COMINCO LTD.

EXPLORATION NTS 94 E/2E

WESTERN DISTRICT

June 1, 1978

ASSESSMENT REPORT

GEOLOGICAL MAPPING AND ROCK AND SOIL GEOCHEMICAL

WORK ON THE

MEX PROPERTY

(MEX CLAIM; 12 UNITS)

TOODOGGONE RIVER AREA, OMINECA M.D.

LATITUDE: N57⁰12'

LONGITUDE: W126⁰39'

WORK PERFORMED: August 18-26, 1977

REPORT BY:

MINERAL RESOURCES BRANCH ASSESSMENT REPORT 6763 NO.

J,C, CAELLES

IN THE MATTER OF THE B.C. MINERAL ACT

AND IN THE MATTER OF A GEOLOGICAL AND GEOCHEMICAL PROGRAMME

CARRIED OUT ON MINERAL CLAIM MEX (12 UNITS)

ON THE MEX PROPERTY

LOCATED 75 KM NORTHWEST OF JOHANSON LAKE IN THE OMINECA MINING DIVISION

OF THE PROVINCE OF BRITISH COLUMBIA MORE PARTICULARLY

N.T.S. 94E/2E

<u>AFFIDAVIT</u>

I, JUAN C. CAELLES, OF THE CITY OF VANCOUVER IN THE PROVINCE OF BRITISH COLUMBIA, MAKE OATH AND SAY:

- 1. THAT I AM EMPLOYED AS A GEOLOGIST BY COMINCO LTD. AND, AS SUCH, HAVE A PERSONAL KNOWLEDGE OF THE FACTS TO WHICH I HEREINAFTER DEPOSE;
- 2. THAT ANNEXED HERETO AND MARKED AS "EXHIBIT A" TO THIS MY AFFIDAVIT IS A TRUE COPY OF EXPENDITURES INCURRED ON GEOLOGICAL MAPPING AND/OR ROCK AND SOIL GEOCHEMICAL SURVEY ON THE MINERAL CLAIMS MEX 1 - MEX 12;
- 3. THAT THE SAID EXPENDITURES WERE INCURRED BETWEEN THE 18TH OF AUGUST, 1977 AND THE 26TH OF AUGUST, 1977 FOR THE PURPOSE OF MINERAL EXPLORATION ON THE ABOVE NOTED CLAIMS.

JUAN C. CAELLES

MEX GROUP

ASSESSMENT REPORT

TABLE OF CONTENTS

|--|

.....

1.	SUMMA	RY AND CONCLUSIONS	1
2.	LOCAT	ION AND ACCESS	1
3.	PROPE	RTY	1
4.	GEOLO	GY	2
	4.1	Regional Geology	2
	4.2	Local Geology and Alteration	2
5.	MINER	ALIZATION	3
6.	GEOCH	EMISTRY	3
ATT	ACHMEN	TS	
Exh	ibit."	A" Breakdown of Expenditures	
Tab Tab	le 1: le 2:	Soil Geochemical Analyses Rock Geochemical Analyses	
	te 1: te 2;	Location Map (Scale 1:2,000,000) Mex Claim Group: Regional geology and ((Scale 1:50,000)	claim location
	te 3: te 4:	Geological Map (Scale 1:2,500)	
	te 5:	Rock and Soil Geochemical Map (Scale 1:2	2,500)

COMINCO LTD.

EXPLORATION

WESTERN DISTRICT June 1, 1978

MEX GROUP

ASSESSMENT REPORT

1. SUMMARY AND CONCLUSIONS

The 12-unit Mex Group is a porphyry copper prospect located in the Omineca M.D. Road access from the south is now within 50 km and eventually will be within 15 km.

Estimated expenditures of \$4,900 have been incurred in the property in 1977.

The area is underlain by Lower/Middle Jurassic Hazelton Group volcanics, intruded by quartz diorite-granodiorite. A 100 m-wide breccia pipe is exposed on the property, in which vicinity the quartz diorite is intruded by monzonite and syenitic stocks and cut by dacite porphyry and mafic dykes. Zoned hydrothermal alteration is centered at the breccia pipe where a quartz-sericite zone grades outward into zones of silicification and propylitization.

A 1,000 x 500 m gossan is present with disseminated pyrite in amounts of up to 7% in all rock types. Trace amounts of chalcocite and chalcopyrite occur in the strongly-leached breccia and surroundings, in an area about 400 x 250 m. Soil geochemistry on the covered southwestern slope yielded low values of Cu and Mo; rock samples from the ridge assayed very low in Cu and Mo.

2. LOCATION AND ACCESS

Latitude: N57012' Longitude: W126039' NTS: 94E/2E

The 12-unit Mex Group is located in northern-central B.C., about 4 km to the northwest of Giegerich Peak and 20 km to the northeast of the northern end of Thutade Lake, in the Omineca M.D. (Plate 1). Access is by fixedwing aircraft to Johanson Lake airstrip from Smithers (210 km) and by helicopter from Johanson Lake to the property (75 km). Road access from the south is now within 50 km (Moose Valley), and eventually will be within 15 km.

3. PROPERTY

The Mex Group consists of 12 units staked by Cominco in June 1977 (Plate 2). Attention was brought to the area by a conspicuous gossan exposed on a ridge.

The property was part of the originally large Kennco's 1968 Pine Group, now reduced to 4 units located to the north of the Mex Group. Mapping, soil geochemistry and magnetic surveys were carried out on low ground 2. [.]

between the Mex claims and the Finlay River.

4. GEOLOGY

4.1 Regional Geology

The region is underlain by six major rock units:

Tertiary and Upper Cretaceous

Sustut Group: non-marine conglomerate, shale, siltstone, tuff, minor fetid limestone.

Lower and/or Middle Jurassic

"Toodoggone" volcanic rocks: dacite, latite, rhyolite, tuff breccia, flows.

Lower Jurassic (?)

Hazelton Group: volcanic conglomerate, breccia, lahar; pink feldspar porphyry dykes.

Upper Triassic

Takla Group: plagioclase porphyry, augite porphyry, tuff, agglomerate; limestone.

Upper Paleozoic

Asitka Group: chert, argillite, limestone, greenstone.

Intrusive Rocks

Lower Jurassic (?) guartz monzonite and granodiorite.

4.2 Local Geology and Alteration

The property is located at the contact between broadly-coeval Hazelton volcanics and quartz diorite-granodiorite, of Lower Jurassic age. The quartz diorite intrudes the volcanics (Plate 2). A ridge exhibiting a very obvious colour anomaly, where traces of chalcocite and chalcopyrite occur, was mapped in detail (Plate 3).

In the central part of the property, the granodiorite is intruded by monzonite and syenite stocks, and cut by fine-grained mafic and rhyolitic dykes. A brecciated zone approximately 100 m wide with angular and subrounded fragments up to 40 cm in diameter is exposed on top of the ridge, interpreted to be a breccia pipe.

Texturally, the granitoids range from fine- to medium-grained phases. Porphyritic rocks predominate. Quite large variations in texture and composition occur within relatively small areas, especially in places where very fine-grained rocks outcrop. The latter chiefly occur in the central part of the property, in and around the breccia pipe, where a 3.

strong silicification is present; the rock here is so intensely silicified that the primary texture has been obliterated beyond macroscopic recognition. Hydrothermal alteration roughly displays a concentric pattern with a quartz-sericite zone in the center grading outwardly into silicification and propilitization (Plate 4). The quartz-sericite alteration zone is roughly coextensive with the breccia zone. The quartzsericitic alteration is pervasive; silicification is both pervasive and subordinately along veinlets; propylitization is typical with replacement of mafic minerals by chlorite and epidote.

5. MINERALIZATION

A gossan is present on the property and outcrops for approximately 1,000 x 500 m along the ridge, between 450N and 1500N. Jarositic limonite occurs as fracture-coatings, clots and disseminations, mainly between 500N and 1000N. The "false" colour anomaly is caused by mainly fresh potassic feldspar and stained palgioclase (?).

Pyrite occurs in fracture fillings and disseminations in all rock types up to amounts of 7%.

Copper mineralization was observed on the ridge in an area about 400 x 250 m, and is open to the southwest where bedrock is covered by scree and soil. It is made up of mainly traces ($\ll 1\%$) of chalcocite on top of the ridge changing to predominant chalcopyrite ($\ll 1\%$) down the eastern slope, at about 100 m lower elevation. Chalcocite occurs as minute bluishblack specks along fractures, in veinlets, or as disseminations; occasionally coating grains of pyrite or chalcopyrite. The chalcopyrite also occurs as fracture fillings and subordinately as disseminations.

Leaching is variable and is dependent on amounts of sulphides and type of alteration, which controls porosity and permeability. In the breccia zone leaching is very strong and the abundant indigenous and transported limonites suggest the breaking down of abundant sulphides; only traces of chalcocite occur in the fragments and rarely in the matrix of the breccia zone. In areas of strong silicification leaching is weaker and mainly limited to fractures.

6. GEOCHEMISTRY

Chip samples were taken at 50 m intervals along the top of the ridge. All soil samples were collected from B soil horizon (about 25 cm below surface); the samples were screened and the -80 mesh fraction analysed. The samples were processed and analysed at Cominco's Laboratory (Vancouver) occording to the following methods:

- Copper and silver analyses were done by aqua regia digestion (rock samples) and nitric acid digestion (soil samples) and atomic absorption determination.
- Molybdenum analyses were done by pyrosulfate fusion followed by thiocyanate colourimetric determination.
- 3. Gold analyses were done by aqua regia digestion followed by organic extraction and atomic absorption determination.

The results were very low, with a highest value determined of 910 ppm Cu, 6 ppm Mo, 4.3 ppm Ag and 480 ppb Au (Plate 5).

Soil geochemistry was carried out over the moss- and Alpine grass-covered

4.

western slope and consisted of 50 m interval samples taken along three 1500 m-long lines approximately parallel to the ridge, and three downslope, 800 m-long, lines (Plate 7). Using cumulative probability plots the following thresholds were chosen in ppm:

	<u>Anomalous</u>	Possibly Anomalous	Background	Limit of detections
Cu Mo Ag Au	> 130 > 20	$\leq 130; > 20 \leq 20; > 4$	< 20 < 4	l ppm 2 ppm 0.4 ppm 10 ppb

uan C. Celles Report by: J.C. Caelles Geologist

Endorsed by:

D.L. Cooke, P. Eng. Senior Geologist

Approved for Release by;

G. Harden Manager, Exploration Western District

JCC/pcd

i

EXHIBIT "A"

GEOLOGICAL MAPPING AND GEOCHEMICAL SURVEY COSTS

ON THE

MEX CLAIMS

located 75 km northwest of Johanson Lake,

Latitude: N57012' Latitude: W126039'

Salaries	Person	Item Totals	Grand Total
D. Mehner (9 days x \$78.41) R. Boocock (9 days x \$64.94) H. Lefebvre (1 day x \$63.40) S. Fountain (1 day x \$61.78) J. Caelles (2 days x \$130.24) D. Mehner: maps & reporting office	\$ 705.6 584.4 63.4 61.7 260.4	6 0 8	
(4 days x \$74.70)	298.8	0 \$1,974.61	
Cominco Laboratory (Vancouver)		ψ ι 537 4.03	
23 rock samples (Au) x \$3.00 46 rock samples (Cu Mo Ag) x \$3.50 142 soil samples (Cu Mo) x \$2.35 30 thin sections x \$3.50 9 polished sections x \$6.00	69.0 161.0 333.7 105.0 54.0	0 0 0	. 5 -
		\$ 722.70	
Transportation			
HL & SF (2 trips=75 miles: 58m/h x \$1 DM & RB (3 trips=219 miles: 58m/h x \$ JCC (1 trip=91 miles: 58m/h x \$175) Gas (6.6 hours x 15 gal/h x \$1.50/gal	5175) 661.0 275.0	10 10 10	
		\$1,311.50	
Board			
26 man days x \$28.94	752.4		
	:	\$ 752.44	
Mobilization and demobilization			
DM (\$359.60 × 77 x 9) RB (\$787.60 × 77 x 9) HL (\$359.60 × 77 x 1) SF (\$395.60 × 77 x 1) JCC (\$359.60 × 77 x 2)	42.0 92.0 4.6 5.1 9.3	96 57 4 34	
		\$ 153.24	<u></u>
	٨		\$4,914.49
	June C. J.C. Cae	Calles.	
<pre></pre>	J.C. Cae	lles	

TABLE 1

SOIL GEOCHEMICAL ANALYSES

MEX GROUP

Field Number	<u>Cu</u>	Mo	Field Number	<u>Cu</u>	Mo
RBS-143	279	10	RBS-176	26	-2
RBS-144	550	25	RBS-177	18	-2
RBS-145	82	40	RBS-178	38	4
RBS-146	71	30	RBS-179	42	-2
RBS-147	67	8	RBS-180	130	- 6
RBS-148	69	18	RBS-181	185	8
RBS-149	44	25	RBS-182	20	-2
KBS-150	39	4	RBS-183	60	-2
RBS-151	22	-2	RBS-184	32	-2
RBS-152	21	6	RBS-185	42	-2
RBS-153	13	4	RBS-186	32	4
RBS-154	15	-2	RBS-187	23	-2
KBS-155	14	4	RBS-188	16	-2
KBS-156	17	-2	RBS-189	17	-2
ŘBS-157	13	-2	RBS-190	19	-2
RBS-158	5	-2	RBS-191	17	4
RBS-159	7	-2	RBS-192	12	-2
RBS-160	10	-2	RBS-193	16	-2
RBS-161	7	2	RBS-194	16	-2
RBS-162	7	-2	RBS-195	12	-2
RBS-163	26	-2	RBS-196	16	-2
RBS-164	43	-2	RBS-197	12	4
RBS-165	147	13	RBS-198	11	-2
RBS"166	110	17	RBS-199	20	-2
RBS-167	94	17	RBS-200	50	-2
RBS-168	61	20	RBS-201	18	-2
RBS-169	32	15	RBS-202	26	4
RBS-170	43	4	RBS-203	69	-2
RBS -1 71	69	3	RBS-204	16	-2
RBS-172	54	-2	RBS-205	15	-2
RBS-173	37	-2	RBS-206	28	+ 2
RBS-174	31	. -2	RBS-207	12	. -2
RBS-175	20	-2	RBS-208	10	- 2

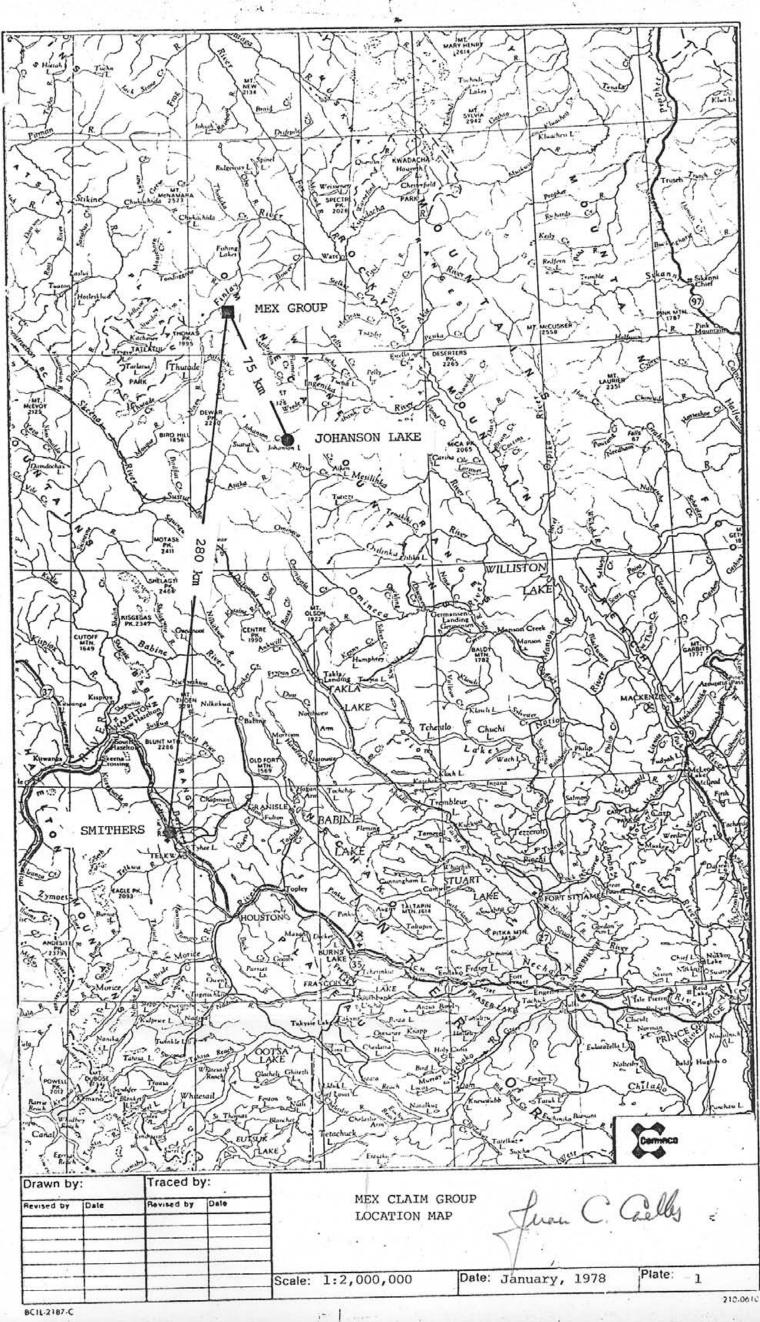
)

. .

Field Number	<u>Cu</u>	Mo	Field Number	<u>Cu</u>	Mo	
RBS-209	12	-2	RBS-246	8	-2	
RBS-210	14	-2	RBS-247	56	6	
RBS-211	16	-2	RBS-248	77	18	
RBS-212	28	-2	RBS-249	41	12	
RBS-213	34	-2	RBS-250	32	10	
RBS-214	19	-2	RBS-251	52	10	
RBS-215	29	-2	RBS-252	41	8	
RBS-216	40	-2	RBS-253	52	6	
RBS-217	52	-2	RBS-254	71	15	
RBS-218	35	8	RBS-255	75	20	
RBS-219	12	-2	RBS-256	54	25	
RBS-220	13	2	RBS-257	73	20	
RBS-221	21	-2	RBS-258	460	10	
RBS-222	18	3	RBS-259	124	12	
RBS-223	13	-2	RBS-260	47	6	
RBS-224	14	-2	RBS-261	120	-2	
RBS-225	17	-2	RBS-262	46	6	
RBS-226	48	15	RBS-263	203	10	
RBS-227	22	4	RBS-264	237	12	
RBS-228	52	-2	RBS-265	226	6	, ,
RBS-229	43	12	RBS-266	163	4	
RBS-230	42	-2	RBS-267	69	6	
RBS-231	34	6	RBS-268	39	4	
RBS-232	34	6	RBS-269	38	4	
RBS-233	37	6	RBS-270	38	4	
RBS-234	36	4	RBS-271	52	-2	
RBS-235	20	4	RBS-272	25	5	
RBS-236	25	8	RBS-273	20	7	
RBS-237	50	18	RBS-274	30	2	
RBS-238	73	6	RBS-275	28	6	
RBS-239	71	6	RBS-276	26	5	
RBS-240	12	4	RBS-277	18	6	
RBS-241	13	-2	RBS-278	13	4	
RBS-242	10	-2	RBS-279	27	4	
RBS-243	8	-2	RBS-280	-/	-2	
RBS-244	15	-2	RBS-281	23	4	
RBS-245	15	-2	RSB-282	34	-2	

Field Number	<u>Cu</u>	Mo
RBS-283	10	-2
RBS-284 RBS-285	42 28	-2 -2
	·	
	·	

.


TABLE 2

ROCK GEOCHEMICAL ANALYSES

ROCK ANALYSES - MEX GROUP

Field <u>Number</u>	Cu	Ag	Мо	Au	Field Number	Cu	Ag	Мо	Au	
JCC-R-132	11	٤.4	22	<u> </u>	JCC-165	74	0.4	15		
JCC-R-133	12	Ż.4	۲2		JCC-166	92	0.6	18	60	
JCC-R-134	5	۷.4	4	<u>ل</u> ا ک	JCC-167	101	0.4	50	7	
JCC-R-135	5	<.4	22	210	JCC-168	83	0.9	40	780	
JCC-R-136	3	۲.4	4	<u>ر</u> 10	JCC-169	65	0.8	30		
JCC-R-137	12	۲.4	4		JCC-170	174	0.4	10	60	
JCC-R-138	8	٤.4	22	<u>ر</u> 10	JCC-171	92	0,5	2 ک		
JCC-R-139	3	۷.4	6		JCC-172	75	0.6	7	60	
JCC-R-140	12	८.4	22	410	JCC-173	72	۷.4	8		
JCC-R-141	21	۲.4	3		JCC-174	136	1.7	40	490	
JCC-R-142	910	4.3	6	410	JCC-175	97	1.1	13		
JCC-R-143	163	2.6	13		JCC-176	75	۲,4	8	44	
JCC-R-144	238	0.4	6	70	JCC-177	92	0.7	10		
JCC-R-145	198	1.5	16		JCC-178	81	0,5	15	50	
JCC-R-146	168	0,8	8	156						
JCC-R-147	80	۲.4	10							
JCC-R-148	48	۷.4	6	<u>ل</u> 10						
JCC-R-149	94	0.4	12							
JCC-R-150	73	0.4	25	36						
JCC-R-151	56	0.4	15							
JCC-R-152	62	۲.4	15	650						
JCC-R-153	16	۲.4	ζ2							
JCC-R-154	31	0.8	٢2	300						
JCC-R-155	58	۷.4	22							
JCC-R-156	28	0.5	6	L10						
JCC-R-157	39	۷,4	4							
JCC-R-158	7 7	ζ.4	4	410						
JCC-R-159	55	۲.4	22							
JCC-R-160	104	0.6	٤2	41 Û						
JCC-R-161	88	0.4	2 کے							
JCC-R-162	82	ζ.4	٤ ک	۲ 1 0						
JCC-R-163	88	0.6	٤2							
JCC-R-164	52	۲.4	٢2	20						
					·					

.

BC1L-2187-C

	HAR C	
IN	$\langle \rangle \rangle \rangle \rangle \rangle \rangle$	
D		
)(
1		
		57°12'
/ /:		
•	126°39	GEIGERICH
<mark>۹</mark>	Approximate Mex Group boundary	
۵ ۲	Approximate extent of colour anomaly	
	Rock geochem line - Sample interval	• • • • • • •
	Soil geochem line - Sample interval	
	2 Lower Jurassic (?) Hazelton volcani	cs
1 [I Lower Jurassic (?) quartz diorite-g	ranodiorite
1		
		Cominco
Drawn by:	Traced by: Revised by Date	
reased by Date	d. C Gueller	M GROUP

 11/1	CL
 	~ ~

i

ALC: NO.

Scale: 1:50,000

٠

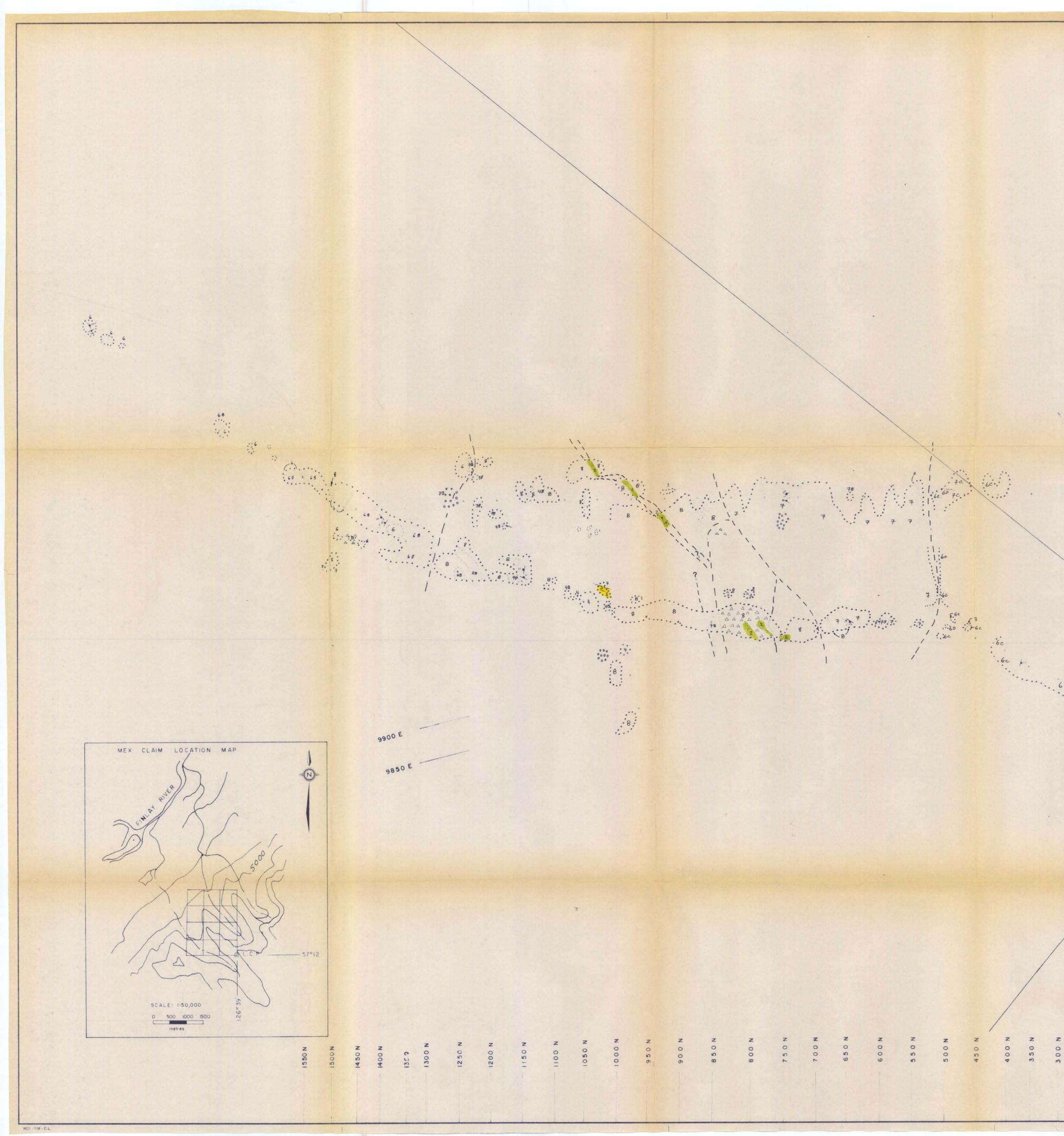
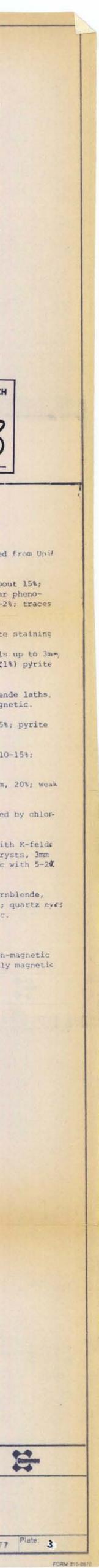
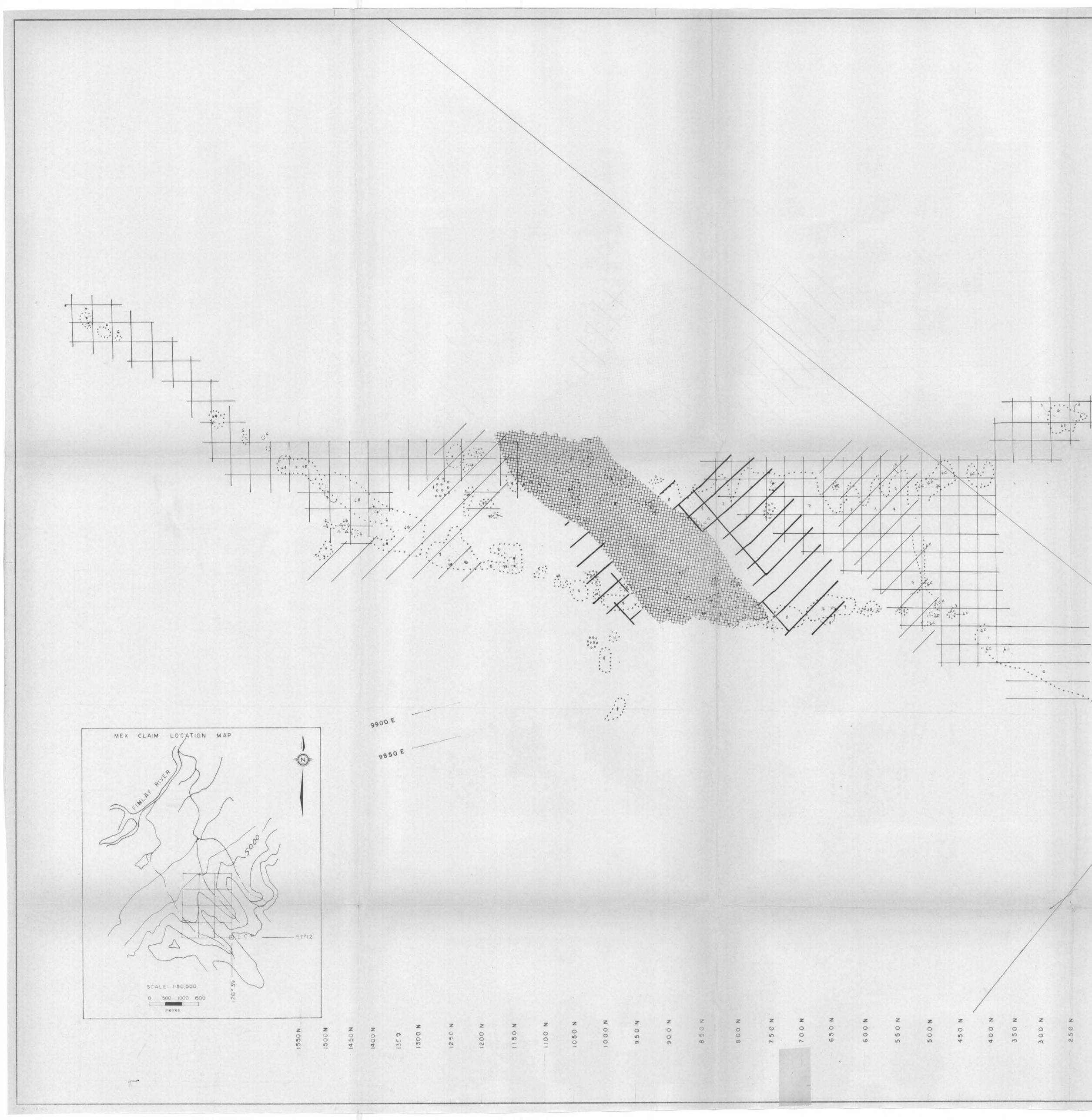
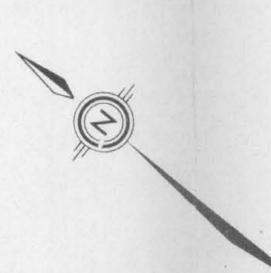

210 0610

Plate: 2


Date: October 3, 1977


÷


1

		TIMERA: RESOURCES BRANCH ALISSMENT REPORT
		LEGEND
		conglomerate: porphyry: Siliceous cherts up to 4cm; grey; clasts derived 8; limonite cement. Medium- to fine-grained; very fresh; bio ≥hb abo quartz eyes 5-10%; Plag. 10%; locally K-feldspan crysts; disseminated pyrite cubes up to 4mm, 1-2 of chalcocite ≪1%.
10,200 E	3 Mafic d 4 Syenite	: Medium-grained; pink; fresh; K-feldspar crystals hornblende 1-3mm, 10-20%; <1% quartz; traces (<1)
10,150 E		weakly magnetic; not hydrothermally altered. B: K-feldspar phenocrysts up to 6mm, 1-2%; hornbler 2mm, 10-15%; pyroxene(?), 3mm, 1-3%; weakly magn
10,100E	5 Rhyolit 6 Quartz	e: Fine-grained to aphanitic; pink; quartz eyes, 5 cubes, <1%. diorite to granodiorite: Medium-grained; hornblende, 1-2mm, 15% quartz 1 moderately magnetic.
10,050 E		B: Porphyritic with plagioclase phenocrysts, 4-5mm to moderately magnetic.
	7 Monzoni	C: Highly fractured and zeolitized; mafics replace ite; epidote in groundmasste: Fine- to medium-grained; locally porphyritic wi phenocrysts, 2-3mm, 10-20%; plagioclase phenocr 5%; quartz eyes, 1-2mm, 3-5%; strongly magnetic disseminated grains and blebs of magnetite. B: Dykes (?) less altered than #7; biotite and hor 15-20%; plagioclase phenocrysts, 3-6mm, 15-20%; 1.5-2.0mm, 5-10%; weakly to moderately magnetic
6 	8 Monzoni	C: Porphyrytic, pink monzonite. te to quartz monzonite: Varies from a fine-grained, grey, siliceous non rock to a medium-grained, chloritized and weakl rock; this unit is likely #7 strongly altered.
		ROCK UNITS NOT NECESSARILY IN CHRONOLOGICAL ORDER
		SYMBOLS BEDDING FAULT JOINTING LIMIT OF OUTCROP
		GEOLOGIC CONTACT: ASSUMED, OBSERVED
		ALA BRECCIA LEGAL CORNER POST CLAIM BOUNDARY GRID STATION STREAM
z z z z z z		25 0 25 50 75 metres
300 N 200 N 100 N 100 N 200 N		Mex Claim Group
		the second

+

11

X,

10,200 E

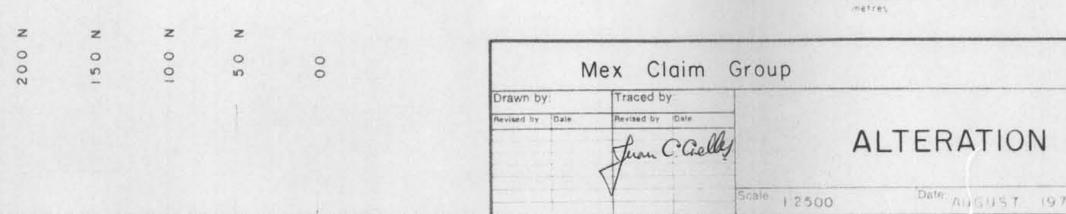
10,150 E

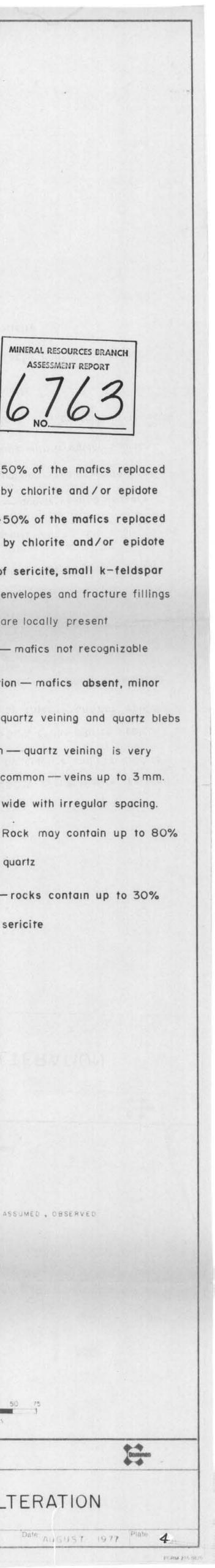
10,100E

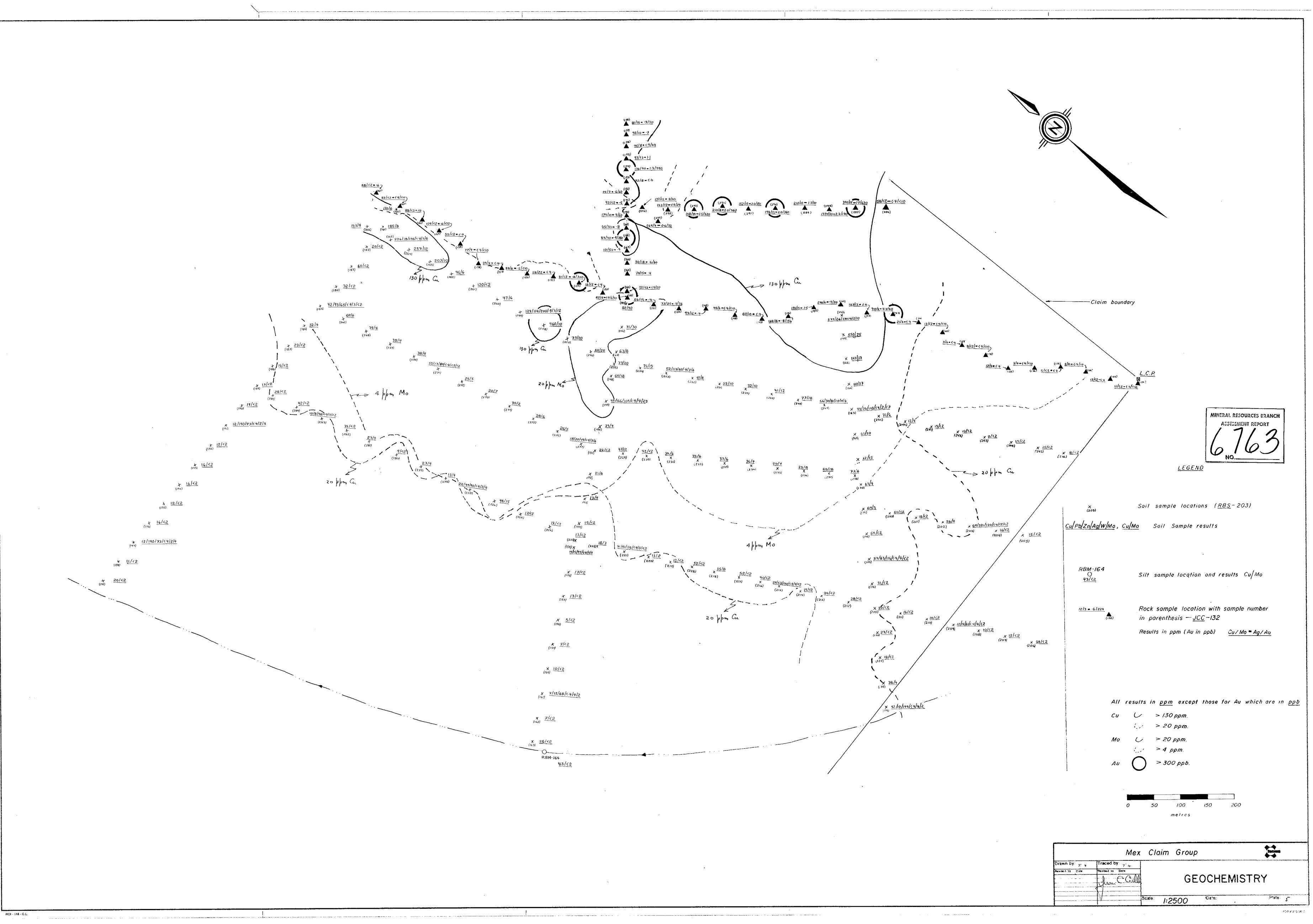
10,050 E

•

LEGEND


MINERAL RESOURCES BRANCH ASSESSMENT REPORT


Propyllitic alteration: ≤50% of the mafics replaced by chlorite and / or epidote Propyllitic alteration: >50% of the mafics replaced by chlorite and/or epidote Silicification: specks of sericite, small k-feldspar envelopes and fracture fillings are locally present -Weak silicification — mafics not recognizable -Moderate silicification - mafics absent, minor quartz veining and quartz blebs -Strong silicification — quartz veining is very common -- veins up to 3 mm. wide with irregular spacing. Rock may contain up to 80% quartz


> -Quartz-sericite - rocks contain up to 30% sericite

	SYMBOLS
	BEUDING
*	FAURT
*	IO INTING
00	LIM OF OUTCROP
1	GEOLOGIC CONTACT: ASSUMED, OBSERVED
0000 0000 000	BRECC A
	CLAM BOUNDARY
×	GRID STATION
W	STREAM

25 0 25 50 75 netres

