63

93

GEOLOGICAL AND GEOPHYSICAL REPORT on the
A 5-8 AND C 7 MINERAL CLAIMS
COUS CREEK AREA
ALBERNI MINING DIVISION

Latitude $49^{\circ} 13^{\prime}$ Longitude $124^{\circ} 54.5^{\prime}$
N.T.S. Sheet No. 92F/2W

BETHLEHEM COPPER CORPORATION
Suite 2100 - Guinness Tower 1055 West Hastings Street Vancouver, B.C. V6E 2H8

August 31, 1977
R. E. Anderson, P.Eng.

MINERAL RESOURCES BRANCH
ASSESSMANT REPORT

NO.

SECTION A	-	SUMMARY OF WORK
		Introduction
		Location and Access
		Topography and Physical Environment
		Mineral Title
		General Geology
		Work Program
		Discussion of Results
		Summary of Costs
SECTION B	-	CONSULTANT'S REPORT
		Report by C. M. Armstrong, P.Eng. dated July 22, 1977:
		Introduction
		Work Completed
		Discussion
		Conclusions and Recommendations
		Appendix
SECTION C	-	STATEMENT OF EXPENDITURES
		Consultant's
		Contractors
		Company
SECTION D	-	SCHEDULE OF MINERAL CLAIMS
SECTION E	-	ILLUSTRATIONS
		Drawing No. CC-77-1 - General Location Plan Scale 1:250,000
		Drawing No. CC-77-2 - Location Plan
		Drawing No. CC-77-3 - Topographic Plan $\begin{aligned} & \text { Scale 1:10,000 }\end{aligned}$
		Drawing No. CC-77-4 - Mineral Claim Plan Scale 1:10,000
		Drawing No. CC-77-5 - Survey Grid Plan
		Drawing No. CC-77-6 - Geology Plan $\quad \begin{array}{r}\text { Scale } 1: 1,250\end{array}$
		Drawing No. CC-77-7 - Geophysical Survey Scale 1:1,250

SECIION A - SUMMARY OF WORK

Introduction:

The Cous Creek copper prospect owned by Cous Creek Copper Mines Ltd. was acquired by Bethlehem under the terms of an option agreement dated May 30, 1977. The property was originally staked in 1972 with additional claims being added in 1974. During 1976 Craigmont Mines carried out a program of geochemical sampling and magnetic surveys that yielded limited results. The apparent correlation between the magnetic and geochemical anomalies prompted Bethlehem to carry out additional geologic and geophysical investigations, the results of which are contained herein.

Location and Access:

The property is located 8 km WSW of Port Alberni adjacent to the southwest boundary of the Esquimal: and Nanaimo Railway Land Grant. Geographic co-ordinates are $49^{\circ} 13^{\prime}$ latitude and $124^{\circ} 54.5^{\prime}$ longitude with the UTM grid reference being Zone 10, 360200 E , 5452200 N. Access is provided via a good paved and gravel road that branches off Highway 4 just west of the Port Alberni city boundary. The timber in the area has been harvested and thus a number of good access roads traverse the property.

Topography and Physical Environment:

The claims are situated inmediately north and west of Cous Creek which drains into Alberni Inlet. Elevations on the property range from 200 m to 700 m A.S.L. Relief is generally moderate. The area has been almost completely logged and is now in various stages of secondary growth.

Mineral Title:

A total of thirty-six located mineral claims form the property. Four were staked in 1972 with the remaining thirty-two being acquired in 1974. A schedule of these claims is set out in Section D.

General Geology:

The property is underlain by N - S striking bands of andesite, basalt, limestone and tuff which have been intruded by diorite and quartz diorite. Skarn and massive sulphide mineralization occur sporadically throughout the central portion of the claim block. Blebs of massive pyrrhotite, pyrite and minor chalcopyrite are generally found in the andesite in close proximity to the quartz diorite contact. Skarn mineralization is related to the limestone. A more detailed geologic description is contained in the report by C. M. Armstrong, P.Eng. which is found in Section B.

Work Program:

Following a property examination on May 30, 1977 by Bethlehem geological personnel, it was decided to engage C. M. Armstrong, \because.Eng. to carry out a program of detailed geologic mapping and geophysical work on the principal showings. Mr. Armstrong carried out this program during the period from July 5 to 23, 1977 and his report dated July 22, 1977 is contained in Section B.

Discussion of Results:

The results of Mr. Armstrong's field work and his subsequent interpretation are set out in his accompanying report. Accordingly, Bethlehem plans to conduct some additional geophysical examinations and possibly some exploratory drilling, although the nature and extent of this work has not been decided.

Summary of Costs:

Total expenditures incurred during the report period were $\$ 4,874.75$. Consultant's fees totalled $\$ 2,798.44$ or 57.41%, contractors' costs were $\$ 1,043.42$ or 21.40% while expenses incurred within the Bethlehem organization were $\$ 1,032.89$ or 21.19% of the total outlay.

Respectfully submitted,

R. E. Anderson, P. Eng. Exploration Manager

Examination of the

COUS CREEK PROPERTY

Port Alberni, B. C. Alberni Mining Division 92F/2W for

Bethlehem Copper Corporation 2100-1055 West Hastings Street Vancouver, B. C. V6E 2H8

by
C. M. Armstrong, P.Eng.

CONSULTING ENGINEER
4085 West 29th Avenue
Vancouver, B. C. V6S lV4, Canada
(604) 224-7678

$$
\text { July 22, } 1977
$$

Page
INTRODUCTION 1
WORK COMPLETED 1
DISCUSSION
Magnetite 2
Geology 3
VLF-EM 4
Soil Sampling 5
CONCLUSIONS AND RECOMMENDATIONS 5

APPENDIX

Craigmont Soil Sampling - Graphical Statistical Analysis
General Testing Laboratories - Analyses

INTRODUCTION

On July 5, 1977 Robin Anderson, Exploration Manage: for Bethlehem, Wally Maxmenko, Secretary-Treasurer for Cous Creek Copper Mines, and the writer examined the principal 7 showings on the Cous Creek property. With an objective of establishing favourable drill targets, the writer was requested to attempt to establish the relationship, or correlation, if any, between the several massive sulphide showings, relying principally on geological mapping and VLF-EM surveying.

Geological, geochemical, and magnetometer maps with topographic control (20-metre contour interval) prepared by Craigmont Mines in 1976 at a scale of l:5000, as well as a Craigmont magnetometer survey report (Sep. 15/76) and assay data from various examiners of the property were supplied very kindly for reference by Lawrence Vezina, president of Cous Creek Copper Mines Limited. The work by Craigmont was of a preliminary reconnaissance nature with blazed lines flagged at 50 -metre intervals and at 100 -metre (central area) or 200 -metre line spacings. Only outcrop areas cut by the grid lines were mapped very roughly by Craigmont personnel, most interline outcrop was not mapped, and numerous areas of abundant outcrop similarly were not mapped. Use of the Craigmont and other information was very much appreciated.

WORK COMPLETED

Because of the variability of attitude (strike and dip) of the several massive sulphide showings, it appeared best to establish small, optimally-oriented grids over each showing, tied in to the extensive Craigmont grid, and to evaluate each showing by VLF-EM surveys and detailed geological mapping.

Providing that coupling with the Jim Creek transmitter were acceptable, and that continuity of mineralization existed for 100 metres, or so, along strike and dip, the massive sulphide bodies should appear as excellent conductors.
2.7 kilometres of cut line were completed by the writer over the 7 showings, including slope-corrected (horizontal) chaining, picketing at 30 -metre intervals, and lines at 30 -metre spacings. Dense secondary growth was encountered only in the area of the $\mathrm{C}-7$ showing.
5.0 kilometres of detailed VLF-EM surveying was completed, with readings at l5-metre intervals. The showings were surveyed on lines at 15 metre spacings.

Approximately 75% of the grid was mapped geologically at a detailed scale of $1: 1250$. The geology was considerably more complex than indicated by Craigmont's reconnaissance mapping.

The Craigmont soil sample analyses (copper) were processed by graphical statistical techniques to establish values for weakly, moderately, and strongly anomalous copper soil values, being 100,200 , and 450 ppm , respectively (see Appendix). Only single station, weakly anomalous copper soil values were obtained by Craigmont in the vicinity of showings $1-M$ and $4-M$, both of which contain high grade copper values. Similar soil values were obtained in proximity to showing 5-M. Soil sampling of the detailed grid was not undertaken.

Representative 5 kilogram samples were chipped from bedrock in 6 of the showing pits, and analysed for $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$, and Zn (see Appendix). Showing l-M containing high grade copper was omitted by error.

DISCUSSION

Magnetite

Magnetite occurs in variable proportions in most of the showings, and, consequently, detailed magnetometer surveys probably could define the exact extent of most of the deposits better than any other technique. Compass deflections in the vicinity of the mineralization perhaps provide some indication of strike continuity of the zones:

1-M $\quad 100$ compass deflection at 35 metres east indicates at least that much strike continuity.
3-M compass deflected only in immediate pit area; no deflection beyond 10 metres; probably a massive sulphide pod.
4-M compass deflected only in immediate pit area; no deflection beyond 5 metres; probably a massive sulphide pod.
Swamp area (VLF-EM conductor) on lines 0.3 e and 0.6 e in vicinity of l-m showing: no compass deflection noted on each of the lines.

The dioritic andesite (6) and diorite (10) lithologies appear to be consistently and uniformly magnetic (weakly), and, accordingly, a detailed magnetometer survey could assist in establishing the continuity of these lithologies, in overburden-obscured areas. The andesite porphyry (7) appears to be similarly uniformly magnetic (very weakly).

In general appearance, the volcanic assemblage appears to be part of the Lower Jurassic Bonanza Subgroup of the Vancouver Group, rather than part of the Upper Triassic Karmutsen Formation. However, because the limestone (presumably Upper Triassic Quatsino) on the west dips at least locally 60° to the west, overturning of the sequences is implied. No reliable attitudes could be obtained from the various volcanic lithologies, and the strike of well-bedded tuffs was east-west, dipping 50° to 80° southerly: both deformation and faulting (block) are suggested.

Showings $8-\mathrm{M}, 3-\mathrm{M}, 2-\mathrm{M}$, and $5-\mathrm{M}$ occur within 30 metres of an assumed arcuate north-south fault which occupies a fairly well defined depression or gully throughout. It is probable that the massive sulphide shoots occur in roughly east-west fracture zones related to the major north-south fault. In addition, there is some suggestion that the $3-M$ and $5-M$ deposits occur at the boundaries between different flows: massive andesite and amygdaloidal andesite flows in the former, and amygdaloidal andesite and andesite flow breccia in the latter. Because of the absence of outcrop along strike of the showings, it is not possible to define the strike extent of the deposits.

Copper-bearing occurrence l-M probably also is related to a subsidiary fault in a well defined depression for 30 metres, plus, easterly of the showing. This fault probably branches from another northsouth fault indicated by a shallow depression bordered by elongate outcrop ridges. The showing also occurs near the contact of massive andesite and amygdaloidal andesite.

Minor faulting appears to be associated with copper-bearing showing 4-M which occurs at the contact with massive diorite and pillowed andesite-andesite flow breccia. It is uncertain whether a small, highly weathered gossan 50 metres to the northwest, plus minor disseminated chalcopyrite in andesite at the same location represents the strike extension of the zone. A small outcrop of massive magnetite occurs on the same contact about 50 metres to the northeast.

As shown by the analyses (see Appendix), only copper is of economic significance. Showings l-M (samples by others vary from l.65\% to $5.5 \% \mathrm{Cu}$) and $4-\mathrm{M}$ contain high grade copper, in the order of 3%; and showings $2-\mathrm{M}, 3-\mathrm{M}$, and $5-\mathrm{M}$ contain low, but potentially significant copper values, in the order of 0.3\%. If 100 metres, plus, of strike and dip continuity existed for the massive sulphides, zoning of values within the deposits could result in low grade copper values, such as these, at the extremities of the shoots. Showings 8-M (massive magnetite) and C-7 (massive pyrite) contained no significant values.

The writer's impression, only, of these massive sulphide deposits which have been exposed to date is that they are small, lenticular pods formed at structurally favourable locations (fault intersections and contact zones) by "hydrothermal solutions" emanating from a volcanic source.

VLF-EM

All of the showings have acceptable coupling with the transmitting station at Jim Creek, Washington. If the zones had strike and dip continuities of 100 metres, or so, which minimum continuity is required for exonomic significance, excellent conductors should result.

Showing 4-M does not appear as a conductor, and, accordingly, probably is a small massive sulphide pod.

Showings $8-\mathrm{M}, 1-\mathrm{M}$, and $3-\mathrm{M}$ yielded very low order conductors with net dip angles (filtered and smoothed) less than 10%, and with liberal strike continuities in the order of 50 metres, or less.

Slow running water and minor swampy ground that may be contributing to the conductor pattern is associated with showing $2-\mathrm{M}$; however, the northwest trending conductor of moderate intensity, less than 15\%, extends for about 50 metres, and a total conductor length of 75 metres, plus, is possible.

Showing $5-\mathrm{M}$ occurs at the southeast corner of 100 metres, plus, of northwest trending swampy ground which coincides with a strong, about 25\%, conductor. While the contribution of the massive pyrite to the conductor is not known, the following facts suggest that some follow-up work is warranted:

1. The massive pyrite contains low copper values, about 0.4\%.
2. The conductor (and swamp) parallel the limestone contact 50 metres to the southwest, wnich contact defines a broad anticlinal structure that could represent a favourable structural locus for sulphide deposition.
3. The zone may coincide with the favourable contact between andesite flow breccia and amygdaloidal andesite.
4. Weakly anomalous soil values were obtained by Craigmont about 50 metres to the south (95 ppm) and 200 metres on strike to the northwest (123 ppm).
5. The major north-south fault which appears to be responsible for the localization of a number of the massive sulphide pods passes immediately east of the showing.

A strong, well defined, east-west trending conductor, about 208, coincides with swampy ground on lines 0.6 e and 0.9 e at 0.3 n (1-M baseline). Because the major north-south fault passes immediately east of the conductor, there is a possibility that massive sulphides are present. As previously mentioned, no deflection of a compass needle was observed over the anomaly. Total conductor length exceeds 100 metres.

Soil Sampling

Two broad, semi-continuous zones of weakly to moderately anomalous copper soil values extend from Craigmont line 8600 N to 9400 N (800 metres), centered at about 10,300E. The writer made several traverses over the anomalous areas which occur on a steep, east-facing slope. Much outcrop that does not appear on the Craigmont geology map occurs in the vicinity of the anomalies; however, the anomalous areas are mostly overburden-covered. No explanation for the anomalies was found: pyrite fracture disseminationsand local intense fracturing of the andesitic rocks were the only signs of possible encouragement noted. Disseminated copper mineralization certainly does not occur over wide areas, but there could be relatively narrow, over-burden-obscured zones of sulphide mineralization, including chalcopyrite, possibly related to north-south faulting. Air photo interpretation would assist in assessing the possibilities of major structural control.

CONCLUSIONS AND RECOMMENDATIONS

Consideration of geology, VLF-EM response, and sampling results, individually andfor collectively, indicate that:
showing $8-\mathrm{M}$ has no economic potential;
showings $\mathrm{C}-7$ and $3-\mathrm{M}$ have very minor potential;
showings $2-\mathrm{M}, 4-\mathrm{M}$, and $\mathrm{l}-\mathrm{M}$ have minor potential;
showing $5-\mathrm{M}$ has some economic potential, if the deposit has strike continuity comparable to the length of the coincident swamp (more than 100 metres) and VLF-EM conductor;
the swamp conductor centered at $0.6 \mathrm{e}-0.35 \mathrm{n}$ could be associated with massive sulphides, and, with a possible strike length of about 100 metres, also could have economic significance.

Because of the low cost to acquire additional definitive data, the writer recommends that the grid over showing $5-\mathrm{M}$ be expanded with 2 additional 120 -metre (plus) ines at 0.3 e and 0.0 e (XL), and that a detailed magnetometer survey be conducted over the entire grid to demonstrate the magnetic response of the showings, and to further define the strike continuity of the showings.

If the magnetic response over the $5-\mathrm{M}$ showing indicates a possible strike length of at least 100 metres, the anomaly should be drilled.

Similarly, if the $0.6 e-0.35 n$ swamp conductor has magnetic correlation for a strike length of at least 100 metres, the anomaly should be
drilled, or possibly bulldozer-trenched.
If the magnetometer survey does not indicate acceptable probable strike continuity of the showings, no further work by Bethlehem is recommended by the writer on the property.

A total of 3 days should be allowed for the additional work, including magnetometer survey, mapping, VLF-EM survey, and data processing.

APPENDIX

Craigmont Soil Sampling - Grapnical Statistical Analysis General Testing Laboratories - Analyses

GENERAL TESTING LABORATORIES
DIVISION SUPERINTENDENCE COMPANY (CANADA) LTD.

TO:
BETHLEEEM COPPER CORPORATION LTD. 2100-1055 Weai Hastings Stweet Vancouver, B.C. 765258

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A IW2
PHONE (604) 254-1647 TELEX 04.507514 CABLE SUPERVISE

CERTIFICATE OF ASSAY

No.: 7707-1851	DATE:July 21, 1977

We hereby certify that the following are the results of assays on:
Ona

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers
C. M. ARMSTRONG, P.Eng. Consulting Engineer

4085 West 29th Avenue Vancouver, B.C. V6S 1V4 Canada (604) 224-7678

Lognormal distribution

$n=\frac{\log R}{\log w}=$

GEOCHEMISTRY Statistical Analysis Calculations
Property Sous Creek
Company Bethlehem

Date $I_{4} 1.1977$
Element Cu

560
$R=$ ratio of highest to lowest value $=280$ $\mathrm{w}=$ width of classes $\& \log \mathrm{w}=0.05,0.1$, or 0.2 $\mathrm{n}=$ number of classes

$$
\begin{aligned}
& b=50 \mathrm{ppm} \\
& b+5=100 \mathrm{pm} \\
& b+25=2001 \mathrm{~mm} \\
& b+35=450 \mathrm{pm}
\end{aligned}
$$

SECTION C - STATEMENT OF EXPENDITURES

A. Consultant (see accompanying invoice)

1. C. M. Armstrong. P.Eng. - geological and geophysical investigations carried out during the period from July 5 to $23,1977$.
\$ 2,798.44
TOTAL CONSULTANT'S EXPENDITURES
\$ 2,798.44
B. Contractors (see accompanying invoices)
2. Okanagan Helicopters Ltd. - transportation to property on May 30, 1977 utilizing a Bell Model 206 B unit. \$ 776.92
3. General Testing Laboratories - assaying services \$ 117.00
4. Altair Drafting Services Ltd.

(i) Drafting @ $\$ 12 /$ hour	
June $1977-3 \mathrm{hrs}$.	$\$ 36.00$
Aug. $1977-7 \mathrm{hrs}$.	$\$ 84.00$
(ii) Printing - August 1977	$\$ 29.50$

TOTAL CONTRACTORS' EXPENDITURES
149.50
\$ 1,043.42
C. Company Expenditures

1. Personnel
R. E. Anderson, Exploration Manager

3 days @ \$174.71/day (May 30, July 5 and one additional day of general supervision)
\$ 524.13
R. J. Nethery, Geologist

2 days @ \$109.05/day (May 30 and July 5, 1977) \$ 218.10
E. Andersen, Property Agent 2 days @ \$85.11/day (report preparation) \$ 170.22
A. Parnaby, Secretary

2 days @ \$45.22/day (report preparation) \$ 90.44
Total Personnel
\$ 1,002. 89
2. Transportation
R. E. Anderson - Ford F-150 2WD pickup
one day @ $\$ 30 /$ day $-\$ 30.00$

Total Transport \$ 30.00
TOTAL COMPANY EXPENDIUTRES
\$ 1,032.89

TOTAL PROPERTY EXPENDITURES
\$ 4,874.75

C. M. ARMSTRONG, P.ENG. CONSULTING ENGINEER
 4085 West 29 th Avenue Vancouver, B. C. V6S 1V4, Canada (604) 224-7678

July 23, 1977

Mr. Robin Anderson Exploration Manager

COUS CREEK PROPERTY
 Port Alberni, B. C.

Examination \& Report dated July 22, 1977

Charge		ACCOUNT No.	OR.	CR.
\bullet -		$\begin{aligned} & 854-018 \\ & 628-000 \\ & 854-008 \\ & 854-007 \\ & 110-004 \end{aligned}$	$\begin{aligned} & 776.92 \\ & 743.43 \\ & 445.92 \\ & 445.92 \end{aligned}$	$2,412.19$
VOUCHERENTERED				

\longrightarrow BETHLEHEM COPPER CORPORATION

Dollars

General Testing Laboratories Division Superintendence Company (Canada) Ltd. 1001 East Pender St
Vancouver. B.C. V6A IW2 Ph (604) 254.1647

invoice

BO 125
BETHLEHEM COPPER CORPORATION IAD.
10: 2100-1055 West Hastings Street Vancouver, B.C. V6e 2 H 8

To: Assaying submitted samples of Ore (as per enclosed report) for AuAgCuIn:
6 aamples $\times 19.50=\$ 117.00$

MINERAL CLAIMS

Property:	COUS CREEK		Mining Division:	Alberni
Name of Claim	Record Number	Metal Tag Number	Date Recorded	Expiry Date
A 5	19539 (M)	301183 M	20 Sept. 1972	20 Sept. 1982
A 6	19540 (M)	301182 M	20 Sept. 1972	20 Sept. 1982
A 7	19541 (M)	301180 M	20 Sept. 1972	20. Sept. 1982
A 8	19542 (M)	301181 M	20 Sept. 1972	20 Sept. 1982
B 1	20682 (K)	337866 M	27 Aug. 1974	27 Aug. 1978
B 2	20683 (K)	337867 M	27 Aug. 1974	27 Aug. 1978
B 3	20684 (K)	337868 M	27 Aug. 1974	27 Aug. 1978
B 4	20685 (K)	337869 M	27 Aug. 1974	27 Aug. 1978
B 5	20686 (K)	337870 M	27 Aug. 1974	27 Aug. 1978
B 6	20687 (K)	427351 M	27 Aug. 1974	27 Aug. 1978
B 7	20688 (K)	427352 M	27 Aug. 1974	27 Aug. 1978
B 8	20689 (K)	427353 M	27 Aug. 1974	. 27 Aug. 1978
B 9	20690 (K)	427364. M	27 Aug. 1974	27 Aug. 1978
B 10	20691 (K)	427365 M	27 Aug. 1974	27 Aug. 1978
C 1	20785 (M)	427380 M	9 Sept. 1974	9 Sept. 1979
C 2	20786 (M)	427381 M	9 Sept. 1974	9 Sept. 1979
C 3	20787 (M)	427382 M	9 Sept. 1974	9 Sept. 1979
C 4	20788 (M)	427383 M	9 Sept. 1974	9 Sept. 1979
C 5	20789 (M)	427384 M	9 Sept. 1974	9 Sept. 1979
C 6	20790 (M)	427385 M	9 Sept. 1974	9 Sept. 1979
C 7	20791 (M)	427386 M .	9 Sept. 1974	9 Sept. 1979
C 8	20792 (M)	, 427387 M	9 Sept. 1974	9 Sept. 1979
D 1	20771 (M)	427366 M	9 Sept. 1974	9 Sept. 1978
D 2	20772 (M)	427367 M	9 Sept. 1974	9 Sept. 1978
D 3	20773 (ii)	427368 M	9 Sept. 1974	9 Sept. 1978
D 4	20774° (ii)	427369 M	9 Sept. 1974	9 Sept. 1978
D 5	20775 (M)	427370 M	9 Sept. 1974	9 Sept. 1978
D 6	20776 (M)	427371 M	9 Sept. 1974	9 Sept. 1978

MINERAL CLAIMS

COUS CREEK			Mining Division:	Alberni
Name of Claim	Record Number	Metal Tag Number	Date Recorded	Expiry Date
		-		
D 7	20777 (M)	427372 M	9 Sept. 1974	9 Sept. 1978
D 8	20778 (M)	427373 M	"	"
D 9	20779 (M)	427374 M	"	"
D 10	20780 (M)	427375 M	" .	"
D 11	20781 (M)	427376 M	"	"
D 12	20782 (M)	427377 M	"	"
D 13°	20783 (M)	427378 M	"	"
D 14	20784 (M)	427379 M	"	"

SECIION E - ILUUSTRATIONS

Drawing No.	Title	$\underline{\text { Scale }}$
CC-77-1	General Location Plan	$1: 250,000$
CC-77-2	Location Plan	$1: 50,000$
CC-77-3	Topographic Plan	$1: 10,000$
CC-77-4	Mineral Claim Plan	$1: 10,000$
CC-77-5	Survey Grid Plan	$1: 1,250$
CC-77-6	Geology Plan	$1: 1,250$
CC-77-7	Geophysical Plan	$1: 1,250$

