
GEOCHEMICAL SURVEY I AM CLAIMS HARRISON LAKE AREA NEW WESTMINSTER MINING DIVISION 49⁰ 22' N 121⁰ 55' W

92H/5

Owners:	I.& D. Miller
Operator:	Chevron Standard Limited
Author:	D. Arscott

20 January 1978

e.

CONTENTS

INTRODUCTION		. 1
LOCATION AND ACCESS		. 1
CLAIMS		. 1
HISTORY		
GEOLOGY		. 3
Regional	 	- 3 - 4 - 5
GEOCHEMISTRY	۰.	. 5
Procedure	 	. 5 . 6
CONCLUSIONS AND RECOMMENDATIONS		. 7

APPENDIX

Analyses Cost Statements References Certificate

ILLUSTRATIONS

Fig. 1. Location Map

2a.	Soil	Sampling	-	Cu
b.	п	ii -	-	Zn
ç.	п	-	-	Мо
d.		ы	-	Backup data

Page

.

.

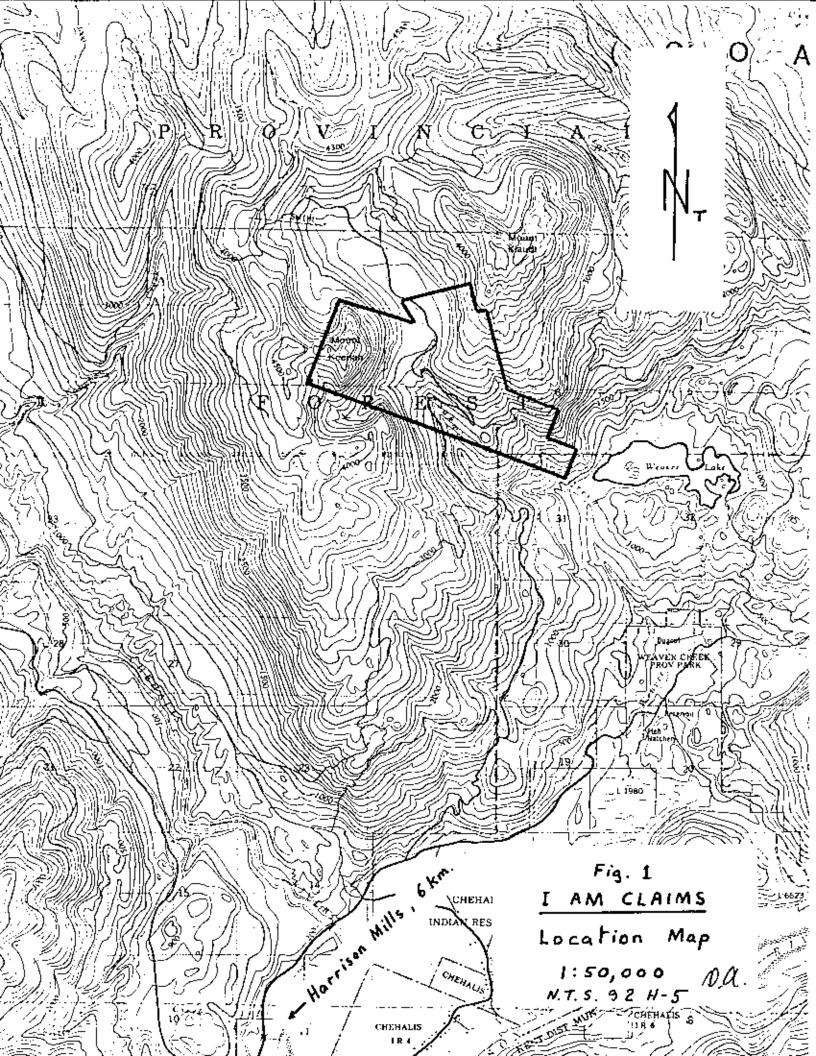
•

INTRODUCTION

From 6th to 15th December, 1977 a soil sampling survey was carried out on the I AM claims by Amex Exploration Services Ltd. of Kamloops.

The primary intent of the survey was to detect the presence of any copper and zinc sulphides that may be associated with the volcanic rocks known to underlie the property. At the same time, an earlier discovery of high molybdenum values in nearby creek silts, and the presence of an intrusive stock of intermediate composition 2.5 km to the N, suggested that it would be also wise to test for molybdenum.

A total of 283 soil samples were collected from the central claims (as indicated in Fig. 2d), and analysed for copper, zinc, and molybdenum.


LOCATION AND ACCESS

The I AM claims straddle the access road to the Hemlock Valley Ski Resort, 14 km NNE of Harrison Mills, and 110 km E of Vancouver. Hence year-round access to the claims is excellent, and in addition a fair portion of the property is laced by a network of both current and disused logging trails.

The location of the property, and principal access road, is shown on Fig. 1.

CLAIMS

The claims comprising the property are as follows, with expiry dates as they were at 1 January 1978:

CLAIM NAME	RECORD NO.	WORK AND RENTAL DUE DATE
I AM #} to #3	18161 - 18163	23 Dec. 1978
I AM #4	18164	23 Dec. 1979
I AM #9	21569,	13 May, 1978
I AM #]0, #]]	21570, 21571	27 May, 1978
I AM #12 to #22	25795 - 25805	13 May, 1978
I AM #23, #24	26060, 26061	1 June,1978
SIR #4, #5 FR, #6 FR	26912 - 26914	7 Sept.1978
DOT #1 to #3	28488 - 28490	31 May, 1978
MARY J #1 to #4	29118 - 29121	2 May, 1978
	TOTAL 30 claims	3

The I AM and the SIR claims are registered in the name of Isaac Miller and the DOT and MARY J claims in the name of Dorothy Miller.

HISTORY

The previous work in the claims area may be summarized as follows:

- 1916 to present Prospecting, pitting, and trenching by I. Miller, various years.
- 1966 Staking of core of current claims to cover mineralization exposed during logging road construction.
- December 1971 Soil survey by Cominco Ltd. covering parts of I AM 1 and 21, and SIR 5 Fr. 245 samples analysed for Cu, Zn, Pb, Mo and Ag.

- August, 1972 Minor stream sediment sampling and a short VLF-EM survey by Rio Tinto Canadian Exporation Ltd.
- October, 1976 Induced Polarization and VLF-EM surveys by Amax Potash Ltd. 1.6 line km covering I AM 1, 2, 3 and 4 claims.
 - Geological mapping, lin. = 400 ft., of same general area.

GEOLOGY

REGIONAL GEOLOGY

The property is near the S end of the Chehalis pendant, a roughly oblong-shaped belt composed largely of volcanics and sediments of volcanic affiliation, and believed to be of Jurassic age (approximately 140 million years).

These rocks can be subdivided along the following general lines:

Echo Island Formation -	Shales and argillites
Harrison Lake Formation -	Andesitic pyroclastics Minor shales and argillites Rhyolitic pyroclastics Dacitic tuffs Andesitic flows and pyroclastics
Camp Cove Formation -	Greywackes Shale Conglomerate

3.

These formations are cut by stocks, dykes, and sills of intermediate to felsic composition.

In detail the geology is extremely complex and difficult to unravel, and the available geological maps of the area are as varied as the number of geologists that made them.

LOCAL GEOLOGY

The rocks underlying the I AM claims are presumed to be near the upper contact of the Harrison Lake Formation.

Central to the claims is a rhyolite volcanic breccia, covering a lens shaped area some 1200 m by 4000 m in extent. This is bordered to the S by cherty tuffs and siltstones, and to the N by a large area of andesite breccia. Some feldspar porphyry and diabase dykes intrude the rhyolite and andesite.

This geology was mapped by Amax Potash Ltd. geologists in 1976, and is confirmed by my own observations. An extremely simplified version of their mapping is reproduced in Fig. 2d as background data to the soil survey.

The rhyolite has been interpreted as a volcanic dome, a view which would be consistent with the presence of andesite beneath it and sediments overlying it, according to the classic volcanogenic geologic concept. In this respect the property has some similarity to the Seneca prospect,

4.

6 km to the SW, although the rhyolite does not seem to be as extensive on the I AM claims.

MINERALIZATION

Small stringers and disseminations of sphalerite, chalcopyrite and pyrite are present in several places within the rhyolite. These are insufficient in themselves to constitute "economic" mineralization, but could possibly represent a feeder zone for more massive mineralization at the rhyolite/sediment contact.

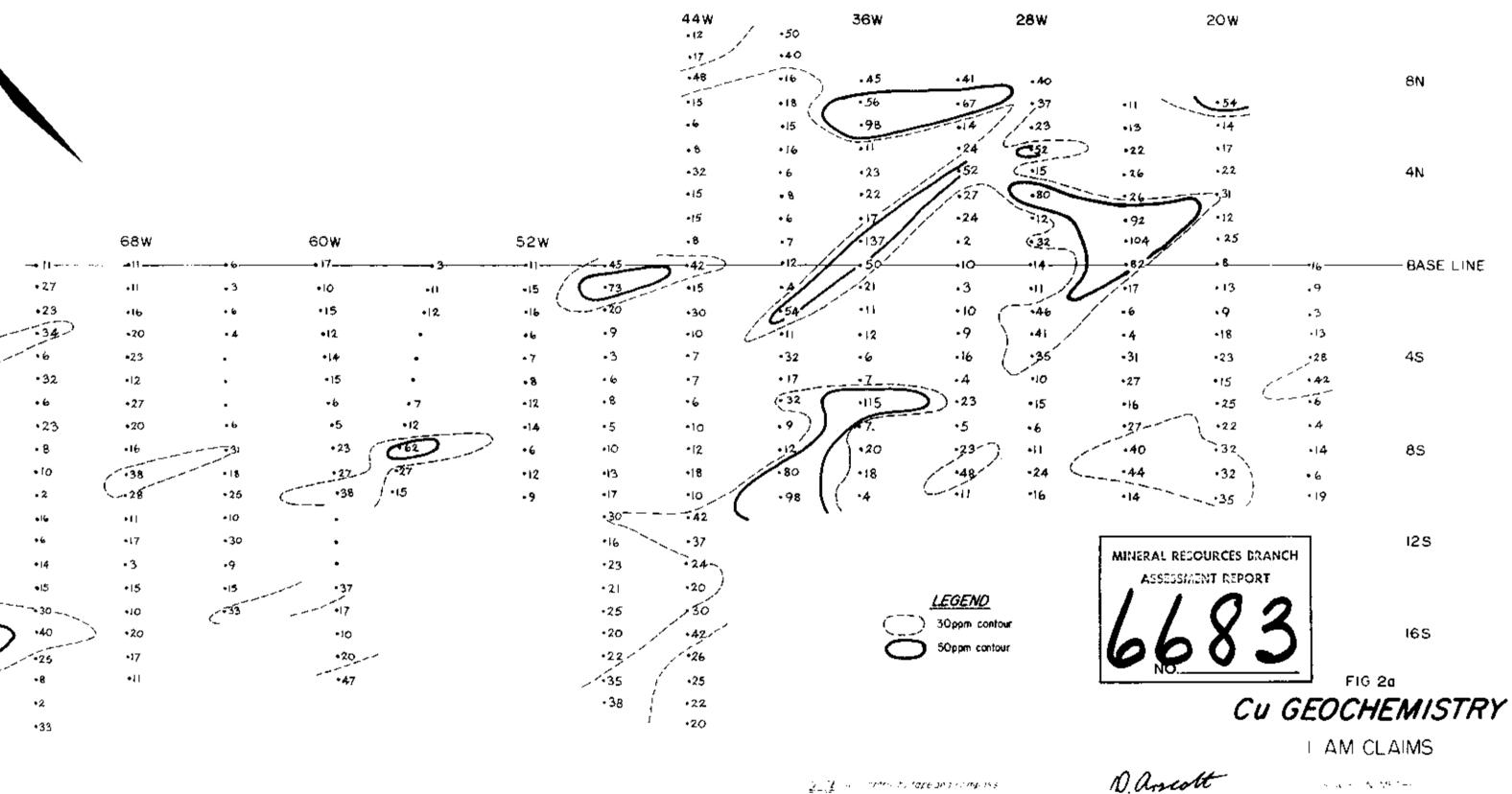
GEOCHEMISTRY

PROCEDURE

Soil samples were collected mainly from "B" horizon material at depths of 10 to 30 cm under difficult snow and storm conditions. They were transferred to paper sample bags, and shipped to Vangeochem Lab Ltd. of North Vancouver. Here they were dried, sieved, and the minus 80 mesh fraction analysed by standard atomic absorption techniques for Cu, Zn, and Mo.

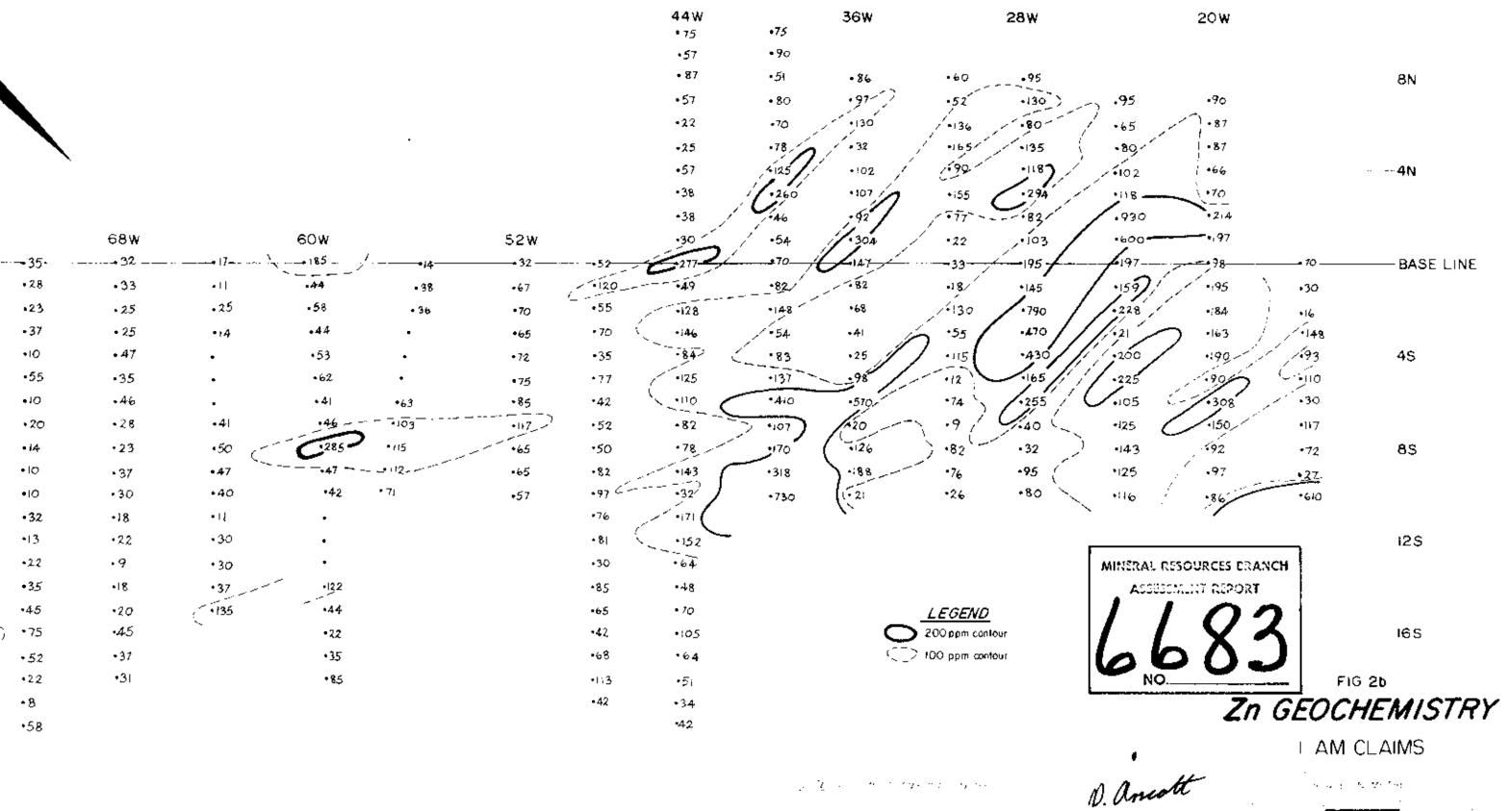
Sampling points were controlled mainly by the previously established (1976) grid, with extension of some of the previous cross lines by tape and compass (a total extension of 1.8 line km).

The copper and zinc analyses were subjected to a statistical study (not shown here), which suggested threshold values of 50 ppm (parts per million) for the former, and 200 ppm for the latter. The molybdenum values were mainly too low to be treated the same way and an arbitrary figure of 15 ppm used as threshold.


The values were plotted and contoured (Figs. 2a, b, and c), using one contour at the above thresholds, and one lower contour to outline trends. The contouring was carried out with the known geological trends in mind and is therefore biased. However the result was an excellent match of geochemistry and geology, and similar conclusions would have in any case been arrived at by 'blind' contouring.

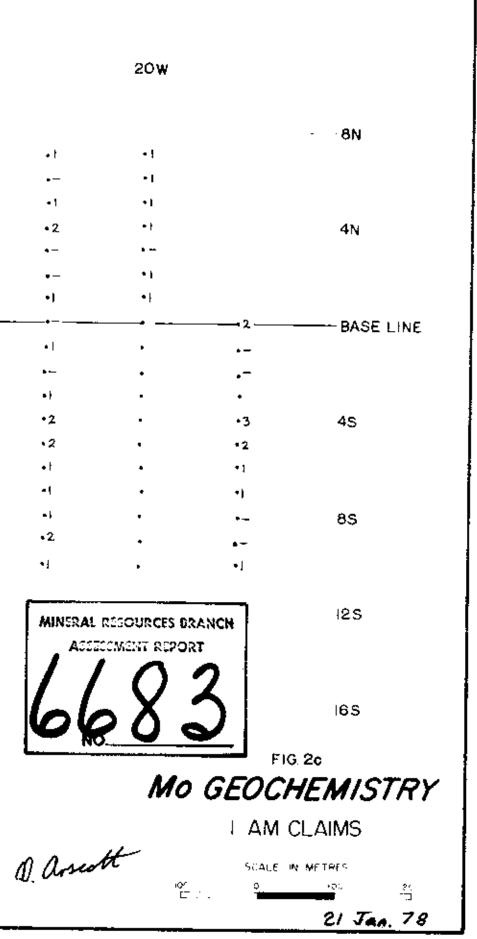
RESULTS

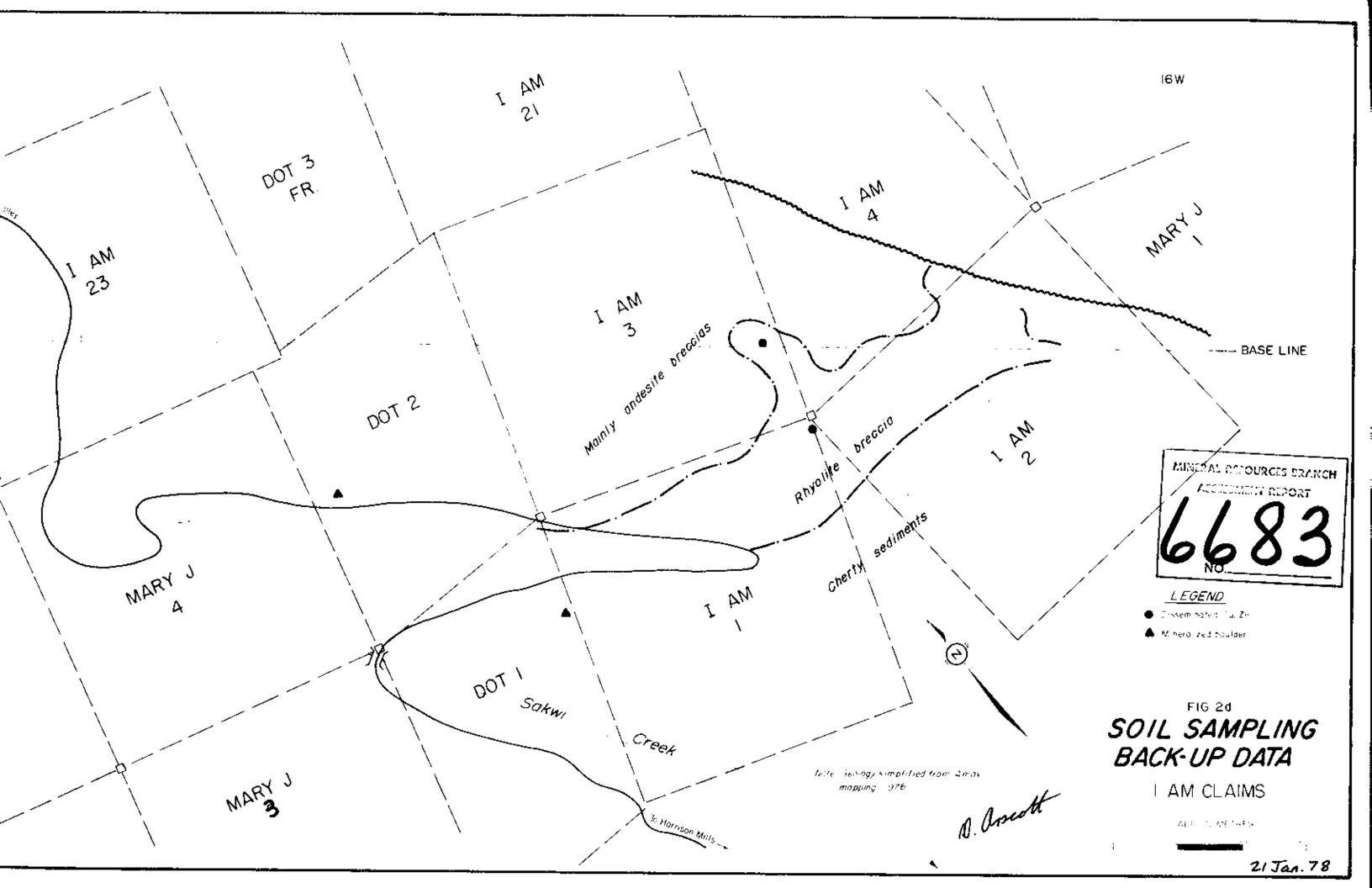
The strongest copper and zinc soil anomalies, overlie the rhyolite breccia, and the highest individual values are near the contact of the rhyolite with the sediments. The andesite is in contrast lacking in anomalies, and has a lower background soil metal content.


The close correlation of copper and zinc soil anomalies with each other and their generally sharp edges suggest that there has been little or no downslope movement of metals in the soil.

Two anomalies (at grid locations on 37W and 4S 36W respectively) correlate with known disseminated pyrite-sphalerite-chalcopyrite mineralization. The other anomalies are more distant from outcrop and

A. 59 (19)


21 JAA. 78



2 Constant State of the second

21 Jan. 78

							44W	•1	36W		28W	
							•1	-1				
							•2	•	•2	•1	• 1	
							•1	• i	-1	• j	-1	+ t
							•-		•1	•-	• -	•-
	\						•-	•-•		-1	- 1	-1
							• 1	•-	•!	•1	• 1	•2
							+ k	4	•1	-1	+1	•-
							•1	•	•	-5	•1	•-
	68W		60W		52 W		- 1	•-	•4	,-	•1	•1
••••••••••••••••••••••••••••••••••••••	·	······	<u> </u>		·····••1			2		·	}	 •
•	•1	•-	•1	•-	- 2	• (•-	•	•	•	•-	•
•4	+1	•-	+2		• 1	•	-2	• 1	•-	• 1	• 2	•
•2 •2	-	•-	•1	-	•	•	•—	•1	•	• !	•1	• }
	• 1	•	•2	•	• —	•-	•1	• 1	•	+1	•3	•2
•3	•1	•	• 1	•	•-	•-	•		•	•	•1	•2
•3	······	•	•	•1	•	•1	•	• 1	-3	• 1	• 2	• t
	•7	•	•	- 3	•	•-	•	• 1	•1	•	•-	-1
•5	-4	• 4	• 3	•2	•—	•-	•	•-	-1	+ i	•	-1
. • 3	(•7	•4	•4	• 3	•	•1	•	•5	•	•1	•	•2
•1	•4)	•1	•-	• 2		• 3	•	٠	•1	•1
•2	• 4	•3	•			• 3	•2					
•1	•	-7				•1	•4					[
•1	•1	<u></u>	•			•4	•5					MIN
•2	•3	-3	• 3			•3	-2					
•1	•1	•2	•2			- 2	•3		LEGE	ND		
•1	•1		- 2			• 3	• 3	(5 and 15 ppm		
-1	•1		•2			•1	•2		- Not detect	oble		0
•1	•1		•4			• 2	•3					
•-						•4	- 3					
•1							•4					

their source therefore less obvious. In the vicinity of the rhyolite/ sediment contact they could have a similar source, but could also represent stratiform, though relatively low grade, copper-zinc mineralization. It is interesting that earlier work indicated an extremely weak Induced Polarization anomaly close to this contact.

The copper-zinc anomaly at the W corner of the grid is unexplained. It might represent an extension of the rhyolite, but it does lie on the other side of Sakwi Creek, which is believed to coincide with a major fault.

Except for one open-ended anomaly at grid location 76W 10S, the molybdenum content of the soils was found to be extremely low. Inasmuch as the molybdenum trend coincides with the geologic trend, the one anomaly appears to have a stratigraphic control and is not likely to represent intrusive-related molybdenum.

CONCLUSIONS AND RECOMMENDATIONS

The rhyolite breccia is clearly anomalous in zinc and copper both in the regional sense, and relative to the neighbouring rock types. This fact, along with comparable rock types, textures, and stratigraphy, suggests a strong similarity to the environment at the Seneca prospect. The I AM claims evidently cover the same, or an equivalent, stratigraphic position in the volcanic pile.

7.

It is unlikely that any continuous zone of massive copper-zinc sulphides is present at the bedrock surface in the grid area. The rhyolite-sediment contact does seem however to be a favourable horizon and is worth some effort to follow, either down dip or along strike.

As a next stage I would recommendextension of the soil sampling to the SE and WNW, along with further detailed geological mapping and boulder prospecting.

David Arscatt

DAVID ARSCOTT

VGC	· 1 N	521 PEMB IORTH VA	ERTON A	VE., R, B : \$12	TEI AR	966-521 LEPHONE: CORE: 604 EA CODE: 604	ł
	С	ANADA	V7P 2S3	· · · · ·		ce Elements Analyses	
Certificate of G	eochem	ical Ar	•	S NATA D			
IN ACCOUNT WITH- Chevron Stands			2	samples Arrived:	Jamary	Page 1 c 11,1978.	if 18
901 Marine Bld Vancesver, B.C	. Y6C 2C8	rrerd,	f	Report Completed: For Project:	Jenchry	17,1978.	
ttention: Mr. Dave Arac	ett			Analyst: 5.7. Dereisedikti	Jo	75001	
Sample Marking	No	Сы	Za			f	
16W 00 B/L	2	<u>16</u>	70				
164 15	2		30			l	
2		9 3 13	16 148				
4	3	28					
ş	Ž	42	9 <u>9</u> 110				
0 7		6	30				
8	ad	14	72			1	
<u> </u>		6	<u>27</u> 610			· · · · · · · · · · · · · · · · · · ·	
20V 1X	i	19 25	197	f f			
2	<u>t</u>	12	Z [.*				
. 3	n nd na	71 22	70 66	. [
5	1	17	87	╌┼╼╼╴┼		<u> </u>	
	1	14	87				
200 00 B/L	ad a	9 4 8	98				
20V 18	1	13	195				
2 7	1 1	9 18	163	i l			
á l	2	23	199				
5	2	15	90 308				
<u> </u>	1	22	150			-	
8	Ī	25 22 32 35 104 96 26 35 26 35 26 26	92			[
204 108		3	86			. J.	
24V 1W	i	104	600				
2	ud.	96	930				
, A	nd 2	20	118				
5	i	22	80				
		13	65			+	
24W 77 24W 00 B/L		11 82	95 197			ļ	
29¥ 15	Î Î	17 6	197			ŧ	
24V 25	nď.	• ,	225,				
ARKS:		•				11	

.

-

% Mo x 1.6683 = % MoS₂ 1 Troy oz./ton = 34.28 ppm 1 ppm = 0.0001% nd = none detected ppm = All values are believed to be correct to the bast knowledge of the analyst based on the method and instrumenty used.

ppn = parts per million

Б.,

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3

÷.

TELEPHONE: 988-2172 AREA CODE: 604

Specialising in Trace Elements Analyses

Certificate of Geochemical Analyses

- H

-IN ACCOUNT WITH-

Chevron Standard Ltd.,

Attention:

Report No: 78 30 001	Page	2	of 8
Samples Arrived:			
Report Completed:			
For Project:			
Anatyst:			
-			

Sample Marking	7790	Ca Za yya pya 4 21		
	2 2 1	31 200 87 285 16 105 27 125	un an an thair an thair	neer gekinderse gin. K
8 9 244 105 264 17 2		12 103 12 82		atte de la companya d
2 4 1 6 7 18 4 6 7	1 1 1 1	25 00 37 130		
201 84 281 00 3/L 18 2 3	1 1 11 1 1 2	40 95 14 195 11 145 46 790 41 470	1997 - 1997 -	
	3 1 2 nd nd	11 32	n afrika in de promitike de	Herry Michael Colorador (1995)
9 28V 108 38V 7 7		27 155	an a shekariji a s	약 사람이지도 말했다며 또 가지? 1
2010 - 20		41 60	Pari de 1998 de la come	na i si i situ padas
320 00 1/2 15 321 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		10 33 3 18 19 19 9, 55.		

% Mo x 1.6683 = % MoS,

1 Troy oz./ton = 34,28 ppm

1 ppm = 0.0001%

Signed: parts per million

90

nd - none detected

All values are balleved to be correct to the best knowledge of the analyst based on the method and instruments used

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3

TELEPHONE: 988-2172 AREA CODE: 604

Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Chevron Standard Ltd. .

Attention:

Report No; **78 30 001** Page **3** of **8** Samples Arrived: Report Completed: For Project: Analyst:

Sample Marking	Fic per	Cal pype	ža yja		
329 45	1	16	115		
San	ad 1 ad 1	4 5 23	12 9 9 82		en green i Stel
9 324 105 364 11 11 2 3	1 ml 1 1	48 11	76 26 50 10 10 10 10 10 10 10 10 10 10 10 10 10		
5 5 7 364 8	1 nd 1 2	2) 11 98 56 45	102 32 130 97 56		: A
360 00 B/L 15 7 1000 1 7 10 10 10 10 3 4	ad ad	6	147 82 41 25		
	1 1 1	7 115 20 18	98 570 126 188	a men and a der	anan tirtega dida.
361 105 401 15 11883 80 80 100 100 100 3 4	nd nd nd nd nd	7 8 6 16	21 54 260 125 78		980 (17 19 8 1
6 	and	15	70 80 51 90		1 ¹¹ :-11.
40N 19R 40N 00 3/L 40N 28,	1 2 1.	50 12 3	75 70 148		a ta sha
EMARKS:			•		h
				Signad:	pan

All values are believed to be correct to the best knowledge of the energyst based on the method and instruments used.

VGC	1521 PEMBI	HEM LAB LTD. ERTON AVE., NCOUVER, B.C., V7P 2\$3	TELEPHONE: 988-2172 AREA CODE: 694
Certificate of Ge -IN ACCOUNT WITH- Chevren Standart UK		Beport No: 78 30 Samples Arrived: Report Completed: For Project:	
Attention: 	He Cu		··
	PPm PPm 1 11 1 32 1 32 1 32 1 32 1 32 1 32 1 32 1 32	9% 5% 63 137 410 107	e est al applications ester text
8 9 444 14 2	adi 12 5 89	178 318 739 30 30	
	1 15 1 32 md 6 1 15	57 35 22 57	
0 9 444 10 447 00 1/1 13	2 48 1 17 2 42 2 42 ml 15	87 57 15 277 49	e skied, to state
		128 146 125 125 110	en eksi konsonafisiki.
7 8 9 10 11 12	nd 12 nd 10 2 42	78 349 32 171	Alexand press and the state of the
13 13 15 15 16	3 30	152 64 70 105 64	ne regi susceptiones du compo
17 18 19 205 -	2 26 3 25 3 40 4. 20	51	guarra Matsalang sa inas

% Mo x 1.6683 = % MoS_z

1 Troy oz./ton = 34.28 ppm

1 ppm = 0,0001%.

Signed:

nd = nons detected

<u>U þáð</u> ppro parts per million

1

All values are believed to be correct to the best knowledge of the analyst based on the mathod and instruments used

▲	·
V/C	

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3

6.4

TELEPHONE: 988-2172 AREA CODE: 604

Specialising in Trace Elements Analyses

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Chevres Standard Itd.,

Attention:

Report No: 78 30 001 Page 5 of 8 Samples Arrived: Report Completed: For Project: Analyst:

Sample Marking) He Tran	Cu yym	26 			
48/ 00 1/L 15 2	2 1	45	52 120	a Maraja da Pa		uter in tentilika.
	nd i nd i	3 6 8 10 13	35 77 42 50 82			
10 11 12 13 14	2 3	17 30 14 23 21	97 76 84 30 85	<u>.</u> .		
15 16 17 18 48 195	234	25 20 35 35	65 42 68 113 42			
529 00 B/L 18 2 3 4	1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				n u si Mak	Res Balanci (Res - 1
5 6 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998		6 12	75 85 147 65 65	i en se		er den a tenera
524 108 564 00 11/L 11 2 6	nd ad ad ad	9 11 12 7	63	gint gint o		
7 8 56¥ 108,	3 2 3 1	12 62 217 15	103 115 122 71	fan set	in a se	

% Mo x 1.6683 = % MoS₂

1 Troy oz./ton = 34.28 ppm All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used

1 ppm - 0.0001%

v qæ

nd = none detectad

pprovers per million

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3

TELEPHONE: 988-2172 AREA CODE: 604

• Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Chevron Standard Ltd.

Attention:

Report No: 78 39 901	Page	6	of	8
amples Arrived:				
Report Completed:				
or Project:				
Analyst:				
•				

Sample Marking	70 711	Ce 1958	220 772			
60¥ 90 B/L 18) 1	17 10	185			
	2 1	12 14 15	53 62	iste an		911 - 11월 41일 - 11일 전 519 489 -
82.038.03 7 .020.089.0 9	nd 101 3	6 5 23 27	41 285 47	. :.	ala stage la s	
10 14 15	6 3 2 2	38 37 10 20	42 122 #	·		
60% 188 64% 00 %/L 18 2 3	4 1 mit nut	47 6 3	85 17 11 25 14			
8 9 10 11	5	10	11		in Allingin (
12 13 644 198 684 00 3/L	7 5 2	11	2	i Borurtade		a gapa ta na ana ang sina
	1 1 1 1 1	12	35		1997 - 204 	
6 7 68¥ 98-	* 7 *******	27 20 16 38	46 25 39 77		भग्न-सुर्ग् अपने स	n teinglichteile te

% Mo x 1.6683 = % MoS₂ 1 Troy oz./ton = 34.28 ppm 1 ppm = 0.0001% nd = none detected ppm - parts per million. All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used

VGC Certificate of Geoch	VANGEOCHEM LA 1521 PEMBERTON NORTH VANCOUV CANADA V7P 2S3 emical Analyse	AVE., ER, B.C., 3 * <i>Spec</i> .	TELEPHONE: 988-2172 AREA CODE: 604 ialising in Trace Elements Analyses •		
-IN ACCOUNT WITH- Chevron Standard Ltd, Attention:	ennoar Anaryse	Report No: 78 Samples Arrived: Report Complete For Project: Analyst:	-	Page 7 of 8	
Sample Marking	o Ca Za 74 ym ym ym				
507 108 11 12 13 14	15 18				
15 16 17 63 18 729 00 1/L	a <u>11</u> 35			ente can	
2 2 3 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	27 28 23 23 37 6 10 32 55 6 10	San			
7 7 9 10	23 20 8 10 10 10 2 10			n as teri	
11 12 13 14 15 16	30 44			et al stategae :	
17 17 19 72¥ 205 76¥ 05 1/L	25 52			un i en griffensladt 	
15 1	10 30		eli sectori		
76¥ 88 -	10 35 21 21 30 46 35 52 15 34 13 82	e a sata i	an geograp	n - gefnige fi	

All values are ballaved to be correct to the best knowledge of the analyst based on the method and instruments upp. % Mo x 1.6683 = % MoS₂

.

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3

TELEPHONE: 988-2172 AREA CODE: 604

Specialising in Trace Elements Analyses •

Certificate of Geochemical Analyses

-IN ACCOUNT WITH-

Chevron Standard Ltd.,

Report No: **78 30 001** Page **8** of **8** Samples Arrived: Report Completed: For Project: Analyst:

Attention:

17 26	25				
2	ź	65 9 21 56	t segitir ter		
	42	62 210 35			en en son de service de la companya
		is și st.	wawa shi	29 W.A. 1	Para de la Carlo de La Carl
fina da pela				· · .	
	1) (t) (t) 	n de ser :			n al se
et tu Aetas	i naite	1			na pagenta ang est
	a dhaladh	e ja e		Ne v Lási	en de la constant de La constant de la cons
		a An let			
			2 26 56 42 44 68 <td>2 26 56 37 49 64 64 37 35 64 64 64 37 35 64 64 64 64 37 35 35 64</td> <td>2 26 56 4 27 49 4 42 62 5 125 210 1 37 35</td>	2 26 56 37 49 64 64 37 35 64 64 64 37 35 64 64 64 64 37 35 35 64	2 26 56 4 27 49 4 42 62 5 125 210 1 37 35

% Molx 1.6683 = % MoS₂ 1 Troy oz./ton = 34.28 ppm 1 ppm = 0.0001% nd = none detected ppm - parts per million All values are believed to be correct to the best knowledge of the analyst based on the method and instruments based

STATEMENT OF COSTS

I AM CLAIMS

CONTRACT COST	IS: (Amex Exploration Services Ltd.)	
Lab our:	A. Ablett 3 days P. Cox 12 days J. Tymich <u>9 days</u> 24 man days	
	Total, including C.P.P., H.P., U.I.C., insurance,etc. (equivalent approx. 90.67 per man day	\$2,176.20
Other:	Board & Lodging 836.20 Transportation 420.00 Field supplies 257.60	
	1,563.80	1,563.80
CHEVRON COSTS		
Analyses	- 283 samples at 2.60 \$735,80	
Supervis	ory - 1½ days (D.A.) at \$140, 210.00 - Truck, 1 day 25.00	

	- Truck, F day - Food and gas - Telephone	25.00 14,00 5.80	
Report	 2½ days (D.A.) at \$140. drafting, 1½ days at \$70. typing, 3 hrs. at \$7.00 	350.00 105.00 21.00	1,466.60

TOTAL PROGRAM COST

5,206.60

David Arreatt

REFERENCES

Government Reports

۰.

- 1970 Hope Map Area, G.S.C. Paper 69-47
- 1972 Geology, Exploration and Mining in B.C., p. 102-114
- 1973 Geology, Exploration and Mining in B.C., p. 125-128

Property Assessment Reports

- 1972 Report #5597 Rio Tinto Canadian Exploration Ltd.
- 1971 Report #3440 Cominco Ltd.
- 1976 Report # ? Amax Potash Ltd.

CERTIFICATE

I, David Philip Arscott, am a Professional Engineer, registered
 in British Columbia with office address at 901-365 Runnard Street,
 Vancouver, B. C. V6C 268.

I have 12 years' experience in various phases of mineral exploration, of which approximately 9 years have been spent in B. C. and the Canadian Cordillera.

The 1977 geochemical survey on the I AM claims was carried out under my direction by Amex Exploration Services Ltd.

David Ascalt

DAVID ARSCOIT, P.ENG. 20 January,1978