GEOCHEMICAL REPORT

ON

ENID-JULIE GROUP

VANCOUVER MINING DIVISION

92K11W & 92K6W 50°30'N, 125°23'W

92K/11W

0

by

J.W. MacLeod, P. Eng.

Vancouver, B.C.

November 4, 1976

MINERAL RESOURCES BRANCH ASSESSMENT REPORT NO

TABLE OF CONTENTS

0

(

	Page
INTRODUCTION	1
SUMMARY AND CONCLUSIONS	1
PROPERTY	2
LOCATION AND ACCESS	2
GENERAL	
GEOLOGY	- 4
MINERAL OCCURRENCES	5
GEOCHEMICAL SURVEY	5
ASSAY RESULTS	6
PECOMMENDE ET COL	7
ALCOMMENDATIONS	8

APPENDIX

APPENDIX	I ·	Soil analyses and assay results
APPENDIX	II	Statement of Expenditure
APPENDIX	III	Engineers Certificate

ILLUSTRATIONS

MapsSCALE/ LOCATION MAP (Following p-2)1" = 4 miles2 PLAN OF GROUP (N N)1" = 2640'3 COPPER IN SOILS1" = 200'4 LEAD IN SOILS1" = 200'5 ZINC IN SOILS1" = 200'6 SILVER IN SOILS1" = 200'

0

INTRODUCTION

The following report has been prepared to fulfill the requirements of the Mineral Act governing the filing of geochemical work for assessment credit. The field work was carried out between October 22 and 30, 1976 by M. Swetz and D. Reinke under the direction of the author.

SUMMARY AND CONCLUSIONS

17 reverted crown grants, which according to old reports covered a number of gold silver occurrences, were acquired by Mr. Warshawski on November 6, 1975. To test the geochemical approach to exploration of these occurrences a trial survey was run over the trend of what is referred to as Enid-Julie showings.

Of 152 soil samples taken and analysed for copper, lead, zinc and silver only four isolated lead assays could be considered anomalous, therefore it must be concluded that either there is no significant mineral occurrences within the area tested or the approach of using these tracer elements for the gold showing in this area is not effective.

- 1 -

PROPERTY

C

O

The property under consideration consists of 17 reverted crown grants as listed below:

CROWN GRANT	LOT NO.	RECORD NO.	ACREAGE
Premier	1665	39	39.63
Alexandra	225	40	44.10
Premier Fr.	1667	41	11.29
Waterloo Fr.	226	42	5,55
Gold Dust Fr.	1663	43	42.78
Mary Rose	1664	44	50.79
Jennie B.	278	45	42,53
Stella	281	46	25.60
Enid	280	47	46.25
Emperor Fr.	227	48	16.50
Comox	296	49	51.00
Empress	279	50	44,90
Julie	233	51	38.84
Duchéss '	231	52	51.65
Jubilee Fr.	230	53	16.33
Duke	229	54	45.40
Righland Laddie	228	55	45.90

- 2 -

Assarries Assarries TioneTow 1-353 296 279 279 279 279 279 279 279 279	Day Day
1 · S · H	281 1664 N
	230 227 1663
P A	228 220
	Alexandria 9
	Y
	MINERAL RESOURCES BRANCH
K	ASSESSMENT REPORT
	NO. 6108
	CTON POINT
	MERV ENGINEERING CORP.
	PLAN OF ENID - JULIE GROUP
TO ACCOMPANY REPORT ON ENIDIULIE GROUP	DRAWN BY LINE CAREA
OATED MOU. 4, 1976 By Ju Mar hand P. ENG	DATE: Nov. 2.1074 NTE
	1.1.5. : 42K(W

LOCATION AND ACCESS

(

The property is located between Fanny Bay and Picton Point, 35 miles north of Campbell River.

An active logging camp is located at Picton Point and this operation provides roads access to the upper elevations on the west side of the claims. Water or air transport to Picton Point is required from Campbell River, the closest distribution point.

For our initial test, helicopter was found to be the most practical method of access since the work was to be carried out at the higher elevations.

- 3 -

GENERAL

The claims are located in an area of typical west coast rain forest, where the hills rise sharply from sea level to an elevation of 3000 feet. The steep cliffs on the Enid claim preclude the collection of soil samples in the area of the known mineral occurrences.

This area is reported on extensively in the Minister of Mines Reports between 1898 and 1936. During this time a mill was located at Fanny Bay and supplied by derial tram from the Doratha Morton property which adjoins to the north east of the Enid-Julie Group.

The most extensive workings on the Enid-Julie group are located at tidewater on the Alexandrea claim where detailed sampling in 1934 indicated 15,000 tons of 0.30 gold. Although and not mentioned in the Minister of Mines reports, an attempt was made to mine and ship this material to the Tacoma Smelter in the late 30's but sea water problems forced abondonment of this effort.

- 4 -

GEOLOGY

The soil sampling crew reports the presence of outcrops of sediments, andesite, gnessic rock and diorite which tends to confirm the presence of a roof pendent in this area as suggested by early maps of the coast, but Roddick's Open File 165 made available in 1973 shows only the presence of a small lens of schist and gneiss of amphibolite grade in this area.

MINERAL OCCURRENCES

Gold-silver occurrences are noted to occur on the Alexandrea and Enid-Julie claims in the Minister of Mines Reports. The Alexandrea showing is in a northwest trending shear and consists of gold associated with massive pyrite and little chalco. This could be the extension of the wide shear zone on the Doratha Morton.

Several occurrences of gold with notable silver values are recorded on the Enid-Julie crown grants. These are related to an east-west structure.

Galena is reported on theDoratha Morton showing, therefore it was reasonable to assume that geochemistry for copper, lead and silver would be an effective exploration method.

- 5 -

GEOCHEMICAL SURVEY

Due to the steep cliffs it was not possible to take samples in the area of the showings on the Enid claim so the survey was carried out on the westerly extension of this zone as mapped in the 1925 Minister of Mines Report.

Soil samples were taken at 100 foot stations on lines 400 feet apart using chain and compass for ground control.

Samples were taken from the "B" horizon and analysed for copper, lead, zinc and silver. Although the principal target in this area is gold, the samples were not run for gold since the B horizon is not considered a reliable guide to this metal. Sampling of the humus or "A" horizon where gold ions are known to concentrate is not practical in this area of extensive runoff.

- 6 -

ASSAY RESULTS

Copper - Copper values persist below 20 p.p.m. with only one sample at 12E5S statistically anomalous at 98 p.p.m.

Lead - Lead values are normal between 10 and 30 p.p.m. except for isolated one station anomalies at 12E9S, 20E2N, 20E2S and 20E10S where values between 120 and 265 p.p.m. are obtained.

Zinc - Values of 125 and 148 p.p.m. at 12E10N and 20E2N are statistically anomalous, where the background for this metal is relatively low at 20 p.p.m., but these values are not representative of the presence of this metal.

Silver - The highest silver value obtained was 2.2 p.p.m. which does not warrent further investigation.

- 7 -

RECOMMENDATIONS

 $\left(\right)$

The area of the isolated high values for lead should be examined in detaile in view of the line spacing but the geochemical method does not appear to be an effective tool for the exploration of this property.

In view of the apparent gold-pyrite association and the lack of sufficient copper, lead or zinc to act as indicator metals this area could probably best be explored by means of a self potential survey.

Respectfully submitted,

portential

J.W. MacLeod, P. Eng.

Vancouver, B.C. November 4, 1976

VGC

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA 604-988-2172

November 3, 1976

- TO: Envoy Resources Ltd., # 333 - 885 Dunsmuir Street, Vancouver, B. C. V6C 1N5
- FROM: Mr. Eddie Tang, Vangeochem Lab Ltd., 1521 Pemberton Avenue, North Vancouver, B. C. V7P 2S3
- SUBJECT: Analytical procedure used to determine hot acid soluble Cu, Pb, Zn, and Ag in geochemical silt and soil samples.

1. Sample Preparation

- (a) Geochemical soil or silt samples were received in the laboratory in wet-strength 3% x 6% Kraft paper bags.
- (b) The wet samples were dried in a ventilated oven.
- (c) The dried soil and silt samples were sifted by using a shaking machine with 80-mesh stainless steel sieves. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.

2. Methods of Digestion

- (a) 0.50 gram of the minus 80-mesh samples was used. Samples were weighed out by using a top-loading balance.
- (b) Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concentrated acids respectively).

.....2

4.

3. Method of Analysis

(c)

Cu, Pb, Zn, Ag analyses were determined by using a Techtron Atomic Absorption Spectrophotometer Model AA4 or Model AA5 with their respective hollow cathode lamps. The digested samples were aspirated directly into an air and acetylene flame. The results, in parts per million, were calculated by comparing a set of standards to calibrate the atomic absorption unit.

The analyses were supervised or determined by Mr. Conway Chun and the laboratory staff.

Eddie Tang VANGEOCHEM/LAB LTD.

ET:mb

APPENDIX I

(Soil analyses and assay results)

1

ż

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCQUVER, B.C., CANADA V7P 2S3

1.85 80.61

TELEPHONE: 988-2172 AREA CODE: 604

ae -

of

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Eavoy Resources Ltd. #333-885 Dummuir Street

Vancouver, B.C. V6C 185 Attention:

Report No:	76 3	003	ra ra
Samples Arrived:	Nov.	1, 19	76
Report Completed	: Sor.	2, 19	76
For Project:		****	
Analyst:	Z.T.	R.H.	
Townicad 40	2		Jo

			20	A		
Sample Marking				-		
0 BL OE + 1 X 2	24	12 13 5 18 28	23 27 28 42 45	0.4 0.4 0.5 0.2		
2 8 8	683	30 22 7 10	33 22 	0.6 0.5 0.6 0.8		
9 10# 1 5 2 3	7 5 6 16 6	12 8 18 24	13 8 38 22	0.8 0.2 1.0 1.2		
5 7 8 9	2 4 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14 17 13 14 10	13 18 12 10 28	1.2 0.6 1.0 0.9 2.2		
CH + 118 48 BL + 1 H 2	9 8 12	13 14 10 19 25	8 10 7 15 22	0.6 0.6 0.5 1.4 2.2	10. ar (the sum f a	
8	12 8 11 12	7 10 15 29	? ? 23 22	0.4 0.4 0.6 0.6		-
9 10 18 2 3	6 9 6 11	10 30 10 23	8 18 13 15	0.5 0.5 0.9 0.6		K-
	86	15 10 10	13 7 8 58	0.4 0.6 0.6 0.6		

REMARKS:

2

Signed: ppm = parts per million 1.5

A Carlo and a carlo a state

1

1

nd = none detected

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used,

1 ppm = 0.0001%

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3

TELEPHONE: 988-2172 AREA CODE: 604

Page 2

of 4

Specialising in Trace Elements Analyses

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-Envoy Resources Ltd. Report No:7634003Samples Arrived:Report Completed:For Project:Analyst:

Attention:

Sample. Marking	Cu	Po	ZB TOP	-DVB		
	7	12	13	0.6		,
E - 73	12	47	40	0.4		
R - 100	8	15	13	1.3		and Subjects and the first second second
5 K - 2L	12	23	22	1.3		
1 8	5	15	8	1.0	<u> </u>	
2	6	8	23	0.2		
3	l ă	8	8	0.7		the set of the set of the
4	25	45	23	1.2	a ser a s	t in the test of the second
5		12	7	0.3	1	
6	1 17	20	18	0.9	<u> </u>	
7		15	5	0.6	1	
8		15	10	0.7		and the second second second second
9	7	23	45	0.8		and a standard for a strandard and the standard and a strandard and a strandard and a strandard and a strandard
1.00		10	10	0.6	1	
18		10		0.8		
2		13	5	0.4	1	
3		16	7	0.7		
4		2	8	0.4	and a start of the start of	Contraction of the standard Barris and
54		A A	23	0.3		
5B	. 2	22	20			
<u>6A</u>			13	1.0		
6в	5	20	15	1.1		A LANKA MALANA AND MARKING THE
7	10	1.7	~	0.4	in a state of	a start Bill at 121 182 Captor & Section 125
8	· • •	- 42		0.4		
8 E - 108		10	<u>10</u>	0.6		
12E - BL			30	0.6	4	
1.1	12	22	22	0.5		and a straight state of
2	10	20	8	0.4	and the second	and a matches and a share a share a share a share a
3	2	10	115	0.2		
· 4	7	10	18	1.2		
5	12		28	0.8	4	
6	3	15	8	0.7		
7	2	10		0.6		and the second and the state of the second
8	6		38	1.0	1	
9	12		125	0.5		
101			26	0.2	1	
15	7		27	0.2		and the second second
2	7	22		0.2		a Service to the terminate
3.0.0	7		10	0.8		
12B - 4 S	10	00	1 40			
	<u>_</u>			······································		
EMARKS:						. Ko-
					Sig	
		-	4	. = 0.0001%	nd = none	e detected ppm = parts per i
	A T-ON OF (10)	n = 34.28 ppm	1 PPH	0.000		a and instruments used.

VGC	V/ 15 N(C/	ANGEOCHE 21 PEMBER ORTH VANG ANADA V7	M LAB LTD TON AVE., COUVER, B P 2S3). .C., • Specialisin	TELEPHONE: 988-2172 AREA CODE: 604 og in Trace Elements Analyses •
Certificate of Ge -IN ACCOUNT WITH- Envoy Resources Ltd. Attention:	ochemi	ical Ana	IYSES Repor Samp Repor For P Analy	rt Not 7 les Arrived: rt Completed: roject: /st:	6 34 003 Page 3 of 4
Sample. Marking	Cu	Pb	Zia pres	Ag	
128 - 58 6 7	98 12 6	22 18 10 5	24 90 15 12 53	1.5 0.3 0.5 0.3	
12E - 10S 16E - BL 1 H	8 7 2 5	23 18 17 10 18	22 57 16 9 9	0.8 0.2 0.8 0.2 0.2 0.3	
5 5 7 8	9 7 8 4 12	10 8 18 10 17	32 27 12 16 20	0-2 0-2 0-8 0-4 0-1	
9 108 18 2 3	7 6 10	20 20 12 15	23 31 26 22	1.8 9.3 0.2 0.4 1.1	
	2	23 20 18 83 15	7 10 22 45 13	0.6 0.6 0.2 0.4 0.6	
16E - 105 20E - NL 1 N 2	11 5 10	23 20 170	23 28 27 148 43	2.0 0.2 1.0 0.5 1.3	Alteria de la companya de la compa
58 (A)	6	87 18 20 10	86 12 10 9 7	1.0 0.8 0.5 0.7	n na mana an
7 8 9 205 - 104	4 5 14 8	8 23 10	12 15 28	0.6 1.1 0.4	and a second

% Mo x 1.6683 = % MoS_z

.

C

O

L

nd = none detected

ppm = parts per million

1 Troy oz./ton = 34.28 ppm 1 ppm = 0.0001% All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

.

VANGEOCHEM LAB LTD 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3

TELEPHONE: 988-2172 AREA CODE: 604

Page

of

Specialising in Trace Elements Analyses

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Envoy Resources Ltd.

76 34 003 Report No: Samples Arrived: Report Completed: For Project: Analyst:

Attention:

n la Madrine	Ou l	Pb	244	AK INTER		
Sample Marking	DI		20	0.2		
208 - 1A S	S S	- 2 0 	5	0.6		
18	1 E	18	12	1.0.1.0	الالالية التي المراجع المراجع . الالالية المراجع المراج	And And the second s
2		125	48	0.5		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	15_	10	0.4	<u>}</u>	
	7	8	15	0.0		
2	3	7	2	0.8		and a second
8.000	. 7	1. 13	10	0.6		
208 - 105	8	202	30	0.8	<u> </u>	
248 - BL		17	10	0.4	4	
3 ¥		liõ	5	0.5		Construction and the second
4	6	17	10	1.1		the second s
9 Dun 10 Alexandro	112	15	5	0.4		
8A	2	<u></u>	8	0.6		
<u> </u>	5	25	15	1.0		an a
248 - 1 5	5	15	0	0.3	and the second second	The mark billion is a september of the second at the
281 - 34		2	10	0.5		
18	. 2	15	15	0.4		
2		23	20	0.9		
3	2	10	5	0.6	a de la como	Contraction of the second
an an the state of	9	23	(0.8	an an an Anna Anna Anna Anna Anna Anna Anna an Anna an Anna an Anna Anna	
n in grun og skalet skiller att 1980 - 1 A	<u> </u>			0.9		
2	8		33	0.8	1	
8 ¥	18	20	38	0.9		
28E - 1 9		23	is	1.22	al and seal as	and the second
308 - BL and and a		20	23	0.6		
1 1	5	13	8	0.6		
	5	20	8	0.5		and the second
4	7	25	10	0.2	A State of the second	and the second
5		15	20 A 40 20 40 10 10 10 10 10 10 10 10 10 10 10 10 10	<u>0.4</u>		
6	7		18	0.4		
<u>308 - 7 1</u>	ŏ		15	0.4		
No Number	•					
тарана 1910 г. – 1910 г. – 19			in Line de la tra-	e the sources	<u>ki ku si </u>	and the second
en <u>e sub</u> ratives t						1

% Mo x 1.6683 = % MoS₂

All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used. 1 Troy oz./ton = 34.28 ppm

1 ppm = 0.0001%

ppm = parts per millio nd = none detected

· . . .

)

.

.

. Appendi

C

APPENDIX II

STATEMENT OF EXPENDITURE

Merv Engineering payroll M. Swetz - 10 days - Oct. 22-31 D. Reinke - 10 days - Oct. 22-31	\$ 1,687.50
p. Keime	282.09
M. Swetz - Groc. ecc.	87.50
M. Swetz - Transportation	500.90
O.K. Helicopter (179302 & 179321)	500000
a marker Lab. 152 samples 03.10	471.20
Vangeochem hab. 200 1	450.00
Report Preparation	<u> </u>
TOTAL	Ş 3,4/9.19

0

O

. . .

APPENDIX III

0

0

ENGINEERS CERTIFICATE

I, James W. MacLeod, of 1220 Arbutus Street, in the city of Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

- That I am a Consulting Engineer, with a business address at #333-885 Dunsmuir Street, in the City of Vancouver, in the Province of British Columbia.
- 2. That I am a graduate of the University of Alberta with the degree of B.Sc. in Mining Engineering.
- 3. That I have actively practiced my profession in Mineral exploration since graduation in 1946.
- 4. That I am a registered Professional Engineer in the Province of British Columbia.
- That this report is based on the results of field work carried out by M. Swetz and D. Reinke between October
 22 and October 31, 1976 under the direction of the writer.

Ρ. Eng. Β. cLeod,

Dated at the City of Vancouver, Province of British Columbia, the 4th day of November, 1976

NI 0" EMPRESS of LOT 279 RECORD NO ENIO 0' LOT 280 RECORD NO 13 BRG. NBO JULIE 0 LOT 233 RELORD NO 0. MINERAL RESOURCES BRANCH ASSESSMENT REPORT NO. 6108 MAP NO. #3 MERY ENGINEERING CORP. BALOMPANY PEPOPE ON END. Jonie Datio Nov. 4,1016 By Ju Kinter & Pèna ENID-JULIE GROUP GA. IN SOILS DRAWN BY : J.W.N. SCALE : 1"= 200' DATE: Nor. 4,1476 N.T.S. : BZKII

BE 20E W OPEMPRESS AR 015 407 279 Ш RECORD NO 0.0 OP ION 0'0 - qN 8M EHIO on OF JENNIE B OF LOT 280 TH ON RECORD 100 GN 022 08 LOT 278 0'7 " RECORD NO. 13 BRG. NBOL 5N 030 .08 4N 020 on 3N 018 JULIE Ó 24 04 0 LOT 233 RELORD NO IN 013 0. BASELINE 0 15 08 0 15 25 018 0 23 STELLA 35 024 07 LOT 281 45 014 -01 RECORD NO 55 01 0 83 65 0 @ 265 TS 013' e'20 0 23 MINERAL RESOURCES BRA ASSESSMENT REPORT 0 23 85 014 NO. 6108 95 000 MAP NO. 105 024 TE Accompany REPORT ON END MERY ENGINEERING CORP. June Darro Nov 4, 1976 By June Durted J. Eng. ENID JULIE GROUP Po. IN SOILS DRAWA BY: J.W.M. SCALE: 1"= 200' DATE: Nor. 4, 1976 N.T.S. : BZK 11

W ZOE W 08 EMPRESS LOT 279 D22 RECORD NO ION 0, 0.12 9N EHID BN. LOT 280 : 01 O'S JENNIE B O'S RECORD NO TH ois LOT 278 S BRG. NBOL GM RECORD NO. 5N 0.22 4N 045 3N 012 JULIE 0 LOT 233 2N 028 .031 RECORD NO 1N 027 BASELINE 0-13-25 038 STELLA LOT 281 45. 015 RECORP NO 0/10 55 018 65 0 0 50 0 53 TS 012 MINERAL RESOURCES BRANCH ASSESSMENT REPORT 0 22 NO. 6108 85 010 95 010 *5 MAP NO. 105 028 MERY ENGINEERING CORP. To AccomPANY REPORT ON FUR JUNE DATEO NON AMIGU BY JUNEAUND DEVE ENID-JULIE GROUP ZNIN SOILS DRAWN BY : J.W.N. SCALE : 1"= 200' N.T.S. : BZKII DATE: Nov. 9,1976 Part Di .

245 0 0 00.8 O EMPRESS 00.4 00.8 000 207 279 004 RECORD NO 00.9 00.7 00.4 00.1 50 00.8 00.5 0.3 01.1 00.8 00.7 00.5 ENID 00.9 01.0 LOT 280 0.6 004 00.4 RECORD NO 01.3 00.6 005 47 0 005 12 BRG. NBO1 0 0.3 01.0 0.8 00.9 0.2 00.1 JULIE 00.2 0 0 LOT 233 01.0 RELORD NO 0 0 51 00.6 0 0 00.5 0 0 00.4 0 0 100.8 0 00.6 0 0 0 04.8 00.0 0 0 000 MINERAL RESOURCES BRANCH ASSESSMENT REPORT NO. 6108 MAP NO. #6 To AccomPANY REPORT ON END JUNE DATED NOUA, 1976 BY JUNE DATED NOUA, 1976 BY MERY ENGINEERING CORP. ENID-JULIE GROUP Ag. IN SOILS DRAWN BY: J.W.N. SCALE: 1"= 200' N.T.S : BZKII DATE: Nov. 4, 476