DIAMOND DRILLING REPORT

CARMI MOLYBDENUM PROPERTY, B.C.

GREENWOOD MINING DIVISION

by

J. Michael Kenyon, B.Sc. May, 1976

Sec. 5

Department of Mines and Petroleum Resources ASSESSMENT REPORT NO. 5860 MAP

TABLE OF CONTENTS

	Page No.
INTRODUCTION	2
DRILL CONTRACTS	2
DRILLING	3
Diamond Drill Core	3
Sludge Collection	3
SAMPLING	5
Core	5
Sludge	5
CORE STORAGE	5
ASSAYS	5
ASSAY PROCEDURES	5
Molybdenum (MoS ₂)	6
SURVEYING	6
GEOLOGY	6
RESULTS	8
CONCLUSIONS	9
CERTIFICATES	10 & 11
COST STATEMENT	12
🖅 MAPS – Index Map	1
Map 1 DDHV18,V19 Hole Locations	4
Map 2 Hole Locations, Survey Bench Marks, Roads and Trenches	(In Pocket)
APPENDIX 1 - Drill Logs	

APPENDIX II - Drill Contract

an,s

.

APPENDIX III - Survey Notes

 $\mathcal{R}_{i} \neq i$

- 1 -

INTRODUCTION

Two vertical BQ wire line diamond drill holes totalling 1299 feet were drilled by Vestor Explorations Ltd. on claims situated about three and five miles northwest of Carmi, British Columbia. The purpose of the program was threefold; 1) to test the depth extent of molybdenum mineralization encountered in an earlier shallow percussion drilling program by Vestor and Granby Mining Corporation in 1975; 2) to correlate the earlier percussion results with diamond drilling and 3) to determine geology and structure which is not possible with percussion drilling.

The principal economic mineral on the property is molybdenite. Minor chalcopyrite is present but copper values rarely exceed 0.1%.

No. 1

The diamond drilling program has successfully proven that economic grades of mineralization extend to depths well below the four hundred foot limit of percussion drilling. Grade correlation between the two methods of drilling was not determined due to the limited number of sites tested.

Drilling was terminated prior to completion of the drill contract due to the property being optioned by Craigmont Mines Ltd.

DRILL CONTRACTS

In February of 1976, Vestor contracted with Interior Diamond Drilling of Summerland, British Columbia, for a minimum of three thousand feet of BQ drilling at a cost of \$13.50 per foot. Interior's liabilities included cost of mobilization, demobilization, accommodation and sludge sampling. Not included in the contract were costs for casing, core boxes, sludge sample bags and bulldozer work for drill site and road construction, which were borne by Vestor.

On May 1st, the Carmi property was optioned to Craigmont Mines Ltd. and the drill contract was terminated with only 1299 feet drilled, for a settlement price of \$6,250.00. The settlement price compensated for the disproportionate mobilization, demobilization, accommodation and other related costs to Interial Diamond Drilling which would otherwise have been amortized over the larger contract.

A copy of the drill contract is appended to this report.

DRILLING

Two diamond drill holes were completed, hole V18 to a depth of 620 feet and hole V19 to a depth of 679 feet and locations are shown on Map 1.

The drilling operation was directed in the field for Vestor Explorations by J. Michael Kenyon, the author of this report and the overall operation was supervised by John A. Greig, P.Geol. and Anthony Rich, P.Geol.

Because of the good road access, the diamond drill was truck mounted for increased mobility. Road and drill site construction as well as snow removal from existing roads added considerably to drilling costs.

Casing was required to depths of 15 feet. All casing remains in the holes as good sludge recovery dictated the casing be sealed with a chemical grout.

Diamond Drill Core

×. i

Core recovery is estimated at about 95% and extra care by the drilling company was required in fractured ground.

Sludge Collection

All sludge from diamond drilling was passed through a Humble sludge splitter which split off 1/40th of the sludge. This fraction was collected directly in filter sample bags. Sludge samples were collected in 10 foot intervals by the drillers.

Michael Kenyon

.

. . I

SAMPLING

Core

No. 1

After logging, cores were split in twenty foot sections and each twenty foot section correlates directly with two sludge sections. Cores were shipped to the assayer, Loring Laboratories in Calgary, by air freight from Kelowna.

Sludge Sampling

Sludges from diamond drilling were allowed to dry in the fiber bags before shipment to the assayer.

CORE STORAGE

All core and unassayed sludge is labelled and stored on core racks in the lumber kiln at Carmi. The core is available for inspection by the Government at this location.

ASSAYS

Samples were assayed by Loring Labora pries Ltd. of Calgary, the same laboratory used by Vestor and Granby Mining Corporation in 1974 and 1975. In the past, cross-checking samples with other laboratories (Bondar, Clegg Limited), showed assay divergences of only $\stackrel{+}{-}$ 0.003% MoS₂.

Cores and sludges were assayed for MoS₂. Occasional samples were assayed for gold and silver. Assay results were tabulated on the drill logs.

ASSAY PROCEDURES

Both cores and sludges were dried at 100°C overnight. Samples for analysis were then screened to -100 mesh.

Molybdenum (MoS₂)

3to . 1

A 2 gram sample was weighed, added to 50 ml of 30% HCl and boiled. This has the effect of dissolving any Mo0₃ present, but not MoS₂. This solution was then filtered and the filter paper and it's contents digested in a mixture of aqua regia and perchloric acid. The digestion was taken to fumes. The residue was then taken up in HCl and water, SiO₂ filtered off and the solution made up to volume with the addition of aluminum chloride solution. The resultant solution was analyzed for molybdenum by atomic absorption. The aluminum chloride has the effect of enhancing the molybdenum atom; minimizing it's immediate oxidation to MoO₃ in the flame.

SURVEYING

A survey of the property was undertaken in 1974 by A. Rich, P.Geol. using a DKM 1 Theodolite. Accurate locations and elevations of drill sites were obtained from a bench mark on the CP Railway bridge, over Wilkinson Creek, about 1 mile to the northwest. A number of bench marks were established on the property and locations and elevations of drill sites were determined from these bench marks.

GEOLOGY

No attempt is made here for a far reaching interpretation of the molybdenum mineralization. The prime purpose of this drilling program was to correlate percussion drilling results with diamond drilling, to interpret geology and structure and to test the extent of mineralization to depths greater than possible with percussion equipment.

Rock types described in the drill logs were identified in hand specimen only. The potassium feldspar content of certain lithologies was determined in the

- 6 -

field using sodium cobaltinitrite stain, after hydrofluoric etching. Representative samples of most rock types had been previously identified in thin sections by Dr. Roger Morton at the University of Alberta, Edmonton. All rocks are classified according to the "Classification and Nomenclature of Plutonic Rocks", as recommended by the International Union of Geological Sciences, 1972.

Following are the salient geological features observed in core.

Drill Hole V18

3. 1

The mineralization occurs mainly in gneissic granodiorite breccia. Breccia fragments are angular and there is often considerable rotation between adjacent fragments. Distance between fragments is generally less than one inch but can be several inches. The breccia matrix consists mainly of almost pure quartz or quartz-feldspar with few mafics (or sulphides). Generally the better grades of molybdenum occur where the brecciation is most intense. Most of the molybdenite occurs as flakes or small anhedral crystalline masses disseminated within the breccia A limited amount of molybdenite occurs in the matrix or within guartz fraaments. veins. Although surface oxidation of molybdenum minerals is intense, the oxidation in core does not exceed a depth of 15 feet. Pyrite is ubiquitous, however the pyrite content appears to increase with the molybdenum. Purple fluorite often occurs in the breccia matrix. Brecciation stops at 570 feet, beneath this level the lithology is a highly altered (chloritized, epidotized, sericitized) unbrecciated, granodiorite gneiss. The molybdenum grades decrease markedly in this unbrecciated lithology. A leuco-syenite porphyry consisting of An30 phenocrysts in a very fine grained potassic feldspar matrix was encountered. No molybdenum values were obtained from this porphyry, i.e. it appears to be the post-mineralization.

Drill Hole V19

Sec. 8

The brecciated gneissic granodiorite horizon which is the main host rock for mineralization on the property, is only sparsely mineralized in this area. It was intersected only in the top 25 feet of the hole. Beneath the gneissic granodiorite the main lithologies encountered to the end of the hole are a leucocratic granodiorite and a highly altered quartz monzonite (quartz, potassic feldspar, sericite). The quartz monzonite predominates in the lower portion of the hole. Quartz muscovite pegmatite in intervals up to about 20 feet thick occur within the sections 100 - 140 feet and 350 - 440 feet. This pegmatite occurs within the quartz monzonite. Molybdenum mineralization occurs as disseminated flakes within the quartz monzonite throughout much of the hole although the highest grades of molybdenum occur within the quartz muscovite pegmatite. In the quartz muscovite pegmatite the molybdenum occurs as blebs, cheifly within muscovite masses. Pyrite is ubiquitous but not abundant.

RESULTS

Assay Results (Core and Sludge Assays)

On the drill logs appended to this report, the following table summarizes the more important molybdenum values:

Hole [#]	Angle	Total Depth	Mineralized Intersection	Length	Average Combined Core and Sludge Grades in MoS ₂
DDHV18	90°	620'	0 - 570	570'	0.14%
			Incl.0-160	160'	0.22%
			Incl.420-540	120'	0.21%
DDHV19	90°	679'	100 - 140	40'	0.16%
			350 - 440	90'	0.12%

Note: The combined core-sludge assays reported above represent the combined assay for the whole hole, i.e. core plus anulus. The ratio of the anulus to the core for BQ drilling is 1.7.

- 8 -

CONCLUSIONS

The drill program must be considered successful in that economic grades of molybdenum were shown to exist to depths greater than that implied from percussion drilling (maximum depth 400 feet) in both holes. In addition, two previously unsuspected rock types (quartz-muscovite-pegmatite and highly altered quartz monzonite) are known to host molybdenum mineralization as discovered in DDHV19. Although previous experience has shown percussion drilling to be less accurate than diamond drilling, no conclusions can be drawn due to the limited nature of this program. The fact that economic molybdonum mineralization extends to depths greater than indicated by earlier percussion drilling adds considerably to the total tonnoge already delineated by previous drilling (Map 2 in pocket).

Sec. 1

J. Michael Kongen

-9-

STATEMENT OF QUALIFICATIONS OF SUPERVISING GEOLOGIST

- 1, John A. Greig of the City of Edmonton, in the Province of Alberta, hereby Teclare:
- 1) That I am a Director and Vice-President of Vestor Explorations Ltd.
- 2) That I am a Professional Geologist, registered in the Province of Alberta.
- 3) That the work described in this report by J. Michael Kenyon was carried out under my supervision.

Dated At the City of Edmonton, Alberta

this 20 day of May, 1976

Sec. 1.

John A. Greig, B.Sc., M.Sc., P.Geol.

STATEMENT OF QUALIFICATIONS

I, J. Michael Kenyon of the City of Edmoton, in the Province of Alberta hereby declare:

- That I am a graduate of the Northern Alberta Institute of Technology, Edmonton, Alberta, with a diploma in Geology, 1970 and that I am a graduate of the University of Alberta, Edmonton, with a B.Sc.(Spec.) 1974. At present I am enrolled in a Masters program in Geology at the University of Alberta.
- 2) That I have worked in mineral exploration since 1969, mainly in a temporary capacity. In latter years my position has been that of Party Chief.
- 3) This report is based on personal knowledge of the Carmi property. I was Party Chief, largely responsible for the field operations of the 1976 drilling program.

Dated at Edmonton, Alberta This 20 day of May, 1976

No. 1

A. Michael Kenyon

VESTOR EXPLORATIONS LTD.

COST STATEMENT

1.	Employee	<pre># Days Employed</pre>	Period	Rate \$ Mont h	Total Paid
	J. Michael Kenyon	35	26/3/76 - 30/4/76	\$1,250/mo	\$ 1,458.00
	Neil Kenyon	35	26/3/76 - 30/4/76	475/m o	554.00
			Tota	I Salaries	\$2,012.00
2.	Diamond Drilling – c	ontracted cost			26,185.00
3.	Bulldoz <mark>er –</mark> Drill Sit	es – contracteo	d c ost		2,325.00
4.	Assays – number of as	says shown in	report		530 .00
5.	Truck Rental – 4 whe	II drive – grou	nd transportation		696.00
*6.	Food				204.00
7.	Fuel - Truck - \$229	.00			
	House - 134	.00			3 63 .00
٢		×		Total	\$ 32,315.00

.

		÷				5.			
. ,	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY	Co	<u>rmi</u>		-	101 D C	H V	-18
	GRID REF STARTED April 9/76_	c	OMPLETED	April I	6 / 76				
SB	CTION DEPTH <u>620 ft.</u> DIP <u>-90</u> BEARING DRHLU	R. Lo	ndry	a	LO	GGED BY 🟒	<u>M. Ke</u> i	yen_	
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	Cor	e As	avs SI	udge
0-2	Carlin		<u></u>	20	20	Hu	Ag	Moss	<u></u>
0 -	Casing		20	HO	20			•/57 1.10	.767
2-74	Bressiated slightly to well-foliated biotite - condite - hornblende overtz divite		40	60	20	T_		- 141	
	Oxidized to 20 feet slightly on fractures to 30 feet. Average 10% purite as		60	80	20	- Tr-	Tr	.097	.194
	disseminated crystals but more often as blebs of large crystal clusters up		80	100	20	٦r	Tr	.048	.085
	to 5mm across. Quartz rarely as veinlets, mostly as precise matrix and		100	120	20	Tr-	Tr	. 412	.620
	eavity fillings - host of pyrite masses. Care vuggy for many sections		120	140	20	Tr	Tr	-198	. 258
	and lined with crystalline gypsum, calcite, pyrite and melybdenite. Gypsum		140	160	20	Tr	Tr	. 064	.182
	also thinly couts some fractures. Some quartz rich sections show kadinitic		160	180	20	ļ		.062	.100
	alteration and hornblende -> biotite -> sericite alteration of quartz divite		180	200	20			.076	,106
	fragments Purple fluorite minor and with guerts and contact		200	220	20			.052	.085
	of quartz and breccia fragments. Molybdenite closely associated with		22D	240	20			-0.39	.050
	burders of breacia fragments as this platelets as well as disseminated		240	260	20			.637	.061
	within guartz matrix and within tragments. Will also coat thinly, some		.260	280	20			.024	.052
	tracture planes within very well brecchated sections. Molybdenite		280	300	20		·	-0.54	-068
	Decurs throughout this section.		200	320	20	}		.081	<u>•112</u>
			240	340	20			1×0×1	120
74-89	Folders and W. Element (1) with Chlored and		340	300	20			-0.58	.089
	i aspar porphyry alle, me grained with white relaspar phenocrysis,		380	400	10	<u> </u>		030	048
	indicate suggities are minor guarized in grayish materix. Stanling		HDO	420	10	<u> </u>		. 048	.054
	Fine amined events - feldson - vein cuts dike at 25-26 - 5% secinite		420	440	20	1		. 683	.093
	trace avoite and molyberite.		440	460	20			. 051	<u>~</u>
			46U	480	20			.501	
			480	500	20			.223	

•

.

•

· · ·

	GRID REF ELEVATION STARTED		COMPLETED					
SECT	ION DEPTH DIP BEARING DBILLI	Et			10	GGED BY		
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	MoSo	e Assay	5 Sludge Mos
9-129	Breactional as 2-74' but brees preasing fragments and quartz matrix and weins		500	520	20	.083		.189
	very heavily outitized. Some sections contain partially tealinized Kegar veinlets		520	540	20	.045		.09
	as at 100-102'.		540	560	20	.030		
	103-105.5' - very vagy proces very micaceous fragments, micas on		560	570	10	.076		.07
	slips and fractures altered to tale. Moss up to 6% here.		ļ					
	109.5 - 115.5 - same as above but very heavily pyritized		ļ			<u> </u>		
	112 - 8" aplitic dike, 1% purite, trace MoSa			ļ		<u> </u>	┟───┼	
						┟───┤	 -	
9 - 131 51 - 138	Very heavily pyritized quartz vein (25-30%) - trace MoS2 - trace magnetite erystals							
a_114			<u> </u>					
160	Soarse grained biotite-epidete-tion blende quartz durite only slightly brecciated at:	+	┼╌╌			╂┦	t-	
	140-141, 154-155.5, 157-15A. Breccia sections ungoy with gypsum and caleiter	1	1	1			t	
	1070 pyrite, molybolenite disseminated and as tracture crotings in bracia only. Good	+	1			<u> </u>	t	
	preserva at 164-166, quartz appears rutilated as apposed to milky normally,			1				
66-170.5	A to be access when a barrietal but awith a large branic framment		1	1	1	1		
	Charse quarter diorite de 138-186 mais presenter put possing a large presenter against							
	Tiselta Jeveral 2 guartz veris ramainea mility una runnung sentis una source							
	- pyrite and thace may bacalle,	1	1					
0.5-262	Good processing attend awartz divisite, with occassional was & lined with crustalline							
	ourite and avosum. Quartz is both milky and rutilated, amount controls alteration of							
	directe fragments from relatively unaltered to extremely mycoccous. Tale on some							
	fractures. 110 to 15% surite = magnetite < 190 in surite rich sections. Approx 12%							

×.

R.

•

.

.

,	VESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY				. н	IOLE DUL	1 <u>V-18</u>	-
	GRID REF ELEVATION STARTED		COMPLETED						. .
Se	CTION DIP BEARING DRILL	£t			LOC	GGED BY			
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH		ASS	AYS	
<u></u>	france to have desired								
	1825-184 at - feldsort (ant) gravatite vein 5% dissent hightite aberum to chlorite.								
	veinlets + clusters of crystalling ourite (to 10%). Occassional MoSo								
	rosettes in emore feldears and along atz-feld borders.								
2-267	Fire-provined feldsoor aplitic dike ~ 2% pyrite, fractures coated with epidote and								
	chlorite. Trace MoSo in ote stringers. Trace fine magnetite.								
413									
7-390	Bracciated quarte diprite - some sections slightly foliated. Otz, febls + fluorite as			ļ					
	fills. Fragments alter as hernblende > biotite -> sericite -> tale (or pyrophyllite).	ļ	L	ļ			•		
	Mase disserve and along fragment boundaries	ļ	L	ļ	ļ				
	358-360 ungy pink feld-gtz breecia 1% Burite, trace MoSa								
	380-385.5 unggy et 2 vein lined with gypsum, pyrite and prehnite (?)	<u> </u>	L	 					
	tace chalcopyrite in pyrite (5-7%), dissem. Ma Sa	ļ			 				
	guartz-pyrite vein, dissen Mosa, trace chalcopyrite in pyrite.								
	pyrite about 50%								
13-423	Quartz vein with a few altered host fragments, pyrite 10%, small blebs and	+							
	masses of MoSa, at 419 about 3" of 40% fluorite.	1		<u> </u>					
- 440		<u> </u>			<u> </u>				
15-778	Breccia as above, but very wiggy. Frehrite (?), calcite, gypsum, pyrite, green fluorite							├	
	and an unknown mineral, all line sugs as crystalline aggregates. Breecia fingments								
	tend to be foliated. Epidote as veialets. A few sections show Kepper addition		 	 	 			┠┠	
	and secondary locar venlets	1	1		1.				

2**4** 41 14 14

.

•

•

.

1 · · · ·

CONTROL ENNON INNO CONTROL BETON DOT DOT DOT DOT DOT BETON DOT DOT DOT DOT DOT DOT WB - 500 Quartz-dioite partial breecia, fulls and usins of gtz-feld pegmentile, forgeneots DOT DOT DOT DOT WB - 500 Quartz-dioite partial breecia, fulls and usins of gtz-feld pegmentile, forgeneots DOT DOT DOT DOT WB - 500 Quartz-dioite partial breecia, fulls and usins of gtz-feld pegmentile, forgeneots DOT DOT DOT DOT WB - 500 Quartz-dioite partial breecia, fulls and usins of gtz-feld pegmentile, forgeneots DOT DOT DOT DOT WB - 500 Quartz-dioite partial breecia, fulls and usins but expert. DOT								
NOTION DOTA		GRID REF ELEVATION STARTED		COMPLETED		<u> </u>		
NORMAI DECERTION Source NOR NO NO 448-509 Quartz-dirite partial breacias, fills and wins of gtz-feld pagmatite, fingments	SI 1	CTION DIP BEARING	RILLER		<u> </u>	LOGGED	BY	
448-509 Queste divide partial breaches, fulls and veine of get feld promotile, fragments 448-509 Queste divide partial breaches, fulls and veine of get feld promotile, fragments 459-464 milky get win, 5% pyrite. At 460' about 9" of massue gyrite and 459-464 milky get win, 5% pyrite. At 460' about 9" of massue gyrite and 493-500.5 pink feld-get prognatite breeins, 2 6" sections of altered diocite. 493-500.5 pink feld-get prognatite breeins, 2 6" sections of altered diocite. 493-500.5 pink feld-get prognatite breeins, 2 6" sections of altered diocite. 493-500.5 pink feld-get prognatite breeins, 2 6" sections of altered diocite. 493-500.5 pink feld-get prognatite breeins, 2 6" sections of altered diocite. 493-500.5 massive froature, codings, owerall ~ 1% 5005-501 baotite-baoileade equilate gano diocite. (kspir additio) 5005-620 Massive fractures and as workits. 5005-620 Massive fracture and as workits. 5005-620 Massive fracture and diverse grains. Added Kspir veinlets e phenocerysts. Qtz 1 picket addite add diverse grains. 5005-620 Massive fracture and diverse grains. 1 massive grains. 1 massive fractures. 1 massive fracture and diverse grains.<	FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	10	WIDTH		ASSAYS
more bilated, those completely evolved, very meacenes. 459-464 milly gtz vein, 5'h pyrite. At 160' about 9" of massive pyrite and mely bdenite (15:20'h), MaSa discen throughout. 473-5015 purk field gtz pegmatite breeia, 2 6" sections of altered diorite. 473-5025 purk field gtz pegmatite breeia, 2 6" sections of altered diorite. 473-502 point field gtz pegmatite but experiments of altered diorite. 473-502 point field gtz pegmatite but experiments of altered diorite. 473-502 point field gtz pegmatite but experiments of altered diorite. 473-502 maxime epider collisions but experiments of altered diorite. 474 500 maxime epider collisions of the permitten of altered diorite. 507-527 biotite-bandente-applied gunta massainte = some breviation and addition of gtz and feld-gtz pegmatite. 5 fact gtz vein at 511' with geoch MaSa on finctures and as ventels. 520-5305 modum to carse pupy thic biotite gunta measorite. Since biotite 57% 4 frace MaSa on slukewided fractures. 5305-620 Non-breecented, moderntely gnossic, biotite contingent of the provide of the spin of the source of the spin of t	448-5 09	Quertz-diorite partial pressia, fills and veins of atz-feld segmentite framents						
459-464 milky giv win, 5% pyrite. At 462' about 9" of massue pyrite and maly balante (15-20%), MaSa discent throughout. 493-504.5 pirk field-gtz promatite breeia, 2 & "sections of altered diocite. weny good MSa as discerionians but export veinlets, blobs and massue fracture costings, overall ~ 1% 544.5-509 massive exploite grane diocite (Kspar addition) 5505-620 Man-breeciated, massive exploite grane discrite massorite - some breeciation massue fractures and as veinlets. 5505-620 Man-breeciated, massive granes diversed fractures. 540.5-509 massive exploite grane discrite grane discrite massorite - some breeciation and addition of give and field-give pyratite. 3 that give at 511' with good MSa on fractures and as veinlets. 5505-620 Man-breeciated, masteriated fractures. 5505-620 Man-breeciated, masteriated fractures. 5505-620 Man-breeciated, masteriately gransic, buotite - some for 1 fost. Massa as blobs - 570. 6 - 527-530.5 to core 		more foliated, those completely enclosed very micaceaus.						
malybdenite (15-20%), Mass discern throughout. 193-5015 pink field-gt2 pegmatite breecia, 2 & *sections of altered diorite. very good Mass as discerimetions but express verifiets, blebs and massive fracture costings, overall ~1%. 3945-509 massive explote collective grano-diorite (Kopor addition) 597-527 biolite-bounderde equilate grano-diorite (Kopor addition) 507-520 massive explore equilate grano-diorite (Kopor addition) 507-520 massive explore equilate grano-diorite - some hereviation and addition of giz and fiblingts pagmatite. 3 fact giz verified at 511 with good Mass an fractures and as ventets. 527-5305 malum to cause perply thic biotite grants massavite. Fine biothe 57% frace Mass an shulessided fractures. 5305-620 Non-breesinted, malterney graissic, hubite-boundende-equidate grana (gt2)-diarite explore to 20% as windets and dissen, grains. Added Kopir veinlets + phenocrysts. Qt2 veinlets at 4550 to core at 538 fine grained heavily pyritized section for 1 fest. Mass as blebs ~15% Regions (upto(1) at 544, 351, 553, 562 and 573, 57 569.5 6" giz win with 3% Mass as and fracture cartings 569.5 6" giz win with 3% Mass as and fracture cartings 569.5 6" giz win with 3% Mass as and fracture cartings 569.5 6" giz win with 3% Mass as and sis and fracture cartings </td <td></td> <td>459-464 milky ot vein 5 % ovrite At 162' about 9" of massive purite and</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>		459-464 milky ot vein 5 % ovrite At 162' about 9" of massive purite and	,					
493-5015 pink feid-gtz peginatite breeia, 2 & "sections of altered dioite. very good MoS ₂ as dissentiations but espec. veinlets, blebs and massive fracture. costings, overall ~ 1% 509-527 biotite-bankleve-equate game-diacite (kspar addition) <509-527 biotite-bankleve-equate game-diacite (kspar addition) <509-520 massive spectre game-diacite (kspar addition) <509-530.5 malum to cause or physic biotite guarte massorie for the biotite 5-9% frace MoS2 on shekeweded fractures <5005-620 Man-breasited, mademately gnessic, buotite-bonklende = epidote grans (gtz)-diacite epidote ~20% as veinlets and dissen, grains . Added Kspar veinlets + phenoarysts. Qtz usinlets at +45.50 to core at 538 fine grained beauly printized section for 1 fort. MoS2 as blebs ~ 5% <pre></pre>		molybdenite (15-20%), Moss dissem throughout.						
Very good MoSq as disseminations but espec. veinlets, blebs and massive fracture. cost vigs, overall ~ 1% 5845-509 massive epidate chlarite grana-diarite (Kspar addition) <509-527 biotite-bandlende-epidate grants massarite - same braviation and addition of gtz and felt-gtz paymatite . 3 fact gtz vain at 511 with good MoSq as fractures and as venilets.		493-504.5 pink feld-gtz pregnatite breceia, 2 6" sections of altered diorite.						
massive fracture costings overall ~ 1% .545-509 massive epidde chlorite grano-diorite (Kspar addition) 509-527 biotite-bioidente-epidde guartz monzonite - some browinsting and addition of gtz and fill-gtz promotite . 3 (tot gtz vein at 511' with good MoSg on fractures and as veinlets 527-530.5 modum to cause parply ntic biotite guartz monzonite . fine biotite 5-9% trace MoSg on slukensided fractures. 5305-620 Nan-browinsted y gnossic , biotite -bonkleade - epidote grano (gtz)-divoite repidote -20% as veinlets and dissem grains . Added Kspar veinlets . phenocrysts . Qtz veinlets at 4550 to core at 538 fine grained beavily pynitized section for 1 fest . MoSg as blebs ~ .590 Reg. veins (up to 6") at 544 , 551 , 553 , 562 and 573 , 557 		very good Mass as disseminations but espec veinlets, blebs and		ļ				_
5505-620 Non-breeciated, moderately gressic, hotite - horableade = epidote grana (gt2)-divite epidote - 30% as veialets and dissen grains. Added Kspar veialets + phenocrysts. Qt2 similates at 4550 to core at 538 fine grained heavily pyritized section for 1 fest. Mass as here out of the section of the section for 1 fest. Mass as bleks ~ 5% fig. veins (up to 6") at 544, 551, 553, 562 and 573, 55 569.562.0 Markets (up to 6") at 544, 551, 553, 562 and 573, 55 here contings 569.562.0 Markets (up to 6") at 544, 551, 553, 562 and 573, 55 S79.581, peg, vein (up to 6") at 544, 551, 553, 562 and 573, 55 S79.581, peg, vein (up to 6") at 544, 551, 553, 562 and 573, 55 S79.581, peg, vein (up to 6") at 540, 56 S79.581, peg, vein (up to 6") at 540, 56 S79.		massive fracture costings, overall ~ 1%						
5305-620 Non-breaciated, moderately gnessic, budite-bornbleade-epidote gnana (gt2)-diorite 5305-620 Non-breaciated, moderately gnessic, budite-bornbleade-epidote gnana (gt2)-diorite stillets at 45-50 to core at 538 fine grained beauly pyritized section for 1 fot. MaSa as blebs ~ .5% fig. usins (up to 6") at 544, 551, 553, 562 and 573, 55		.504.5-509 mussive epidote-chlorite grano-diorite (Kspar addition)			-			
addition of gt2 and feld-gt2 prognative. 3 fect gt2 usin at 511 with good Mag on functures and as usualets 527-530.5 modum to course perplyintic biotite guards masses/ite. fine biotite 5-3% trace Mass on slukeosided fractures. 5305-620 Non-breceitated, moderately gnessic, high the hornbleade = epidote grana (gt2) -diorite epidote -20% as usialets and dusien, grains. Added Kspar veinlets + phenocrysts. Qt2 usinlets at 4550 to core blebs ~ .5% fig. usins (up to 6") at 544, 551, 553, 562 and 573, 55 State of gt2 vein with 3% Mass on gt2.	< ←	509-527 biotite-homblende-epidate guartz monzonite - some braciation and		ļ				_
5305-620 Non-breceiated, maderately gnessic, butite -bornblende-exidence grana (gt2)-divite exidence Mass and dissen grains. Added Kspir veinlets + phenocrysts. Qt2 weinlets at 45-50 to core blebs ~ .5% 		addition of gtz and feld-gtz pregmatite. 3 fact gtz vein at 511 with			┠───┤·			
5305-620 Non-breceiated, moderately gnessic, biotite -horablende - epidote grana (gt2)-divoite coidete -20% as veialets and dissem, grains. Added Kspir veialets + phenocrysts. Otz veialets at 45°50° to core at 538 fine grained beavily pyritized section for 1 fot. MoSa as blebs ~ .5% Peg. veias (upto6") at 544, 551, 553, 562 and 573, 57 S69.5 6" gt2 vein with 3% MeSa as masses and fractive contings 579-581 peg. vein (Kspir & gt2)		good Mosa on Emotures and as veinlets						
5305-620 Non-breceiated, moderately gressic, buotite-bornklende-epidote grano (gt2)-divite epidote 20% as veialets and dussem, grains. Added Kspir veialets & phenoerysts. Qt2 veialets at 45-50° to core at 538 fine grained heavily pyritized section for 1 feet. MoSa as blebs ~.5% Peg. veins (up to 6") at 544, 551, 553, 562 and 573, 55 S69.5 6" gt2 vein with 3% MoSa as masses and fracture contings 579-581 peg. vein (Kspir & gt2)		527-53015 modium to cause purphyntic biotite guartz monzonite. fine biotite 5-7	<u>ه ا</u>		<u>+</u> +		<u> </u>	
5305-620 Non-breesiated, moderately gneissic, buotite-bornblende-epidote grans (gt2)-divite epidote ~20% as veialets and dussem, grains. Added Kspar veialets + phenocrysts. Qt2 veialets at 45-50° to core at 538 fine grained beavily pyritized section for 1 fot. MoSa as blebs ~ .5% Peg. veins (up to 6") at 544, 551, 563, 562 and 573, 55 569.5 6" gt2 vein with 3% MoS2 as masses wind fractive contings 579-581 peg. vein (Kspur + gt2)		Trace Moss on slukensided tractures.						
epidote ~20% as veialets and dissem. grains. Added Kspir veialets + phenocrysts. Qtz visinlets at 45-50 to core	5305-620	Non-prescripted, moderately gressic, brother-pornblende-epidote grano (ot2)-divite						
scinlets at 45°50° to core at 538 fine grained heavily pyritized section for 1 foot. MoSa as blebs ~ .5% Peg. veins (up to 6") at 544, 551, 553, 562 and 573, 55 569.5 6" gt2 vein with 3% MoS2 as masses and fracture entings 579-581 peg. vein (Kspir & gt2)		epidote -20% as veialets and dissem, grains. Added Kspir veialets + phenocrysts. Ot	2					
		veinlets at 45-50 to core			ļļ.			
blebs ~ .5% Peg. veins (up to 6") at 544, 551, 553, 562 and 573, 55 569.5 6" gt2 vein with 3% MeS2 as masses and fracture entings 579-581 peg. vein (Kspir + gt2)		at 538 fine grained heavily pyritized section for 1 fot. Mosa as						_
Peg. veins (up to 6") at 544, 551, 553, 562 and 573, 55 569.5 6" gtz vein with 3% MoS2 as masses and fractive emitings 579-581 peg. vein (Kspir + gtz)		blebs ~ .5%		ļ				
569.5 6" gt2 vein with 3% MoS2 as masses and fracture entings 579-581 peg. vein (Kspir + gt2)	1	Peg. veins (up to 6") at 544, 551, 553, 562 and 573, 55-		ļ	+			
579-581 peg. vein (Kspur + gtz)		569.5 6" gtz vein with 3% Mosz as masses and fracture entings			 			
		579-581 peg. vein (Kspur + gtz)						
	J	barren apart from pyrite.						

×.

•

.

.

SECTIC	GRID REF	н <u>J.C</u>	COMPLETED	<u>Horil</u>	30/7	6			
	DEPTH <u>6 CO the T</u> DIP <u>OTO</u> BEARING ORILI	ER <u>J.C</u>	* **			^	• •		
DTAGE		R+D. 1	Mraz	a	10	GED BY	. Kenyo	<u>n</u>	
	DESCRIPTION	CAMPLE	-	10	WIDTH		ASS	AYS %	Mo.
		NO.	- NOM			CORE	SLUDGE	 	Ļ
·12	Casing								
55	$\mathbf{x} = \mathbf{x} + $								╂───
	wery attered, very gaugy, slightly tolated, biotite = horndende = place = chlorite								<u> </u>
Γ	20 feet core lost in this section. Trace Mess is at fills 2% swite								<u> </u>
	×) J 10								
76 J	-cueseratic grans-gtz disrite, medium grained. Mafris total 5-10%, bistite-								┢
\vdash	muscovite, some chlorite, all fine grained + disseminated. Unit is massive.								_
H	Fractures predominately at 45 with chloritic slickensides, dry fractures	<u> </u>							
· /	ninor, reldspar phenocrysts to 3mm, very minor and occur with no change in								\vdash
F	weinlets Moss discontant were specialically throughout variansing to 02-05	2							\square
	range for short 3"-4" sections (these are rure).	1							
	g								
									<u> </u>
182	Quartz-monzonite to grano diorite, course grained with ~25% course muscouite		100	120	20	.100	.233		
-	Kspar secondary. Trace Massa as resultes, dissem + as small blebs in miscou	ite	120	140	20	.034	.185		
┝	tick sections.	+							+
┝	76 - 2 of gauge	<u> </u>							+
F	Kons addition Mass to Marca torce and autole								<u>†</u>
	fluente.							Ĩ	Γ

١	ESTOR EXPLORATIONS LTD. DRILL LOG	PROPERTY				. н	OLE DD1	<u>t v-</u>	
	GRID REF STARTED STARTED		COMPLETED						
SEC	TION DEPTH DIP BEARING DEPTH DEPTH DEPTH	ł			LOI	GGED BY			
			-	5	WIDTH		ASS	vrs 1/3	,
	DESCRIPTION	NO.				CORE	SLUXE		-
182-202	Leucocratic unit as above								-
202-209	Mafie, siliecous, foliated hornblende-biotite-granodioride? or hornfels?								
	Pyrite 5-The as dissen, blebs; slickensided chloritic fractures.		 						-
209-354	Leucocratic unit as above								•
354-365	Regmatitic gtz-feldspar rock 15-20% muscovite.		350'	360'	10'	, 027	.093		
	554-360 - gtz-muscovite pregnatite; mica to 70%. MoSo as blebs		360	380	20'	. 034	.145		-
	~ ollo, trace surple flucrite.		380'	400	20	./08	.120	······.	-
365-395	Leucocratic unit as above. But added Kapor content		400	420 440	20	-223	. 100		•
395-410	Pugmatitie gtz - muscovite unit. MoSo to .12% area as blebs		}						
410-425	Leusocratic unit but altered and added Ksour as secondary crystale								•
	staining shows gtz-monzonite composition, coarser grained than previously.								-
425 - 680	Med. grained gtz-monzonite; granodiorite. Vertical and high angle fractures		 						-
	frequent - so poor recovery in some sections. Fractures sometimes slickensicles	{							
		-	-						

AGREEMENT

This agreement made the 19th day of February, 1976.

BETWEEN:

Vestor Explorations Ltd. #1502, 11111 - 87th Avenue EDMONTON, ALBERTA

(Hereinafter referred to as the "Company")

AND:

. .

Interior Diamond Drilling Ltd. Powell Beach Road, Rural Route 2 SUMMERLAND, BRITISH COLUMBIA

(Hereinafter referred to as the "Contractor")

WHEREAS, the Company has requested the Contractor to perform certain diamond drilling and other services as hereinafter set forth:

SPECIFICATIONS

- 1) The Contractor agrees to drill or cause to be drilled a total of three thousand (3,000) lineal feet on the Company's mineral property near Carmi, British Columbia.
- 2) The Company guarantees to the Contractor a minimum footage of three thousand (3,000) lineal feet.
- 3) The drill holes are to be vertical and must exceed two hundred (200) feet in depth.
- 4) That all holes be drilled with a "BQ" wireline core barrel and that all holes be measured from ground level.

PRICE

5) Price for all drilling will be thirteen dollars and fifty cents (\$13.50) per drilled foot on holes up to seven hundred (700) feet. Beyond that depth this contract will be renegotiated.

TRANSPORTATION

6) The Contractor will supply and operate all vehicles for mobilization and demobilization of drilling equipment and transportation of the Contractor's personnel.

MOVING

7) The cost of moving the drilling rig to all drill sites will be assumed by the Contractor.

BOARD AND LODGING

8) The Contractor agrees to provide all board and lodging for their personnel.

WATER SUPPLY

9) The Contractor agrees to supply all water required for drilling.

CEMENTING

× . 1

10) It is agreed that if a hole requires cementing to allow the drilling to proceed, the contractor will make application of cement and drill out same in co-operation with the Company's representative at no cost to the Company.

BULLDOZING

11) The Company agrees to supply a bulldozer to provide access to, and build all required drill sites.

DRILLING FLUIDS

12) The Contractor agrees to supply all drilling fluids and flocculants required to insure the most accurate core and sludge recoveries.

GENERAL

- 13) The Contractor agrees to take sludge samples at the request of the Company's representative.
- 14) The Company agrees to supply all core boxes and sludge sample bags as required.
- 15) The Company and Contractor both agree that all efforts will be made to have drilling begin on or before the 1st day of April, 1976, weather and snow conditions permitting.

- 16) The Contractor shall be responsible for and will pay promptly all wages, dues and assessments payable under any Worker's Compensation Act, or other similar act whether Provincial or Federal in respect to its employees.
- 17) Under the foregoing terms and conditions the Contractor does not guarantee to drill any hole to any specified depth, but the Contractor will expend every reasonable effort to complete all holes to the satisfaction of the Company.

PAYMENT

- 18) The Company agrees to advance the Contractor, twenty percent (20%) of the total minimum footage cost, (\$8,100.00).
- The Company will make payment within thirty days of billing. 19)
- 20) The Company will reserve the right to withhold twenty percent (20%) of the total minimum footage cost, (\$8,100.00) for thirty (30) days after completion of contract.
- 21) Time and core recovery shall be the essence of this agreement.

IN WITNESS WHEREOF, the parties hereunto have set their hands and seals 25 day of February, A.D. 1976. the

SIGNED, SEALED AND DELIVERED

WITNESS

۳.0	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	ANGLE	DIFF.	DIPF. ELEV.	Hata	ELEVATION	STATION & REMARKS
										4343.40	taken from V-17
								+4.83			
	202 40		97	m	6.83	98'00	-13.78	-6.95	4336.45		set-up to V-17
	314 10		158	M	9.59			-9.51		4326.86	+0 V-18
	314		159	m	9.95			-9.95		4326.5	to P33
							<u> </u>				
								<u> </u>			
			}								
-							T				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		74						1 1			VESTOR EXPLORATIONS LTD.
Ma		<u>-76</u> PI	ROSPECT	Car	<u> </u>		SURVEYOR /	1. Kenyo	<u> </u>	NCV. Levye-	VESTOR EXPLORATIONS LTD.
Μο	а <u>г</u> 19	-76 PI	ROSPECT	Car	ROD	ANGLE	SURVEYOR (	M. Kenyø Diff. ELEV.	RODMA	NCY, Levis c	VESTOR EXPLORATIONS LTD.
Μα	<u>а</u> 19 Д	76 PI	ROSPECT	Car	ROD	ANGLE	SURVEYOR 1	M. Kenyø Diff. ELEV. 5.24	M. RODMA	NCV. LEVACON	LINE NO PAGE_ STATION & REMARKS Set-up to V-21 (TBM)
Μα	2 19 AZIMUTH 2.67° HO	276 PI	ROSPECT STADIA	Car Hulk M	ROD 4.26	ANGLE	SURVEYOR (	M. Kenye Diff. ELEV. 5.24	M RODMA	NCY . Leves a	VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) U
Μα	2_ 19 AZIMUTH 267° Ho 331° 20	76 PI	ROSPECT 57АДІА   	Car Huan M M	ROD 4.26 7.0	ANGLE	SURVEYOR 1	M. Kenyø Diff. ELEV. 5,24	M. RODMA	NCV. Lenge	VESTOR EXPLORATIONS LTD. LINE NO PAGE_2 STATION & REMARKS Set-up to V-21 (TBM) J Stn 1
Μο	2 19 AZIANUTH 2.67° Ho 3.31° 20	26 PI	ROSPECT STADIA   	Cor nuis m m	ROD 4.26 7.0		SURVEYOR /	1. Kenye Diff. ELEV. 5. 24 4.90	M RODMA	NCY . Leves a	VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) J Stn 1 Set up back to Stn 1
πο	2 19 AZIMUTH 267° HO 331° 20 201° 50°	76 PI	ROSPECT STADIA 2.90 314	Car Huir M M	M. ROD 4.26 7.0	ANGLE	SURVEYOR /	M. Kenye Diff. ELEV. 5.24 4.90	M RODMA	NCV. Lenge	VESTOR EXPLORATIONS LTD. LINE NO PAGE_2 STATION & REMARKS Set-up to V-21 (TBM) J Stn 1 Set up back to Stn 1 J L
πο	2 19 AZIMUTH 267° Ho 331° 20 201° 50° 216° 20	-76 PI	ROSPECT	Car m m m	H.26 7.0 11.60	ANGLE 	SURVEYOR	M. Kenye Diff. ELEV. 5.24 4.90	м RODMA	NCV, Levae	VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) J Stn 1 Set up back to Stn 1 J Stn 2 Rdl. Jct.
πο	2 19 AZIMUTH 267° Ho 331° 20 201° 50° 216° 20 355° H5	76 PI	ССБРЕСТ БТАДІА 2.90 314 /09 2.40	Car mm m m	H.26 7.0 11.60 11.38 5.0	ANGLE 	SURVEYOR /	1. Kenye Diff. ELEV. 5.24 4.90	MRODMA	NCY. Levac -	VESTOR EXPLORATIONS LTD. LINE NO PAGE $\frac{2}{2}$ STATION & REMARKS Set-up to V-21 (TBM) J J J Stn 1 Set up back to Stn 1 J J Stn 2 Rol. Jct. Stn 3
πο	2 19 AZIMUTH 267° Ho 331° 20 201° 50° 216° 20 355° 45	-76 PI	ROSPECT 51ADIA 2.8 2.90 314 709 2.40		H.26 7.0 11.60 11.38 5.0	ANGLE 	SURVEYOR (	1. Kenye Diff. ELEV. 5.24 4.90 5.22	M RODMA	NCK, Levae	VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) J J J Stn 1 Set up back to Stn 1 J J Stn 2 Rel. Jct. Stn 3
π	2 19 AZIMUTH 267° Ho 331° 20 201° 50° 216° 20° 355° H5 176° 20°	-76 PI	STADIA STADIA 2.90 314 /09 2.40 2.05		H.26 7.0 11.60 11.38 5.0	ANGLE 	SURVEYOR /	1. Kenye Diff. ELEV. 5.24 4.90 5.22	MRODMA	NCY, Levie	VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) J Stn 1 Set up back to Stn 1 J Stn 2 Rel. Jet. Stn 3 Set up to Stn 3 (Init. d
πο	2 19 AZIMUTH 267° HO 331° 20 201° 50° 216° 20° 355° 45 176° 20°	76 PI	ROSPECT 57ADIA 2.90 314 709 2.40 2.05		H.26 7.0 11.60 11.38 5.0	ANGLE 		1. Kenye Diff. ELEV. 5.24 4.90 5.22	MRODMA	NCV. Levae	VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) J J J Stn 1 Set up back to Stn 1 J J Stn 2 Rol. Jct. Stn 3 Set up to Stn 3 (Initial
Μ	2 19 AZIMUTH 267° Ho 331° 20 201° 50° 216° 20 355° H5 176° 20' 138° H0	-76 PI	ROSPECT		4.26 7.0 11.60 11.38 5.0 12.56	ANGLE 	SURVEYOR /	M. Kenye Diff. ELEV. 5.24 4.90 5.22	M RODMA	NCV. Leve -	VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) J J J Stn 1 Set up back to Stn 1 J J Stn 2 Rol. Jet. Stn 3 Set up to Stn 3 (Init. C Set up to Stn 3
πο	2 19 AZIMUTH 267° 40 331° 20 201° 50° 216° 20° 216° 20° 136° 40° 322° 10°	76 PI	ROSPECT STADIA 2.90 3.14 109 2.40 2.40  169 162		ROD H.26 7.0 11.60 11.38 5.0 12.56 2.50 11.95	ANGLE 		1. Kenye Diff. ELEV. 5.24 4.90 5.22	MRODMA		VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) J J J Stn 1 Set up back to Stn 1 J J Stn 2 Rol. Jct. Stn 3 Set up to Stn 3 (Inst. of Set up to Stn 2 Set up to Stn 2 Stn 4
	2 19 AZIMUTH 267° Ho 331° 20 201° 50° 216° 20° 355° H5 176° 20° 138° Ho 322° 10°	-76 PI	ROSPECT 51ADIA 2.8 2.90 314 /09 2.40 2.05 /69 /62		H.26 7.0 11.60 11.38 5.0 12.56 2.50 11.95	ANGLE 	SURVEYOR	M. Kenye Diff. ELEV. 5.24 4.90 5.22 4.86	MRODMA	NCV. Leve -	VESTOR EXPLORATIONS LTD. LINE NO PAGE 2 STATION & REMARKS Set-up to V-21 (TBM) J J J Stn 1 Set up back to Stn 1 J J Stn 2 Rol. Jet. Stn 3 Set up to Stn 3 (Inst. d Set up to Stn 3 Set up to Stn 2 Stn 4
Μ	2 19 AZIMUTH 267° 40 331° 20 201° 50° 216° 20° 216° 20° 138° 40° 322° 10° 162° 00°	76 PI	EOSPECT		ROD H.26 7.0 11.60 11.38 5.0 12.56 2.30 11.95 5.45	ANGLE 	SURVEYOR /	1. Kenye Diff. ELEV. 5. 24 4.90 5.22 4.86	MRODMA		VESTOR EXPLORATIONS LTD. LINE NO PAGE_ STATION & REMARKS Set-up to V-21 (TBM) J J J Stn 1 Set up back to Stn 1 J J Stn 2 Rel. Jet. Stn 3 Set up to Stn 3 (Inst. d Set up to Stn 3 Set up to Stn 2 Stn 4 Set-up to Stn 4

VESTOR EXPLORATIONS LTD.

34= . Ś

ſ

0	AZIMUTH	V2 STADIA	STADIA	HAIR	ROD	-	GLE	DIFF.	DIPF. - ELEV.	H . 1 .	ELEVATION	STATION & REMARKS
									5.82			
	155 10		156	1m	5.9	100	00	· · ·				Set up to Sta5
	318 00		107	m	10.56	85	00				· · · · ·	· · · · · · · · · · · · · · · · · · ·
	146 26		305	m	5.4	84	00		5.36			Setup to P3 at lake
						}						
									5.37		4101.00	TE.MV-12 #4101.6
	011 00'		222	m	88	83	00	428.65	+37.45	4138.45		Satup on Rd. Jet. to TBM V
	167° 40		169	m	12.21	88	00 ¹	-5,19	-12.1		4120,35	+0 V-19
	165° 20'		165	m	12.15	88'	00'	- 5,74	-17.89		4120,56	+0 P-23
											<u>+</u>	
			ļ		ļ	ļ		ļ	<u> </u>		L	ļ

.

.

.

(

**n**, i

.

VESTOR EXPLORATIONS LTD.

×

.

# VESTOR EXPLORATIONS LTD.

### COST STATEMENT

	1.	Employee	# Days Employed	Period	Rate \$ Month	Total Paid
		J. Michael Kenyon	35	26/3/76 - 30/4/76	\$1,250/mo	\$1,458.00
		Neil Kenyon	35	26/3/76 - 30/4/76	435/mo	554.00
				Tota	l Salaries	\$2,012.00
	2.	Diamond Drilling – c	ontracted cost			26,185.00
	3.	Bulldozer – Drill Sit	es – contracteo	d cost		2,325.00
	4.	Assays – number of as	says shown in	report		530.00
	5.	Truck Rental – 4 whe	ll drive – grou	nd transportation		696.00
<b>3</b> ;≊.1	6.	Food				204.00
	7.	Fuel – Truck – \$229	.00			
,		House - <u>134</u>	.00			363.00
					Total	\$ 32,315.00

1.1

Ĺ

• P-9	Percussion Drill Hole - Granby
• V-7	Diamond Drill Hole - Vestor
o K-2	Diamond Drill Hole - Kennco
⊙ I-12	Diamond Drill Hole - I.M.C
●VP-5	Percussion Drill Hole - Vesto
△ V - 18	Temporary Bench Mark - Ves
° G 567	Survey Hub of C.W. Gehue,
Turit?	Trench - Vestor 1974
A A A	Trench - pre -1974
·/	Navigible road
	Cut or slashed line



ι.

.

# DRILL HOLE LOCATIONS, SURVEY BENCH MARKS, (Theodolite / stadia survey by Vestor May-Sept '74& May'76) Department of Muni Mines and Petroleum Resources ASSESSMENT REPORT NO. 5860 MAP 3

_____X_____