17- #387-#6495

EXPLORATION of CANADA LTD. 3540 West 41st. Ave., Vancouver, B.C. V6N 3E6

GEOLOGICAL REPORT - BAR 1 CLAIM

BUS 263-2678

TOPLEY, B.C., OMINECA M.D. 54+ 30 N.LAT, 126 25 W.LONG.

6495

RES 733- 6902

for

SUMMIT PETROLEUM CORP, 1130 - 700 W. GEORGIA ST. VANCOUVER, B.C.

by:

BJ. PRICE, M.Sc., F.G.A.C. PETRA GEM EXPLORATION LTD., 200 - 3540 W.41 Ave., VANCOUVER, B.C.

November 6 , 1977.

MINERAL RESOURCES BRAN	СН
ASSESSMENT REPORT	
N O	

page

TABLE OF CONTENTS

		page
LOCATION AND ACCESS		1
CLAIMS		1
HISTORY		1
1977 WORK PROGRAM		1
REGIONAL GEOLOGY		2
GEOLOGY OF THE CLAIM		2
PROSPECTING		3
GEOCHEMISTRY		3
BARITE OCCURRENCE		3
RECCOMMENDATIONS		3
TABLE 1 – ASSAYS 1966		appendix
Assays - 1977		
ADDAID = 1777		11
		H H
STATEMENT OF COSTS	LIST OF ILLUSTRATIONS	
	LIST OF ILLUSTRATIONS	
STATEMENT OF COSTS	LIST OF ILLUSTRATIONS	11
STATEMENT OF COSTS	LIST OF ILLUSTRATIONS	" FIG 1
STATEMENT OF COSTS location map Claims	LIST OF ILLUSTRATIONS	" FIG 1 FIG 2

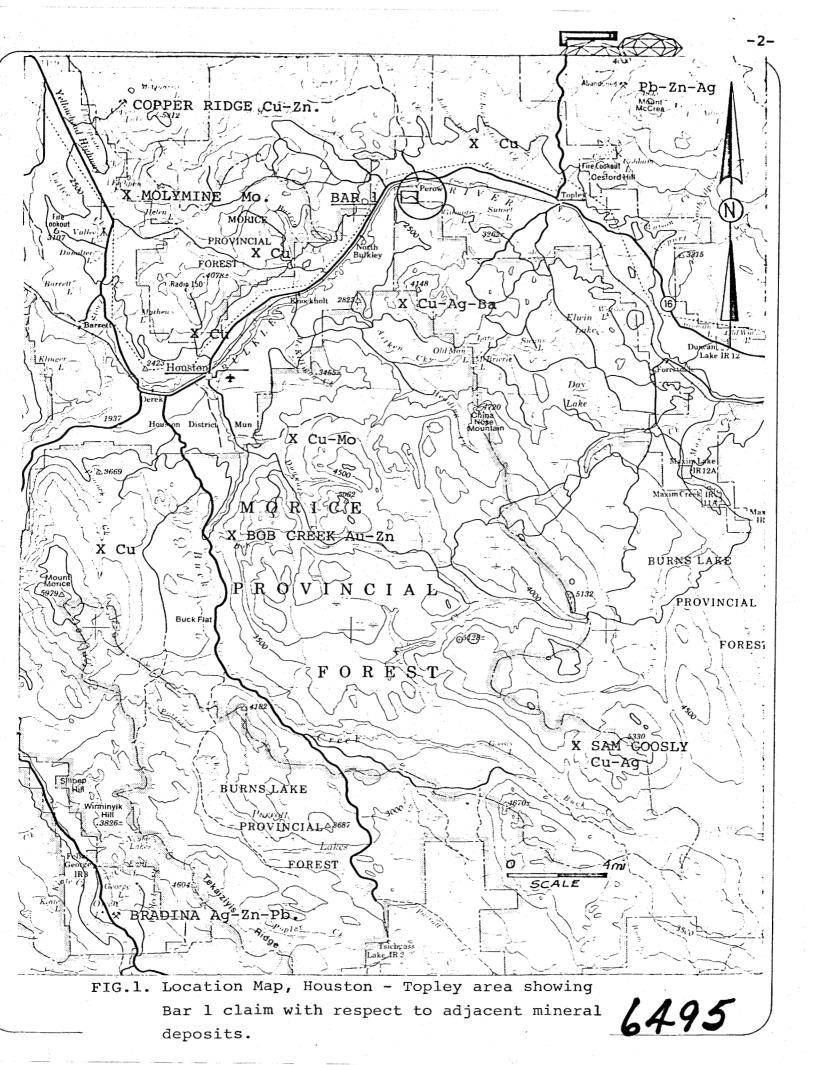
1

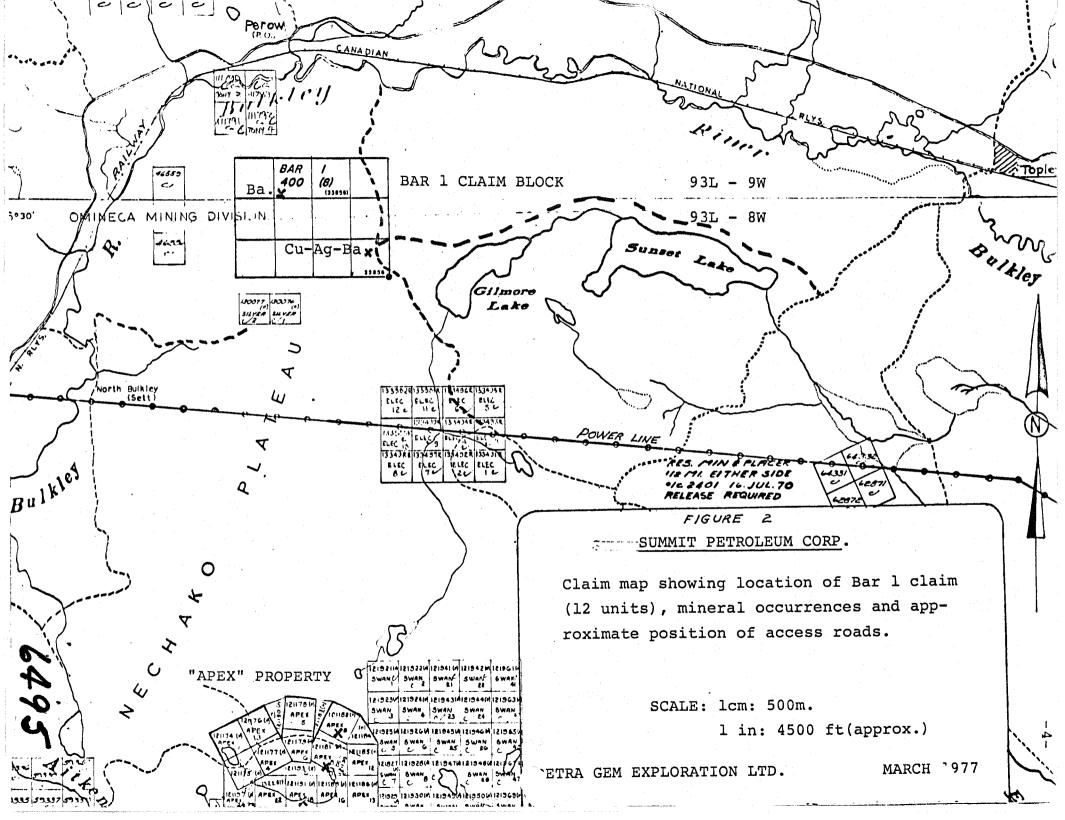
LOCATION AND ACCESS:

The claim is due south of the settlement of Pe row, B.C., on highway 16, 12 miles northeast of the town of Houston, B.C. Access is by bush road, (four wheel drive), from Topley, which is 6 miles due east of Perow. The road passes Sunset and Gilmore lakes. The claim block lies within one mile of the main C.N. Railway line between Edmonton and Prince Rupert. Numerous old logging roads afford access to the southern part of the property.

Location is illustrated in figure 1. on the following page.

CLAIMS:


The Bar 1 claim (record no. 400 (8) containing 12 units was staked by W.D. Yorke-Hardy on August 2, 1976 and recorded August 18. The legal cornerpost is located on the old logging road near the trenches. The claim is shown on the accompanying map, figure 2.


HISTORY:

Showings of copper-silver mineralization were staked originally by the late Eric Strimbold of Topley, and were explored by hand methods sporadically over the last 20 years. In 1966 the claims were optioned to Normont Copper Ltd., who trenched the showings and sampled the trenches under the supervision of M.J.Beley and W.Sharp, geologists. Results of their sampling are shown in figure 5. In 1967 the area was soil sampled and mapped. Since 1969, several people have held small claim blocks on the occurrence, but no further work was done. Recently, Mr Yorke-Hardy located a barite occurrence on the Bar 1 claim which has been purchased by Summit Petroleum Corp. In March 1977 the writer prepared an exploration proposal for the prospect, and Petra Gem Exploration Ltd. carried out limited exploration work in July and August.

†977 WORK PROGRAM:

The writer spent 6 days on the property; July 26, assissted by P.Howard, prospector, and August 11 - 15 inclusive, assisted by P.J.Huber, prospector, and M.Limden, drilling assisstant. Work done during this time included geological mapping and sampling, prospecting, and a limited amount of packsack diamond drilling (4½ feet.) Because of the extremely hard cherty nature of the volcanic rocks, this drilling was not considered satisfactory for evaluation of the deposit. Previous geochemical data was analyzed statistically and reinterpreted with respect to known mineralization. Results are shown in figure 5. Assays were done by Vangeochem Lab Ltd. by atomic absorption spectrophotometry, and are shown in the appendix.

REGIONAL GEOLOGY:

An excellent study of the regional geology of the area is provided by B.N. Church, B.C.Dept. of Mines, (G.E.M. 1970, 1973.) and his map (figure 3,) illustrates the predominantly volcanic terrain of the western margin of the Nechaco Plateau. In the portion of the plateau between Bulkley River and Francois Lake, early Mesozoic rocks varying from clastics to pyroclastics and volcanics of acid to intermediate composition are exposed in erosional windows. These rocks are folded and faulted and covered with late Mesozoic and Tertiary volcanic rocks ranging from basaltic through trachyandesitic and rhyolitic composition. An idealized stratigraphic section is shown on the geological map.

Igneous intrusions in the area are of several types with direct compositional equivalents in adjacent volcanics; for example, granite intrusions have been dated at 76+/- m.y. These are probable equivalents to rhyolite dykes, sills and flows of the same age. The symmomonzonite stock at Sam Goosly Lake is identical in age(48 m.y.) and composition with the Goosly ^Lake lavas and pyroclastics.

Several significant mineral deposits occur within the same map area. The Sam Goosly modified massive sulfide deposit is situated 20 miles southeast of Bar 1. Bradina Mines' Silver Queen mine containing reserves of silverzinc-lead ore with values in gold and copper, is situated 30 miles southwest. At Bob Creek, volcanics contain low, but significant values of gold and zinc. Several porphyry copper-moly prospects have been investigated nearby.

GEOLOGY OF THE CLAIM:

Bar 1 claim is underlain by ^Hazelton ^Group volcanics and pyroclastics which strike uniformly northwesterly and dip steeply (80°) to the northeast. Exploration in 1966 by Normont Copper Ltd consisted of trenching and sampling. Two of four trenches exposed mineralization of chalcopyrite, bornite and tetrahedrite mainly as fragment rims and disseminations in matrix of a very strongly silicified andesitic or rhyolitic pyroclastic rock. According to Sharp 1966, minor galena and sphalerite also occur. Trenches and assays are shown on the accompanying map, figure 4, traced from Sharps report. A 60 foot width assays 0.38 % Cu. and 0.73 oz./Ton Ag. The best mineralization over a width of 20 feet averages 0.56% cu. and 1.6 oz./Ton Ag. 1966 assays are shown in Table 1.

Several additional pits near trenches 1 and 2 were noted and sampled by the writer. Assay results are as follows: Cu Ag

		~~~	••o
1.	^H igh grade selected sample - South pit	0.47%	0.68  oz/T
	Chip - 3m. South pit.	0.29%	0.53 oz./T
3.	Grab - pits between Tr 1 and 2	0.10%	0.19 oz./T

These results agree well with averages for the best mineralization in the trenches. At present, the mapped area of known mineralization in and near these two trenches approximates 300 feet X 60 feet. The rock is extremely hard and is strongly fractured. Silicification is the only alteration noted, but is very intense. Scattered outcrops to the south and east are unmineralized. Outcrop is sparse to the west, with deep overburden. A small trench west of the road contains silicified crystal-lithic tuff with abundant pyrite.

Five hundred feet north of the trenches, near the end of the road, scattered specks of chalcopyrite occur in a strongly silicified buff colored rhyolite, resembling chert. Considering the strike of the rock units in the area, the mineralized horizon may be the same as that exposed in the trenches, and the mineralization may be in part stratigraphically controlled. The rhyolite is overlain by water-lain tuffs of intermediate composition and a thick band of



red to purple, strongly hematitic coarse tuff or agglomerate. A cat trench crosses this sequence and exposes both units extremely well. Twenty feet above the trench a small pit exposes narrow zones of strongly oxidized copper mineralization in fractures in the hematitic tuff. This pit is the source of the 1966 assay 16365 containing 1.43% cu. and 1.9 oz./Ton Ag. The fractures are weak and cannot be traced into the surrounding wallrock for any distance.

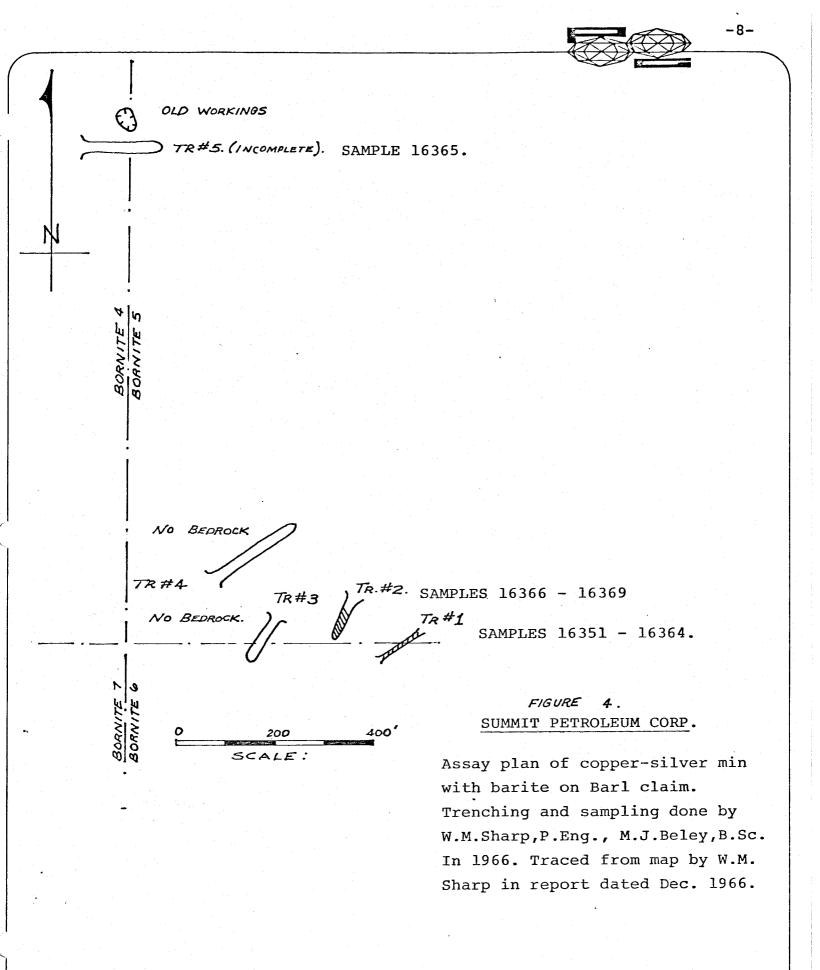
Strata exposed on the hill to the west are similar in composition and textures and may represent the same sequence folded or faulted. No outcrop is present in the intervening valley.

## PROSPECTING:

Prospecting by the writer and P.J.Huber in areas of outcrop on the same hill as the trenches and the hill to the west failed to disclose any additional mineralization, except for one occurrence of "flow-top " bornite and chalcocite noted in one piece of float. Abundant float of pyritic "quartz-eye" porphyry occurs on the road leading to the Bulkley River from the northeastern side of the property. Source of this float was not seen.

## GEOCHEMISTRY:

Four soil samples were taken by the writer and analyzed. These were taken from the area in between trenches 1 and 2. Statistical analysis by the writer of 1966 soil sample results gave mean of 8.6 ppm., standard deviation of 13.8 ppm, and mean + 2S.D. of 36 ppm. Anomalous samples are considered to be 36 ppm. Very few samples on the grid are anomalous, and no recognizable pattern is present to those scattered anomalies.


## BARITE OCCURRENCE:

Minor amounts of vein barite is present at the trench showings as coarsely bladed material. Additional occurrences of barite were noted by Sharp; "Other mineralization noted consists of significant exposures of barite on Bornite 14 M.C. " This exposure has been seen by mr Yorke-Hardy, but the writer, on several traverses, failed to encounter the exposures. Barite at this locality is reported by Mr. Yorke-Hardy to be wider and of greater purity than at the copper-silver trenches.

## **RECCOMMENDATIONS:**

Geochemical results from 1966, particularly when reviewed with statistical procedures outlined in this report do not provide encouragement for widespread mineralization of bornite- tetrahedrite - chalcopyrite. However, the width and tenor of mineralization exposed in trench 2 are significant and if further work is contemplated on the property, this mineralization could best be traced by a series of shallow percussion holes. Some effort should be expended to locate the barite exposures mentioned by Sharp. These must occur on the west side of the western hill on the property, in heavy timber, and 3 to 4 man days of concentrated effort may be necessary to find the showings.

Barry Price, M.Sc., F.G.A.C. November 6, 1977



traced by: B.Price, Petra Gem Exploration Ltd.

March 1977.

<b>VGC</b> Certificate of G	64	anada v cal Ana		• Specia	alising in Trac	e Elements An	alyses •
-IN ACCOUNT WITH- Petra Gem Explorat # 200 - 3540 West Vancouver, B. C. Attention: Mr. Barry Price	ilst Avenue,		Sam Rep For Ana	ort No: aples Arrived: ort Completed Project: alyst: olce #		11, 1977 17, 1977	of 1
Sample Marking	Cu	Ag					
1	 14		Soil		$\mathbf{N}$		
2 3	58 26	0.8	Soil Soil	Ľ	3AR		
8-8-77-5	43 88	0.8 2.8		se by Sa	ANALOSIN TO PARTICIPATION OF THE CONTRACTOR OF	na na ang ang ang ang ang ang ang ang an	Salarahan daga sa
7	30 75	1.0 1.6	Soil Soil		a ta kang manangkan sa kang manangkan s		
2	4700* 2900*	26.0* 20.0*	chip 3	rd Cu stn a (Rock)	(Rock)		ł
	1000* 350	<u>7.2*</u> 5.4	Grab Grab	(Rock) (Rock)		AK .	
	20 33	3.6 1.4	altere	ab (Rock d anyg vo	les Ascor	(Rock)	
	55 86	1.4	ASCOT	Deate Lap upper Za	Tuff (Ro	ek)	
					_		· · · · · · · · · · · · · · · · · · ·
REMARKS: *Semilar hav			<u> </u>	and check			<del></del>



# BAR 1 PROSPECT - STATEMENT OF COSTS - 1977 WORK

WAGES:	P.Howard -	Prospector-	July 26, 1	day @ \$75.00	\$ 75.00
				11 11 11	
	M.Linden -	assistant	Aug 11-15	4days@ \$40.00	160.00

# CONSULTING FEES:

			supervisor		
July 2	6, Aug 11 -	15	6 days @	\$150.00	 •900•00

RENTALS:	P.J	.H	uber	4 W.D. Truck	1	day @ \$35/day 35.00
	Pet	ra	Gem	Expl. GMC van	. 6	days@ \$40.00/day240.00
	. 11	11	11	camp 5 days	; @	\$50.00/day 50.00
	11	11	11	drills (2) 2	di	ays @ \$25.00/day 50.00

## EXPENDITURES:

Motel (Smithers) 4 days @ \$12.50 Meals 8 man days @ \$10.00/day	• • • • • • • • • • • • • • • • • • • •	
Food for camp		54.91
Fuel for drills		6.10
Assays 8 @ \$2.50		
Freight	•••••	10.00

** All figures will be supported by reciepts if requested

# TOTAL

\$1806.01

ie.

Barry Price, M.Sc. November 6, 1977



-15-

# BIBLIOGRAPHY

Sharp, W. M. (1967) - Summary Geological Report Houston-Topley-Tsalet Mtn. Exploration Projects Company report for Normont Copper Ltd. (N.P.L.) January 1967.

Annual Report (1927) - B.C. Minister of Mines p. c 149

L.B. Warren

- personal communication



# DECLARATION

I, Barry James Price, with business address 200-3540 W. 41st. Ave., Vancouver, B.C., do hereby declare that:

- I am a consulting geologist, having graduated from the University of British Columbia in 1965, (B.Sc.-honors geology), and in 1972 (M.Sc. geology).
- 2) I have practiced my profession since 1965
- 3) I am a fellow of the Geological Association of Canada.
- 4) I am personally familiar with geology and mineral deposits in the area of the exploration proposal, and have examined all available geological data from company and governmental geological reports.
- 5) I have no direct or indirect interest in Summit Petroleum Corp. or any associated companies, nor do I expect to acquire any such interest, and will accept only normal consulting fees for the preparation of this report.

pectfully Submitted Barry Mice, M.Sc., F.G.A.C. Vancouver, B.C.

March 23, 1977

-16-

# QUALIFICATIONS

NAME: Barry James Price.

BORN: Smithers, B.C., August 19, 1944.

EDUCATION:

- A) High school: Smithers, B.C. Graduated 1961.
- B) University: B.Sc. Honors Geology 1965, Thesis topic:(U.B.C.) "Tertiary Sediments at Driftwood
  - Creek, Smithers Map Area, B.C."

M.Sc., Geology, 1972, Thesis topic:

"Minor Elements in Pyrite and Exploration Applications of Minor Element Studies."

## EMPLOYMENT RECORD:

- 1964, (summer): GEOLOGICAL SURVEY OF CANADA., junior assistant, mapping party in Rocky Mts., supervised by Dr. G.B.Leech.
- 1965 1968 CHEVRON STANDARD LTD., Alberta. Senior assistant, regional mapping party in Mackenzie and Richardson Mts. Subsurface geological studies, carbonate reef research, wellsite supervision and production department studies.
- 1968 (summer) MANEX MINING LTD. Smithers, B.C. Geological mapping and diamond-drill supervision.
- 1969 (summer) MANEX MINING LTD. Smithers, B.C. Property mapping and evaluation, geophysical and geochemical studies, supervision of diamond drilling, geological mapping for Jade Queen Mines Ltd.
- 1970 (summer) ARCHER, CATHRO AND ASSOC., Party chief, regional study of sedimentary copper potential of Mackenzie Mts. Recconaissance mapping and geochemical interpretation.
- 1971 (summer) J.R.WOODCOCK CONSULTANTS LTD., Project geologist in charge of exploration of massive sulphide prospect, including geological mapping, geochemistry, geophysics, and diamond drilling. Concurrently supervised regional exploration program.

MANEX MINING LTD., Vancouver, Geologist in charge of field projects. Consulting 1972 - 1974 geological work for New World Jade Ltd., and Delphi Resources Ltd.

Geologist in charge 1974 - 1976 Manex Mining Ltd., Consulting geologist of field projects. for Delphi Resources Ltd., Territorial Nephro-Jade Canada Ltd. Gold Placers Ltd., Petra Gem Exploration Ltd. Geological

Consulting.

1976

1975

Elected Fellow, Geological Society of Canada.



APPENDIX NO 1 - ASSAY SHEETS.

. •



	*				
	SAMPLE	NO. WIDTH	Copper	(%) Silver	(oz./Ton)
	16351	5'	0.46	2.1	
	16352	5'	0.38	1.2	
	16353	5'	0.94	2.8	
	16354	5'	0.47	0.40	
t	1635 <b>5</b>	5'	0.30	0.30	
TR# <b>1</b>	16356	5'	0.29	0.30	
	16357	5'	0.32	0.30	
	16358	5'`	0.20	0.20	
	1635 <b>9</b>	5'	0.47	0.60	
	1636 <b>0</b>	5'	0.24	0.10	
	1636 <b>1</b>		0.33	0.30	
	16362	51	0.11	0.10	
	16363	5'	0.06	Tr	
-	16364	5'	0.02	Tr.	
	1636 <b>6</b>	GRA <b>B</b>	0.02	Tr.	
TR# <b>2</b>	16367	E1 99	0.05	0.30	
	1636 <b>8</b>	<b>11 11</b>	0.04	Tr.	
	1636 <b>9</b>	TI 17	0.05	0.20	
OLD. WK	.16365	GRAB.	1.43	1.9	
					1

1966 ASSAYS - "BORNITE" GP. ( BAR 1 CLAIM )

All assays done by Atlas Testing Laboratories Ltd. Assay sheets included in appendix.

*

-7-

																X
8	SE .	46	. 6E	86	IOE	IZE	. (4£	-16E	196	. 20E	. 22E	. 24£	26E	285	30E	
															1	
																,
3	7 Scat	2 tered olc purple	З			5	18	Ø	5	2		4	//	4	2/5 /	
7	2 mas	sive tuff.	3	74.11	d.	8	36)	11	4	3	./5			.9	3	14N
3	3	2	7	are Co		2	"	8	10	8	9	4	5	6	13	
7	2	3	6	stre		з	3	ope 11	8		15	11	16	7 /	8	ISN
3	З	6	7	chy		3	1 4 5 1	6	7	14	/8	4	6	4 /	8	
2	Э	5	6		4	6			3	7	2	2	8	4/	7	ION
3	2	5	2		4	4		1 10	6	6	16	6	3	1.	13	
1	4	3	2		Z	2	, ¹ , ¹ ,	13	. Q I.P. Bornite 0,1 4,5 10	8	4	0	11	/ ,	з	8N
11	6			;	5	7	31	1 80 5 0	Red. hematitie to	15 uff-agglom	5	14	8 /	9		
(197)	2	3	4	7	6	rhyoitte 7	ater 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F152 1 6 Cu	Pit w. bn.cp.tet.	2/	8	10	12	4	16	GN
3	2	1	2		LD. 7 BIN	10	2 0 0	ided 12 tuff	× +	"	13	0	7/	5	з	
3	9	7	2	2		8	61 1 rby	+uff   16	red hematitic tuff 8	6	12	10	/13	7	5	41
3	1	3	2	3	3	1D Charl		(43) Cu	Drn hematike tuff	9	8	12	/ 8	8	10	
2	з	6	1	6	10 .	10 with	specks cp. 1 Cul 3	×:/3	C O	4	6	14	6	//	4	24
5	з	2	2	7	4	4 \	13	/3	7	و	6	0/	5	11	7	
BL. 6	/0	5	8	3	3	./4	5	20	9	8	3		4	6	<u>و</u>	0
12	10	3	20	9	/3	Ø	and the second s	9	59	3	12.	2	2	11	1	
. 3	7	12	5	11	7	10	3	16	15	5	- Fri	2	2	6	7	25
45	7	5	19		3	п	6	з	(57)	17	5 0	1	2	7	10	
	-12.20						1			1.1.1.5	- /	-	-	2	-	10

A STATISTICS

Battering Lattice watt       0       0       6       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th><b>B</b></th> <th>5</th> <th></th> <th>2</th> <th>19</th> <th>11</th> <th>6</th> <th>7</th> <th>11</th> <th>11</th> <th>8</th> <th>7/</th> <th>2</th> <th>2</th> <th>3</th> <th>Е</th> <th>45</th>	<b>B</b>	5		2	19	11	6	7	11	11	8	7/	2	2	3	Е	45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		thered alc + and esitic				4	12	1	3	16	5		3	5	3	5	
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	3	2	2	19	13	0	16	N	o rock.			1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	8	9	2	5	4	3	F	_ 4	8	5	/ 2	2	5	3	10	65
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			100							10		/ 8	(54)	2	5	3	111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ø	8	4	5	4			hith tuff	cu + Barite	2	3. /		G				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	4	10	7	6			7 4 ×	Pils 11	/	5	3	2	8	7	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			19	~				0	43 29		Barite.					đ	
$\frac{16}{9} = 9 = 5 + 1 = 3 = 5 + 1 = 3 = 5 + 1 = 105$ $\frac{16}{13} = 6 + 11 + 15 + 1 + 4 = 3 = 3 = 5 + 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1 = 3 = 5 = 1$		7	З	5	1	6	4	(37)	11		1	3	2	3	3		
$\frac{13}{12} = 6 + 11 + 12 + 11 + 12 + 12 + 12 + 12 + $	16	EB		9	5		3	3	2	4	/10	10	Z	5	3	1	105
$\frac{13}{12} = 6 + 11 + 12 + 11 + 12 + 12 + 12 + 12 + $						-	-				1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	6	4	//	/5	'	4	3 Am	3	و	/ 8	3 Scattered plc	indecitic p	z	2	3	
$\begin{array}{cccccc} 6 & 4 & 4 & 10 & 8 & 11 & 4 & 2 \\ 8 & 2 & 5 & 4 & 5 & 3 & 2 & 4 \\ 8 & 2 & 5 & 4 & 5 & 3 & 2 & 4 \\ 8 & 2 & 5 & 4 & 5 & 3 & 2 & 4 \\ 8 & 5 & 7 & 8 & 4 & 14 & 3 & 1 & 7 & 6 \\ \hline & & & & & & & & & & & & & & & & & &$	10	12		4	10	7	6	3	- 14	" 1	/	4			3	3	125
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	12	13	4	ē		No.	1		NE 1	1							
8 2 5 4 5 3 0 2 4 5 2 3 5 4 4 5 7 8 4 14 3 1 7 4 4 5 2 3 5 4 $\frac{1000}{14} = \frac{1000}{14} = \frac{1000}$	6	4	4	10	8	11	,A'	2	13	4 /	7	Z	Z	0	5	7	
$\frac{1}{4}  5  7  9  4  \frac{1}{4}  3  1  7  4  5  2  3  5  1  \frac{1}{5}  \frac{1}{5}  \frac{1}{5}  \frac{1}{4}  3  1  7  4  5  2  3  5  1  \frac{1}{5}  \frac{1}{5$						2	1 .	4		leatic	P DAK1.	5	. ,	3	3	3	145
$\frac{1917 \text{ Assays:}}{Stathstical Data:}$ $\frac{1917 \text{ Assays:}}{1 \text{ High grade. south pit}}$ $\frac{1917 \text{ Assays:}}{0.47\%}$ $\frac{1917 \text{ Assays:}}{1 \text{ High grade. south pit}}$ $\frac{1917 \text{ Assays:}}{0.47\%}$ $\frac{1917 \text{ Assays:}}{1 \text{ High grade. south pit}}$ $\frac{1917 \text{ Assays:}}{0.47\%}$ $\frac{1917 \text{ Assays:}}{1 \text{ High grade. south pit}}$ $\frac{1917 \text{ Assays:}}{0.47\%}$ $\frac{1917 \text{ Assays:}}{1 \text{ High grade. south pit}}$ $\frac{1917 \text{ Assays:}}{0.47\%}$ $\frac{1917 \text{ Assays:}}{1 \text{ High grade. south pit}}$ $\frac{1917 \text{ Assays:}}{0.47\%}$ $1917 \text{ Assay$	8	2	5	4	2	CAT ROAD											
Statistical Idda:       1917 Assays:       Cu       Ag         I High grade : south pit       0.47%       0.6802/T         S. P. = 138 ppm       2 Chip 3m. south pit       0.47%       0.6802/T         X + 25:D = 36 ppm       3 Grab - 2 pits between Tr. 1/2.       0.10%       0.19 oz/T         Mineral Resources Branch       Mineral Resources Branch       D. 19 oz/T         D>X + (6:D). (722 ppm)       Scale :       Mineral Resources Branch         DYX + Z(5:D) (736ppm).       Scale :       Scale :	4	5	7	8	4	/ 14	3	1	7	(45)	4	5	2	3	5	1	
Statistical Data:Introduction:Introduction:Mean. = $B.6$ ppm Cu.2Chip 3m. south pit $0.47\%$ $0.68 oz/T$ S. D. = $138$ ppm2Chip 3m. south pit $0.29\%$ $0.53 oz/T$ BAR 1 PROJECT - TOPLEY, B.C. $\bar{X} + 25.D = 36 ppm$ .3Grab - 2 pits between TF. 1/2. $0.19 oz/T$ MINERAL RESOURCES BRANCH $O > \bar{X} + (5.D). (722 ppm.)$ MINERAL RESOURCES BRANCHN.B. Geochem + vacad from Fig 1, Assess ment Report $O > \bar{X} + 2(5.D) (736 ppm.)$ .SCALE :N.B. Geochem + vacad from Fig 1, Assess ment ReportCopper Lite: - Reinterpreted Sor SummitCopper Lite: - Reinterpreted Sor SummitOr $\bar{X} + 2(5.D) (736 ppm.)$ .												Ŧ					1
Statistical Data:Introduction:Introduction:Mean. = $B.6$ ppm Cu.2Chip 3m. south pit $0.47\%$ $0.68 oz/T$ S. D. = $138$ ppm2Chip 3m. south pit $0.29\%$ $0.53 oz/T$ BAR 1 PROJECT - TOPLEY, B.C. $\bar{X} + 25.D = 36 ppm$ .3Grab - 2 pits between TF. 1/2. $0.19 oz/T$ MINERAL RESOURCES BRANCH $O > \bar{X} + (5.D). (722 ppm.)$ MINERAL RESOURCES BRANCHN.B. Geochem + vacad from Fig 1, Assess ment Report $O > \bar{X} + 2(5.D) (736 ppm.)$ .SCALE :N.B. Geochem + vacad from Fig 1, Assess ment ReportCopper Lite: - Reinterpreted Sor SummitCopper Lite: - Reinterpreted Sor SummitOr $\bar{X} + 2(5.D) (736 ppm.)$ .				1077 A								Report	OU BAR	21 claim	· Nov.	6,1977	
Mean. = 8.6 ppm Cw. 5. B. = 138 ppm $\vec{x} + 2s:D = 36ppw$ . $O \times \vec{x} + 2s:D = 36ppw$ . $O \times \vec{x} + 2s:D = 36ppw$ . $O \times \vec{x} + (s:D)$ . (>22 ppm) $O \times \vec{x} + 2(s:D)$ (>22 ppm) $O \times \vec{x} + 2(s:D)$ (>36ppw). SCALE: SCALE: MINERAL RESOURCES BRANCH ASSESSMENT REPORT I A O K BAR 1 PROJECT - TOPLEY, B.C. GEOLOGY AND GEOCHEMISTRY. (Cu.). N.B. Geochem traced from Fig 1, Assess ment Report by M.J. Beley, B.Sc., Jan 4 1968 for Normont Copper Ltd <u>Reinterpreted Sor Summit</u> Petroleum Sorp. Ava and Sept. 1977.	Statis	stical Data:										501	MMIT	PETR	OLEUM	COR	P.
\$\ovee X + 2s:D = 36ppw.       3 Grab - 2 pils between Tr. 1/2.       0.19 oz/T         \$\ovee X + (5:D). (722 ppw)\$       \$\ovee X + (5:D). (726 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw).       \$\ovee X + (25:D). (736 ppw).         \$\ovee X + (25:D). (736 ppw). <td></td> <td></td> <td>n Cu.</td> <td></td> <td></td> <td>0.29%</td> <td>0.53021T</td> <td></td> <td></td> <td></td> <td></td> <td>BAR</td> <td>1 PF</td> <td>ROJECT</td> <td>- TOP</td> <td>LEY</td> <td>BG</td>			n Cu.			0.29%	0.53021T					BAR	1 PF	ROJECT	- TOP	LEY	BG
O>x+(5.D). (>22 ppm) Orx+2(5.D) (>36ppm). SCALE: MINERAL RESOURCES BRANCH ASSESSMENT REPORT I A DE N.B. Geochem traced from Fig 1, Assessment Report by M.J. Beley, B.Sc., Jan 4 1968 for Normonit Copper Ltd <u>Reinterpreted Sor Summit</u> Petroleum Corp., Aug and Sept. 1977.				3 Grab - 2 pits	between Tr. 1,2.	0.10%	0.19 02/7					A State of the Car					0.0.
OF X + 2(5.D) (736ppm). SCALE:	0>5	+(5 D). (722	(ppm)							I RESOLIDCES BE	RANCH	at the second second					ort
SCALE: 1105 Copper Lia: - He interpreted Jor Summit	Or ×	T 2(5.D) (73	6ppml).						and the second sec			by N	.J. Beley, B	.Sc., Jan 4	1968 for N	ormont	
No. 6472 Barry Price.										INGL	-					<u>nmit</u>	
Danytrice.					°	200		H.	NO	6412		Ram	Dia		1.5.23		
PETRA GEMEXPLORATION LTD. B.J. PRICE, M.Sc.												DETRA GEN	EXPLORA	TION ITO	R I POI	CE MS	-

GEOLOGY OF THE BUCK CREEK AREA OMINECA MINING DIVISION

# MAY, 1973

## BEDDED ROCKS

#### MIOCENE

POPULAR BUTTES VOLCANIC ROCKS, COLUMNAR
 OLIVINE BASALT (21.0±1.1 m.y.)

## EOCENE

BUCK CREEK VOLCANIC ROCKS

- b PARROTT MOUNTAIN PHASE, MAINLY ANDESITE BRECCIA
- C SWANS LAKE PHASE, MAINLY BASALTIC LAVA d HOUSTON PHASE, APHANITIC ANDESITE AND DACITE LAVAS AND VOLCANIC BRECCIA, MINOR
- BASALT (47.3±1.6 m.y.)
- GOOSLY LAKE VOLCANIC ROCKS, MAINLY BIOTITE PYROXENE PLAGIOCLASE TRACHY-ANDESITE LAVAS AND THICK SILLS OR LAVA FLOWS AND SMALL STOCKS OF SIMILAR ROCK (48.0±1.8 m.y.) / LOCAL FELDSPATHIC ANDESITIC LAVAS AND BRECCIAS

## UPPER CRETACEOUS

- TIP TOP HILL VOLCANIC ROCKS, MAINLY BIOTITE HORNBLENDE ANDESITE AND ANDES-ITIC DACITE LAVAS AND PYROCLASTIC ROCKS (75.8±2.7 m.y.)
- b ACID VOLCANIC ROCKS, MAINLY RH LAKE AREAS AND RELATED QUARTZ PO INTRUSIONS ON OKUSYELDA HILL (76.5 0 m.y.)

#### EARLY AND MIDDLE MESOZOIC

i ACID AND INTERMEDIATE LAVAS AND PYRO-CLASTIC ROCKS, SOME ARGILLITE, SANDSTONE, AND CONGLOMERATE

### MINERAL PROPERTIES

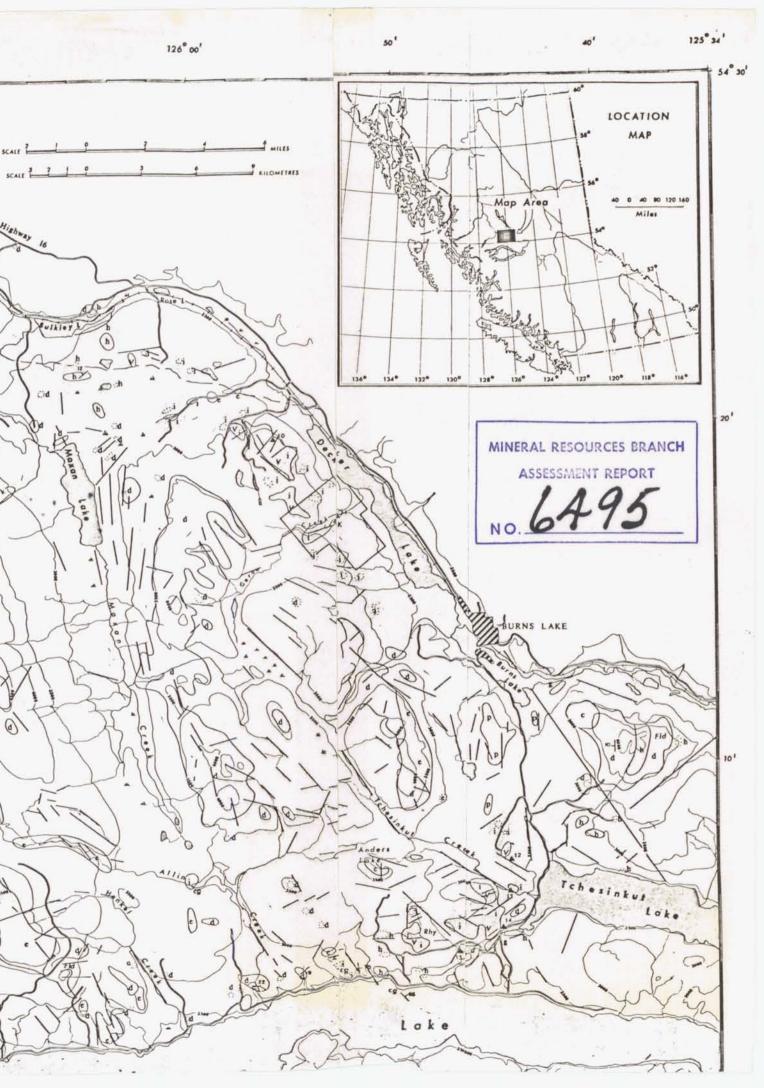
- A SILVER QUEEN BRADINA JOINT VENTURE
- DIAMOND BELLE FRONTIER EXPLORATION LIMITED
   WINN MARARALA MINERALS, LIMITED
   SPOOK LOBELL MINES LIMITED
   FAR CANADIAN SUFERIOR EXPLORATION LIMITED

- F ROD, DOT E. KOBLASNKI G LUKY AMERICAN SMELTING AND REFINING COMPANY H HOT CHINOOK RESOURCES LTD. I DEER RIO TINTO CANADIAN EXPLORATION LIMITED

- J BORNTE E.G. STRIMBOLD BORNTE E.G. STRIMBOLD K GRE, DE, MO DECKER LAKE MINES LIMITED L SAM GOOSLY KENNO EXPLORATIONS, (WESTERN) LIMITED M GAUL MAVERICK MOUNTAIN RESOURCES LIMITED
- N WIL LEWES RIVER MINES LTD. O SEAN KENNCO EXPLORATIONS, IMESTERNI LIMITED

### MINERAL SHOWINGS

1 - WRINCH VEIN SYSTEM IAU, AQ, Cu, Pb,	-3
2 - COLE VEIN SYSTEM (Au, Ag, Cu, Pb, Zn)	
3 - CHISHOLM VEIN SYSTEM (Ag. Pb. Zn)	
4 - WINNINYIK HILL VEINS (Pb. ZN)	
5 - NEW DISCOVERY VEINLETS (ZN)	
6 - BOB CREEK DISSEMINATIONS (Au)	
7 - DUNGATE CREEK DISSEMINATIONS ICH	
8 - MUD LAKE DISSEMINATIONS IN SHEAR	
9 - GILMORE LAKE MINERALIZED SHEARS	10'
10 - BOO MOUNTAIN VEIN (CW)	
11 - GEROW CREEK DISSEMINATIONS (Cu)	
12 - BALD HILL QUARTZ VEINS (Au	
13 - MONA VEINS (Ag. Cu. Pb Zn)	
14 - OAKLA VEINLETS (Au)	
15 - FRANCOIS LAKE VEINLETS (Asphaltum	(ere)
16 - GOOSLY REPLACEMENTS (Ag. Cui	
SYMBOLS	
BEDDING ATTITUDE - HORIZONTAL, INCLINED	45
TOPOGRAPHIC LINEAMENT	
TOPOGRAPHIC CONTOUR (500 feed)	~
ROPERTY BOUNDARY	
MINERAL SHOWING	
NOAD	· · · · · · · · · · · · · · · · · · ·
AILWAY	+-1-1
UTCROP BOUNDARY	
1.525	
AKE	
	2 0
TREAM	
WAMP	
HALE, SANDSTONE	s
OLCANIC ROCKS	····· V
	2(


Ta

60

Nod:

# 10' 126 40 54° 30' 5 IGNEOUS INTRUSIONS HOUSTON J SYENOMONZONITE ALKALIC GABBRO STOCKS: PARROTT LAKE INTRUSION (49,411.5 m.y.); GOOSLY LAKE INTRUSION (48.313.0 m.y.) BIOTITE GRANITIC STOCK, GOOSLY AREA (56.2±3.0 m.y.) AND QUARTZ FELDSPAR PORPHYRY AT DUNGATE CREEK m MINE HILL MICRODIORITE SILLS AND DYKES (74.0±1.0 m.y.) BIOTITE - PLAGIOCLASE PORPHYRY STOCK AT DUCK LAKE AND RELATED QUARTZ FELDSPAR PORPHYRY INTRUSIONS (76.0±2.0 m.y.) BASIC AND INTERMEDIATE STOCKS AT BOB CREEK AND ISICHGASS LAKE P TOPLEY INTRUSIONS AND GRANITE NEAR BURNS LAKE Q. 10 VE B Goosly Loke 3 O leter

1. .

