5568

ROCKEL MINES LIMITED

82L/4W

DOBBIN CLAIM GROUP 822/400

WHITE ROCK MOUNTAIN AREA, VERNON & NICOLA MINING DIVISION

DRILLING REPORT

During the months July and August, 1975, a limited drilling program was performed by Rockel Mines Limited on the Dobbin property, located at Whiterock Mountain, north west of Kelowna, B.C.

The total of 1,195 ft. of AQ core drilling in three holes was completed by Shepherd Enterprises Limited, under the field supervision of V. Cukor, P. Eng.

The hole DDH #IA was drilled to 575 ft. to test a deeper part of mineralized zone, which when drilled in 1972, assayed between 0.3 and 0.6% cu. down to 394 ft.

Holes DDH #2 and DDH #3 were drilled approximately 200 ft. from DDH #IA to south east and north west respectively, on the extension of the same zone.

As shown in the appended tables of assay results, only low grade and non-consistant copper-silver mineralization was encountered in first two holes, while some molybdenum, in addition to copper-silver was found in the third hole.

Drill logs, a copy of a drill contract, and a table of costs incurred on the project, as well as a 1"-200' plan showing the drill hole locations are appended to the report.

The total of \$17,934.51 was spent during the program of which \$9,800.00 will be applied as assessment work towards two claim groups-Dobbin 1 (23 claims) and Dobbin 2 (26claims). The hole DDH #1A. totaling 573 ft. was drilled on the mineral claim Alfy #1 (Dobbin I group) and holes DDH #2 and DDH #3 totaling 622 ft. on the claims Alfy 6 and Alfy 2 respectively. Therefore approx. ½ of the total expenditures (or almost \$9,000.00 could be applied to each group.

Respectively submitted
V. Cukor, P. Eng.

August 22,1975

0-4 Casing, no core.

Fine grained ultramafic rock (pyroxenite) with pyroxene and/or hornblende phenocrysts, appearing in some zones in a dark ground-mass. Magnetite is abundant throughout the rock, and along some of the fractures appear pink feldspars, light green epidote is also abundant, both in the rock and along the fractures. Chalcopyrite and/or pyrite appears mostly as fine grained dissemination, sometimes as large blobs and only occasionally along the hairline fractures. Minor hematite is also noted along some of the fractures. Rock is fairly solid, with several fracture systems, the most prominate one at 40° to core axis. Core recovery is excellent, with pieces often longer than 1 ft. and sometimes over 3 ft.

87-100 ft dyke, fine grained, silicious, light grey.
195-198 silicious zone, and from 198-203 dark and vugy zone.
212-213 dioritic dyke.
From 230 to the end of interval appear zones rich in feldspars.
293-305 silicious zone with kaolinized 4" at 297 ft.

- 305-410 Gabbroidic intrusive, with pink feldspars in dark groundmass. In some places a light green epidote appears and some scarce pyrite is noted as fine disseminations. Only very seldom, some minor chalcopyrite is also present.
- 410-458 Graditional change into black pyroxenite with fine disseminated pyrite and minor chalcopyrite. Throughout the zone appears light green epidote. Rock is medium to coarse grained.
- 458-573 Graditional change to acidic intrusive rock, consisting of pink feldspars, hornblende and quartz. Some pyrite and epidote is noted throughout.

573 End of hole.

1 lut

- 0-9 Casing, no core.
- 9-245 Green, coarse to fine grained pyroxenite. Magnetite, and fine pyrite abundant as well as some coarse pyrite crystal and some pyrite along the fractures. Chalcopyrite appears as fine disseminations and seldom in fractures. Some coarse crystals and blobs are also present. Some minor bornite could be present too. Coarse grained rock interchanges with the fine grained and also porphyritic variety. Narrow silicious zones appear throughout, and also some feldspar crystals.
- 245-286 Gabbroidic intrusive rock (pyroxene, hornblende and pink feldspar), with coarse and fine pyrite crystals and also pyrite as fracture filling. Light green epidote present and also xenoliths of darker rock unit.
- 286-289 Grey-green pyroxenite, porphyritic, with dark pyroxene phenocrysts in a lighter greenish-grey groundmass. Some pyrite and very minor chalcopyrite throughout the zone.
- 289-297 Grey acidic intrusive.
- 297 End of hole.

V Cul

- 0-12 casing, no core.
- 12-18 Fine grained, light grey, pyroxenite, slightly silicious. At the start of interval the core is broken in small fragments, and after 10 ft., pieces of core are up to 1.5 ft. Some fine grained pyrite and light green epidote are noted throughout the zone.
- 18-87 Coarse grained and porphyritic, pyroksenite interchanges with a fine grained variety. Fine disseminated pyrite is in places mixed with chalcopyrite.
- 87-105 Gabbroidic intrusive with pyroxene and feldspars. Moderate epidote alterations and inclusions of dark fine grained rock. Pyrite and ocassionally chalcopyrite are disseminated into rock.
- 105-193 Fine grained, green to green-grey ultrabasic rock, with pyrite, magnetite and ocassionally chalcopyrite. From 157-193 rock is changing to coarse grained and porphyritic variety, with chalcopyrite along the fractures.
- 195-203 Dyke rock, dark, fine grained, with fine bornite.
- 203-249 Fine grained rock, as in section 105-193 pyrite and chalcopyrite are disseminated into rock. Some of the fractures are f filled with molybdenite and chalcopyrite and/or pyrite.
- 249-261 Acidic intrusive, with fine pyrite and very occassionally chalcopyrite. No molybdenite noted in this interval.
- 261-325 Fine to coarse grained pyroxenite with zones rich in biotite. At 285-290 fair chalcopyrite, and in the rest of interval ocassionally pyrite.

325 End of hole.

J. lue

TABLE OF ASSAY RESULTS

DDH # 1A

SAMPLE NO.	FROM TO	FEET	AG oz/t	CU OZ/
			. •	
0176K	4 10	. 6	0.30	0.75
0177K	10 20	10	0.07	0.23
0178K	20 30	10	0.05	0.23
0179K	30 40	10	0.09	0.38
0180K	40 50	10	0.09	0.33
0181K	50 60	10	0.04	0.05
0182K	60 70	10	0.10	0.23
0183K 0184K	70 80	10	Trace	0.04
0185K	80 90 90 100	10	0.03	0.07
0186K	100 110	10 10	0.07 0.17	0.08
0187K	110 120	10	0.09	0.14 0.45
0188K	120 130	10	0.04	0.23
0189K	130 140	10	0.10	0.40
0190K	140 150	10	0.06	0.34
0191K	150 160	10	0.05	0.52
0192K	160 170	10	0.06	0.36
0193K	170 180	10	0.09	0.32
0194K	180 190	10	0.06	0.25
0195K	190 200	10	0.08	Trace
0196K	200 210	10	0.26	Trace
0197K	210 220	10	0.13	0.02
0198K	220 230	10	0.23	0.02
0199ĸ	230 240	10	0.19	0.06
0200K	240 250	10	0.18	0.07
0201K	250 260	10	0.18	0.08
0202K	260 270	10	0.24	0.06
0203K	270 280	10	0.23	0.07
0204K	280 290	10	0.09	0.03
0205K	290 300	10	0.67	0.07
0206K	300 310	10	0.12	0.03
0207K	310 320	10	0.03	0.02
02 08K	320 330	10	Trace	0.03
0209 _K	330 340	10	Trace	0.03
0210K	340 350	1.0	Trace	0.03
0211 _K	350 360	10	0.25	0.03
0212K	360 370	10	0.04	0.02
0213K	370 380	10	0.02	0.02
0214K	380 390	10	Trace	0.03
0215K	390 400	10	Trace	0.02
0216K	400 410	10	Trace	0.02
0217K	410 420	10	Trace	0.03
0218K	420 430	10	Trace	0.07
0219K	430 440	10	Trace	0.04
0220K	440 450	10	Trace	0.03
0221K 0222K	450 460 460 470	10	Trace	0.05
	460 470	10	Trace	0.04
0223K	470 480	10	Trace	0.02

7

TABLE OF ASSAY RESULTS

DDH # 2

SAMPLE NO.	FROM	TO	FEET	AG OZ/T	CU OZ/T	MOS OZ/T
0224K	5	10	5	Trace 0.1		
0225K	10	20	10	Trace 0.07		,
No Tag	20	30	10	0.11	0.48	
0226K	30	40	10	0.12	0.32	
0227K	40	50	10	Trace	0.23	
0228K	50	60	10	0.05	0.32	
0229K	60	70	10	Trace	0.19	
0230K	70	80	10	0.04	0.32	
0231K	80	90	10	Trace	0.18	
0232K ·	90	100	10	Trace	0.31	
0233K	100	110	10	Trace	0.11	
0234K	110	120	10	Trace	0.17	
0235K	120	130	10	Trace	0.20	
0236K	130	140	10	Trace	0.10	
			DDH	# 3		
0237K	30	40	10	π 3	0.11	
0238K	40	50	10	Trace	0.03	
0239к	50	60	10	Trace	0.03	
0240K	60	70	10	Trace	0.05	
0241K	105	115	10°	Trace	0.06	
0242K	115	125	10	0.13	0.22	
0243K	203	213	10	0.06	0.22	2.220
0244K	213	223	10	Trace	0.31	0.029 0.019
0245K	223	233	10	0.10	0.31	
0246K	233	243	10	0.10	0.26	0.001
0247K	243	253	10	0.10	0.26	0.003
0248K	253	263	10	Trace	0.14	0.001 0.001
0249K	285	290	10	0.05	0.19	0.001
				V. U.J	0.20	

The costs incurred on the drilling project on Dobbin Property, Whiterock Mountain, July and August, 1975.

Drilling	\$13,877.50
Bulldoser	180.00
Supervision (V. Cukor, P. Eng.lm	th.) 2,000.00
Vehicle rental & transportation	553.49
Food & lodging	522.07
Shipment of samples	43.95
Assaying	757.50
Tot	al \$17,934.51

O. Cul

ALFY 5 ilay, Department of Mines and Petroleum Resources ASSESSMENT REPORT ROCKEL MINES LTD. WHITEROCK MT. NO. 5568 MAP Drill holes Plan 1" = 200'

SHEPHERD ENTERPRISES LTD.

804 - 470 Granville Street, Vancouver, B.C. V6C 1V5 Box 21 - 24, Station A, Kamloops, B.C. V2B 7K6

August 19, 1975

Rockel Mines Ltd., 704 - 850 West Hastings Street, VANCOUVER, B. C.

STATEMENT

FOOTAGE DRILLED:

Hole #1	From O	to	473	9	\$11.00/ft	-	\$5,203.00
Hole #1	From 473	to	573	0	\$11.00/ft	-	1,100.00
Hole #2	From O	to	297	6	\$11.00/ft	-	3,267.00
Hole #3	From O	to	325	9	\$11.00/ft	-	3,575.00

\$13,145.00

COST OF MOVES:

Two moves @ \$300.00 each as per quote

600.00

COST OF CORE BOXES:

50 AQ Core Boxes @ \$2.65 each

132.50

TOTAL COST:

\$13,877.50

SHEPHERD ENTERPRISES LTD.,

PER

M. Healy, Admin. Assist.

