178. + 24 -

.

WEIR MOUNTAIN REPORT NO. 3

GEOLOGY AND GEOCHEMISTRY

CY1 to 8, ENG 1-3 CLAIMS

RECORD NUMBERS 224 to 231 and 221 to 223

WEIR MOUNTAIN, ATLIN MINING DISTRICT

BRITISH COLUMBIA

NTS 104N

59⁰39'N, 132⁰59'N

<u>Owner</u> Mattagami Lake Mines Ltd. Exploration Division

Author F. Morra, M.Sc.

Part 2 of 3

.

SUMMARY

- An anomalously radioactive area has been delineated by Mattagami during the 1977 reconnaissance helicopter borne radiometric survey. The area is located approximately 41 km N60°E of Atlin, B.C., within the Surprise Lake batholith.
- 2. As a result of the reconnaissance survey, Mattagami staked 11 claims (187 units) in the area, during the 1977 field season, and carried out a detail geochemical sampling within the area (see Weir Mountain, Report No. 2, F. Morra, October 1977).
- Detailed geochemical sampling, both soil sampling and stream sediment sampling, was carried out within Mattagami's property during the 1978 field season.

In addition, a CEM survey was completed in one area of particular interest.

Ground and helicopter borne radiometric survey, radon-in-soil survey and geological traverses were also completed during the 1978 field season.

4. The area presents radioactive anomalies of interest and other mineral occurrences (in particular Zn and Pb) which deserves further work. None of the presently found anomalies approaches economic grade and/or tonnage.

CONTENTS

.

Chapter One: Introduction
1-1 Property and Ownership1
1-2 Location and Access1
1-3 Physiographyl
1-4 Climate
1-5 Work Program, June, 19784
Chapter Two: Geological Setting,7
Chapter Three: Mineralization8
3-1 Introduction8
3-2 Detailed Description of Anomalies
Anomaly A9
Anomaly B & D12
Anomaly C
Anomaly E16
Chapter Four: Geochemical Survey19
4-1 Methods
4-2 Results
Chapter Five: Radon in Soil Surveys
5-1 Field Method
5-2 Results
Chapter Six: Conclusions24
Breakdown of Man-days Spent on Mattagami's Property
Certificate, Franco Morra27
Certificate, William Mercer28
Appendix 1
Appendix 2

FIGURES

		Page
1.	Location Map	· 2
2.	Claim Map and camp location	3
3.	Mineral occurrences	10
4.	Location of Main grid - CY6 Claim	6
5.	Soil Sample Survey - Blue Sky Creek grid - sample locations and results	in pocket
б.	Radiometric Results - Blue Sky Creek grid	in pocket
7.	Scintillometer Survey - Anomaly "C"	14
8.	Soil Sample Survey - Anomaly "C"	15
9.	Uranium in Stream Sediments - Sample Locations and Results	in pocket
10.	Rock Samples - Location Map	17
11,	Rock Samples - Uranium Results	18
12.	Radon in Soil Survey - Location Map and Results	21
13.	Radon in Soîl Survey - Main grid - CY6 Claim	22

TABLES

Table 1.	Soil Samples - Main grid	Appendix	1.
Table 2.	Sediment Samples Results	Appendix	2.
Table 3.	Soil Samples Results	Appendix	2.
Table 4.	Rock Samples Results	Appendix	2.

CHAPTER ONE

INTRODUCTION

1-1 Property and Ownership

Mattagami Lake Mines Limited is the owner of mineral claims CY1 to CY8 and Eng 1, 2 and 3, Record Numbers 224 to 231 and 221 to 223 respectively. These claims were staked for the Company by F. Morra and W. Howard and were recorded in Atlin, B.C. on 26 July 1977.

The claims staked over 187 units or 4675 hectares (11,553 acres).

1-2 Location and Access

The property acquired by Mattagami is located in the Weir Mountain area (Figures 1 and 2, northern B.C., NTS 104N, approximateTy 41 KM N60⁰E of the community of Atlin, and its geographical location is 59⁰39'N and 132⁰59'W.

No roads lead to the property. Access it possible via helicopter from Atlin. A gravel road connects Atlin to the east shore of Surprise Lake, 15 km west of Weir Mountain.

1-3 Physiography

The area is mountainous, with gently sloping, vegetation covered, SE flanks and precipitous cliffs on the NW flanks. Recent glaciation has left wide U-shaped valleys and rounded mountain tops, as well as cirques and hanging valleys. The elevation is 1000 to over 2000 m above sea level.

Vegetation is a dense short willow bush up to 1300 m. Above this elevation there is a very immature alpine-type of soil, 10 to 50 cm

thick, and vegetation constitutes grass and lichens. Moraine and fluvial deposits cover extensive areas at valley bottoms.

1-4 Climate

The CY and Eng claims are almost completely free of snow towards the middle of July to the end of August.

The area is characterized by strong winds, prevalent from SW. Summer temperatures average +4°C and snow storms are common during the summer months, especially in June and August.

1-5 Work Program, June 1978

The personnel during the 1978 field season consisted of:

- F. Morra party chief
- J. Biczok senior assistant
- N. Ball junior assistant
- L. Ball junior assistant

The exploration approach used during the 1977 field season is presented in Weir Mountain Report No. 2.

During the 1978 field season, the crew completed a geochemical and geophysical (radiometric and CEM) survey in areas not covered by the 1977 survey, and in areas where a more detailed type of survey was required.

The work on the claims was carried out from May 29 until June 26, 1978. In 1978, field work carried over the claims included:

- Geological, ground and helicopter borne radiometric traverses over all claims.
- Approximately 100 geochemical stream sediment, 200 soil sampling, and 100

rock samples collected for analysis.

- 3) Radon-in-soil survey over 92 sample sites.
- Grid line chaining on CY 3, 4, 6 and 8 claims.
- 5) CEM survey.
- 6) Hand-trenching.

A base camp was established at the headwaters of Weir Creek (Figure 2).

One fly-camp was established in CY 3 claim, along Blue Sky Creek.

The main grid on CY 6 claim is seen in Figure 4.

CHAPTER TWO

GEOLOGICAL SETTING

The claims (CYL - 8, ENG 1,2 and 3) are located within a large batholith of alaskite Cretaceous age, that extends eastward from Atlin Lake, northern B. C., as a lobe of the Coast Range Batholith.

Strong textural differences are present within the alaskite, from fine-grained to very coarse-grained, to porphyritic, suggesting the presence of different phases of the same intrusion, or perhaps separate intrusions.

The southernmost part of Mattagami's property, ENG 1 and 2 claims, covers the contact between the alaskite and the Cache Creek Group, mainly composed of chert, argillite and quartzite.

This contact is often marked by gossan zones, with pyrite mineralization and hematite staining, extending laterally within the alaskite and the Cache Creek Group for several tens of metres. The alaskite found in the property is otherwise almost free of visible alteration zones except at the Weir Mountain summit where one outcrop of very altered and weathered fine-grained alaskite occurs (U, Pb, Zn mineralization present), and along fault zones, where the K-feldspar is often altered and Fe-oxides are present.

CHAPTER THREE

MINERALIZATION

3-1 Introduction

The claims owned by Mattagami in this area cover part of the Cretaceous Surprise Lake batholith. The entire batholith presents anomalous radioactivity, with a $U_3 O_8$ average content of 8 ppm, which is approximately 3 times higher than the average $U_3 O_8$ content detected in similar rock types elsewhere.

Metalliferous mineralization within the area includes zeunerite and other non-identified uranium minerals, molybdenite, galena, sphalerite, hematite, magnetite, pyrite, fluorite, wolframite and beryl.

All the above-listed minerals were found in outcrop as well as on talus slopes and along creek beds; with the exception of magnetite and sphalerite which occur in mafic dykes, all the other minerals mainly occur within the alaskite, in fractures evident by hydrothermal alteration.

Strong hydrothermal alteration is lacking within the alaskite, although kaolinization of the feldspars, chloritization and epidote alteration occur locally.

Supergene alteration is evidenced by a surface zone of oxidation on the north side of Weir Mountain, and by the presence of a zone of

Kasolite and wulfenite staining present on the SW flank of Weir Mountain.

The only type of mineralization of some interest observed on outcrop seems to be always associated to local fractures or assumed faults.

Structural lineaments in the map area have a constant N50^oE trend and 60^oNW dip. Due to the paucity of outcrops none of the fractures or assumed faults were investigated nor followed for more than few meters at the most.

Five radiometric anomalies have been found within Mattagami's property, namely (Figure 3):

- Anomaly "A", a mineral occurrence in outcrop located on top of Weir Mountain (unidentified uranium mineral galena, sphalerite and silver values).

- Anomaly "B", in soil, on a swampy area along Blue Sky Creek (uranium in soil anomaly).

- Anomaly "C", a secondary mineral occurrence on talus boulders, on the SW flank of Weir Mountain (kasolite - $Pb(UO_2)(SiO_3)(OH)_2$ and wulfenite - $PbMoO_4$).

- Anomaly "D", in soil, located on Blue Sky valley (uranium in soil anomaly).

- Anomaly "E", mineral occurrence in outcrop, located within CY 8 claim (sphalerite, galena).

All these anomalies, with the exception of Anomaly E, have a limited lateral extent, and Anomalies B, C, and D are probably related to secondary enrichment processes due to leaching and supergene alteration.

3-2 Detailed Description of Anomalies

Anomaly A

The original "discovery zone", Anomaly A, was found on the summit of Weir Mountain, in 1977 as a result of ground followup of helicopter borne radiometrics.

Between the summit and an area immediately to the west of the base camp, along the crest, three phases of alaskite-granite were found.

.

İ

Phase 1 is a fine-grained alaskite with a saccharoidal, equigranular texture, containing 3-5% biotite, 25-30% quartz and approximately 70% feldspar, largely potassium feldspar.

Phase 1 is probably the youngest. Phase 2 has approximately the same modal composition but is coarser-grained and locally porphyritic. It is the dominant type along the N-S crest of Weir Mountain. Phase 3 occurs in the vicinity of the summit. It is similar to Phase 2 but it has a higher quartz content (40%) and is strongly porphyritic with euhedral K-feldspar phenocrysts averaging 1.5 cm in length. A contact between Phase I and 3 found in a talus block suggests that Phase 1 intruded Phase 3.

A small (11 cm wide) quartz vein was found intruding Phase 2, west of camp. This vein is slightly radioactive (500 cps on a GRS 101 scintillometer) and a sample (115 R 528) has been sent for analysis. Results indicate 4.5 lb/ton U_3O_8 , 0.017% Mo and 0.27% Pb.

Several magnetic dykes 1 to 2 m across were also found intruding Phase 2.

On the summit of Weir Mountain a mineralized quartz vein crops out. The vein is approximately 20 cm wide and exposed for approximately 40 cm. It is radioactive (up to 4000 cps on a GRS 101 scintillometer) and contains up to 4 lb/ton $U_{3}O_{8}$, 1.65% Pb and 4.0% Zn (from Weir Mountain Report No. 2). Several smaller veins (1-4 cm wide) are found nearby.

The euhedral nature of the quartz crystals (up to 3 cm long) and the vuggy nature of the veins suggest that they are filling tension fractures. The outcrop in which the vein occurs, and those nearby, are strongly sheared and have abundant hematite staining. There are two major shear directions present: 160°, 75°W and 50°, 65° NW, the latter being associated with the heaviest hematite staining and locally massive magnetite and specular hema-

п.

tite veins. Shearing of this magnitude is not found elsewhere along the crest, possibly due to the paucity of outcrops.

It is suggested that the quartz and metallic minerals filled open tension fractures produced by the intense shearing/faulting in this area. This mineralization may be of similar origin as that found by Johns-Manville to the east of Mattagami's property, where quartz and molybdenite have filled tension fractures in a 100 m wide zone associated with a major fault.

Anomalies B and D (J. Biczok, writer)

From June 12 to 14, 1978 soil samples and radiometric readings were taken along a grid in the Blue Sky Creek area (see Figures 5 & 6). This was initiated as a result of three anomalous soil samples taken in the area during 1977.

Soil samples were taken at 25 meter spacings along 5 north-south lines and at 100 m spacings on several lines outside the area. Radiometric readings were taken with a TV-1A at each sample location and extra samples were taken along the lines wherever radiometric response was high.

The highest radiometric readings were found at coordinates BL00 + 00. This proved to be the result of a grey clay bed at least 10 m x 10 m. This layer was overlain by 10 cm of non-radioactive organic soil and was exposed in the test pit for a 40 cm depth (the lower limit of the clay is unknown). TV-1A readings were: T_1 100,000 cpm, T_2 = 4600 cpm, T_3 = 600 cpm. This anomaly is presumed to be the result of the adsorption of uranium by the clay and is therefore thought to have little economic significance. A more interesting anomaly was found in the southeastern area of the grid. Anomalous radiometric readings occur in a NE-SW line 200 m long and 10-20 m wide. The highest reading was T_1 = 65,000 cpm, T_2 = 2400 cpm, T_3 = 500 cpm. Other T₁ readings in the anomaly range from 25 to 47,000 cpm. This anomaly is thought to be related to some underlying geologic feature since it cross cuts the local drainage pattern and includes a variety of soils, mainly brown sandy soil, but also black organic soil.

Two other restricted anomalies were found at 100W 300S ($T_1 = 37,000$) and at 00 + 175S ($T_1 = 25,000$). The latter anomaly may be due to the high organic content of the soil; however, the former appears to be a significant anomaly. A stream sediment sample (115S 517) was taken nearby and further followup is recommended. It is also recommended that further work, possibly a radon-in-soil survey and an EM survey be done over the linear anomaly (Anomaly D).

Anomaly C (Figures 3, 7 and 8)

This radioactive anomaly is located within CY 6 claim, and occupies an area of 10 m by 40 m. Mineralization is present as yellow and orange stain on surface boulders (kasolite) and cubic brown crystals (wulfenite).

One trench, 1.50 m by 1.20 m by 1.0 m deep was dug down to bedrock, but revealed unmineralized, intensely weathered alaskite.

The anomaly has been probably produced by supergene alteration processes. This is suggested by the fact that the highest radioactive count rates (Figure 7) were obtained on the upslope end of the anomaly, where the trench was dug. The secondary mineralization coats boulders that lie in an aligned fashion, long axes pointing downhill, in a slight depression that may be an intermittent stream bed.

In addition to the above factors it should be noted that the radiometric counts obtained at the highest radioactivity spot were $T_1 = 90,000$ cpm, $T_2 = 300$ cpm, $T_3 = 55$ cpm (McPhar TVIA). For the uranium to be at

radioactive equilibrium, a count of $T_1 = 90,000$, should have been combined with T_2 in the thousands. This also implies that the secondary uranium minerals are not accompanied by primary uranium mineralization.

Finally, it should be noted that secondary uranium minerals, though not of economic importance and not giving a strong Bi²¹⁴ response with a spectrometer, will give a strong radon-in-soil response.

Soil sampling was performed over this location in detail (Figure 8). This is discussed further in the section on geochemistry below.

Anomaly E

Numerous sphalerite and galena-rich boulders were found along the Caribou Creek and on a terminal glacial deposit on CY 8 claim in 1977.

The thick snow cover present on the area in June 1978 did not allow any followup of the boulder anomaly, until the very last day of the 1978 exploration activity.

The geological traverse was completed at the base of the NW-SE ridge, on the W side of Caribou Creek. During the traverse one 4 m wide mafic dyke, intruding alaskite, with a high content of sphalerite and galena was encountered. The dyke strikes N48⁰E and dips 62⁰NW.

Its continuity was not ascertained, due to the lack of outcrop. Other similar dykes, but containing less visible mineralization, were encountered during the traverse. They all have similar strike and dip.

Quartz veins with high content of fluorite and beryl were also found in the alaskite nearby the mafic dykes.

(Conclusions based on assay results of rock samples; refer to Figures 10 & 11).

FIGURE 10

ROCK SAMPLES-

CHAPTER FOUR

GEOCHEMICAL SURVEY

4-1 Methods

A set of about 100 stream sediment samples along the main creeks and over 200 soil samples in areas of uranium potential were collected.

All these samples were analysed for U, and many also for Mo, Pb, Zn, and Ag.

4-2 Results

Results are shown in Appendices 1 & 2.

Sample location and related uranium results are shown in Figures 5, 8, and 9.

Soil sample location results and related radiometric (scintillometer) readings on anomalies B and D (Blue Sky Creek, CY 3 claim) are presented in Figure 5 and Figure 6.

Soil sampling was also completed on anonaly C, CY 6 claim. Results are presented in Figure 8.

The Blue Sky Creek grid was investigated in terms of possibilities for economic concentrations of uranium. However, the results in the two radimetrically anomalous areas, anomalies B and D, are of the order of 100 ppm or less. It has to be considered whether these are transported or soil anomalies.

Soil sampling on anomaly C shows a zone of soil with 700 ppm uranium, confirming the effectiveness of soil sampling to detect zones of uranium enrichment. A narrow zone of anomalous soil results is present, but again the problem is whether the soil uranium and radiometric anomalies are in situ or transported anomalies.

CHAPTER FIVE

RADON IN SOIL SURVEYS

5-1 Field Method

The radon content of soils was measured by means of a EDA RD 200 radon detector. A hole is made by means of a soil auger. The detector probe is inserted and soil gas pumped into the detector. Three successive counts are taken to ascertain relative thoron and radon 222 levels.

5-2 Results

Generally successive three minute counts gave rising count rates indicating predominance of uranium derived radon 222.

Results are given in Figures 12 and 13 for first one minute count. 92 sample sites were tested.

Reconnaissance results (Figure 12) are generally spotty with insufficient data to determine zones. However a particularly high area exists on the east side of the CY 2 claim and should be further investigated.

The radon in soil on the main grid, CY 6 (Figure 13) suggests the possibility of a zone between 300 S and 400S, 500 S and 600 W, with in excess of 2000 counts per minute. Further data in between would help to confirm whether this zone is present or not.

Stream sediments surveys over the whole property (Figure 9) give the following anomalous values that require additional investigation:

5510	320 ppm U
5792	420 ppm U
5793	180 ppm U
5796	200 ppm U
5798	340 ppm U
5621, 622, 623	480, 480, 440 ppm U

The values should be investigated by detailed stream sediment, soil, radon and prospecting.

.

CHAPTER 6

CONCLUSIONS

U, Zn and Pb anomalies were found in the Mattagami's property in the Weir Mountain area, B. C., during the 1978 exploration program.

Uranium was found in the form of kasolite as surface staining in an area of limited size.

One hand-made trench did not reveal any primary uranium mineralization immediately below the uranium occurrence.

Selected samples from the occurrence, weighing from 0.5 kg to 1.5 kg, assayed up to 101b./ton U_30_8 .

Detailed soil sampling was performed on the uranium anomaly found in CY 3 during a radiometric traverse conducted in 1977 by Mattagami. The survey revealed other anomalous uranium occurences in the area, possibly related to a fault zone.

Zinc mineralization (sphalerite) was found in three separate mafic dykes, within the alaskite, on CY 6 and CY 8 claims, with assays up to 15% Zn.

Highly uranium anomalous stream sediment and water samples were collected in CY 1 claim.

The CEM survey did not reveal the presence of any conductors near the surface (see separate report: Report on the Electromagnetic Survey, CY Claims, Weir Mountain Area; Atlin Mining District, B. C.; Gledhill and Sutherland, 1978).

After the first phase of the 1978 exploration program, it is recommended that the whole area be more completely prospected by ground geological and radiometric traverses. In addition, magnetometer, VLF and I. P. surveys are recommended to be carried over known Pb, 24.

Zn and U occurrences within the property, on a test basis.

Trenching of anomaly "A" is also recommended.

Breakdown of Man-days Spent on Mattagami's Property, During the 1978 Field Season up to the 25th of June 1978

	<u>Man-days</u>
CY 1 claim	14
2	6
3	14
4	15
5	1
6	29
7	-
8	12
(9) not registerd yet	(3)
Eng 1	31/4
2	7½
3	7%
(LY 1) not registerd yet	(6)
(SAL 1) not registerd yet	(2)
(2) not registerd yet	(2)
	96 + (13)

.

CERTIFICATION

I, Franco Morra, residing at 11234 - 72 Avenue, Edmonton, Alberta, do hereby certify that:

- 1. I graduated with a degree in geology from the University of Milan, Italy (BSc, Hon., 1972) and from the University of Alberta, Edmonton (MSc, 1977).
- I have practiced my profession since 1972 and I am presently employed by Mattagami Lake Mines Limited as an exploration geologist.
- To the best of my knowledge and experience all information contained within the scope of this report is believed to be accurate.

F. Morra, B.Sc., M.Sc. Exploration Geologist

Dated: 11 Hupost 1478

ı.

CERTIFICATE

..

I, William Mercer, of the City of Edmonton, Province of Alberta, do hereby certify that:

- 1. I am a geologist risiding at 11515 75 Avenue, Edmonton.
- I am a graduate of Edinburgh University, Scotland, with a BSc Hons (1968) in geology.
- 4. I have been practicing my profession for 4 years and am at present District Geologist for Mattagami Lake Mines Ltd. in Edmonton.
- I am a fellow of the Geological Association of Canada and a member of the Society of Economic Geologists and the Canadian Institute of Mining and Metallurgy.
- 6. I supervised the work that is described in this report.

Dated this 9th day of August, 1978 PhD

APPENDIX 1

TABLE 1

1

ı.

SOIL SAMPLES - MAIN GRID

SAMPLE NO.	LOCATION	U p p m	Pb ppm	Zn ppm	Ag ppm	Mo ppm	М Ррт
628	1000 N. B.L. (Weir Mtn. grid)	62.0	68	280	1,2	2	6
629	900 N. B.L. (Neir Mtn. grid)	28	56	290	1.2	2	4
630	800 N. B.L. (Weir Mtn. grid)	34	52	265	1.3	1	4
631	700 N. B.L. (Weir Mtn. grid)	37	752	230	1.5	3	14
632	600 N. B.L.	26	4 4	290	1.5	2	4
633	500 N. B.L.	64	55	410	1.7	2	4
634	400 N. B.L.	17	48	800	1,5	3	80
635	300 N. B.L.	48	55	375	1.2	2	4
636	200 N. B.L.	⊺4	37	240	ז.2	2	4
63 7	100 N. B.L.	20	52	390	1.2	3	4
638	00 N. 00W. B.L.	9.0	89	245	1.1	2	8
639	199 S. B.L.	48	140	1000	1.4	2	6
640	200 S. B.L.	9.7	120	285	1.5	2	8
641	300 S. B.L.	12.0	435	950	1.8	3	4
642	300 S. B.L. + 50w	31	170	6 50	1.4	2	12
643	300 S, B.L. + 100w	8.2	62	650	1.3	2	4
644	300 S. B.L. + 150w	6.8	40	240	1.0	1	4

645	300 S. B.L. + 200w	5.1	29	225	1.1	2	6
646	300 S. B.L. + 250w	31	60	255	1.1	2	4
647	300 S. B.L. + 300w	60	82	445].4	3	8
648	300 S. B.L. + 350w	32	130	405	1, 2	2	6
649	300 S. B.L. + 400w	8.0	63	165	1.1	1	4
660	300 S. B.L. + 450w	19	92	335	1.0	1	4
661	300 S. B.L. + 500w	92	89	465	1.2	2	6
662	300 S. B.L. + 525w	120	290	1050	1.1	1	4
663	300 S. B.L. + 537w	460	1550	1125	1.0	195	20
654	300 S. B.L. + 550w	68	245	875	1.0	5	4
665	300 S. B.L. + 575w	52	310	1150	1.2	2	6
666	300 S. B.L. + 600w	42	44	2550	1.5	١	4
667	300 S. B.L. + 625w	28	52	3800	2.3	٦	6
668	300 S. B.L. + 650w	41	35	450	1.1	١	4
669	300 S. B.L. + 675w	68	91	650	1.4	2	6
670	300 S. B.L. + 700w	42	33	350	1.0	1	4

.

.

١.

.

.

APPENDIX 2

TABLE 2 SEDIMENT SAMPLES RESULTS

•

.

	Pacahaminal	Laboratory
BARRINO	GER RESEAL	। RCH limited

304 CARLINGVIEW DRIVE REXDALE, ONTARIO, CANADA PHONE: 418-677-2491 CABLE: BARESEARCH

DATE June 30, 1978

. MR C

Mattagami Lake Mines Ltd. Ste. 502, 8215-112 St. College Plaza Office Tower Edmonton, Alta. T6G 2C8

REPORT NUMBER 78-15C

-

.

:

Authority: N. Ball

Report

	•				-					
SAMPLE NUMBER	U Diana	Pb ppn	Zn ppm	Mo ppm	w Ppm	Ag ppm				
1155 - 510	320	65	280	4	4	2.1				
511	42	28	145	2	8	1.3				
512	80	50	240	2	10	1.8				
513	9.6	25	90	1	6	.9				
514	17.4	81	125	1	< 4	1.1				-
515	13.8	35	85	1	< 4	1.0				
600	42	49	95	2	4	.9	-			
601	32	40	100	2	6	.9				
602	58	49	345	2	8	1.4				
603	40	49	220	2	8	1.1				
604	32	88	470	3	6	1.1	· · ·	i		
605	30	43	370	1	10	1.1				
	7.2	30	55	14	4	1.8	, _			
607	8.6	30	55	21	6	1.8				
615	38	57	220	1	12	1.1				
616	70	55	135	2	 8	1.6				
613	76		230	14	16	1.6			·- _	
630		- 	176	**		1 6		·	 	
618	100		1/3		10	1.0	· <u> </u>	<u> </u>		
	108	150	215	2	10	1.4	 	<u></u> 		
	1	1 1			F .	· ۲		1		السعد سيرس

···

Geochemical Laboratory Report / 78-15C Mattagami Lake Mines Ltd. Page 2/4

· · · · · · · · · · · · · · · · · · ·		<u> </u>	1	T		***		 _	
umple Number	U PPw	Pb ppm	Zn ppm	Mo P P M	W mqq	Ag PPm			
1155 - 620	32	72	235	1	24	1.1		 	
621	480	43	145	2 <u>8</u>	10	2.3			
622	480	47	145	33	10	2.4			
623_	440	59	170	33	10	2.7	_		
624	58	36	125	40	6	.2.1		 	
625	19	19	70	3	< 4	1.2		 	
650	30	24	80	1	<u></u>	1.0			
651	30	39	95	1	<4	1.2			
652	38	35	87	1	4	1.0			
653	68	_ 33	130	1	- 4	1.3_		 	
·			• • ··			·		 	
								 ! 	
									······
								<u>.</u>	
	!						···	 	
				· - · • • •			· ·	 	
							·	 -	
<u>.</u>						·		_ ~~	
	1								

										10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
l	1		7	Τ		T		<u> </u>		
1004	4.0	41	83					ļ	 	
1005	2.2	175	525							
	62.0	93	230			ļ 			<u> </u>	
1007	14.2	_ 21	88							
1008	20.0	25	. 75		- <u>n</u>					
1009	11.2	50	145		.5	. 4				
1010	12.0	59	165		.6	4				
1011	11.4	45	155			4				
1012	9,2	39	94		.7	4				
1013	1 <u>0, 2</u>	48	135		.6	<u>`6</u>	l			
1014	7.0	77	255 -		.7	_ 6				
1015	12.2	64	165	2	.7	. 8				
1016	9.4	58	130		.6	. 4		l		
1017	8.4	64	165 -		.6	6				
1018	10.0	54	140		.6					
							<u> </u>			
					- · · · · · ·					
					i					
				·_ 1						
				•						

Geochemical Laboratory Report / 78-240 Mattagami Lake Mines

١

Page 8/15

Sample Number	U	Pb	Zn	Mo	Ag	W			
· · · · · · · · · · · · · · · · · · ·		, 12 par.	P Partin -		արերում	phur	I		
1155- 1019	7.4	<u>5</u> 8	145		7	28	Í		
1020	6.2	51	125		.6	_4			

							!	
	<u>30.0</u>	6/	625				 	
1061	14.2	65	450			-		
1062	15.6	71	555					
	1010						 	
1063	17.6	81	525					
				± /	 			
					-			
	* · = ·= ·=							
					· ·			
		·						

•

.

.

· · · · ·

Geochemical Laboratory Report / 78-24C Mattagami Lake Mines Page 10/15

-

			<u> </u>	1		۲ -	i	T	
Sample Number	U	РЬ	Zn	Мо	Ag	w			
<u> </u>	ppm	mqq	ppm	ppm	ppm	ppm			
1155- 1064	18.4	82	_ 650						_
1065	26.0	76	650						
1066	24.0	135	1175				-		_
1067	42.0	220	1150						
1058	34.0	81	925						
1069	26.0	62	555						
1070	26.0	58	625						
1071	26.0		600		-				
1072	18.0	54	475						
1073	18.4	43	275					L	
1074	30,0	53	255						
1075	9,0	34	185						
1076	14.0 [′]	42	400					:	
1077	8,2	39	215						
1078	24.0	<u>`1</u> 15	550						
	34.0	46	285	4					
1080	10.8	_ 41	185	1					
1081	6.6	28	145	·					
1082	4.8	25	120	2					
— · -									
		[[
									 1
						_			

Geochemical Laboratory Report / 78-24c Mattagami Lake Mines Page 11/15

						·			1	
ample Number	U PPM	Cu ppm	Pb ppm	Zn ppm	Mo PPm	Ag ppm	Ni ppm	Co Mqq	ррт W	
1155 736	54.0		37	81		1.3			4	
737	64.0		34	68		1.1			4	
738	64.0		22	85		1.0			4	
739	11.4		29	130		9			4	
	17,6		26	150		7			4	
741	8.8		30	150		1.0			4	
742	3.2		27	165		. 1.3 ·			4	
743	6.0		26	160	ļ	1.2_			4	ļ
744	15.4		25	75		.7			4	
745	11.8		21	61		.8			6	
746	46.0				- -	.5			44	
747			17	49	• • • • • • • • • •	5_			44	ļ
748	52.0		18	58	[6_		ļ	4	
	86.0		24		 	8		_	4	
750	7.4		24	47	· 	1.3	ļ		6	ļ
751	34.0]	25	155	1	.7			<u>B</u> .	
752	36.0		17	· 65		.7			<u> </u>	ļ
753	20.0		I.S.	I.S.		I.S.			4	
754	13.6		58	725			·		4	<u> </u> _
								l	-	
					ļ			i	l	ļ
			_	ļ				<u> </u>	_	
					ļ		ļ		ļ	
[ļ		_				ļ		
								¦		
								<u> </u>	ļ	<u> </u>
				1						

Geochemical Laboratory Report /

78-24C Mattagami Lake Mines

Page 12/15

Sample Number SOILS	U PPm	Cu ppm	ррл РЬ	Zn ppm	Mo ppm	Ag ppm	Ni PPM.	Co ppm	W Mqq	
1158- 755	24.0		57	725		1.7			. 6	
756	15 <u>.</u> 0		52	555		174			8	

792	420.0	145	215		15.0	 ·	4	
								}
					 	 		1
	•			-				
, ·	{		-					
				1				
						 ·····		1
						 ·		
_						 		
	4					 	·	
				. ·				

.

.

.

Geochemical Laboratory Report /

ţ

.

78-24C Mattagami Lake Mines Page 14/15

Sample Number SOILS	U ppm	Cu ppm	Pb ppm	Zn ppm	Mo ppm	Ag ppm	Ni ppm	Co ppm	W ppm	
1155	180.0		66	250		1.9			4	
794	152.0		. 51	230		1.4			4	
795	60.0		52	220		-6			4	l
	94.0		_57	235		. A			4.	
	200.0		_51	.350		1.7			4	
	98.0		32	235		1.1			4	
.798	340.0			245		4.9			4	
799	. 88.0		35	265		1 2			4	
800	72.0		32	66		-9			4	
801 .	44.0		27	190		5_			4	
802.	80.0		.42	450		_1.7_			4	
803	106.0		38	_300		1.2.			. _4	
804	62.0		35	125					4	
805	30.0		24			.4			4	
805	28.0			205					. 4	
807	48.0			145		7_				_
	.52.0	·	29	.650	[2.7				ļ
1425201	32.0.			135		e	· · · •		20	
202	56.0		18	59		.6			-28	_
					<u> </u>					
ļ									ļ	

SAMPLE NO.	URANIUM (ppm)
1155 516	46.0
517	54.0
625	320.0
626	440.0

TABLE 3 SOIL SAMPLES RESULTS

_

.

				_					-	
671	760	1650	1200	1.2	200	32				
672	700	1600	1400	1.1	135	20				
	650	1600	1025	1.0	8	8			·	
674	160	710		.9	4	4			ļ	
675	380	930	900	1,2	12	10			·	
									ļ	L.
								1		
									ļ	
		 	1		-					
	_ <u>_</u>		<u> </u>	1						
		f								
		+	1		 			- <u> </u>	-+	Γ
		<u> </u>	<u></u>		<u>+</u>				1	Τ.
<u> </u>		J	·	L	I	.1	1		_	

.

.

.

Ecochemical Laboratory Report / 78-190 Mattagami Lake Mines Ltd. Page 2/5

ample Number	U	Pb	Zn	Ag	Mo	W				
1155- 647		ppm 82	445	1.4	3	8 8				
648	32	130	405	1.2	2	6				
649	8.0	63	165	1.1	1	4				
660	19	92	335	1.0	2	4				
<u>661</u>	92	89	465	1.2	2	6				
662	120	290	1050	1.1	1	4	L			
653	460	1550	1125	1.0	195	20				
664	68	245	875	1.0	_5	4				
665	52	310	1150	1.2	2	.6				
666	42	44	2550	1.5	1.	.4.				
	28	_ 52	3800	2.3	_	6				
668	41	35	450	1.1	1	4				
669	68	91	650	1.4	2	6				
670	42	33	350	1.0	<u> </u>	4				
671	760	<u>1650</u>	1200	1.2	200	32	<u>-</u>		·	
672	700	16 <u>00</u>	1400	1.1	135	_20 _	• •			
673	650	1600	1025	1.0	8	8			[
674	180	710	755	.9	4	4				
675	380	930	900	1.2	12	<u>10</u>		· · ·	 	
				 +		i				
	 				<u> </u>	 ··				
					-	 	 	ļ		├ ──-
			<u> </u>				┞			
						 			i	
	<u> </u>					¦			├	
1	1	1	1	1	1	1	1	1	1	1

Geochemical Laboratory Report / 78-190 Mattagami Lake Mines Ltd.

ŀ

	ու Ուսջի	UTU/					 _
υ	Pb	Zn	Ag	Мо	W		
រោពជ	וווממ	மை	DDM	ກາວຫ	1000	i	

mple Number:	U PPm	Pb ppm	Zn ppm	Ag ppm	Mo ppm	w ppm				
<u>1155-</u> 676	22	315	455	.9	з	16				
677	54	925	2100	1.5	86	40	l			
678	240	1800	1100	1.6	330	200				
679	140	780	1300	.9	115	40				
680	110	745	1100	1.3	71	28				
681	43	315	405	1.2	6	8			l	
682	350	745	1325	2.3	6	8				
683	. 32	69	355	1.2	1	4				
685	700	2000	_1475	1.4	180	4				
686	120	800	900	2.4	58	80				
687	30	935	950	1.8	130	60				
688	200	1950	1625	2,5	89	40				
689	96	760	1000	<u>1.5</u>	28	12				
691	5.4	64	225	1.0	2	4	.			
692	9.5	72	465	1.2	2	4		I	.	
693	. 60	765	1850	_1.9	27	12				
	43	395	1225	1.6	7	.10				
695	70		_ 775_	1.8	3	<u> </u>				
700	650	1400	1000	1.8	34	24				
ar		,,								
			.							
~									·	

Geochemical Laboratory Report / 78-190 Mattagami Lake Mines Page 4/5

mple Number	D D D D D	Pb ppm	Zn ppm	, Ag ppm	Mo ppm	M M				
<u> 1155 - 701</u>	140	540	465	1.1	10	12				
702	150	765	850	1.4	15	6				
703	87	355	445	1.4	5	8	 			
70 4	230	755	1325	1.7	6	6	 			
706	660	1950	1500	1.9	_ 24	28				
707	67	785	1100	1.1	105	60				
708	92	1350	1500	1,5	110	40				
709	86	1800	1125	2.5	73	32				
710	49	325	345	.7	2	100				
711	190	725	800	1.5	9	. 4	·			
712	78	580	455	1.1		4			ļ	
713	41	245	_465	. 1.5	2	4			 	
714	67	255	325	.9						
715	65	620	825	<u>- 1.3</u>	9	8				
716	76	650	725	1,0	32	16				
717	480	2100	1350	1,3	170					
718	32	430	385	1.1	16	4				
719	26	235	345	1.2	6	4				
720	320	1350	800	1.4	3	в				-
			<u> </u>						 	
					• · _					
··-				·					<u> </u>	
<i></i>										

Geochemical Laboratory Report / 78-190 Mattagami Lake Mines Ltd. Page 5/5

•

						_	_	_		
nple Number	U PPM	Pb ppm	Zn ppm	Ag ppm	Mo PPm	W Mqq				
1155 - <u>721</u>	78	170	750	1.1	2	4				
722	42	120	405	1.0	2	4	ļ			
723	200	700	700	1.2	2	4				
724	47	535	1125	<u>1.1</u>	3	4	·			
725	_120	780	1100	1.2	5	4				_
726	210	1350	650	9	2	4				
727	770	2250	1025	1,4	4	4				
728	160	925	.925	1.1	6	4				
729	79	380	385	.8		4				
730	37	590	.460	.7	12	4				
732	130	<u>670</u>	825	.7	2	6	L			
733	110	600	925	.8	2	4			ļ	
734	210	. 625	1150	1.3	2	4				
735	.170	840	750	1.0	2	4				[
									.	
										
				_					_	
·						••••••				

SAMPLE NO.	URANIUM (ppm)	SAMPLE NO.	URAN1UM (ppm)
115P 500	376.0	115P 526	52.0
501	6.4	527	42.0
502	2.4	528	70.0
503	1.6	5291	36.0
504	52.0	530	56.0
505	52.0	531	138.0
506	178.0	532	116.0
507	240.0	533	118.0
508	58.0	534	144.0
509	52.0	535	62.0
510	58.0	536	17.0
511	1.8	537	54.0
512	98.0	538	80.0
513	38.0	539	172.0
514	3.6	540	13.2
\$15	1.0	541	82,0
516	9.6	542	64.0
517	19.6	543	50.0
518	7.2	544	110.0
519	4.4	545	10,0
520	4.2	546	19.2
521	6.0	547	2.6
522	3.6	548	7.4
523	1.8	549	106.0
524	44.0	550	94.0
525	40.0	551	34.0

SAMPLE NO.	URANIUM (ppm)	SAMPLE NO.	<u>URANIUM (ppm)</u>
115P 552	28.0	115P 578	48.0
553	13.8	579	9.2
554	3600	580	3.6
555	5,2	581	7.2
556	5.0	582	38.0
557	7.2	583	4.4
558	164.0	84	2.4
559	104.0	585	102.0
560	106.0	586	5.2
561	32.0	587	9.6
562	22.0	588	20.0
563	5.8	589	14.4
564	28.0	590	4.0
565	8.4	591	48.0
566	28.0	592	5.8
567	3.2	593	4.0
568	116.0	594	3.6
569	5.4	595	13.2
570	1.3	596	84.0
571	0.9	597	80.0
572	95.0	598	5.8
573	8.0	599	200.0
574	5.0	600A	40.0
575	7.6	601A	4.8
576	4.8	602A	36.0
577	4,8	603A	7.0
		60 4 A	4.8
		605A	9.0

TABLE 4 ROCK SAMPLES RESULTS

Geochemical laboratory Report / 78-15C Mattagami Lake Mines Ltd Page 3/4

;

	-		.		,				<u>-</u>	
ample Number	υ	Pb	Zn	Ag	Мо	W	Ni	Au		
	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm		
<u>115R - 500</u>	36	1115	360	12.8	7					
501	60	_140	460	1.2	3	_4				
502	14.4	95	420	3.2	l	_4		 		
503	13.2	155	1250	2.8	8	4			-	
504	58	200	1150	3.6	19	6			 	
505	18.8	140	675	1.5	4	4				
506	4.0	150	1350	4.6	3	4		: -		
507	62	470	1200	2.9	12	24		.03		
508	10.2	240	1050	2.8	1	4	! 			
509	16.2	. 385	1425	9.0	2	_4			<u> </u>	
510		110	345	3.0	18	40		.03		
511	94	4550	3350	12.8	1	6	22		L	
. 512	200	2200	4250	10.5	13	6		·		
513	110	3000	1525	10.5	з				!	
514	19.2	1500	1050	_4	2	4			·	
515	44	440	700	3.5	9	12				_
516	30	1800	825	4.7	1	4				· · · · · · -
517	11.4	145	125	2.3	2	4				
518	10.8	55	67	1.4		_4	/			
						.				
		; - •								
								;		

Geochemical Laboratory Report / 78-150 Mattagami Lake Mines Ltd Page 3/4

;

mple Number	υ	Pb	Zn	Ag	Мо	w	Ni	Au		
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
115R - 500	36	1115	360	12.8	7					
501	60	140	460	1.2	з	4				
502	14.4	95	420	3.2	1	4	, <u>-</u>			
503	13.2	155	1250	2.8	8	4	 			
504	58	200	1150	3.6	19	6				
505	18.8	140	675	1.5	.4	4				
506	4.0	150	1350	4.6	3	4				_
507	62	470	1200	2,9	12	24		- 03		
508	10.2	240	1050	2.8	1	4				
509	16.2	385	1425	9.0	2	4			ļ	
510	80	110	345	3.0	18	40		.03		
511	94	4550	3350	12.8	1	6	22	· ·		
512	200	2200	4250	10,5	13	6				
513	110	3000	1525	10,5	3					_
514	19.2	1500	1050	4	2	4				
515	44	440	700	3.5	9	12				
516	30	1800	825	4.7	1	4				
517	11.4	145	125	2.3	2	4				
518	10.8	55	67	.1.4	51	.4			_	
·	.				·					
								. <u> </u>		
_				. /	·					
										
					i					

Geochemical Laboratory Report / 78-150 Mattagami Lake Mines Ltd. Page 4/4

۰.

						-				
ļ										
ample Number	υ	Pb	Zn	Ag	Мо	W	Sn			
	ppu	ppm	ppm	ppm	- ppm	<u>nua</u>	ppm			— <u> </u>
1158 - 519	4.4	120	. 55	1.9	310	24			 	
520		2250	3800	7.8	. 1	. 4				
521	10.4	40	105	1.4	4	<u></u> B	5			
522	13.0	225	245	2.1	19	400				
523	80		650	11.5	1	4				
524	1480_	2500	900	7.6	55	10				
525	>4000	1275	290	4.9	170	12				
522	>4000.	850	365	3.0	340_	. 24				
528	2240	2675	445	. 4.8	165	36				
529	2040	1000	340	1.9					v v	
530	1200	2500	23250	5.2.	29	<u> </u>	-			
5.31	36	3050	1050	5.6	1	4				
532	500	2150 .	35500	35		4				
628	360	360	200	5,1	11	4				
630	560	2800	600	3.2	74	16		:		
· · · · · · · · · · · · · · · · · · ·		· · 	 							
	· ·	· . 	ļ							
	ļ									
<u></u>				-						_
					–: –					
	··-··			······						
z										
.	_					: 				

BARRINGER RESEARCH LIMITED

Geochemical

Laboratory Report 304 CARLINGVIEW DRIVE REXDALE, ONTARIO, CANADA PHONE: 416-677-2491 CABLE: BARESEARCH

DATE July 12, 1978

Mattagami Lake Mines Ltd. Ste. 502, 8215-1125t. Edmonton, Alta. T2G 2C8

REPORT NUMBER 78-24C

ļ

Authority: N. Ball

SAMPL	E NUMBER	D D D D	Cu ppm	Ър <i>ш</i>	Zn ppm	Mo ppm	Ag ppm	Ni ppm	C¢ ₽₽₹	Mn ppm	M M
115R-	643		60			5	1.7	63	43	60	4
	644		78			1	1.4	73	51	100	4
	645		16			ı	.9	37	27	60	4
	646		67			3	1.4	62	43	145	4
	646A	<u> </u>	15		:	13	2.3	21	14	20	4
	647		13			3	1.8	38	27	100	4
	6 4 .B		36			2	2.1	125	49	560	4
	649	-	93			1	1.6	56	37	505	4
	6 50 -		15			16	2.6	24	16	50	6
	651		11			3	1,6	20	14	235	4
	652		23			1	.7	31	22	850	4
	654	.2	120	16	30	2	1.5				-
	655	.2	110	19	43	1	1,5				
	656	.4	205	20	140	17	2.4]		
	657	8.4	875	14	89	4	7.3				
······································	65B	.2	750	13	38	1	3.4				
	1016	8.6		1150	29,000		4.8				
	1013A	5.4	20	2550	36,000		3.9				
	1014A	3.8	12	7100	44,000		3.4			1	
— ––			1		<u></u>	· · ·		1			
		<u> </u>	1				•		-		

Geochemical laboratory Report / 78-240 Mattagami Lakes Mines Ltd Pg. 2/15

ł

				•						
, Sample Number	U	Cu	Pb	Zn	Мо	Ag	Ní	Ço	Mn	W
ROCKS	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
115R- 1015A	4.2	13	4000	44,000		2.6				6
1016A	19.0	19	5150	41,000	i	1.7				4
1017	.5	17	5050	51,000	2	2.4	11			4
1018	.2	13	6900	58,000		2.2				4
1019	1.9	8	1550	1850		2.3				4
1020	1.5	10	1550	2150		3.3				4
1021	.2	12	3400	55,000		3.0	•			4
1022	1.2	11	3800	48,000	·	2.8				4
1023	3.2	26	4400	3650		6.3				4
1024	.2		450							4
1025	14.4		175			·				4
1026	15.0		76			···.				4
142R-234	7.4	13	3400	40,500		2.2				4
235	.6	9	3200	34,500		3.1				4
· 236		81			<u> </u>	2.4	51	35	2150	4
237	.2	75	165	1800	. 1	1.7				
				-						
-				r ,				·-·		
							·			

Geochemical Laboratory Report / 78-24C Mattagami Lake Mines Ltd. Page 3/15

T

								· ·		
Sample Number ROCKS	U ppm	Cu ppm	Ppu Pp	Zn ppm	No PPM	bbw yd	Au ppm	F ppn	w mqq	
115R- 658	7.2	34	84	170	. 1	1.4				
1028	.2								4	
1029	14.6	j					-		28	
1030	5.8		520	15%		4.9				
1031	8.6		335	50,000		5.5				
1032	8.4		650	78		6.9			<u> </u>	
1033	15.0		410	4,700		.4.4				
1034	11.6		1350	8,500		<u>3.5</u>				
1035	15.8		295	118		4.4		.		
1036	5.4		460	15%		3.8_	·			
1037	9.8		190	55,500		4.9				L
1038	9,8		4250	47,500		4.2				
1039	9.2	. <u> </u>	585	7.5%		5,2.				
1040	11.0		315	32,000		3.1			·	
1041	15.0		320	52,000		3.5				
	18.5		160	33,500		3.5				
_1043	3.8]	445	52,500		6.4			-	
1044	1.4		31	675		2.0.2	.05			
1045	5.6		170	. 1950		2.1			-	
	ļ	.								_
			<u> </u> 							
·		ļ	.					 		
		l		L				ļ	ļ	ļ
 				ļ					<u> </u>	
	. <u> </u>								 	
·	ļ	ļ		ļ					 	
1		į			j					

Geochemical Laboratory Report / 78-240 Mattagami Lake Mines Page 4/15

÷

	1 1
	<u> </u>
1047 4.6 39 200 1.6	<u> </u>
	+
1049 _12_0 635 _ 525004_5	
1050 14.0 2700 56000 3.3 -	
1051 18.0 1700 52000 4.1	
1052 15.2 4650 56500 3-2	
1053 7.6 190 4350 10.5	
1054 11.8 145 72000 4.9	
1055 12,6 10400 15000 3.3	
1056 8.4 2850 48500 4.4	
1057 18.0 370 3650 2.2	
1058 9.8 15600 16500 5.8	
142R 238 16.8 1250 128	
239 13.6 605 35500 5.5	
24016.8 455 208 5.6	· +
241 8.2	
242 9.6 11300 25000 . 5.2	

Geochemical laboratory Report / 78-24C Mattagami Lake Mines Ltd. Page 5/15

ł

	· · · · · ·				·····		· · · · · · · · · · · · · · · · · · ·			
Sample Number	D D D D D D D D U	Cu ppm	Ърш Брш	Zn ppm	Mo ppm	Ag ppm	Mn ppm	ррт Ри	÷	
115R - 600	3,8	83	290	700	8	1,8				
631	4.0	37	410	4150	5	1.8		.03		
632	3.2	_15	465	2200	1	1.3	3150	.03		
633	15.2	_5	91	300	1	,6	455	. 06		
634	2.0	13	560	500	1	3.1	2150	.03		
- 635	.3	7	<u>16</u> 0	555	1.	3.2	80	_ 03		<u></u>
636	3.6	845	41	100_	7	4.3	120	_04	- 	
637	9.6	160	21	50	4	1.9	75	.05		
638	8	59	34	150	1	2.4	605	. <u>03</u>		·
639	.2	94	39	125	5	1,4	1350	.02	_	··
640	.3	54	16	65	1	1.0	110	.02		
641	1.4	140	20	40	28	2.1	55	.12		. –
	5.4	93	40	94	4	2.4	235			
1004	.9	130	26	65	6	2.0				
1005	.6	27	23	88	9	1.2				
1006	1.6	13	16	35	11	1,4				
	1.6	94	24	550	18	2.8				
1008		67	17	150	. 5	1.6				· ·
1009	.2	19	14	33	1	_1.1	_			
└──── [─]	i ·			: 		-				
					·			·		
					-					
· · · · · · · · · · · · · · · · · · ·			<u> </u>	-	} 					
	ļ		_	· · · ·						
		··	······	 						
	1			1						

Geochemical Laboratory Report / 78-240 Mattagami Lake Mines Page 6/15

7

					·· · · •					· ·
Sample Number	U	Cu	Pb	Zn	Мо	Ag	Mn	Au		
	ppm	₽₽M	ppm	ppm	ppm	ppm	PPM	ppm		
115R- 1010	6.4	8	24	130	20	, 6				
1013	а	17	12	305	1	4.9				
<u>1</u> Ų⊥1										_
1012	<u>.</u> 6	8	29.	,275	<u> </u>	3.3				
1013	4.2	325	5450	<u>15,000</u>	1	7.5				
1014	_7.4	185	5050	13,500	_1	7.0			-	
1015	.4	41	145	295		3.4			_	
142R- 231	.2	120	27	115	5	1.6	1650	.02_		
232		150	27	70	4	2.3		<u>_</u>		
233	3.2	275	6400	14,000	1	8.8	<u> </u> 			
								L	<u> </u>	
								İ.,		
····		· ·		<u> </u>					!	
		+ • -		†	1	† ——	1	1	<u> </u>	
		·				 			·	
				<u> </u>						<u>}</u> ──
	┨────			<u> </u>		<u> </u>		ł		
ļ	•	v	- 					<u> </u>		
	<u> </u>		<u> </u>					+	1	
	−			ļ				 	<u>↓</u>	· -
	<u> </u>	<u> </u>		ļ	ļ		Į	<u> </u>		ļ
				<u> </u>		ļ				
		!								
	<u> </u>		1	T						
	<u> </u>		1	1	·		1	<u> </u>		Ţ
					<u> </u>	1	1	-	1	1
·		-	<u> </u> ^	+	1	<u>+</u>		1	<u> </u>	
ļ					+	╉┈┯━━━			<u> </u>	<u> </u>
		<u> </u>				<u> </u>		+		₋੶─
			1		1					

 \bigcirc

тщ Ш : ЦЦ ; 3 : LLI чЦ ιш υФ÷ ∴ф. O பு Φ - 🗇 350 _____ 0~ -12 -12 -12 ີ ບັ - O: -**G**) ф Кл L 30 Φ <u>•</u> ് പ് ц Ц р П : 🕁 . **(**). 1 Ľ. Ŀ _____ · +P575 (7.6) <u> P574(5)</u> - i P544 (110) ήΡ54\$ (5φ) . ¦₽58**0 (3**.6) - | P522 (3.6) |PSOD (176) 00 \$ - | 1592 (5|8) °59| (48) -P542(64) - P58I (7, 2) -P50I(6.4) -P523 (1.8) -P545(10) _... P524(44) -P541(82) -P546(19,2) -P521(6) - - P502(24) -P520(4.2) • ! -P547(216) -P540(13 2) -P503(16) -P525(40) -P563(5,8)-- P526 (52) -P576 (4-8)-- P504 (52)-- P539(172) 100 S -P\$83(4,4)-·⊢P·593(4)·-FP590(4 -P518(7.2) -P505 (52) P 548 (7.4) -P527(42) P538(80) -P549(106) - - - P506 (178) - P547 (19,6) FP528(70) FP605A(9) -P507(240) -P516(9.6) - PS37 (54) HP550(94) LP572/96 LP604A (4 8) P577 (4|8) -P5**89 (14**74) - | P584(2|4) F608 (∋\$) -P529(36)--|-P536(+ -P535(62) -P509 (52) HP514(3.6) - P530 (56) -P552(28) -P602A (36) -9510 (58) -P534(144) +P553(13.8) -P513(38) 1159 516 -P561(32) ----(46) -P533(118) P554(36) -P532(116) -P512(98) -P5 II (1.8) - P568 (116) <u>| P578(48)</u> -115\$517-P585(102) (54) +P555(5,2) 300 S -P588 (20) -P558-560 (164,104, -P600(40) -P599(200) -P598(58) -P596(84) -P579(9,2)---**⊢**P569(5.4) ·F6220{13 - LP557 (7,2) -P556(2) -P587(9,6) 400S -P586(5)2) - P597 (8D) FIGURE 5 SOIL SAMPLE SURVEY BLUE SKY CREEK GRID - CY 3 CLAIM $\frac{6898}{64120f}$ LEGEND SAMPLE LOCATION OUTCROP BOUNDARY ROCK TYPE PORPHYRITIC ALASKITE P562 SOIL SAMPLE 115 S516 STREAM SEDIMENT SAMPLE (5.4) URANIUM ppm -FN : Samples Collected By J Biczok and L Ball June 12 14, 1978 . · --- · · --- - · ·

00 S 200 5 300S 400S · ·· } ·· ·· 0 ID 20 30 40 50 METERS - ¦·· · · | · − · · · ∔−··

ANOMALY "B" ιΨ ш ЦI. L+50 С Ц Φ - O -· ① · · ••• 🛈 •• a an hanne e s φ. Φ $^{\circ}$ O LO¢I.. ND: i 4 · [] ·____ ! ____. ┍┥╍╸┊╶╸┊╗╧┱╹╢┊╧╶┊╷┊╎┊┊┊╶╍╪╶┲╵┥╸┊┊╌╕╡╸┊╸╸╡╸╸╡╸╡ · --- X · + + ; 00\$ * 13 - : - - - -. **. .** . . + 15 * 7 *8 *17 ¥ 20 ¥-15 (. **i**⊭10 ..!:. +15 *12 ± ± **⊁**9 . ⊨ i i ----. <u>.</u> *** 20** : 1 - - • • - - • • 100 S ···**k**--[·**4**] ··· ╎┉╗┇┲╞╗╘╗╼╬╤╫╔╝╴┉┉╎╻┉┶┉┝╍╖┉┥┷┉┿┊╋┷╍┝┝╽╍ ···· **★ 12** · · • به التصدية المنتخب * 12 **⊁7** .∷ **∦ 15** | :∦∗12 · ·• ·• ·· • - 22 ` : <u>|</u> : - - **⊱ IO** | - -**≭** 20 : _¥-12{ . . ----. * 22 ф 25 — * 12 . . 4 . 1 · ; · ¥ 21 200 S - 20 300 S 32 400S BLUE SKY CREEK GRID CY 3 CLAIM . . . · • •

Samples Collected By J. Biczok and L. Ball June 12 14, 1978

 		- - -		···· · · · ·				r · ·								
	· · · · · · · ·		· · · · · ·	 		• • • • •	!. 	-			· · · ·		· · · · ·			
				· · ·	· · · · · · · · · · · · · · · · · · ·	•										
. 					· · · · ·											
	-				 											
	· · · ·		· · · ·			<u>.</u>	 !		• • • • • • •					· · · · · ·		
! • • •		 	 .		I						· · · ·		- - - - -	· · · · · · ·	· · ·	
				00)S			· · ·						· · · · ·		
			· · · ·	-	• •			• • • •	• • • •					· · · · · · · · · · · · · · · · · · ·		
	· ·		· · ·					 				· · · ·				
 .			• • •				:		: * : :		· · · ·			· · · · · · · · · · · · · · · · · · ·		
		· · · · ·				····· ·			· · · ·				· · ·	· · · ·		· · · · · ·
• • • • • •					· · · ·	· · ·			!			· · · · · ·	· · ·			
. 		•	· · · ·	 1:00)-S	· · ·	· · ·						· · · · ·		· · · · · · · · · · · · · · · · · · ·	
 								:	:				 			
 			· · · · · ·				· · ·		•					· · · · · · · · · · · · · · · · · · ·		
· · · · ·	· · ·		· · · ·				· · · ·	 - 	• - · ·	: 		· · ·		· · · · · · · · · · · · · · · · · · ·		
:. ;	i . 			 		· · · ·	! 	 		- - -	· · · · ·			· · · · · ·		
	· ! - ·		, .		! · · · ·	· .	· · · ·	•	:			· • ·		· · · ·		
		· .				: ·								· · · ·		
. . .				200	25	· ··· · · · · · · · · · · · · · · · ·	. .									
					· · · · ·											
· · · · · · · · · · · · · · · · · · ·	· · · ·					· · · ·			:	 	· ···			· · ·		
· ·		· · .			· · · · · ·	· ·			· ···· .	: . 		· · · •	 	· · · ·	-: · ·	
						· · · · · · · · · · · ·	· • • ·			 - - -				÷		
. 			· · ·				•		•				· · · · ·	·	· · ·	↓ → → + - - - - - - - - - - - - -
	 , .	· · · · ·	· · · · · · · · · · · · · · · · · · ·	3⊖(:	0.S		· · ·		•		· · · ·	 		•	· · · · · ·	·
 	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · ·								· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·
		 		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	• • • • • • •	! ! ! .	:			:		
				: 			:		: : :	· · ·	· · · · ·		· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			 . .			•							
 			· · · · · · · · · · · · · · · · · · ·	· · · · ·		· · · · · ·		. .	•				· · · · ·			
 		 		40	0.S		•• • •			• • •	•					
.	· · ·	 	i 											· · · · · ·		×
		[· · ·						 ·			· (] · ·	· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	 	· · · ·		 			: : : : :			 				· · · ·	 	
• 	R	\mathbf{V}		Y	· · · · · · · · · · · · · · · · · · ·			 . 	:	· ·			· ·		· · · · · · · · · · · · · · · · · · ·	
	1.L. X	∀		1			· · . 		. •	:	•		· · · · · · · · · · · · · · · · · · ·	• . • • • • · • · · · ·		
6	2	~		2		, (2	•							
, (I						
			· · · · ·		: : !	 	:	 !					· · · · ·	· · ·		
 	· ·	; ; ;		SCI	NT		ОМ	Ĕ <u></u> ⊤₽	R	RF	יוח	100		· · · · ·	 - 	ļ
[· · · · ·	r · · · · ·	••••••••••••••••••••••••••••••••••••••	x 5	25,	000) C	pm		ן א נהני : : :		 				
 . .			 	© ●	25,1 35,0	900 900	ψ) 4	95,0 45,0	000 000	cpi cpi	ກ ເກ	,. 			 	
I.G.	: 			■	45, 55): 0 ~	55, (0.0.C).cp	m	 . . .				
• • • · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·					- • - - -		: 	:	•		· · ·		+ • 	
AL	ON	G	GRL	D	I							- · - ·			 . .	
	• • • • • •		- - - -	 . .				 		:	. . .		-	· <u>·</u> ·		
ю. 10	20	0 4	1	т 10 м	ÉTÉR		· [· · · · · · · · · · · · · · · · · ·		·	· ·		. [*] . 	· · · · · · · · · · · · · · · · · · ·	<u>-</u>		
 	:	 					<u>'</u> 							. 1.14 	L ¹	

•