GEOPHYSICAL REPORT
 On A
 PULSE ELECTROMAGNETONUTER SURVEY GRANGES EXPLORATION AB
 D and E mineral claims, Natalkuz Lake area, Omineca Mining Divigion, B. C. Lat. $53^{\circ} 17^{\prime} \mathrm{N}$ Long. $125^{\circ} 10^{\prime} \mathrm{W}$ N.T.S. $93 \mathrm{~F} / 6$
 AUPHOR: Glen E. White, B.Sc., P. Eng., Geophysicist
 DATE OF WORK: August $10-25,1978$
 DATE OF REPORT; October 2, 1978

Glen $\mathscr{E}_{\text {. }}$ While geophysical consulting oferyices ltd.

CLAIM \& LOCATION MAP
GRANGES EXPLORATION AKTIEBOLAG CAPOOSE LAKE AREA 8.C.

OONTENTS

PAGE

Introduction 1
Property 1
Location and Accese 1
General Geology 2
Survey Specifications
(1) Survey Grid 2
(2) Puise Electromagnetometer Survey. 3-4
Discussion of Results 4-5
Conclusion and Recommendations 6
Instrument Specifications 7-9
Statement of Qualifications 10
Cost Breakdown 11

Illustrations

Plate 1 - Location and Claims Map
" 2 - Geology Map
" 3 - Aeromagnetic Map
Figure 1 - Gonductor and Loop Location Map
" $2-12$, Horizontal Loop Profiles
" $13-49$, Vector Sections

INTRODUCTION

Horizontal loop and vector pulse electromagnetometer surveys were conducted on the D and E claims in the Natalkuz Lake area, Omenica Mining Division, to try and delineate any conductors possibly indicative of massive sulphide mineralization.

The surveys were conducted by Glen E. White Geophysical Consulting \& Services Ltd. on behalf of Granges Exploration AB during the period August $10-25,1978$.

PROPERTY

The D and E mineral claims, which are part of a larger block of claims as illustrated in Plate 1 , were surveyed by the pulse electromagnetometer method.

LOCATION AND ACCESS

The mineral claims are located some eight miles south of the junction of Intate reach and Euchu Reach of Natalkuz Lake, Latitude $53^{\circ} 17^{\prime} \mathrm{N}$, Longitude $125^{\circ} 10^{\circ} \mathrm{W}$, N.T.S. $93 \mathrm{~F} / 6$.

Fachle access is by float aircraft to Capoose Lake and then by helicopter. An unimproved drill road has aldo been constructed to the main claims area for 4×4 transportation from Vanderhoof and then rendezvous with a helicopter.

Glen E. While gromusicat consuiting o stryices tio.

TRAASSIC AND JURASSIC
UPPER TRIASSIC AND LOWER JURASSIC

Andesitic and basaltic flows, fuffs, and breccias; interbedded argillite and minor limestone

MADDOLE ANO (T) LOWEF JURASSIC MAZELTON GROUP (IN PENY
Andesite, related tuffs and breccias, chert pebble
5 conglomerate, shale, and sandstone; 5 a, mainly volcanic rocks; 5b, mainly sedimentary rocks MIDOLE JURASSIC

	HARECTON GROUP (im Part) Greywacke, argillite, conglomerate, tuff, breccia, andesite, and arkose; minor rhyolite
JURASSIC UPPPER	AND/OR CRETACEOUS JURASSIC AND/OR CMETACEOUS
8	Granite, quartz diorite, granodiorite, and diorite

CRETACEOUS AND (?) TERTIARY UPPER CRETACEOUS AND (?) PALEOCENE OOYSA CANE GMOUP (In Part)
 Basalt, andesite, and related tuffs and breccias; minor rhyolite and dacite; 9a, conglomerate and greywacke
PALEOCENE (?), EOCENE, AND OLIGOCENE OOTSA LAKE GROUP (in Pars)
 Rhyolice, dacite, and associated tuffs and breccias; minor andesite, basalt, and conglomerate; O1O, rhyolitic and dacitic dykes, necks, and stocks TERTIARV MIOCENE AND (?) LATER ENDAKO GROUP

Vesicular and amygdaloidal andesite and basalt; flow breccia, cuff, conglomerate, greywacke, and lignite; IIs, necks, plugs and dykes
QUATERNARV
PLEISTOCENE AND RECENT

12
Till, gravel, sand, clay, and silk

GEOLOGY

AEROMAGNETIC
NATALKUZ LABEE BRITISH COLUMBIA

GENERAL GEOLOGY

The general geology of the area is shown on Plate 2, a reproduction from Map 1131A, Geology - Nechako River. The mineral claims are shown as being undarlain by a series of Mesozoic volcanic and sedimentary rocks. These include the Takla group of Triassic andesitic and basalt flows, tuffs, breccias, interbedded argillite and limestone in contact with similar rocks of the Hazelton series of middle to lower Jurasic age. Plate 3 iklustrates the aeromagnetic data from Map 5288G. Several small magnetic dipole anomalies are bhown in the survey area which correlate with the geological occurances of Takla volcanic rocks.

SURVEY SPECIFICATIONS

Survey Grid

The survey grid was constructed previous to the geophysical survey for the purposes of geochemical soil sampling and geological mapping. The grid lines are orientated $N-S$ every 100 m from a centrally positioned E-W baseline. Some 26 kn of pulss electromagnetometer surveying were conducted; 22 in the vector mode and 4 in the horjzontal loop mode.

Pulse Electromagnetometer Survey

The pulse electromagnetometer system is a time domain E.M. system which can be used in the standard horizontal loop mode or deep penetrating vector mode.

The primary field for the horizontal loop survey is obtained from a transmit loop 6 meters in diameter laid out horizontally on the ground and energized by a pulse of 20 amps at 24 volts with an on-off time of 10.8 ms. The receive coil is generally spaced 25 - 100 meters from the transmit loop. Both are moved simultaneously from station to station. The secondary field signal on the receive coil is sampled and averaged for 10 seconds and then stored for readout. Eight samples of the secondary field are obtained with increasing window widths during the primary field off time. Time synchronization is by radio link or cable. The eight channels of secondary field information are equivalent to a wide spectrum of frequencies from approximately $2 \mathrm{KH}_{z}$ to $16 \mathrm{H}_{\mathrm{z}}$ which allows for determination of overburden effects and penetration of conducelive overburden. Since the secondary field is measured directly during the primary field off time, the pulse method is relatively free of geometrical restrictions between the transmit and receive coil positions, such as topography interference and coil alignment.

The primary field for the vector EM technique is obtained from a small turam type loop of 132 m (500 ft.) per side which is energized with a current of some 25 amps at 24 volts. A scalar vector is obtained by determining the horizontal and vertical components of the secondary field. A right angle to this resultant vector points to the eddy current position. See Appendix for diagrams.

DISCUSSION OF RESULTS

The horizontal loop data is illustrated on Figures 2 - 12. The responses in all channels were very low, indicating the area surveyed contained rocks of medium to high apparent resistivities. No anomaliea were detected by this portion of the survey.

The vector pulge electromagnetometer data is depicted on Figures 13 - 49. The transmitter loop positions and anomalous vector angle conditions are shown on Figure 1. Figure 14, line 15W, indicates a possible small Channel 1 conductor at $3 \not f 50$. Lines 16% and 14 W do not show this feature. Subsequent Figures, 16-20, show a divergence of the vector angles which trends south-easterly across the survey area towards the small pond between lines 8 w and 9 w . Figures 18-23 clearly reveal a converging vector angle pattern at
$0 \nmid 50 \mathrm{~S}$ wich trends E-W from lines IlW to at least 6w. This vector pattern shows its strongest tendency to converge on line 96 where there could possibly be an increase in conductivity associated with a geological contact. Line liw surveyed from loop D, gives a small Channel I focus on this trend at the baseline. Figures 25-28 also show a converging vector angle trend just south of the baseline from lines $15 \mathrm{~W}-12 \mathrm{~N}$ as illustrated on Figure 1. A true Channel 1 vector foci was detected on lines 14 W - 12W as evidenced on Figures 26-28. This conductor would appear to be at a depth of some 70 m , just beneath the detection level for a poor conductor, utilizing the horizontal loop mode with a separation of 75 tm . The remaining Figures, 31 49, show weak divergent and convergent vector trends in the northeast section of the survey area as illustrated on Figure 1. Previous experience with the vector mode of pulse electromagnetometer surveying indicates that the convergent and divergent vector angles usually refiect weak conductivity changes as can be obtained from traversing geological contacts.

CONCLISION AND RECOMENDATIONS

During the month of August 1978 a program of pulse electromagnetometer surveying was conducted over the D and Emineral claims, Natalkuz Lake area, on behalf of Granges Exploration AB.

The vector pulse electromagnetometer survey mode detected a weak Channel 1 vector focus on lines l2W 14W at $2+50 \mathrm{~N}$ at an apparent depth of some 70 m . Several convergent and divergent vector angle trends were also delineated which may possibly relate to geological contacts. Thus, though a vector foci trend was detected, it is not considered to be of sufficient magnitude, considering the remoteness of the mineral claims, to be examined on its own merrit. Consequently, it should be investigated only in conjunction with any on-going exploration work in the area.

PEMSPECIFICATIONS

Current Oft time: 9.4 ms
Curfent on time: $10 . \mathrm{Bms}$
Current shut olf (ramp) time: 1.4 ms
Sample times (zero to centre of sample): . 15 ms . . 45 sms , $.85 \mathrm{~ms}, 1.45 \mathrm{~ms}, 2.45 \mathrm{~ms}, 3.75 \mathrm{~ms}, 5.85 \mathrm{~ms}$. 8.85 ms .
Smmple wrdit: 100 us
Zero time set at drop ofl point of primary pulsa
ThaNSNITTER - Transmitter power and loop size may be increased to obtain increased penetraliom. Weight. porlabillty and power capabilities of the controd instrument are the limiting factors. The standard transmitter is designed to be carried by two men.

Loop alameler	- minimum 4 meters (13 teat)
Loop eurrent	- 15 to 20 amps
Loop spplied vottage	- 24 volts
Loop outpul	- misimum 4500 amps \times meter ${ }^{*}$
Lo00 welght	- 11.8 kitos \{26 lb $\}$
Control unit weight	- 10 kilos (22 16)
Control untt dimensions	- $20.5 \mathrm{~cm} \times 25.5 \mathrm{cmm} \times 36.5 \mathrm{~cm}\left(8^{*} \times 10^{*} \times 14.5{ }^{*}\right.$)
Battory supply weight	- 18.1 kilos 40 lb)
Ballery supply	- 2 of 12 voll, 141020 ampere hour

RECEJVER

n Recelve coil dimensions: $55 \mathrm{~cm} \times 15 \mathrm{~cm}\left(22^{*} \times 6^{*}\right)$

- Receive coil weight: 4.5 kilos (10 16)
- Preampllier in coil
* Promplifier balleries: 2 ol 9 volt
- Recoive coil tripted mounted

- Recolver measuring instrument weight: 6.3 kilos (14 1b)
- Timing control by radio synchrosization
- Primary sampte width: $100 \mu \mathrm{~s}$
- Primary sample tan be swept though primary pulse by meaths of a time calitrated pot
- Zero tima sel at primary pulse drop-oil
- Secondary samples (eigh ol them) width: 100 us
- Secondary samples time \{zero to middie ol samplet: (11. 15ms (2) . 45 ms (3) . 25 ms (4) 1.45 ms (5) 2.45 ms (6) 3.75 ms (7) 5.85 ms (8) 8.85 ms
* Automatic sampling lor 5 seconds then all samples $\begin{gathered}\text { ululomatically stored }\end{gathered}$
- Sample read cut by means of meler
- Continuous sampling possible by switching funtrion switen to "Continuous'"
- Nolse can be monitored by switcheng function switch to "Noise"
- Baltery supply: 24 volt rechargeable, 2 ol 12 volt Gel GC $\mathbf{1 2 - 1 5}$

STATEMENT OF QUALIFICATIONS

Name: HHITE, Glen E.
Profession: Geophysicist
Education: B.Sc. Geophysics - GeologyUniversity of British Columbia
ProfessionalAssociations: Associate member of Society ofExploration Geophysicists.
President of B. C. Society of
Mining Geophysicists
Experience: Pre-Graduate experience in Geology -Geochemistry - Geophysics withAnaconda American Brass.
Two years Mining Geophysicist withSulmac Explorations Ltd. and AirborneGeophysics with Spartan Air Services Ltd.
One year Mining Geophysicist and Technical
Sales Manager in the Pacific north-westfor W. P. McGill and Associates.
Two years Mining Geophysicist andsupervisor Airborne and Ground GeophysicalDivisions with Geo-X Surveys Ltd.
Two years Chief Geophysicist Tri-ConExploration Surveys Ltd.
Seven years Consulting Geophysicist.
Active experience ir all Geologicprovinces of Canada.Professional Engineer registered inthe Province of British Columbia.

COST BREAKDOHK

Personnel Date Wages Total
T. Pezzot
Geoph sicist.....Aug. 10-25/78.....\$132/day... $\$ 2112.00$
K. Fitzpatrick "....." 85/day1360.00
D. Denis 80/day 1280.00
Meals and Accomodations © 875/day 1200.00
Instrument lease © \$85/day 1360.00
Materials 8.00
Alrfare 396.00
Airfreight 146.61
Drafting and Printing 475 .00Interpretation and Report.

LINE $14+00 \mathrm{~W}$
INSTRUMENT CRONE PE.M.

(

