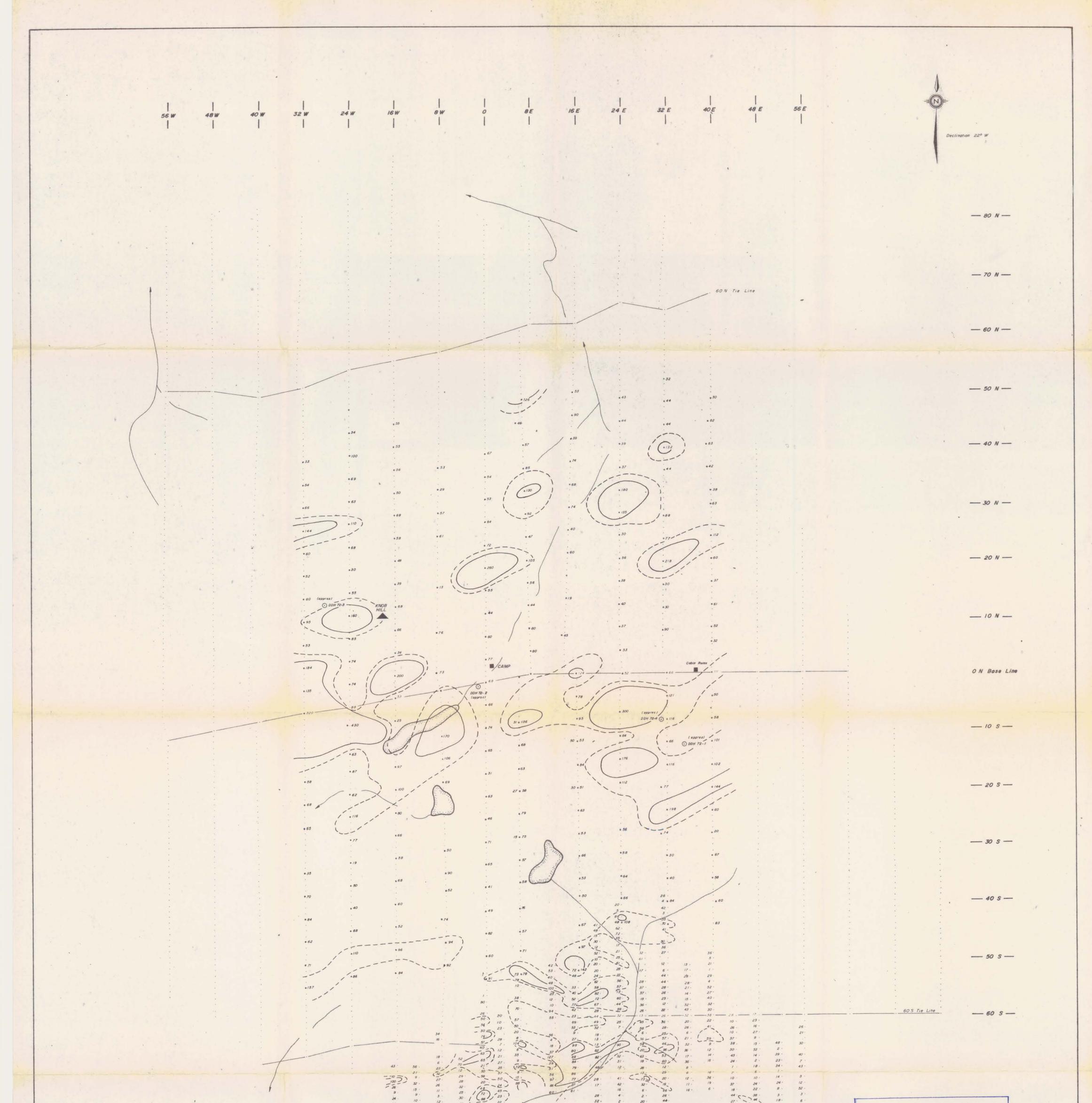
Ca Co Ir	ole No. asing Co- ordinate aclination	s: :	N. Bearing:	nd Elev: E.	Proj : Elk Date Started: Date Finished: Total Depth:	Con	te Si le:	ze:	75) = 1 0	of 17 51 D.F.)			•
Section		Fracturing Geology	Comments:	·····		Ave Core Rec'y/Hole	luhides	ling	ore ore	Sample Intervalé No. % Rec'y. Sample Int.	Assay	Assay	Assay	Assay
_çu∼		Fra	Mineralogy & Structure		Descriptive Geology		% S1		Rec of	Samp Samp Rec Sampl	Cu. A	MOS ₂	Au As	Ag As
			- Judry, Scolard of Dyprox, 300,	531 - -	Prove Lientry white - Rhy remet die thy white, wi liftuse matic spots thre atomat Londing, bot op solimouting towning for with the Southet. Provi with the Southet. Provi with the Southet. 19 Fit sith winer fyrite at 25	alder warden								
			- Contractor Contractor	24.1	- part : dan avera									

Co-Ordinates: N. Inclination: Bearing:	Proje Lik nd Elev: Date Started: E. Date Finished: Total Depth:	Page No: 12 Of 17. Core Size: 12 Scale: 12 - 15 Logged By: 12. N.P.
E C C Mineralogy &	Rec	A Sulphide Drilling Drilling Lore Recovered Sample IntervaleNo % Rec'y. Sample Int. Cu. Assay MOS2 Assay Au Assay Ag Assay
Participant Structure Participant Participant Participant	Descriptive Geology 2711-7421: Androite (tep 51) dari Conjutat toth. 2 applied toth. 2 applied toth. 3 applied 1: Control medium to con- grained, 776 molice. 9451-9551: Some as 9431-9441. 9501-950.51: Androite, some as d 9501-950.51: Androite, some as d 9501-9531: Androite some as 943 9511-9531: Androite some as 943 9531-9741: Disvite, very complex	$r_{1}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$ $r_{2}r_{2}$

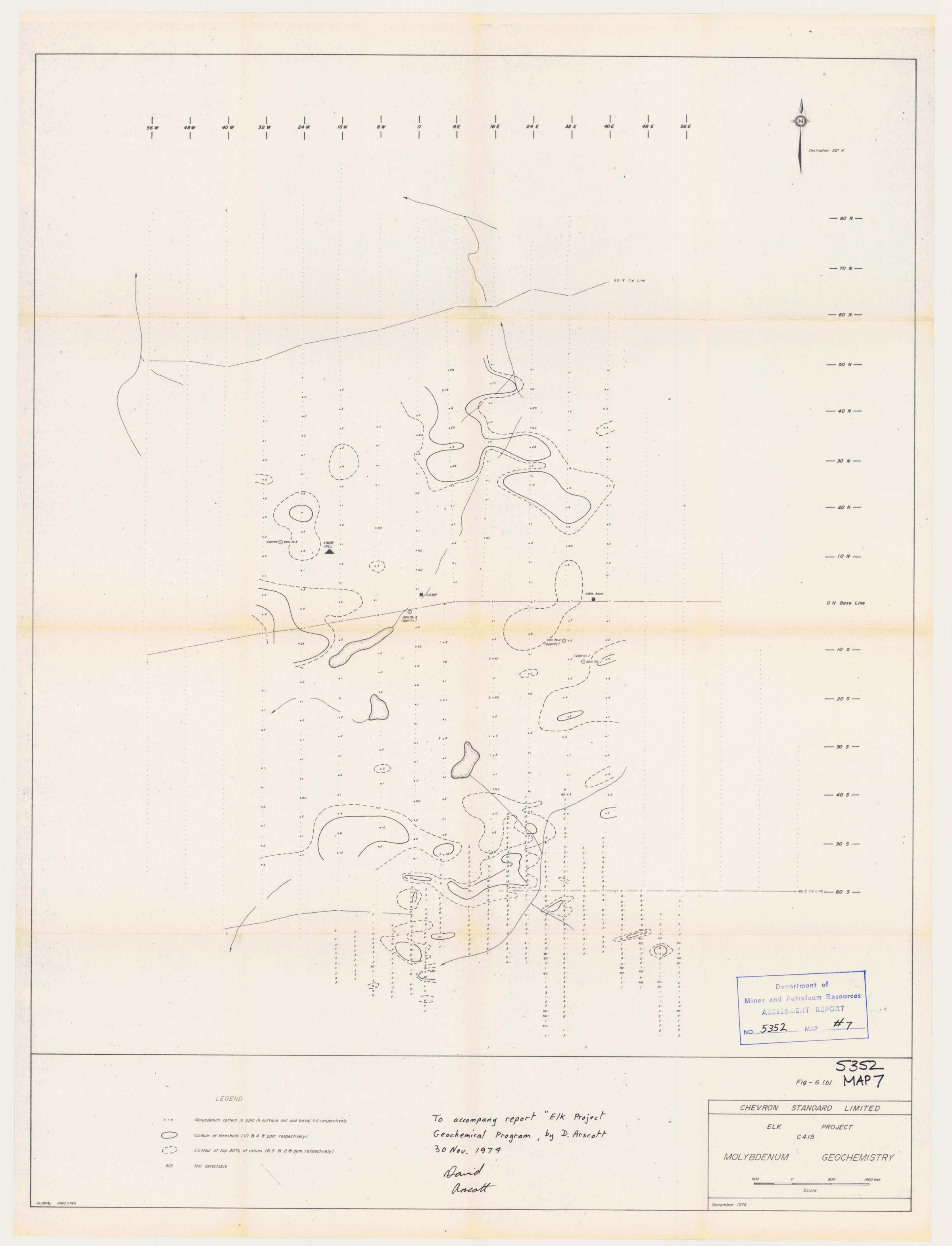
ALTERATI	uring logy	Bearing: COMMENTS:	Date Fini Total Dep			e: 1" ed By:	飞.1		ay	Assay
	Fracti Geo	Mineralogy & Structure	Descriptive			% Sul	A COTE Recover Samle	Intervalt No. % Rec'y. Sample Int.	Cu. Assay	MOS2 Ass.
			-1521-9771: Dio	rite (cout)						
					- - - -					
		r Contact stars star	979'- 981': Ander							
			ASI'- 926' : Audesi irregular.	t charle at 209. te Tult. Lower						
			1861-9981: Jampi	ex bieville.						

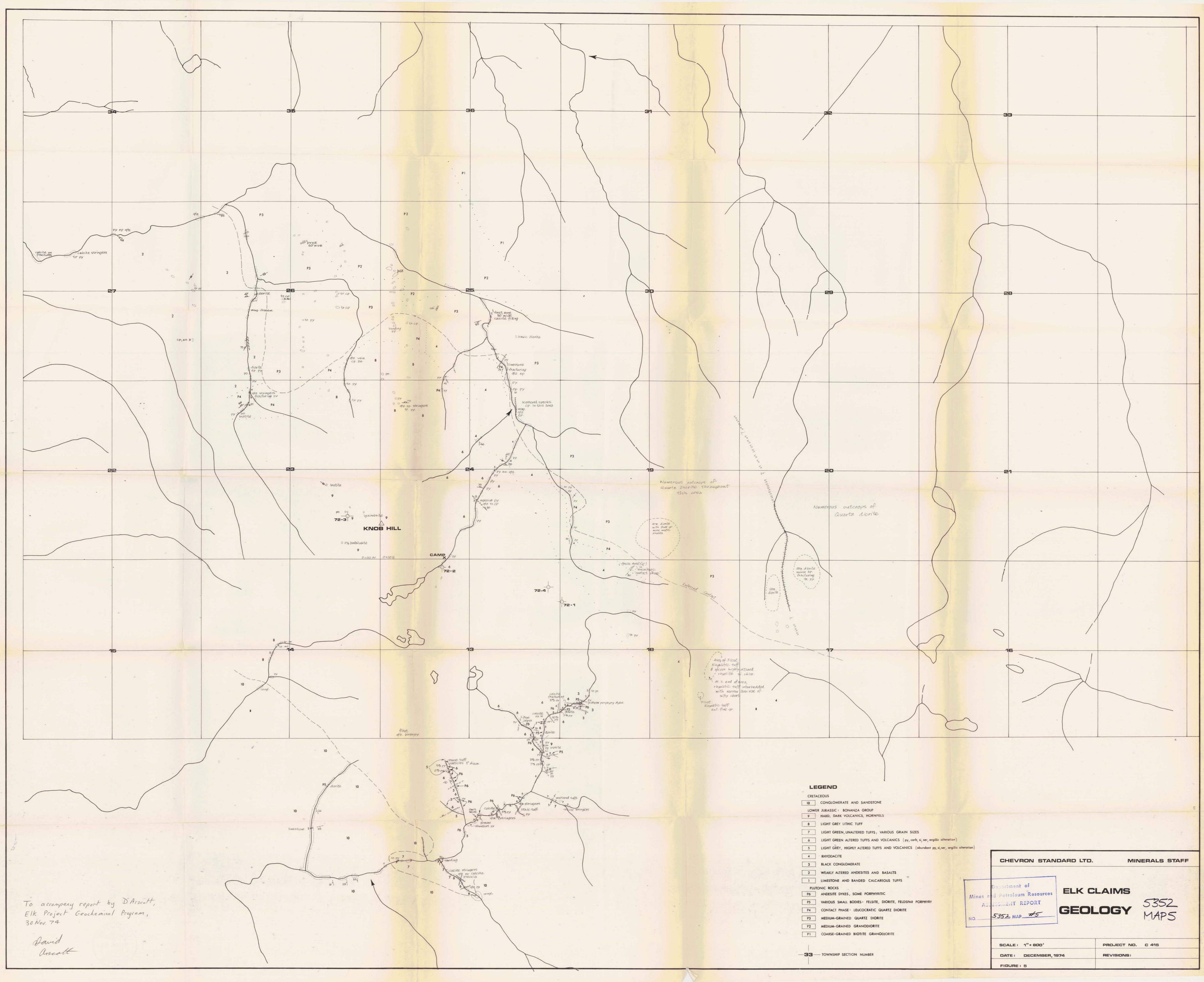
ELK CLAIMS 1974 PROGRAM

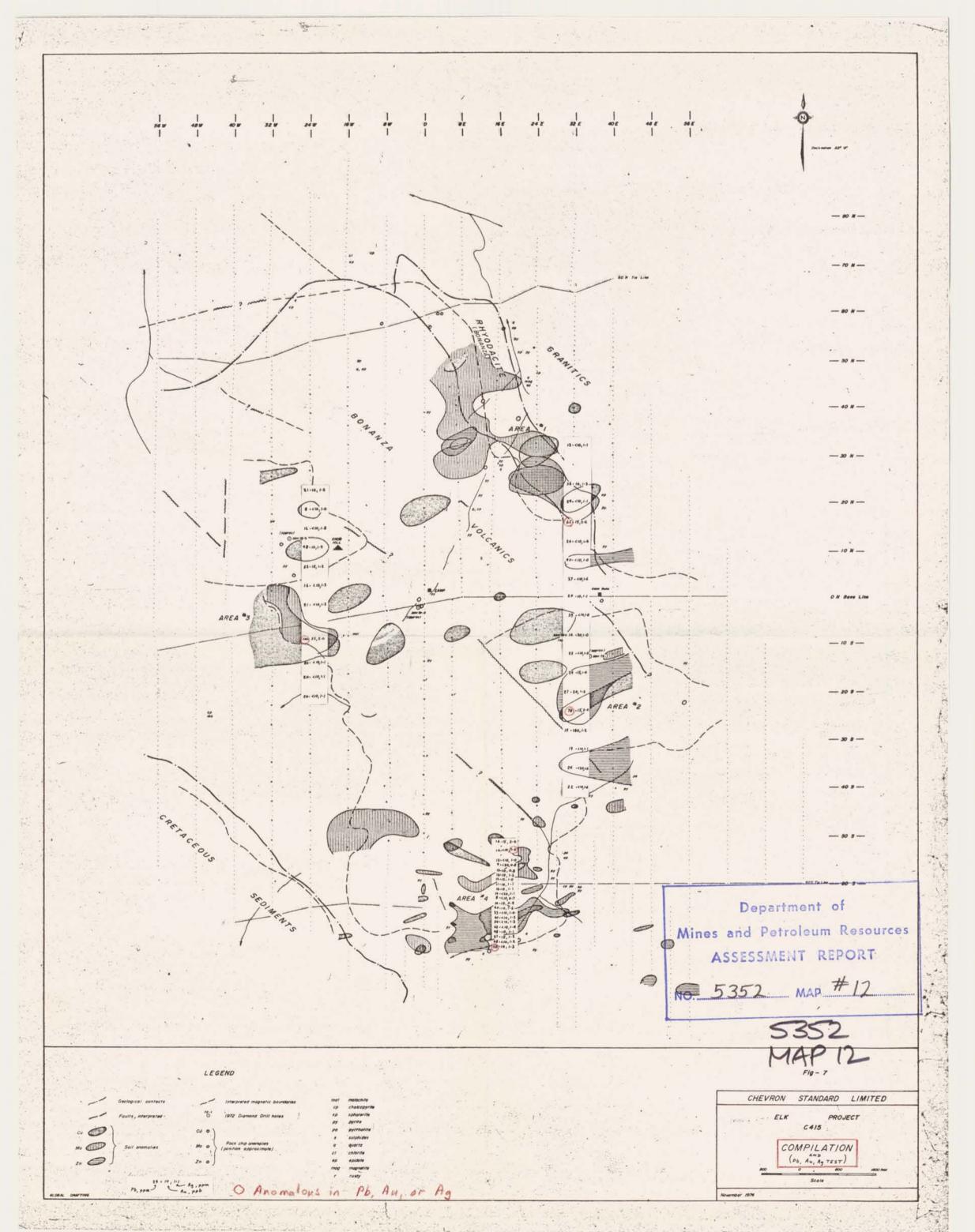
Bedrock Chip Samplets Analysed

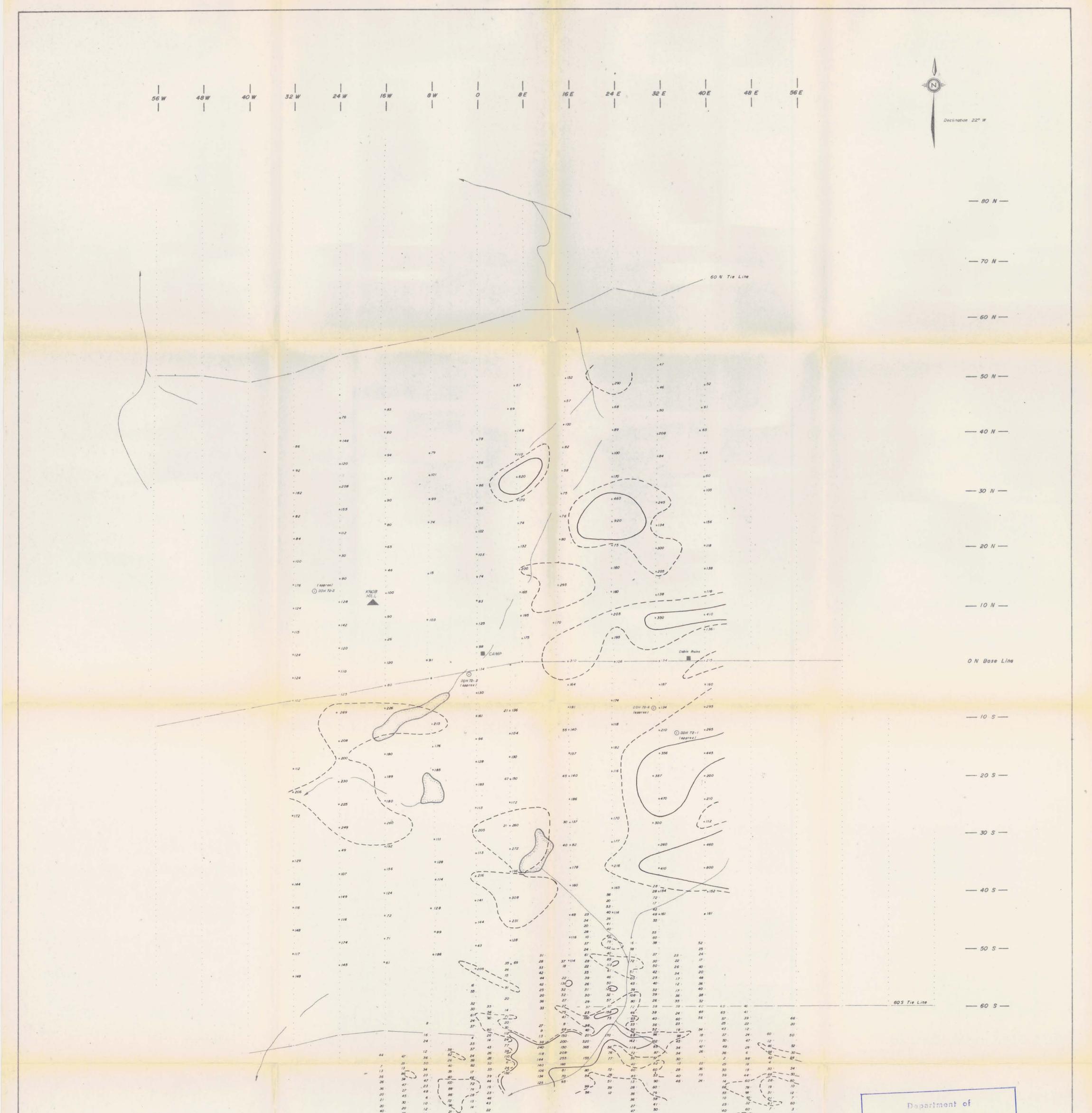

0

Sam. #	Station	ppm, Cu	ppm, Zn	ppm, Mo
4AL 3005R	OE/ON	32	107	5
4AL 3008R	0E/12N	20	62	1
4AL 3110R	0E/20N	40	90	4
4RV 3015R	16E/44N	25	46	5

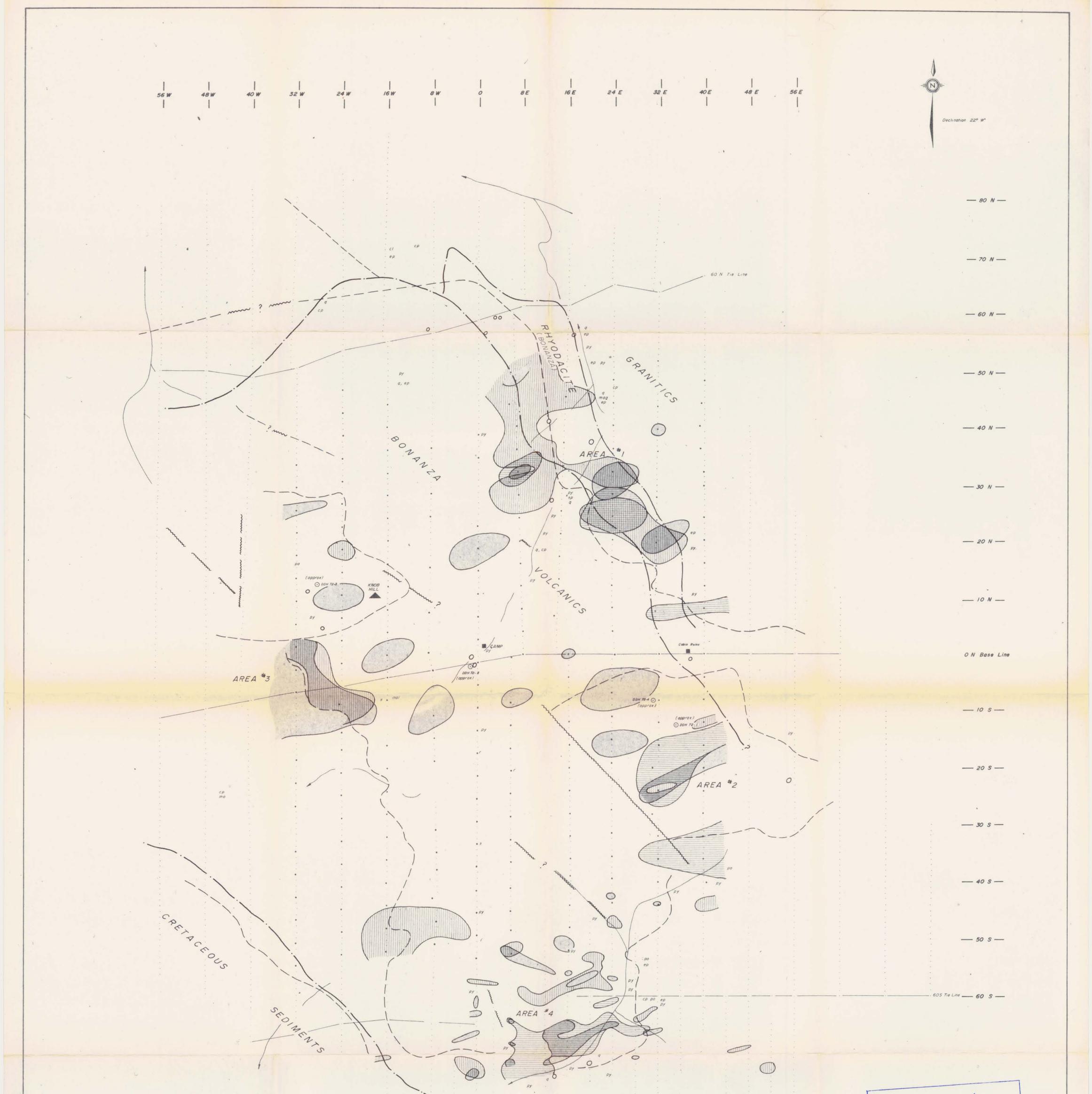

Bedrock Chip Samplets Not Analysed

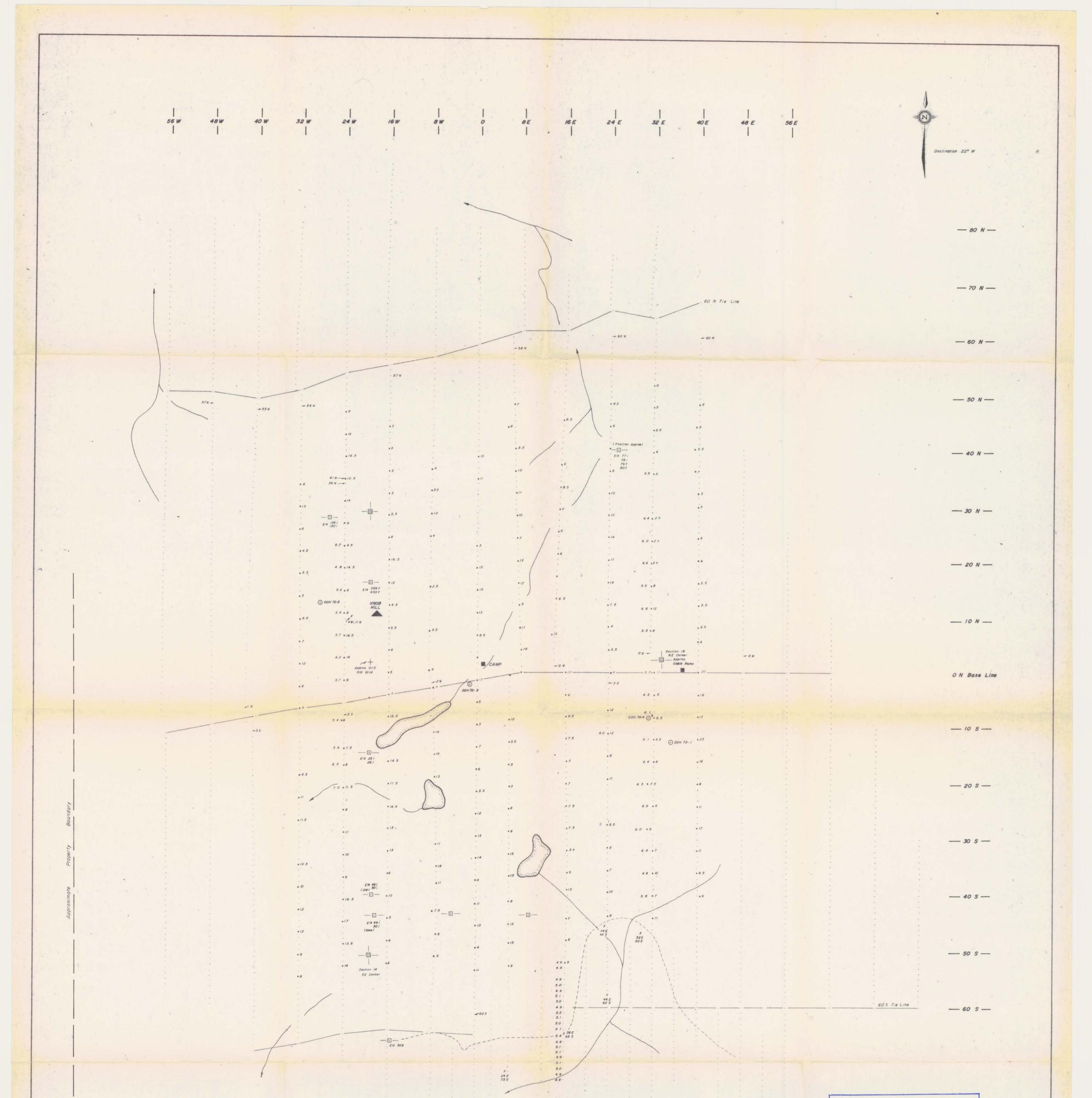

Sam. #	Station	Comments
4BR 3126 R 4BR 3118 R 4BR 3114 R	32W/365 32W/8N 32W/24N 32W/36N	Tuff, grey, v.f.g. (andesitic?) Tr.py. Tuff, grey, v.f.g. (silicified andesite) Tuff, dark grey, andesitic. Tr.py. Tuff, andesitic. Some epidote and silicification
4BR 3135 R 4BR 3099 R	24W/28S 24W/12N	Tuff, f.g., very highly weathered. Diorite, light grey, 8% py.
4BR 3142 R	16W/4S	Tuff, light grey, rhyolitic? Highly weathered
4RV 3045 R 4RV 3041 R 4RV 3039 R	16W/12N 16W/28N 16W/36N	Tuff, dark green, andesitic, epdiotised Granodiorite, pale green, weathered Tuff, pale green, weakly epidotized
4BR 3008 R 4BR 3015 R 4RV 3026 R 4RV 3032 R 4RV 3033 R	0/32S 8E/48S 8E/12N 8E/36N 8E/40N	Tuff, pale green, chloritized Tuff, andesitic, highly weathered Quartz diorite, f.g. Rhyolite?, grey, 1% py. Rhyolite?, grey, 1% py.
4BR 3032 R 4BR 3030 R	16E/16S 16E/8S	Basalt, black, 2% py. Tuff, pale green, mod. chloritic alteration
4RV 3021 R 4RV 3016 R 4RV 3015 R	16E/20N 16E/40N 16E/44N	Tuff, rhyolitic Basaltic andesite, black, tuffaceous? Tuff, white, rhyolitic 1% py.
4RV 3003 R 4RV 3005 R 4RV 3007 R	24E/8N 24E/16N 24E/24N	Tuff, grey, rhyolitic? 5% py. Tuff, f.g., rhyolitic, somewhat weathered Tuff, f.g., rhyolitic, 7% py.
4BR 3057 R	32E/20S	Tuff, rhyolitic 2% py.
4BR 3067 R	40E/28S	Tuff, pale green, mod.(epidote?) alteration


al con	A 1 101-		10 19	20			1			1				1 0				7	7	:
279	0) 50	7 0	0) (0		1.1.1.1		1				~		(10				(1
0 0.1	12 281	D	10 01	DI	S.		1			1			X	23				1 -		
	54 04	5 04	281	11 10		-				5			11	1			/	1		
1-	2000-6	200065	34746101	201		3471910	8474610)	347/8101	34720%	3472200	34724(0)	34726(0)	34,280)		1		. [1		
7	ELK	ELK	ELK	ELK	ELK	ELK	ELK	ELK	ELK	ALK)	ELK	ELK	ALK		/			1		
6741(0) DEER	342	341	135)136	95	97	99	101	403	0105	V 107	0 109	2070/0	1				1		
15	3499.9E	349.984	39749(0)			1	30,717,10)	34719(0)	34721(0)	3472 3(0) ELK	347250. ELK	34727(0) ELK	3472.401 ELK							
1	36729,	ELK	ELK 133	ELK 134	ELK .96	98	EX.K	ELK 102	ELK 104	J106	J 108	\$ 110	0 11/2	//			5			A
	40,42' 3500/K	343 35000		3474310	34694(0)		3469910)	3470000	34702(0)	39704101	347060	3770810)	34710(0)	/			(5
×36735 36737	ELK	ELK	ELK	ELK	ELK	ELK	ELA	ELK	ELK	ELK	ELK	ELK	ELK 89)			5
3073	346	345	131	132	73	75	117	79	81	83	85	87				(1			1
10 Y	35003E	350024				- /	3969910 ELN	30701(0) ELK	3470310 ELK	34705101 ELX	ELK	ELK	ELK	1						
6	ELA 348	ELK 347	ELK 129 2	78850 2	7886(0)	ELK. 16.	178	100	82	84	86	88	90	1		-			2	
2530	98	35004	1650 2	8133(0) 6	1	3462410	3462610)	346200	3463310	and the second second	34634	1		1	34642101		6			
130	35005		34739	28137(0)	Bi	346240 A150 35400	ELK	ELK	ELK	ELK	ELK 13	ELK 15	ELK	ELK 19	ELK 21	ELK 23	5			1
X	350		E4K 127	0)KVN(27884	2	5	7	1	1206220	34635%	346370	1	3464/0)	34643(0)				1	~
3673	35007E		(0)	-2HIL	LU	3462510	3462 M	3462910 ELK	1346310 ELK	ELK	ELK	ELK	ELK	ELK	ELK	ELK		-		/
1	352	367290	ELK 125	EIR 299 35036E	BLK 400 35037E	74	6	8	10	12	14	16	18	20	22	24	18			6
36731	35009E	35008	34736	34737(0)	3469	346480	34650	3965210	346540		T		1 1 1	3466410		34668(0)				1
X	ELX	ELK	ALSO 367278	ELK	FRIK	ELK 27	ELK 29	ELK 31	ELK 33	ELK 35	ELK 37	ELK 39	ELK	ELK 43	ELK 45	ELK 47				1 -1
256	354	353	36727,8		25			346530		-	34659	3466/10	346630	:466510)	34667(0)	34669(0)	366878	36688B		
C.5	1	350/01 ELK	-	134735(0) ELK	08	ELK	ELK	ELK	EKK	ELK	ZER	ELK	ELK	ELK	ELK	ELK	PUP	PUP 122		
SV	ELK 356	355		122	per-	28	30	32	34	36	38	40	42	44	46	48	36685	366863		4
1	350/36	350/28	347320	3473300	346700)	3467610			100000000000000000000000000000000000000	Constant States	ELK	13468810	346900) ELK	34692(0) ELK	PUP	PUP		-
195	ELK	EDK	ELK	ELK 120	ELK 49	ELKO	ELK 53	ELK 55	EAK 57	ELK 59	ELK 61	ELK 63	65	67	69	71	119	120		[]
830	358	357	219	-	9	9	+		-	3468/10	34683	0 3468510	3468710	34689(0)	346910	34693(0)		36684	3670360 36	1046
1 L	350 SE	350191 ELK	E 3473010 ELK	ELK	ELK	ELK	ELK	EFR	ELK	ELK	ELK	ELK	ELK	ELK	ELX	ELK	PUP	PUPIIB	PUP 13	
_	360	359	117	118	50	52	54	56	58	60	62	69	66	68	70) 72			5	0 45 -
ISK)	350178	350/6	35020	5350226			35028	E 350300		E 35034	E 36603B	366108	366458	3661%		53	52			
5	ELK	ELK				ELK	ELK 373	ELK 375	ELK 377			PUP 44	PUP 79	PUP		MAD	90			100
37K	362	361	365	367	369	PEODT	and the second s	X		350354	12/0/071			366 74 8		1- MIL	FIK	CI	AIMS	5
1		ELK	ESTORIE	E350230	E350256	ELK	ELK		ELK	TELK	Joan	PUP 42	PUP	PUIE			LLIN			
2/	ELK 364	363	366	368	370	372	374	376	378	390	Ler:			1-3-	1		No	inaimo	m.d.	
59XK 25	A90 29	A	A	A	464 A	-	36620 ⁽⁰⁾	(a) 3 3668 B	65 48 30	6547 36			6558 30 BEN B	EN			140	mannio		
ie 1	Ð.	36	32	24		702	PUP 54	Bar	EN E	BEN H	2	1	15	11		From	n BC	Departm	ent of Min	es
	29	477× 2	9478K 2		466× 2	#c.	366190	36617 30	6550 3	6543 36	5308 3	3 4523 3	6568 3	65551 /	1		ct. 197			
95 2	6787K	38	32.	426 X	27, 23	374/8	PUP 53	SIGOLI VAL		BEN H		IUR AL		BEN }		claim	noste	locate	ed w.r.	t. grid
K		Inaun	94904		A	150 K		1	616	3	4	A	36562 3	13		Area	1010	red h	grid,	1974 7 4
0	40 0 2	111/22	n			16-2	- As	50 R 3	6552 3	0551 30	65328 3	650	2000 30	0.50	10	niea	cover	ea by	grin,	р.н.



18 16 14 19 10 16 24 15 50 Department of Mines and Petroleum Resources ASSESSMENT REPORT 41 -NO. 5352 MAP #6 15 16 20 26 43 3 39 5352 27 -. MAP 6 1 Fig - 6(a) -LEGEND CHEVRON STANDARD LIMITED To accompany report "Elk Project, Geochemical program" by D. Arscott, 30 Nov. 1974 ELK PROJECT Copper in ppm, in surface soil and basal till respectively 24 + 36 C415 0 Contour at threshold, 65 & 120 ppm respectively David Asscatt GEOCHEMISTRY COPPER Contour of top 30% of values at 45 & 90 ppm respectively CP · · 1600 feet 800 800 (Charles in case) Scale November 1974 GLOBAL DRAFTING




.

27 47 49 55 20 20 40 37 45 37 12 -40 60 56 16 20 124 Mines and Petroleum Resources ASSESSMENT REPORT 53 -48 NO. 5352 MAP #8 38 64 48 84 5352 MAP8 . Fig - 6 (c) Υ. LEGEND CHEVRON STANDARD LIMITED To accompany report by D. Arscott 'Elk Project Geochemical Program' Zinc content in ppm, surface soil and basal till respectively 30 . 55 1 ELK PROJECT C415 Contour of threshold (105 & 320 ppm respectively) \bigcirc 30 Nov. 1974 \bigcirc Contour of threshold (60 & 200 ppm respectively) ZINC GEOCHEMISTRY . David ~ 800 1600 feet 800 ____ arscatt Scale Ψ. November 1974 GLOBAL QRAFTING

Department of - 11 1 Mines and Petroleum Resources F . ASSESSMENT REPORT NO. 5352 MAP #11 . - e - j 5352 Fig-7 MAPI LEGEND -CHEVRON STANDARD LIMITED Geological contacts To accompany report by D. Arscott, 'Elk Project Geochemical Program', Interpreted magnetic boundaries mal malachite cp chalcopyrite 0 1972 Diamond Drill holes Faults , interpreted more more SP sphalerite PROJECT ELK pyrite PY C415 cu o cu 🔿 po pyrrhotite 30 Nov. 1974 sulphides 5 Mo Mo o Rock chip anomalies (position approximate) Soil anomalies COMPILATION quartz 9 141 chlorite David Assealt zn O Zn o ep epidote inag inagnetite 800 1600 feet 800 0 _____ r rusty Scale 1 November 1974 GLOBAL DRAFTING

.

Department of Mines and Petroleum Resources ASSESSMENT REPORT . NO. 5352 MAP #10 * 5352 16.3 MAP 10 361 10 . Fig - 6 (d) LEGEND To accompany report by D. Arscott. 'Elk Project Geochemical Program', 30 Nov. 1974. CHEVRON STANDARD LIMITED - - Claim posts 5.8 · Soil acidity in pH ELK PROJECT · 10 Depth of overburden, feet. C415 1 • Diamond drill hole location (approx) Creeks David Arreatt MISCELLANEOUS PROPERTY DATA North edge of heavy timber * Former grid station 800 0 800 1600 feet ____ Scale 12 GLOBAL DRAFTING November 1974