DTAMOND DRILLTNG REPORT<br>on the LOG 54, 63 and 64 Mineral Claims<br>MISSEZULA LAKE AREA<br>NICOLA MINING DIVISION

# LATTTUDE $49^{\circ} 47^{\prime} \mathrm{N}$ LONGITUDE $120^{\circ} 33.5^{\prime} \mathrm{W}$ <br> N.T.S. SHEET No. 92H/15E 

0

BETHLEHEM COPPER CORPORATION
Suite 2100 - Guinness Tower 1055 West Hastings Street

Vancouver, B.C.
V6E 2H8

SEPTEMBER 8, 1975
R. E. Anderson, P.Eng.


SECTION A - SUMMARY OF WORK
Introduction
Location and Access
Topography and Physical Environment
History
Geology
Diamond Drilling
Summary of costs

SECTION B - STATEMENT OF EXPENDITURES
Contractor's Costs
Bethlehem Costs

SECTION C - STATEMENT OF EMPLOYEE QUALIFICATIONS
D. C. Miller, P.Eng.
S.H.M. Mars

SECTION D - DRILL HOLE LOGS
L-75-1
L-75-2
L-75-2A
L-75-3

SECTION E - GEOLOGICAL DATA
B.C. DEPT. OF MINES and PETROLEUM RESOURCES "Notes to Accompany Preliminary Map No. 17" by V. A. Preto

SECTION F - ILLUSTRATIONS

$$
\begin{gathered}
\text { MAP \#1- } \frac{\text { MAPS }}{\angle O C H T I O N ~ P \angle A N ~(T E X T) ~} \\
2-75-1 \\
3-75-2 \\
4-75-3 \\
5-75-4 \\
6-75-2 A \quad \text { (CLAIM MAP) }
\end{gathered}
$$



SECTION A - SUMMARY OF WORK

## Introduction -

The "LOG" Group of mineral claims was acquired by staking during December 1973 and its acquisition resulted from a large scale regional exploration program that was carried out in the MerrittPrinceton area during 1970, 1971 and 1972. Work carried out on the property during October to December 1974 consisted of geological mapping, sampling and the drilling of ten percussion holes totalling 900 metres (2955"). This program was detailed in the "Percussion Drilling Report on the LOG Clains" by R. J. Nethery, P. Eng. which was submitted as an assessment report in January 1975. Some of the percussion holes yielded results that were considered to be anomalous and it was, therefore, decided to conduct a limited dianond drilling program to further test the area.

Location and Access

The LOG clain group is situated over a low north-south trending valley some 3 km . west of Missezula Lake at geographic coordinates $49^{\circ} 47^{\prime}$ latitude and $120^{\circ} 33.5^{\prime}$ longitude. The nearest centres of population are 36 km . to the south at Princeton and 38 Km . to the NNW at Merritt. Access to the property is obtained by a 9.5 Km . gravel road which runs southeasterly from a point on Highway \#5 some 43 km . south of Mermitt. (See Drawing No. 75-1)

Topography and Physical Environment

The area is characterized by generally moderate topography with altitude ranges from 1250 metres to 1370 metres A.S.L. The central portion of the clain block is in the bottom of a low wide north-south trending valley with the eastern and western limits of
the property situated on higher ridges. A major portion of the valley floor is clear of any timber cover due to recent logging operations and a forest fire. The remaining area is covered by moderate stands of lodgepole pine and to a lesser extent groves of aspen.

Two small lakes and numerous small sloughs are situated in the area. The two lakes do not have any official designation although the one located to the inmediate south and west of the drill area has been referred to as Duke Lake.

## History

The first reconded work in this area was done by Plateau Metals, who staked the Strike-Loma group of claims in 1962 to cover a showing of disseminated copper which was found near the site of a former logging operation. Line cutting, detailed prospecting, magnetometer sumveying, bulldozing and diamond drilling were then conducted and indicated several areas of low-grade mineralization. Little work was done until 1966 when the property was optioned by Adera Mining Limited who conducted geological and geophysical surveys. The magnetics indicate a strong NW trend with several anomalous highs while an IP survey revealed two lange anomalies, the Strike and the Duke. Fourteen trenches were dug and seven diamond holes, totalling 513.5 metres (1685'), were drilled to test these anomalies. The Strike anomaly was found to be caused by sulphides, mainly pyrite but including some chalcopyrite, whereas bedrock at the Duke anomaly consists of a slightly pyritic and graphitic argiliite. In 1971 Adera conducted a geochemical survey over the property after which the claims were allowed to expire.

Bethlehem then staked the LOG \#1-72 mineral claims and these were recorded on December 18, 1973. A program of geological mapping, sampling and percussion drilling was carried out between October 28, 1974 and December 20, 1974 and this work was summarized in an assessment report
filed in January 1975. The claim block was reduced to sixty-four clains at this time with a long single row of eight claims on the westem perineter being allowed to expire. Following the drilling program outlined in this report, the sixty-four clains were abandoned and relocated under the provisions of the new modifiedgrid system. Drawing No. 75-2 details the location of the mineral claims.

## Geology

The property is mainly underlain by Upper Triassic Nicola volcanic rocks and their associated intrusions. It lies within an area which is at present undergoing a detailed geological mapping program by the B.C. Department of Mines.

Rocks on the clain block belong to the Central Belt of the Nicola Group which is bounded on the west by the Allison Lake pluton and on the east by a major fault system called the Summers Creek Fault. Faults on the property tend to follow a northerly regional trend and share the steep dips of both this fault zone and the Allison Fault to the west. Dips on the property are generally to the east since it lies on the west limb of a major syncline; the axis of this syncline strikes northerly and lies on the east side of Missezula Lake.

The detailed mapping of this area, recently completed by the B.C. Department of Mines (Preliminary Map No. 17), shows that the new claim block boundaries almost entirely sumound an intmusive body which is roughly triangular in shape. This body, which varies in composition from a medium-grained syenodiorite to monzonite, is truncated on the east by a NW trending fault. It intrudes a largely subaqueous assemblage of green flows, flow breccia, tuffs and minor sedimentary units and, being similar in composition to the volcanics, it is thought to be about the same age. It contains several occumences of chalcopyrite mineralization.

A Geological Plan (Drawing No. 75-3) was prepared by enlarging a portion of the recently published Preliminary Map No. 17 up to the scale of $1: 10,000$ thus making it compatible with the Mineral Claim Plan (Drawing No. 75-2).

A copy of the "Notes to Accompany Preliminary Map No. $17^{\prime \prime}$ are appended in Section E.

## Diamond Drilling

Shepherd Enterprises Ltd. of Vancouver and Kamloops were retained to carry out the diamond drilling program. They utilized an E.J. Longyear Model 44 diamond drilling unit employing the wireline core recovery method with an NQ size core barrel. Although the overall core recovery in bedrock was good, its faulted nature caused drilling difficulties with two of the holes being abandoned prior to reaching their planned depth. The other two holes also encountered problems and had to be abandoned.

Drilling on Hole No. L-75-1 began on June 17, 1975 and continued until June 23, 1975. The location was sited on an old I.P. anomaly that had been delineated by previous holders of the ground. The hole was initially planned to be drilled to the 200 to 250 metre range but excessive faulting was encountered at the 100.5 metre ( $330^{\prime}$ ) depth and the hole was abandoned at 107.9 metres ( $354^{\prime}$ ).

The second hole ( $1-75-2$ ) was sited in the area 650 metres northwest of L-75-1. Its depth was also scheduled for the 200 to 250 metre range, but at 16.76 metres (55') a broken tricone bit and jammed drilling rods forced abandonment of this hole. Drilling took place on June 24 and 25, 1975.

Hole No. L-75-2A was spotted a few feet from L-75-2 and commenced on June 26. Overbunden was encountered down to 21.6 metres (71'). Tertiary volcanics were then penetrated to the 63.4 metre (208') level. A fossil overburden carried on from 63.4 to 104.5 metres ( $343^{\circ}$ )
where a soft bedrock was encountered. Triconing contimued to 107.3 metres (352') and at this point the hole was lost during an attempt to change from the tricone bit to the coring equipment. The work on this hole ceased on July 7, 1975.

It was then decided to drill another hole in the proximity of L-75-1 and a point 80.7 metres (200') east was chosen for L-75-3 where drilling began on July 9 and continued until July 15 when the same problems which previously impeded L-75-1, namely badly faulted ground, forced the cessation of the hole. Final depth was 119.2 metres (391').

The following table summarizes the drilling that was carried out:-

| Hole No. | Dip | Overbunder | Rock | Total Depth |
| :--- | :--- | :---: | :---: | :---: |
| L-75-1 | $90^{\circ}$ | $7.01 \mathrm{~m} .\left(23^{\prime}\right)$ | $100.89 \mathrm{~m} .\left(331^{\prime}\right)$ | $107.90 \mathrm{~m} .\left(354^{\prime}\right)$ |
| L-75-2 | $90^{\circ}$ | $16.76 \mathrm{~m} .\left(55^{\prime}\right)$ | - | $16.76 \mathrm{~m} .\left(55^{\prime}\right)$ |
| L-75-2A | $90^{\circ}$ | $21.64 \mathrm{~m} .\left(71^{\prime}\right)$ | $85.65 \mathrm{~m} .\left(281^{\prime}\right)$ | $107.29 \mathrm{~m} .\left(352^{\prime}\right)$ |
| L-75-3 | $90^{\circ}$ | $\frac{5.49 \mathrm{~m} .\left(18^{\prime}\right)}{}$ | $\frac{313.69 \mathrm{~m} .\left(373^{\prime}\right)}{}$ | $119.18 \mathrm{~m} .\left(391^{\prime}\right)$ |
|  |  | $50.90 \mathrm{~m} .\left(167^{\prime}\right)$ | $300.23 \mathrm{~m} .\left(985^{\prime}\right)$ | $351.13 \mathrm{~m} .\left(1152^{\prime}\right)$ |

The locations of the drill holes are shown on Drawing Nos. $75-2,75-3$ and $75-4$ which are appended in Section $F$.

The NQ core was transported to Bethlehen's core storage facilities which are located at its Highland Valley Operations. Here the core was split and logged with half the core going for assay and the other half being retained. Detailed geological logs were prepared by D. C. Miller, P.Eng. and S.H.M. Marr, both of whom are employed by the Exploration Dept. of Bethlehen Copper Corporation. Copies of these logs are to be found in Section D.
S) Summary of Costs

The expenditures incurred during the aforementioned drilling program totalled $\$ 27,318.61$ and are detailed in Section B. Copies of all contractors' invoices are also included. Expenditures for the services of contractors totalled $\$ 22,498.61$ and represent $82.36 \%$ of the gross outlay while costs incurred with the Bethlehem onganization came to $\$ 4,820.00$ or $17.64 \%$. The overall average $\begin{gathered}\text { wrilling cost that }\end{gathered}$ resulted was $\$ 77.80 /$ metre or $\$ 23.71 /$ foot. This cost is, of course, considerably higher than normal but reflects the difficult drilling conditions that were encountered.

Respectfully submitted,

R. E. Anderson, P.Eng. Exploration Manager

CONTRACTORS (see accompanying invoices)

1. Tri-Valley Construction Ltd. - bulldozer
used for site preparation and moving
drill unit
Total $\$ 1,147.00$
Cost Distribution per hole:-
L-75-1 - \$407.00 (LOG 63 M.C.)
L-75-2 - \$192.00 (LOG 54 M.C.)
I-75-2A - \$192.00 (IOG 54 M.C.)
L-75-3 - $\$ 356.00$ (LOG $64 \mathrm{M.C)}$.
2. Shepherd Enterprises Ltd. - diamond drilling

June $16-30,1975 \$ 6,338.80$
July 1-15, 1975 \$ 6,132.00
July $1-15,1975$ \$ $5,418.79$
July 16-19, 1975 \$3,462.02
Total
$\$ 21,351.61$
Cost Distribution per hole:-

| L-75-1 | Footage |  | 3,717.00 |
| :---: | :---: | :---: | :---: |
|  | Mobilization | \$ | 175.45 |
|  |  |  | 3,892.45 |
| L-75-2 | Footage | \$ | 282.33 |

Mobilization \$ 175.45 Mud and Materials

| $\$ \quad 285.80$ |
| :--- |
| $\$ \quad 743.58$ |

L-75-2A - Footage $\$ 3,347.17$
Mobilization
Mud and
$\begin{aligned} \text { Materials } & \$ 3,054.43 \\ & \$ 6,577.05\end{aligned}$
I-75-3 - Footage \$4,063.50
Mobilization
Mud and Materials $\frac{\$ 5,899.58}{\$ 10,138.53}$

1. Persomnel
R. E. Anderson, P.Eng. - Exploration Manager

- a total of 5 days during the period from June 16 to July 19, 1975 5 days @ \$140.00/day
E. Andersen - Property Agent
- 10 days during the period from June 16 to July 19, 1975

10 days © $\$ 75.00 /$ day
D. C. Miller, P.Eng. - Senior Geologist

- 3 days June 23-25, 1975 3 days @ $\$ 120.00 /$ day $=\$ 360.00$
S.H.M. Marr - Geologist
- 4 days during the period from June 16 - July 19, 1975 4 days @ $\$ 60.00 /$ day $=\$ 240.00$
J. G. Collins - Field Supervison
- 24 days during the period from June 16 - July 19, 1975 24 days @ $\$ 65.00 /$ day
$=\$ 1,560.00$
P. Wannop - Field Assistant
- 10 days during the period from June 16-27, 1975 10 days @ $\$ 45.00$ /day $=\$ 450.00$
N. Shaw - Secretary
- 5 days during the period from June 16 to July 19, 1975
5 days @ $\$ 35.00 /$ day $=\$ 175.00$
n


## 2. Transportation

D. C. Miller - 1 Ford F-100 $4 \times 4$ Pickup
3 days @ $\$ 15.00 /$ day $\$ 45.00$
S.H.M. Marr - 1 Fond F-100 $4 \times 4$ Pickup
4 days @ \$15.00/day \$ 60.00
J. G. Collins - $\quad 1$ Ford F-250 $4 \times 4$ Pickup
24 days @ \$20.00/day $\$ 480.00$
Total
$\$ 585.00$

Total Bethlehem Expenditures
$\$ 4,820.00$

Cost distribution per hole:-

1-75-1 (7 days) L-75-2 (2 days) L-75-2A (8 days) L-75-3 (7 days)

TOTAL EXPENDITURES
$\$ 27,318.61$

Cost per hole:

$$
\begin{array}{ll}
\mathrm{L}-75-1 & \$ 5,705.28 \\
\mathrm{~L}-75-2 & \$ 1,337.25 \\
\mathrm{~L}-75-2 A & \$ 8,375.72 \\
\mathrm{~L}-75-3 & \$ 11,900.36
\end{array}
$$

\$1,405.83
$\$ 401.67$
\$1,606.67
$\$ 1,405.83$ 295-3944
W. Wilkinton

295-6186
1 Mckenzie 295-8270

Bethlehem Copper Itd. . c/o John Collins, Asheroft,
B. C.

STA EENENT
Re. Drill site at Aspen Grove.

| $\begin{gathered} \text { June } 17 \\ \text { n } 24 \\ \text { Juty } 7 \end{gathered}$ | D-S Cet. | $\begin{aligned} & 6 \mathrm{hrs.} \\ & 8 \mathrm{~m} \\ & 8 \mathrm{~m} \\ & \hline 22 \mathrm{hrs.} \$ 30.50 \end{aligned}$ | -- \$ | 671.00 |
| :---: | :---: | :---: | :---: | :---: |
| Juns 16 | Lowbed | 4 hrs . |  |  |
| - 19 | * | 4 " |  | / |
| 224 | * | 5." |  |  |
| July 7 | $\cdots$ | 4 - |  |  |
|  |  | 17 hrs. $\$ 28.00$ | - | 476.00 |
|  |  | TOTAL *... | . $\ddagger$ | $1,147.00$ |

804 - 470 Granville Street, Vancouver, B.C. V6C IV5
Box 21-24, Station A, Kamloops, 日.C. V2B 7K6

Bethiehem Copper Corporation
$2100-1055$ West Hastings Street

VANCOUVER, B. C.
Pariod_June 16-30
Property..... Aspen Grove
FOOTAGE:

Invoice No. 0033
Date June 30, 1975
$\qquad$

| Hole \# From To | Footage | Price/Ft | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} 75-1 & 0 \\ 75-2 & \text { Overburden } \end{array}$ | $\begin{aligned} & 354 \\ & 55 \end{aligned}$ | $10.50$ <br> Field Cost |  |  |  |
| $9\left\{\begin{array}{l}75-2 \mathrm{~A}\end{array}\right.$ Overburden | 65 | Field Cost | - |  | ${ }^{8} 4662.00$ |
| $\underline{-} 75-2 \mathrm{Cl}$ | 155 | 10.50 | $\frac{-1,627.50}{745,00}$ |  |  |
| MUD: |  |  |  |  |  |
| $\begin{aligned} & 8 \text { bags - Hole } 75-2 \\ & 12 \text { bags - Hole } 75 \cdot 2 \mathrm{~A} \end{aligned}$ |  |  |  |  |  |
| $\overline{20}$ bags mud @ $\$ 6.10$ each | - 12 |  |  |  | 122.00 |
| MOBILIZATION TO JOB SITE: |  |  |  |  |  |
| 48 man hours © $\$ 9.75$ per her $10 \%$ |  | $\begin{array}{r} 468.00 \\ 46.80 \\ \hline \end{array}$ |  |  | 514 |
| Hi-boy Rental to jobsite Plus 10\% |  | $\begin{array}{r} 170.00 \\ 17.00 \\ \hline \end{array}$ |  |  | 187.00 |

MATERIAL LOST IN HOLE 75-2:
1-3-7/8 tricone o $\$ 65.00$ ea less $20 \%$ for wear
52.00

1 - NQ sub to tricone @ $\$ 40.00$ less $50 \%$ for wear .. 20.00
6 - NQ rods $\$ 55.00$ ea less $50 \%$ for wear - 165.00
4 4 62.00
$5,344.50$
122.00

MOBILIZATION TO JOB SITE:


OPERATING FIELD COST:


# SHEPHERD ENTERPRISES LTD. 

804 - 470 Granville Street, Vancouver, B.C. V6C iV
Box 21-24, Station A, Kamtoops, B.C. V2B 7K6
Bethlehem Copper Corporation Ltd.,
Suite 2100 - 1055 Hest Hastings Street,
VANCOUVER, B. C.
Period. Aspen Grove
Proparty....July $1-15$

Invoice No. 0041
Date July 17, 1975

FOOTAGE:

O


TOTAL DRILLING COST: $\$ 6,132.00$

Extra charges for lost and unrecoverable equipment will follow.
Thank you.

PER:



# SHEPHERD ENTERPRISES LTD． <br> 804－470 Granville Street，Vancouver，B．C．V6C IV5 <br> Box 21－24，Station A．Kamloops，B．C．V28 7K6 

Bethlehem Copper Corporation Ltd．，
Suite 2100－1055 West Hastings Street，
VANCOUVER，B．C．
Period July 1 －15， 1975 $\qquad$
Property．．．．．Aspen Grove
Hole 75－2 A
Mud：$\quad 47$ bags at $\$ 6.10$ each
Invoice No． 0043
Date ．．．．．．．july 22， 1975

Man Hours：July 6 － 16 hrs＠$\$ 9.75$ per hr -156.00 July 7 － 24 hrs e $\$ 9.75$ per hr－ 234.00
Machine Hrs：$\quad-36 \mathrm{hrs} 0 \$ 8.50$ per hr－ 136.00
526.00

Plus 10\％$\quad 52.60$
Materials：$\quad 4$ NW Casing Shoes © $\$ 186.75$ ea
747.00
253.73
75.00
170.00
785.20
35.00
578.60

## Hole 75－3

Mud：$\quad 32$ bags at $\$ 6.10$ each


TOTAL INVOICE：$\$ 5,418.79$

# SHEPHERD ENTERPRISES LTD. 

804-470 Granville Street, Vancouver, B.C. V6C IV5
80x $21 \cdot \mathbf{2 4}$, Station A, Kamdocps, B.C. V2B 7K6


Hole 75-3


SECTION C - STATEMENT OF EMPIOYEE QUALIFICATIONS

DAVID CHARLES MILLER, P.ENG. - Mr. D. C. Miller,
geologist, obtained the degree in Geological Engineering from the University of British Columbia in 1959. Following graduation he was employed by Eldorado Mining and Refining Ltd. and Cominco Ltd. before joining the exploration staff of Bethlehem Copper Corporation in the fall of 1967. His positions with Bethleher have been as Chief Geologist at the company's Highland Valley operations and Maggie exploration project (1967-73), Senior Exploration Geologist on numerous property examinations and exploration ventures in Canada and the United States (1973 to the present).

SANDRA H.M. MARR - Mrs. Sandra Marr
graduated in 1968 from the University of St. Andrews, Scotland with a B.Sc. (Hons.) degree in Geology. She was employed from Nov. 1969 to March 1970 as a Research Assistant to Professor A. C. Turnock at the Univensity of Manitoba; from April 1970 to Nov. 1971 as a Geological Technician for Anaconda American Brass in Noranda, Quebec and from June 1972 to April 1973 as a Geological Technician with Dundee-Palliser Resources in Calgary, Alberta. Mrs. Marr joined the exploration staff of Bethlehen Copper Corporation in May 1973 and has been primarily responsible for conducting research into geological projects in both the metal and coal industries as well as maintaining the company's geological library. She has also assisted on some of Bethlehem's drilling projects.

Both these employees have carried out their assignments in a competent and professional manner.
R. E. Anderson, P.Eng. Exploration Manager

C SECTION D - DRTLL HOIE LOGS

Hole No. 1-75-1
Hole No. L-75-2
Hole No. L-75-2A
Hole No. I-75-3

0

DRILL HOLE LOG
BETHLEHEM COPPER CORPORATION LTD.
SHEET No. 1



DRILL HOLE LOG
BETHLEHEM COPPER CORPORATION LTD.
SHEET No. 3


ORILL HOLE LOG
BETHLEHEM COPPER CORPORATION LTD
SHEET No. 1





DRILL HOLE LOG
BETHLEHEM COPPER CORPORATION LTD.
SHEET No. 2

in bebs



0 SECTION E - GEOLOGICAL DATA
B.C. DEPARTMENT OF MINES and PEIROIEUM RESOURCES Notes to Accompany Preliminary Map No. 17 by V. A. Preto

## BRITISH COLUMBIA

DEPARTMENT OF MINES AND PETROLEUM RESOURCES

# NOTES TO ACCOMPANY <br> PRELIMINARY MAP NO. 17 <br> GEOLOGY OF THE <br> ALLISON LAKE-MISSEZULA LAKE AREA 

By V. A. Preto

## LOCATION AND ACCESS

During the 1974 field season mapping was continued southward from the area covered in 1973 (Preto. 1974) and an additional 55 square miles was compteted. This area covers parts of map sheets $92 \mathrm{H} / 15 \mathrm{E}$ and $92 \mathrm{H} / 10 \mathrm{E}$ and is bound by latitudes 49 degrees 40 minutes north and 49 degrees 48 minutes 45 seconds north and by longitudes 120 degrees 30 minutes west and 120 degrees 37 minutes 30 seconds west. Highway 5 traverses the western part of the map-area and ready access to the whole area is provided by numerous secondary roads.

## GEOLOGY

## GENERAL REMARKS

Like the area to the north, this map-area is mainly underlain by Upper Triassic Nicola volcanic rocks and associated intrusions. Of the three betts that had previously been described as forming the Nicola assemblage (Preto, 1974) only the Central and Eastern belts are recognized in the present map-area, and these differ considerably from their northern counterparts in the lithologies involved. Rocks of the Eastern belt which to the north consist of a generally well-bedded, probably marine, assemblage of greenish volcaniclastic sedimentary rocks and which lack intrusive rocks, change abruptly near the northeast corner of the present map-area into a predominantly subaerial assemblage dominated by pyroclastic and laharic deposits and dotted by several intrusions. Conversely, rocks of the Central belt which in the north-central part of the present map-area and in. areas to the north consist of a targely subaerial assemblage of flows, breccia, and taharic deposits, change abruptly into a largely subaqueous southern assemblage of green flows, flow breccia, tuffs, and minor sedimentary members.

## NICOLA GROUP

## CENTRAL BELT

The Central belt is bound to the east by Summers Creek fauit and to the west by Allison Lake pluton. It consists of the volcanic rocks of map units 1 and 2 and of all the occurrences of map unit 4.

Exposures of map unit $\hat{i}$ are plentiful in the vicinity of Missezula Mountain, but extensive moss and lichen cover makes the tracing of individual flows a difficult task. The flow rocks of unit 1 are typically massive, commonly amygdaloidai, dark green pyroxene and/or plagioclase porphyries. Indices of refraction of glass beads indicate that the bulk of these flows are of andesitic to basaitic composition. In thin section these rocks commonly show a good deal of saussuritic and propylitic alteration with widespread development of epidote, carbonate, chlorite, actinolite, and sericite. Vesicles are commonly filled with chlorite, epidote, and calcite. The predominant mafic constituent is an augitic clinopyroxene which is usually variabiy replaced by hornblende, chlorite, or epidote. No olivine was noted. Plagioclase phenocrysts are commonty badly altered, but the few thin sections of weakly altered rocks that have been examined indicate that the original plagioclase phenocrysts of these flows were zoned, intermediate to calcic labradorite.

The flows grade laterally into and are interbedded with massive flow breccia units of similar composition. These rocks are beautifully exposed along the road to and near the Missezula Microwave Station where they are interpreted as flow breccias on the basis of the monolithologic and reaction rimmed nature, angularity, and poor sorting of the clasts which are of the same composition as the crystalline matrix.

Volcaniclastic and bedded pyroclastic deposits of units $1 \mathrm{c}, 1 \mathrm{~d}$, and 1 f are found mostly in the south-centrat part of the map-area, where they help in indicating the attitude of the massive flows with which they are interlayered, and in a belt that stretches atong the west side of Summers Creek and northward to the west side of Missezula Lake. Of these, unit if is characterized by an abundance of fragments'of grey and light grey, aphanitic rbyolite or dacite, an equivalent of which is not found in the nearby flow units. Lenses of reefoid limestone are occasionally interlayered with these strata. Poorly preserved shell fragments were collected from limestone at three localities, but no dating could be obtained from them.

Flow, breccia, and taharic deposits of unit 2 are found only in the north-central part of the map-area and are southern extensions of map units $5 c, 4$, and $4 b$ of Preliminary Map No. 15 (Preto, 1974), to which the reader is referred for description. A few discontinuous layers of dark grev, pyritic tuff of unit 2 d are found interlayered with the red and green breccias along and west of the powerline.

## EASTERN BELT

Rocks of the Eastern belt occur east of the Summers Creek fault and are dominated by laharic deposits. In the area northeast of Missezula Lake a fairly complex assemblage of thinly bedded, grey-weathering volcaniclastic rocks (unit 3a), laharic deposits (unit 3b), crystal and lapilii zuff (unit 3c), and a few analcite-bearing augite-plagioclase trachyandesite and trachybasait•flows (unit 3d) surround an elongated body of micromonzonite porphyry and breccia that is believed to represent a shallowly eroded volcanic
dome. There is a similarity in composition between intrusive and extrusive rocks in this area, and rock fragments in all the clastic units around this dome are clearly derived from the dome. The rapid facies change that was noted in the Eastern belt a short distance north of the northeast corner of the map-area (Preto, 1974; p. 3) is believed to represent the northern limit of influence of this volcanic centre, at least with respect to flow rocks and pyrociastic rocks consisting of fragments of tapilli and larger size. This distance is in the order of 2 miles; a similar distance to the south of the dome, the rather complex assemblage of tuffs, flows, and volcaniclastic and laharic deposits changes into a thick succession of laharic deposits with minor lenses of conglomerate, grit, and occasionally limestone. These deposits are usually massive to crudely bedded, reddish to grey in colour, and contain abundant clasts of pink and red microsyenite and micromonzonite porphyry and of purple trachyandesite. Three other stocks of fine-grained monzonite cut these strata but none is surrounded by the assemblage of flows, tuffs, and volcaniclastic deposits that surround the stock northeast of Missezula Lake. This probably means that if the three southern stocks ever broke to the surface as volcanic vents, they did so at a higher level, and their extrusive products were lost to erosion.

## INTRUSIVE ROCKS

## UNIT 4

Several poor exposures of a leucocratic, pyritic, highly sheared quartz porphyry occur along a northerly trending shear zone in the southeastern corner of the map-area. Though highly sheared, the porphyry appears to be intrusive into flow rocks of unit la. It clearly predates the shear zone which appears to be truncated to the north by diorite of unit 6 . Though the age of the diorite is not known, it is believed to be related to the volcanic rocks (see later), and the age of the quartz porphyry is thus assumed to be also Upper Triassic.

## UNIT 5

Four stocks of reddish and pink micromonzonite and some microsyenite porphyry occur in the Eastern belt, and two similar, though smaller, plutons occur in the Central belt associated with rocks of unit 2 . The northernmost of the Eastern belt stocks is strongly elongated in a northerly direction and consists of a central, and probably lower, part of massive porphyry and of a peripheral, and higher, zone of porphyry breccia. The distribution and nature of the surrounding volcanic and voicaniclastic rocks suggest that this intrusion represents a shallowiy eroded volcanic dome from which the surrounding volcanic rocks were produced. As indicated by these strata, volcanism was for the most part subaerial, but a shallow basin must also have surrounded the vent area for some time so as to allow the formation of the lenses of impure limestone which fringe the stock.

The other three stocks are of similar porphyry but intrude a simpler assemblage of laharic deposits that contain a predominance of porphyry clasts similar to the stocks. It is probable that these stocks, like the one northeast of Missezula Lake, are the eroded remains of volcanic centres, since they represent high level intrusions and the surrounding. strata are rich in ciasts of similar lithology, but it would also appear that they have been more deeply eroded since they are not surrounded by their more immediate extrusive products such as flows or tuffs, which were probably removed by erosion.

## UNIT 6

Medium-grained, grey syenodiorite and monzonite of unit 6 are found only in the Central belt in six stocks of variable size. The northernmost of these bodies, which is also the largest, occurs in the north-central part of the map-area west of Missezula Lake, and contains several occurrences of chatcopyrite mineralization. The stock is elongated in a northwesterly direction and is in part truncated by a northwesterly trending fault. The eastern part of the stock is mostly medium grained, grey pyroxene syenodiorite and diorite breccia locally invaded by smatI, irregular bodies of syenitic breccia and flooded by pink K-feldspar. The western part of the stock has a very irregular outline and consists of long dyke-iike bodies of fine-grained green hornbiende-pyroxene porphyry. Other stocks of similar diorite are found further south and are all elongated parallel to or cut by northerly trending faults. Copper mineralization is widespread in one of these stocks located immediately southeast of the Missezula Microwave Station.

No information on the age of these intrusions is available at this time, but their composition appears to be very similar to that of the surrounding volcanic rocks. It is suggested that these intrusives, like similar bodies in the Copper Mountain and Kamloops areas, though cutting the volcanic rocks, are roughly of the same age.

## ALLISON LAKE PLUTON (UNIT 7)

This post-Nicola pluton occupies the western part of the map-area and has been previously described as consisting of red granodiorite (Rice, 1947, p. 39). Most of the pluton was found to consist of reddish and grey, locally miarolitic biotite-hornblende granite and quartz monzonite (unit 7a). Grey hornblende granodiorite (unit 76) and grey to dark grey, locally migmatitic hornblende diorite and quartz diorite (unit 7c) also form part of this pluton. Large inclusions, or soof pendants of altered volcanic rocks, probably Nicola (unit 7d), occur at several places, suggesting that the present level of erosion is close to the former roof of the intrusion. North of Allison Lake, granitic rocks are cut by a large number of northeasterly trending, dark-coloured basic dykes, indicating a zone of tension within the pluton. The granitic rocks clearly cut Nicola volcanic rocks, which along the contact are sheared, silicified, and pyritized. Rice (1947, p. 39) indicates that to the southwest of Allison Lake the pluton is unconformabiy overlain by Lower Cretaceous Kingsvale rocks. It would therefore appear that the Allison Lake pluton is of Lower to Middle Jurassic age.

## KINGSVALE GROUP (UNIT 8)

A few isolated exposures of plagioclase and augite-plagioclase andesite porphyry occur north of Loosemore Lake, a short distance north of exposures of granite of unit 7a. The volcanic rocks are only slightly altered and resemble somewhat in appearance volcanic rocks west of Aspen Grove that have been mapped as part of the Kingsvale Grup.

A few isolated exposures of Pleistocene and Recent basait are found in the northwestern corner of the map-area. This unit is part of widespread flows of valley basalt that occur at several localities north of the map-area (Preto, 1975\}.

## STRUCTURE

The structure in the map-area is characterized by an apparent lack of folding and is dominated by Altison fault to the west and by Summers Creek fault and its subsidiaries to the east. These high-angle structures constitute a major northerly trending fracture system which not only divides the Nicola Group into mappable belts but also controls the distribution of intrusive rocks. It is evident that such a fracture system was a dominating structural feature in Upper Triassic time in this area and shoutd be regarded as an ancient rift system. Intermittent block movement along these fautts appears to have occurred over a long period of time, and was certainly prominent in Middle Eocene time, when successor basins such as Princeton Basin south of the map-area was formed.

The Summers Creek fault marks the boundary between largely subaerial assemblages of the Eastern belt and mostly submarine sequences of the central belt, and also sharply controls the distribution of intrusive rocks of unit 5 to the east and units 4 and 6 to the west. With the exception of the area northeast of Missezula Lake, where structures in the stratified rocks are dominated and controlled by the syenite pluton, rocks of the Eastern belt dip moderately to steeply to the west.

Within most of the Central belt, layered rocks exhibit moderate to steep east and northeast or vertical dips, but in the vicinity of Missezula Mountain several westerly dips occur, indicating the presence of either a northerly trending syncline or of some severely tilted fault panels. Lack of clearly recognizable stratigraphic markers and of suitable minor structures preclude the positive identification of a fold structure in this area. Another major structural feature is a large northerly trending zone of intense shearing and faulting which marks the western boundary of Summers Creek hault system. This shear zone has been mapped from Missezula Lake to the southern boundary of the map-area, and continues to the south. It ranges in width from a few feet to more than 1,000 feet and over most of its length all rocks within it are reduced to highly fissile greenschist and sericite schist with a strong foliation that for the most part dips steeply to the west.

## mineral deposits

Most of the mineralized occurrences in the map-area are in the Central belt, and consist of disseminations and minor replacements of pyrite, chalcopyrite, and occasionally some chalcocite in intrusive rocks of unit 6 or in volcanic rocks along faults of the Summers Creek system such as at the KR prospect northeast of Missezula Microwave Station. A few occurrences of chalcocite and chalcopyrite are found in the north-central part of the map-area along faults in rocks of unit 2. In the Eastern belt copper occurrences are best exempified by the showings at the Shamrock prospect south of Missezula Lake, where disseminations and minor replacements of chalcocite, some native copper, and hematite occur in volcanic conglomerate and laharic deposits.

Minor chalcopyrite disseminations occur in granodiorite and granite of the Allison Lake pluton at the Pine prospect, a short distance east of Allison Lake. A short distance north of Prosser Lake a northerly trending vein a few inches wide cuts granitic rocks of the Allison pluton and is mineralized with argentite, tetrahedrite, galena, malachite, and azurite in a quartz-carbonate gangue. A selected sample from this vein, collected by P. A. Christopher, yieided: gold, 0.02 ounce per ton; silver, 275.2 ounces per ton; copper, 3.46 per cent; lead, 2.69 per cent; and zinc, 1.21 per cent.

## REFERENCES

Preto, V. A. (1974): Geology of the Aspen Grove Area, B.C. Dept. of Mines \& Pet. Res., Preliminary Map No. 15.
......... (1975): Geology of the Central Part of the Nicola Belt, B.C. Dept. of Mines \& Pet. Res., Preliminary Map No. 18.

Rice, H.M.A. (1947): Geology and Mineral Deposits of the Princeton Map-area, British Columbia, Geol. Surv., Canada, Mem. 243.

Geological Division,
Mineral Resources Branch,
Department of Mines and Petroleum Resources,
July. 1975

CHEMICAL ANALYSIS OF NICOLA VOLCANIC ROCKS

| Field No. | $\mathrm{SiO}_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | MgO | CaO | $\mathrm{Na}_{2} \mathrm{O}$ | $\mathrm{K}_{2} \mathrm{O}$ | $\mathrm{TiO}_{2}$ | MnO | FeO | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | $\mathrm{H}_{2} \mathrm{O}+$ | $\mathrm{H}_{2} \mathrm{O}-$ | $\mathrm{CO}_{2}$ | $\mathrm{P}_{2} \mathrm{O}_{5}$ | S | Totai | R.t. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Central Belt |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| VP-74-28 (flow) | 56.50 | 17.71 | 3.14 | 2.78 | 5.41 | 2.83 | 0.85 | 0.25 | 3.93 | 3.42 | 2.33 | 0.26 | 1.27 | 0.24 | 0.01 | 100.93 | 1.542 |
| VP.74-32 (flow) | 52.45 | 16.77 | 5.06 | 6.35 | 3.84 | 2.50 | 0.91 | 0.26 | 4.72 | 5.18 | 2.39 | 0.32 | 0.34 | 0.39 | 0.18 | 101.66 | 1.566 |
| VP.74.106 (tuft) | 57.22 | 15.99 | 3.84 | 7.96 | 1.51 | 1.07 | 0.94 | 0.21 | 6.20 | 3.96 | 1.72 | 0.16 | 0.14 | . 2 | 0.04 | 100.98 | 1.570 |
| VP-74-145 (tuff) | 59.67 | 14.90 | 3.48 | 5.41 | 1.68 | 2.65 | 0.98 | 0.16 | 6.94 | 1.55 | 3.09 | 0.33 | 0.89 | . 2 | 0.11 | 101.86 | 1.556 |
| VP.74-154 (tuff) | 51.36 | 12.87 | 2.80 | 2.30 | 1.74 | 1.86 | 0.84 | 0.25 | 6.58 | 0.92 | 2.67 | 0.26 | 5.20 | 0.24 | 0.03 | 99.92 | 1.576 |
| SA.74-229 (flow) | 52.60 | 16.37 | 5.95 | 6.80 | 4.15 | 0.17 | 1.47 | 0.17 | 6.92 | 2.12 | 3.09 | 0.33 | 1.49 | 0.46 | 0.01 | 102.10 | 1.570 |
| SA-74-239 (flow) | 46.10 | 17.18 | 3.00 | 9.74 | 3.40 | 0.68 | 1.98 | 0.20 | 7.79 | 3.99 | 3.25 | 0.32 | 2.85 | 0.48 | 0.02 | 100.98 | 1.600 |
| SA.74-263 (flow) | 55.95 | 12.17 | 3.62 | 6.96 | 3.37 | 0.57 | 2.07 | 0.21 | 9.11 | 2.97 | 2.65 | 0.32 | 0.07 | 0.60 | 0.03 | 100.67 | 1.562 |
| N-73-252 (flow) | 47.70 | 16.10 | 5.51 | 7.83 | 3.88 | 3.95 | 0.74 | 0.24 | 1.94 | 7.75 | 2.78 | 0.29 | 0.82 | 0.69 | 0.03 | 100.25 | 1.576 |
| LK.74.47 (fiow) | 53.13 | 16.72 | 4.91 | 5.48 | 4.47 | 0.74 | 1.19 | 0.15 | 6.20 | 2.92 | 2.89 | 0.28 | 0.35 | 0.48 | 0.02 | 99.92 | 1.552 |
| LK.74-55B (flow) | 50.29 | 16.99 | 4.11 | 9.01 | 4.23 | 0.62 | 1.21 | 0.21 | 6.08 | 3.00 | 2.54 | 0.34 | 0.41 | 0.33 | 0.03 | 99.40 | 1.578 |
| JN.74- 63 (tlow) | 53.34 | 16.78 | 3.61 | 5.91 | 4.02 | 4.15 | 0.94 | 0.18 | 1.81 | 7.38 | 1.45 | 0.17 | 0.41 | 0.39 | 0.02 | 105.56 | 1.560 |
| JN.74. 68 (flow) | 53.23 | 16.05 | 4.68 | 7.12 | 3.45 | 3.15 | 0.94 | 0.21 | 4.32 | 4.63 | 1.88 | 0.19 | 0.14 | 0.42 | 0.04 | 100.45 | 1.562 |
| JN-74-1:0 (flow) | 63.95 | 15.31 | 2.18 | 4.87 | 3.12 | 2.41 | 0.77 | 0.12 | 3.45 | 2.72 | 1.50 | 0.14 | 0.14 | 0.35 | 0.05 | 101.08 | 1.532 |
| Eastern Belt |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SA.74. 81 (tuf) | 56.00 | 17.64 | 2.63 | 6.36 | 6.14 | 2.28 | 0.50 | 0.23 | 1.90 | 3.59 | 1.81 | 0.37 | 2.17 | 0.21 | 0.01 | 101.84 | 1.542 |
| SA.74. 91 (flow) | 53.87 | 17.65 | 4.00 | 6.39 | 4.14 | 4.06 | 0.66 | 0.23 | 3.34 | 4.37 | 2.23 | 0.30 | 0.54 | 0.39 | 0.01 | 102.16 | +1.542 |
| SA.74-111 (tuff) | 55.80 | 17.83 | 3.65 | 6.73 | 3.34 | 1.93 | 0.67 | 0.13 | 2.85 | 3.13 | 3.35 | 0.81 | 0.41 | 0.33 | 0.01 | 100.97 | 1.550 |
| SA-74-114 (An. flow) | 49.10 | 15.36 | 6.19 | 8.93 | 3.06 | 4.02 | 0.67 | 0.22 | 3.84 | 5.84 | 3.17 | 0.33 | 0.41 | 0.46 | 0.01 | 101.61 | 1.578 |
| SA-74.116 (flow) | 54.48 | 17.55 | 3.24 | 5.00 | 7.17 | 0.82 | 0.85 | 0.18 | 3.05 | 3.76 | 2.37 | 0.22 | 0.91 | 0.41 | 0.02 | 100.03 | 1.544 |
| SA.74-152 (flow) | 65.34 | 16.72 | 4.33 | 1.38 | 1.65 | 6.08 | 3.05 | 0.82 | 1.74 | 2.40 | 1.31 | 0.32 | 0.20 | 0.32 | 0.03 | 105.69 | 1.514 |
| SA.74-154 (An. fiow) | 48.78 | 14.22 | 6.44 | 8.81 | 2.13 | 4.77 | 0.66 | 0.26 | 4.53 | 5.24 | 2.56 | 0.23 | 0.83 | 0.50 | 0.02 | 99.98 | 1.578 |
| SA-74-204 (lahar) | 51.28 | 18.09 | 3.59 | 6.42 | 5.03 | 2.62 | 0.75 | 0.22 | 3.98 | 4.00 | 2.26 | 0.31 | 1.36 | 0.37 | 0.01 | 100.29 | 1.560 |

Chemical analysis of nicola intrusive rocks



DescriptionDrawing No.
General Location Plan

- Scale 1:50,000
Mineral Claim Plan ..... 75-2
with Drill Hole Locations
- Scale 1:10,000
Geological Plan ..... 75-3
with Drill Hole Locations
- Scale 1:10,000
Drinl Hole Plan ..... 75-4
- Scale 1:1250






