KUSP PROPERTY

DRILL PROGRAM

Kusp 1, 2, 4 Claims

Slocan Mining Division

.

for

Dome Exploration (Canada) Ltd. Ranworth Explorations Ltd.

bу

J. R. Woodcock

J. R. Woodcock Consultants Ltd., 1521 Pemberton Avenue North Vancouver, B. C.

December, 1978

KUSP PROPERTY

TABLE OF CONTENTS

PAGE NO.

INTRODUCTION	1
LOCATION AND ACCESS	1
CLAIMS AND OWNERSHIP	2
ANALYTICAL DATA	2
DRILL RESULTS	3
CONCLUSIONS AND RECOMMENDATIONS	4

TABLES

Ι.	CLAIM DATA		1	ia
11.	COMPARATIVE	ANALYTICAL	DATA 3	3a

APPENDIX

I. DRILL LOGS

FIGURES

۱.	Claîm Map				1 10	
2.	Geology of Kusp Property			In ș	pocket	
3.	Geology and Drill Holes - Zone 1				2a	
4.	S-N Section along DDH No. 3				2b	
5.	S-N Section along DDH No. 2, 3				2c	
6.	W-E Section along DDH No. 4				2d	
7.	Analytical Results DDH No. 1	•	Ŋ	٠	3c	•
8.	Analytical Results DDH No. 3			•	зå	
9.	Analytical Results DDH No. 4				_{Зе} 🖲	

KUSP PROPERTY

INTRODUCTION

The discovery of the large anomalous gossan zone by the writer and the subsequent silt sampling, soil geochemistry, geological mapping, and geophysical work are described in a report dated August 30, 1978 which was submitted for assessment work. The present report deals with the diamond drill program carried out from September 8 to 25, 1978.

The 1978 Kusp drill program, using BQ wireline, totalled 1012 feet (304.5 m) in four holes as follows*:

Ноје #	Grid Locations	Elevation	<u>Azimuth</u>	Dip	Length
1	0+70S, 1+10E	1660 m	350°	-50°	75.59 m (248')
2	0+21E, 0+90S	1 736 m	10°	-50°	25.9 m (85')
3	0+21E, 0+90S	1736 m	10°	~75°	99.67 m (327')
4	0+7.5W, 0+56.5S	1736 m	28 0°	-70°	107.29 m (352')

Woodcock conducted the drill program, including core logging and compilation of the data and report writing. Mr. Paul Stanneck helped in the mobilization and demobilization, camp construction and the core splitting, etc. The diamond drill contractor was D. J. Drilling Co. Ltd. of Surrey, British Columbia.

The drill program was done for Dome Explorations (Canada) Ltd. and Ranworth Explorations Ltd.

LOCATION AND ACCESS

08.5

The Kusp Property is at latitude 50°0.85' N, longitude 117° 36.5' W, on Map 82K-4E. Summit Lake lies along Bonanza Creek, just north of the property.

The claims extend from the bottom of the valley of Bonanza Creek southward up the steep slopes to the top of some very rugged mountains (Rugged Peak, Big Sister Mountain). Over a horizontal distance of 1 3/4 miles (2.8 km) elevations rise from 2500 feet (830 metres) to almost 8000 feet (2670 metres). The slopes on the south side of the rugged mountains are less steep and are drained by MacDonald Creek.

The very steep north-facing slopes have been subjected to a severe forest fire and an almost complete burn. Subsequently a dense growth of brush and young evergreen trees has returned, making access up the slopes extremely difficult. Tops of peaks are above timber line.

TABLE I

.

.

KUSP CLAIM DATA

Name	No. of Units	Tag Number	Record Number	Date Staked	Date Recorded	
Kusp l	20	12052	450	July 17/77	Aug. 9/71	
Kusp 2	20	12053	451	July 18/77	Aug. 9/77	
Кцар 4	16	12055	452	Aug. 2/77	Aug. 9/77	
Киар 5	10	12056	504	Sept. 22/77	Sept.30/77	
Kuarp 6	18	07138	598	March 23/78	March28/78	

ī

1(b)

Outcrops are abundant at the tops of the rugged peaks and in the head of the cirques which drain northward through various small streams into Bonanza Creek. On the forest-covered slopes, outcrops occur in the creek beds and also in places on the steep interfluvial areas.

Although roads exist quite close to the property, access at present must be by helicopter. The closest helicopters are at Revelstoke, 65 miles (100 km) to the northwest and Nelson, 50 miles (80 km) to the southeast. Also, planes and helicopters are based at Kelowna, 90 miles (140 km) to the west. An airstrip exists near Nakusp, 10 miles southwest of the property, and this is sometimes serviced in the summer months by scheduled flights from Revelstoke and Kelowna.

A paved highway (No. 6) passes along the valley of Bonanza Creek, less than one mile from the north edge of the property. Canadian Pacific Railway has an unused line also along the bottom of the valley. The closest access roads are logging roads in the upper parts of McDonald Creek. These roads have been built to within two miles (3 km) of the bleached zone.

CLAIMS AND OWNERSHIP

The Kusp 1, 2, 4, 5, and 6 were staked and recorded in the name of John R. Woodcock; however the initial project was paid for by Canbrika Developments Ltd. Early in 1978 the property was optioned from Canbrika by Dome Explorations (Canada) Ltd. and Ranworth Explorations Ltd., both of Toronto. All of the claims are still in the name of John R. Woodcock except for the Kusp 1 claim which had been transferred to Canbrika Developments Ltd.

The data for the claims is presented in Table 1.

On August 2, 1978 eight units of Kusp 2 claim and eight units of Kusp 4 claim were abandoned. The remaining units of these two claims plus the 20 units of Kusp 1 claim were included in the Kusp Group for assessment work purposes.

ANALYTICAL DATA

All of the core, excluding the non-pyritic zone at the bottom of Hole 1, was divided into ten-foot intervals and split for analyses. Initially all the analyses were done geochemically at Vangeochem Lab Ltd. Subsequently the higher values in copper, lead, zinc and silver were checked with assay techniques at Bondar-Clegg Ltd. Also, some of the samples with higher silver values were assayed for gold. The assay results and the corresponding geochemical values are shown in Table II. All values expressed in ppm are from geochemical analyses and all values expressed as % or oz/ton are from assays.

÷

	2(d)
	E
1	
-	
	JACK Machadian
	1037
	DOME ; RANWORTH
	KUSP PROPERTY
	W-E CROSS-SECTION
	ALONG DDH Nº. 4
	J. R. WOODCOCK CONSULTANTS LTD
	OCTOBER 1978 FIGURE Nº. 6

× .

A detailed study in comparison of results has not been done; however, based on these results and on other experience, the writer suggests the following guidelines:

1. For zinc values up to 1000 ppm, geochemistry techniques are probably more reliable although, on the average, between 500 ppm and 1000 ppm assay values are slightly higher.

2. For copper, geochemistry is probably the best technique below 1000 ppm.

For lead, when in the form of galena especially in the presence of barium minerals, geochemistry is less reliable than for other metals. However, assay results are not very accurate below 0.1%. For this project, the writer suggests that assay results be used if the values are over 500 ppm.

4. The silver is probably contained within the galena so an assay is preferred where possible. Probably with values over 10 ppm, the assay results might be more reliable although not as relatively accurate. Certainly over 30 ppm, assay values should be used.

Analytical results are plotted as bar graphs on log-normal graph paper. For most of the graphs, the geochemical values have been used. However, for the higher values of lead and zinc, the assay results have been used. For the silver, the geochemical values are shown on the graph and the corresponding assay values (written number) are also shown for the higher grade samples.

DRILL RESULTS

In a previous report, the writer suggested the probability of a gravity slide to account for some of the rock rubble and the small enclosed basins uphill from DDH #1. The drill results appear to support this suggestion and to indicate that the schist outcrops uphill from DDH #1, and possibly even DDH #1, are in a block of rock which slipped downhill and rotated in some way to create a ridge of rock and a basin behind it (see cross-section of Figure 6). The basin filled with debris of barren conglomerate and slate from the cliffs above. Holes 2, 3 and 4 collared in this basin of debris. Hole 2 did not reach bedrock, but holes 3 and 4 cut 42.7 and 40.5 metres of overburden respectively.

As a general summary, the stratigraphic section indicated by the drilling includes grey to black carbonate-rich clastics (probably tuffs) at the top, then quartz-sericite schist, and finally some dark carbonate-rich clastic, before entering the footwall of unmineralized banded limy slates.

- 3 -

TABLE II

COMPARATIVE ANALYTICAL DATA

KUSP DRILL PROGRAM

Sample No:	<u>Cop</u> r (ppm)	<u>)er</u> (%)	<u>Lea</u> (ppm)	<u>ad</u> (%)	<u>Zi</u> (ppm)	<u>nc</u> (%)	<u>Silv</u> (ppm)	<u>/er</u> (oz/ton)	<u>Gold</u> (oz/ton)
W78-404R	490	.04							
405	620	.05							
406	373	.04							
407	500	.05							
408	309	.04							
409	750	.09							
413			94	0.02			5.0	0.27	
414			128	0.03			5.0	0.39	
415			1000	0.31	4800	0.31	15.1	1.85	0.02
416							6.3	0.12	0.005
417							4.0	0.13	0.007
418							3.6	0.23	0.004
419							5.7	0.14	0.003
420			136	0.04	282	0.06	9.4	0.24	0.005
421			630	0.11	1260	0.18	31.7	0.27	0.004
422			1030	0.15	293 0	0.22	13.0	0.38	0.002
423							15.5	0.43	0.003
424							15.5	0.41	0.006
425							17.9	0.80	0.013
426		.06	470	1.04	35,000	4.10	69.6	3.13	0.005
427		.02	540	0.16	4,400	0.48	13.1	0.37	
428	198	.02					2.9	.05	
429	202	.02			302	0.07			
430	352	.04							
431	224	.02							
432	236	.03							
433	240	.03	183	0.04	1260	0.13	16.2	0.76	0.009
434	248	.03					8.8	0.24	0.004

	Copy	ber	Le	ad	Zir	10	Si1	ver	Go1d
<u>Sample No:</u>	(ppm)	(%)	(ppm)	(%)	(ppm)	(%)	(ppm)	(oz/ton)	(oz/ton)
435	198	. 02	420	0.07	550	0.06	8.9	0.57	0.01
436A	281	.03	410	0.39	2890	0.34	16.2	0.87	0.005
436B	244	.03	500	0.08	650	0.07	12.6	0.57	0.004
437	262	.03		0.02	308	0.04	15.7	0.90	0.003
438	302	.03		0.03	510	0.06	14.8	1.32	0.004
439	341	.03		0.05	710	0.08	12.8	0.06	0.003
440	178	.18		0.15	2030	0.24	15.9	0.41	0.003
443							2.5	0.21	
442							3.0	0.10	
443							2.4	0.04	
444	630	.06		0.03			3.4	0.07	

Comparitive Analytical Data - Kusp Drill Project -- continued

- -3(e)

.

,		KUS	SP PROPER	RTY - DDH	Nº. I SCALE	000111	3(c)
9							
7 6							
5						<u></u>	
4							
3			• <u></u> +				
_							
2							
1		·					
8							
ð							
5					· · · · · · · · · · · · · · · · · · ·		
4	· · · · · · · · · · · · · · · · · · ·					<u></u>	
3							8
?		P P					
PPM						·	
1000. 8		<u></u>					
8							
6							<u>. +</u>
4		••••••••••••••••••••••••••••••••••••••					· · · · · · · · · · · · · · · · · · ·
1							
0							
2							
							· · · · · · · · · · · · · · · · · · ·
100			· · · · · · · · · · · · · · · · · · ·				- Zo
9							- Cu
7 5							
5	· · · · · · · · · · · · · · · · · · ·						<u> </u>
4						· · · · · · · · · ·	
3							
,			Ph				
10.9.		······································				·	
8 7							
6	1 · · · · · ·						
4							
3						<u> </u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	; ;
]						
2							
			Aq				
1.		u to			· · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •
ţ,					0 0 0 0		8
i							FIGURE Nº.

46 6212

SEMILLOGARITHMIC \$ CYCLES X 70 DIVISIONS KEUFFEL & ESSER CO. MARMULL

썊

46 6212

SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS REUFFEL & ESSER CO HAM # 914

Ϋ́

The schistosity and bedding dip 45° to 60° south and the probability of an overturned stratigraphic section has been discussed in a previous report. However, in the present descriptions, reference is made to the geometric relationships.

All rocks above the unmineralized slate footwall are clastic, are foliated to varying degrees and have abundant disseminated pyrite. In holes 3 and 4, the geometric upper contact of the light grey quartz-sericite zone is important. All rocks above have abundant calcite whereas the quartz-sericite schist has lower carbonate content. In contrast, the quartz-sericite schist has abundant pyrite concentrated into bands as well as the disseminated pyrite. The upper rock units of the two holes (geometrically above the quartzsericite schist) are metalliferous (figures 6 and 7). In sections fine-grained galena occurs with pyrite and honey-coloured sphalerite occurs along some of the foliations.

Bar graphs of metal values (Pb, Zn, Ag) show distinct cutoffs at the upper contact of quartz-sericite schist. Silver shows the best contrast. In the upper part of hole No. 3, 36.6 m (120 feet) averages 0.55 oz. per ton and in the upper part of hole No. 4, 27.4 m (90 feet) averages 0.67 oz. per ton. Highest values were cut in hole No. 4 (1.0% Pb, 4.1% Zn, 3.1 oz. Ag) over 1.5 m.

Lead, zinc and silver have parallel trends. However, copper does not closely follow the same trend.

More specifically, hole No. 1 went through dark limy pyritic schists and entered the underlying unmineralized black slate. The contact could be a fault. This contact accounts for the main anomaly found in the EM-16 and the Turam EM surveys. The quartz-sericite schist horizon appears to be absent in hole No. 1. Lead, zinc, silver values are very low, but copper values are higher than normal.

Holes No. 2 and No. 3 cut metalliferous-pyritic dark to lightgrey carbonate-rich schist and also the underlying quartz-sericite schist. Hole No. 3 did not get through the quartz-sericite schist, but hole No. 4 did intersect the underlying dark coloured clastic mentioned in the generalized stratigraphic section. These two holes did not reach the unmineralized footwall of black limy slate.

CONCLUSIONS AND RECOMMENDATIONS

- Mineralization is disseminated, strataform, probably volcanogenic and was probably deposited in restricted basins.
- 2. The upper parts of holes 3 and 4 cut interesting values in silver, lead and zinc. The two intersections are only 50 metres (165 feet) apart, but represent a section about 30 metres (100 feet) thick. Note that these holes were collared in the geometrically upper part, but not necessarily at the top, of the metalliferous zone.
- Whether or not economic silver values will be found down dip to the south or laterally to the west can only be determined with more drilling.

- Because of the syngenetic nature of this mineralization and because of the apparent deposition in relatively restricted basins where lateral changes over a reasonable distance can be expected, the writer recommends additional diamond drilling.
- 5. The difficulties encountered in the 1978 drill program could be overcome by using more than one string of rods. The holes should be started with NQ size and completed with BQ size rods.
- 6. A rough access road should be built to the property from the existing logging roads. This will facilitate the mobilization and allow drill site construction with a bulldozer.

1 Caloadcock

J. R. WOODCOCK, P.Eng. December, 1978

COSTS FOR KUSP DRILL PROGRAM

Wages Stanneck - Sept. 1 to Sept. 27 27 days @ \$75/day \$2,025.00 Woodcock - Sept. 6, 7, 8 - 3 days " 10 - 20 11 " ... 22 - 25 26 - 28 5 " 1 " **)** Oct. 10 " 23 - 31 Nov. 9 4 " 1/2 " <u></u>'" Dec. 1 26.1/2 days @ \$275/day 7,287.50 Drill Costs 34,377.55 Analyses Vangeochem; Bonder Clegg 785.50 Helicopter total costs (Okanagan & Bow) 50% allowed 4,513.70 Freight and vehicles 1710 20% allowed 340.00 \$49,329.25

AReclock

ì

DRILL HO	LE	1		
DATE DRI	LLED Sight 19	0-11	PROPERTY	_
OATE LOO	iGED <u>Sept 11</u>	. <u> </u>	PROJECT KUSP	_
LOGGED E	ry J. Par	· · · · · · · · · · · · · · · · · · ·	COMPANY DOME, RANWORTH	-
DRILL CO.	175 PC	Ming		
DIP TESTS	1 mm	<u></u>		
ABBREVIA زک	TIONS De CIMITAIS	167' 237' 161 74'		
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.
c'	50 (15.28)	overbarden		
50 /15.24) 60' (18-29)	Huck-grey schist	Abundant pyrite especially in black bands	W18 - 401 F
10 (18.29	10' (21.34)	50-122'	Agreers graphitic but more likely briely	402 R
70 (21.3-	() 80' (24.38)	(5.20-37.18m)	accured aggite; only slightly conductive in	403 R
<u>80 (24.38</u>	r) 90' (27.43)	-	Hack burds, Sperce good - productor to 15cm	1 404 R
90 (Z7.4	1 100 (30.44)		Bunding at 65° to acis at 98' (ang)	405 R
160 (30.4	10 (33.53)		70'-74.5' not banded - looks like precise	406R
110 (33 5	1) 120 (36.58)		with plack metwork between frage.	407 R
130 (130		Rune end at 51' 63' 70' 76' VI 42' 91.5'	
<u></u>	40		Very long in need of section]
			101', 113, 123'	
122'(37.1	8 148 (45.11)	black - pay schiet	140 to 140.6 (4267 to 42.85 calcite - gte vein	P
120 (36-3	E 130 89.62)	interhesded with	133 - 148' (40.54-45-1 m) quite schietose	W78-408 R
130 34.6	2) 140 (42.67)	less builded gry ck	148 - 1525 (45.1 - All 5m) low bits of core	W78-40972
140 (42.	1) 150 (45.71)	122-140 -	(recovery 7.5)	W78-410R
		(37.18- 45.11 m)	116 [35.4 fm] banding at 60° to eris	
		· · · · · · · ·	131: (41. 45m) " " 90"	
			146 (44.5 m) schralosity at 96"	

LOCATION $\underline{BLOFTOS}, \underline{C+ICE}$ ELEVATION $\underline{ILCO.5.271}$ DIRECTION $\underline{-350^{\circ}}$ INCLINATION $\underline{-50^{\circ}}$ LENGTH $\underline{248'}(75.5.7.27)$

84

25 42

37 214

70

162

94

27 112

76

152

#1

27

29

¥≠-

27

31

37

26

7 ...

C.

125

173

302

490

620

373

500

309

750

298

#

RECOVERY

64/10

8.4/10 1.9.10 1.9/10 1.9/10

4 /10 9.4/10

3.8/10

the

1.1/10

9.8/10

7/100

Rg.

1.3

1.8

1.7

1.6

1.7

1.8

18

1.6

18

1.9

F-5

N

| · .

ORILL HOLI	E	_/	PROJECT KUSP				AGE _	2	<u>-</u>
FROM	то	ROCK UNIT	DESCAIPTION	SAMPLE No.	RECOVERY	×		*	
148494	248 10.5	Liny Fragmintal	Alternates from public fragmental to		-			L	
		No pyrite	fore-yearned slightly limy rock			_			·
150 (45.74)	160 (48.77)	10	Pebblos compressed cato lowses	6278-411R	1.7/10	84	21	119	15
160 (48.77)	170 (51.82		eg 161' (49.07 m) Cut by small		9.3/10	.		<u> </u>	
10(51.82)	180 (54.84		verilets + irregular masser of calcity		6.7/	.		<u> </u>	
150 54.86)	190 (51.90)		Also calente in matrix of some rock		B) ₁₀	ļ		<u> </u>	
190 (57.9)	200 (60.46	····	Stressed but not schistore; Only traces	·	9-1/10	<u> </u>		Ļ	
200 (60.96)	21- (64.0)		it pyrite. Ruchy broken somer at		1.3/10			[
210 (64.0)	220 67.00		152.5, 155, 156, 170, 173-174.5		6.8/10	Ļ			<u>.</u>
220 (67.06)	230 (70.1)		46.40 , 47.24 47.55 51.8 52.73 - 53.19 m	w78 - 412R	1.1/10	58	23	208	1.4
23 (70.1)	140 (73.15)		Rulls at 146, 157.5 166, 174.5, 181	1	5.4/10	↓			
-			45-1, 48.0, 50.6, 53.19, 55-17 m	l <u> </u>		 			
			185'(1) 1935 2035' 208, 210, 217						
			56.39, 59, 62.03, 63.4, 64, 66.14 m						
			227 232' 236' 239 240, 246.5 248					<u> </u>	
-			69.2, 70.71, 11.93, 72.85, 73.15, 75.13, 75.59.	?+ <u>1</u>				ļ	
			ground love at 115 (tranble spot) (52.5m)					Ļ	
			208 (63.4.)219			<u>.</u>		<u> </u>	
			Banding					ļ	
			245' (74.68 m) 70°		ļ	.		ļ	
			225' (68.58 m) 65					<u> </u>	
			169 (51.51 -) 700			<u> </u>	_ <u>.</u>	<u> </u>	
			from 200 (63.4 m) to 248 (15.59 m) rout						
			has less clastic material and becomes						
			dartur, may higed, may ling (ling state)					<u> </u>	
			Very little pycite. The chandenace of lime		ļ	<u> </u>		ļ	
			& the greenish tent in the define might	ļ			<u>_</u> _	┞┱──	
			indicate a full in the charitie parts						

1

PROM TO ROCK UNIT DESCRIPTION SAMPLE No. RECOVERY N 0 85 [25:4] Gut and Fourders Sull nucleural at bettern	DRILL HOLE DATE DRILL DATE LOGG LOGGED BY DRILL CO DIP TESTS ABBREVIATI	ED <u>Synt</u> ED <u>Synt</u> <u>J R ()</u> <u>J J D'alla</u> <u>More</u> EONS	Z 13 13 13 13 13 13 13 13 13 13 13 13 13	property <u>Kusp</u> project <u>Kusp</u> company <u>Dome, Ranworth</u>	 	LOCATIO ELEVATIO DIRECTIO INCLINAT LENGTH	0, 2/2 N 26.04.26 ON <u>46.60</u> IN <u>955</u> TION <u>57</u>	<u>5,01905</u> <u>5-m: 12,36 m</u> <u>- 10"</u> n* (25.4-m)
0 85 [25.9 Gut and the laters will make year at bettern in a set of the set o	FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	AECOVERY	*	
in overhunden my hole been skite debrie	0	85 /25.9	Gut and builders	soft nuterial at bottom				
			in coverburden	my have been state dubies	_			
Image: selection of the		 			· · · · · · · · · · · · · · · · · · ·			<u> </u>
Image: select								
Image: state s			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			<u> </u>
Image: state of the state			· · · · · · · · · · · · · · · · · · ·			· ·	-	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	+ +			
	_			- ,	· · · · · · · · · · · · · · · · · · ·		· · — - · ·	
		<u> </u>			<u>}</u>	,	· · ·	
						·		
					† · · · · · · · · · · · · · · · · · · ·			

.

٦.

:

-

ORILL HOLE		3			LOCATIO)N <u>07</u>	21 E.	0+90	5		
DATE DRILL	ED <u>Syn1 14</u>	<u>- </u>	PROPERTY KUSP ELEVATION 1736								
DATE LOGG	ED <u>Seit 17-</u>		PROJECT KUSP	DIRECTI	ON	10 ° A	Z				
LOGGED BY	4 Bec	1	COMPANY DUME RANWUZTH	-	INCLINA	TION_	-75	1			
ORILL CO.	1. I Dri	lling		-	LENGTH	327	$r \in C$	99.67	22)		
DIP TESTS	,										
ABBREVIATI	ONS Frag.	- leagment	rk-rock	5	se comens :	154'	2	02			
	Py -	pyrite a	issen-disseminated			129 165	2;	72 72			
	<u> </u>	queste c	nu - Con Lan Lan Lan	T	T	1 2			<u> </u>		
FROM		HOCK UNIT	DESCRIPTION	SAMPLE NO.	RECOVERY	104	10	* •1	- Ching		
<u>r</u>	14-6 42.67	Cooper viten		1	<u> </u>	+					
140 42.52	v#9 (4 5 97)	Black volc. (Int.	() white speck, they give block es (lings)		<u> </u>						
·····		1	atunderal disceminated by		(.9	 					
140 18-670	152 (45.14	<u>) </u>	" calcite in rock - upper part	w74-41 \$ R	10	/37	44	156	5.0		
	· · · · •		present prehably removed at calcite)			1		<u> </u>			
			Some timents along tractures; few this			<u> </u>		<u> </u>			
			4/2 vemlets								
1.1 7 49.1	202 160.51	Gray to Hack tot	I Mounty grey grading to black. In					·			
(,		2	starts black lathor black elrenks of								
			not using acres within the area of								
1 5.72	10 4800-	}	Abundant design cole tor tere themis	w18-414 R	9.3	99	12F	148	5.0)		
11. 48.77	170 151.62	,	the to realist many life in the	W18-415B	3.3/10	264	1000	110	(د. ج.) . (5 1		
51. 82	154.06		Lucit at 154 (ut that) 45 A 102 A 10	411 F	1.3/	10	87	724	-4/33)		
16- (54.01)	140 52.00		At dal (man) had the		9.2/	1000		10.0	·		
67.41	200 10.00		VIL 160 (around) start gring consis	4.77	1.1/	123	170	434	-75(07)		
1412 1141			or first by will bands and notworks	418 %	9.5	170	• -	795	3.6		
	———		but ween trags, these there are from		716	<u> </u>					
		······	procention it it that set Buffs Frags	+		┼───					
			Button & greating et 16 (S.2m), 174 (53m)					<u> </u>			
			192' (58 52m), End of care at 117' (50.9m)		·	[··· · ·····	<u> </u>	·····		
			174' (53 m) 181' (57 m) 142' (58 5m) 146' (5974m)		1	<u> </u>		<u> </u>			
10.1 (49.99)	(50. 24)		tide ground Prole gld bunde up to Jam have site	the galance							

11

DRILL HO	LE	3	PROJECT KORP				PAGE _	2	
FROM	τo	ROCK UNIT	DESCRIPTION	SAMPLE NO.	RECOVERY	G	96	Z_{γ}	a,
			mud secon @ 175' (m) 207' (m)						·
202 (4.57.	1 242 613.16	Estated grey-black	Increasing to hat on to bunding of			<u> </u>			
E .	1	tuff-carbonate	grey & black pick. Abun dant cale to						<u>.</u>
		202 - 242	in out including the white specks a						
In Cont	210 (64.00)	×	throughout Abundant pupite discen	wt8-414 R	83 (c	163	122	273	5.7
21464.00) 220 /67.06	1	y concentrations along plance y in bands	420 R	9.9 Here	154	240	126	9%
220/67.06	230 (70.1)		This impacts much of the black color to	42/ R	9 4	154	1630	2160	1797:71 - 49-7
230 10.1) 240 (73.15)		the blated rock	422 R	9.7	151	1030	145	13.0
¥			Gunding at 221' (61.86-) 225'(65.56m)		·				
			End of runs at 203 (1.87m) 209 (63.7m)						
			217' (66.14m) 225' (68.58m) 235' (71.63m)		-				
			Mud seam it 125 (30.1)						
			Banding at 179' - 40° (54.56m)					-	
-			204' - 55' (62.18m)						
		·	230° - 55° (70./~)						
242 (73.76	215 (80. 3)	Fahiled carkoust	Very foliated crumbly rk abundant						
		plactic '	my White minist efferness + is mailed	· · · · · · · · · · · · · · · · · · ·					
240	250 (76.2)	142-265	effect as mustic and a prese compartient	1 + 23 K	7.2	156	15T	316	15.5
250	210 (79.25		Black and have abundant purite as	41.4R	1.5	176	270	610	165
240	265 (8a.7)	1	an elmosted network: some bands are	425 R	3.6 5	211	54	182	17.9
26 - 507	270 (88.30) 	largely earther some bands are mainty calet	4268	4.6	680 -	470	35000	61.61
			In addition to know get elegated						15190
			Jonnes Minice Fin games chillers at						
			252 (76.8 m) : 1555 (64 sony calens.						
265 (80.7	7) 270 (82.3)	Sphalevite bearing	Similar to previous folicited						
	1.55	schiel	ausponate clastic equal that						
			howy-colored sphalent accuss in						
		·····	some bands . Richt to care fin a la	· · · · · · · · · · · · · · · · · · ·					
	·•		**************************************						

...........

DRILL HOL	E	3	PROJECT KUSP			ş	AGE _	3	
FROM	το	BOCK UNIT	DESCRIPTION	SAMPLE NO.	RECOVERY	(X	74	47-1	<u>a</u>
	ļ		Funding @ 167' (50.9m) = 55"		ļ				
270 (22.3)		Sencite schiet	The rock suddenly becomes lighter eder			. 			
· · · · · ·		270-311	nure sericite, 4 less calcite (except in			<u> </u>		<u> </u>	
47 8	275	(82.3 94.74 m)	schile lensor), May also have some kney			<u>_</u>	++++++	<u></u>	/-
270 (22-3	28. (47-44)	splatente up to 280' (85.34-)	with 427 R	10	162	540	4400	13.
25 d (as 34)	270 44.49	<u>)</u>	Much core lise 272'-274' (8+6-82-2 m)	428 R	0 .8	19E	32	670	2.9
470 (88:31)	3.0 403.54	<u> </u>	280-305 (84-91.5-) 35	14 R	1.0	202	46	302	.1.2
00 (91.44	310 Hob 50	Þ	Mainly mind at 288 (87.78m)	430 R	10	352	36	490	1.4
<u>10 (94.49</u> ,	320/101-63	þ ·	Bunding or foliation & 276 (04-1m) 50°	431R	1/10 ?	224	27	212	1.1
20(97.54	327 (99.67)	ت ا	505 (92.96 -) 65°	43 <u>9</u> R	5/7	236	35	192	1.7
			316 (96-31 -) 40"			<u> </u>			
			Pessibly song deren chales @ 312 (95.1 m			<u> </u>			
11 (8+3m)	327 (19.67)	grey to black school	given rebuit with plante toligo or						
			Heit schust; abandart py, dessen						
			4 in Peliar; No calcite						
			319-32- (97.23-98-14+) black with					<u> </u>	
			straqu he sta lenses + vein lets; may	ļ		<u> </u>			
			be colocitie, Also @ 326' (99.36m)						
			323-326 (48.45-99.36 m) gias loss			ļ			
			pliated ik	· · · ·					
			Foliation at 327' = 50° (91.67m)			<u> </u>			
			· · · · · · · · · · · · · · · · · · ·		<u>.</u>	ļ		<u> </u>	
						<u> </u>			<u></u> .
	· .			_		_		<u> </u>	
			<u> </u>					<u> </u>	
								<u> </u>	
				1					

• •

. 4

12.21

			J. R. WOODCOCK CONSULTANTS L	TD.						
DRILL HOL	.E	4			LOCATIO	ON 0+07.5	FW 0+56.5.	5		
DATE DRIL	LED		PROPERTY KUSP	_	ELEVAT	ION 17	36 m			
DATE LOGO	3ED		PROJECT KUSP	_	DIRECTI	ON	, 0			
LOGGED BY	1. 7 P.10	Inordean K	COMPANY DOME RAN WORTH	£	INCLINA	TION 70	, ¢			
ORILL CO.	D.T DE	TILLING	,		LENGTH	352'(107.29m)			
OIP TESTS_										
ABBREVIAT			Specimens	135 152 172 183	201 266 223 265 252 30 253 315	932 8		-		
FROM	م <u>جور</u>		DESCRIPTION	SAMPLE No.	RECOVERY	& Pl	In Ag			
133 (40.54	150	Fragmarite	White to light gray frage up to 10m	·		_		μi)		
133 (40.54	140 (42.67	<u> </u>	marcy thated matrix. Folation	W79- 44338	5.6/7	240 18	3 1260 16	2		
140 (42.17)) / 50 (45-72)		increases from minimal at 134' m) <u>4</u> 3#R	5.9/10	ZYB 52	2 204 5	\$		
		 	to schistore at 150° (45.72m). Aburdan	4						
			py-dissem tin tobac. No calite	——						
			A few frage are not elengated, but		[L				
	ļ		most are spherzed Il teliation		__	<u> </u>				
			Foliation at 137 = 50° Broken @ 144	147						
	· · · ·		Vivite in hands theate & monakindan	×			_			
			than previous hiles							
150	176 (53.44)	Bonded pycitic_	Why high pyrite, grey scheet.							
		grey schest	Much pyate in handet folise			·		7175		
150 (53.64	1 1Ke (48.77)	· ·	et 170-172' (51.82-52.42m) py 15 80	435 K	7.2/10	198 42	0 550 6	4		
160 (18.77	10 (51.82)		ebundant that core approve to be	<u> 436 A</u>	5-7/10 *	281 1410	2590 16.	Ž '		
170 (51.82	160 54.86		five-granid by with rock frags	4368	7.3/10 7	244 500	> 650 12	.6		
			@183/ 55.78 m) Fort pyrte frags in re	<u>k</u>		. 		_		
			Folation 160 (4811m 5=30"; 172 (5252)=25	> ······						
(53 H)	2 27 (61.06)	Sericite schist	Some calcile; soundant pute, espe	ja'lly				<u> </u>		
	· · · · · ·	wiked with dare	in bands. Filiation changes drastice	/h;		ļ				
	↓		187 (57m) 10"; 201 (4.26m) recersil	ann	ļ] 				
<u> </u>	+	I	VE I (S / M) TO ; dot (4.4 m) reversel in	ana'	l	l		<u></u>		

4

ì

.

DRILL HOLI	E	4	PROJECT KUSP			F	AGE _		2
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	Er	P6	Zn	R.
		serieite schist	213'64.9 Lm) - 75 223'61.47-)55°						
		(220-284)	228 (69.49m) change from 0° to 60						
		less culcite	263' (80.16m) 40" 264 (80.47m) 404						-263-8
180 (54.86)	190 (57.91)		60° (two planes)	437R	8.9/10	262	89	300	15.7
190 (57.91)	200 (60.96)		Clay 2000 195-199.5(59.44-6.8m)	438 R	1/10	302	123	510	14,9
200 60.9)	210 64.00		210-211 (64-64.31-) 216-2226503-616	<u> 439 R</u>	7.5/0	1730	303 6 30	2030	15-9
210 (64.0)	220 17.06		230-285 (10.1-71.63-m)	4toR	4.7/10	1780	430	230	15
230 (67.06	250 70.1	i	But puritic sand 236-244'	w18-441R		\$18	44	137	2.5
230 ho.1)	240 73.1		(71.43-74.37 m)	-442R	4/10	560	22	440	3-0
240 (13.1)	250 16.2		Collected 3 semples at drill	-443R	3.5/10	413	20	258	2.4
			344- 349 (104.85- K6.31m) - arab of sand	w78 ?	0				
			344-344 (10405-10657m) - abundant pus 2	w78 ?					
			349 (108.37m)-	u78 ?					
			First of 14ms @ 231' 231' 244' 255"						
250 (76.2)	210 79.25		255' 260' 262' 266' (70.4.71.93.74.37.76.8.	1076 - 4941	8410	630	43	2120	3.4
260 (79.75)	1700 82.3	,	\$ 77.72 74.25, 74.85, 81.01 mm)	445)	5.5/14	680	22	720	2.6
270 (82.3)	2Pm 85.34		Loss servicitie + daylor coverabilities	4461	1.5/10	570	39	381	2.4
<u>~</u> t		· · · ·	199.5' (60.8 m) and 210' (14 m)			1			
		··········	But no duil bould atton 210'-214						
			nele at z- service - surite						
			Amor affor services the ount at						
284/186.56)	296 (90.83)	Thrush is a me	Start to art work herets & articles						
			1556 meet now in transfer First hickory	I		-			
28 6 85-34	290 88.39		cale to serverally in darke north	44 5 R	₹//o	264	45	324	2.1
24/ 188.39	300 41.44		264 to 281 - hand of here the	44BR	4/10	251	46	430	1.8
			following section		+				
		·····	F. 1 A. M. M. 271 270 283 2805 3215			1			
	- - · · · · · · · · · · · · · · · · · ·		production and and and and		<u>-</u> _	1			
			•						

)

ļ

DRILL HOL	e4		РЯОЈЕСТ				PAGE_		
FROM	то	ROCK UNIT	DESCRIPTION	SAMPLE No.	RECOVERY	6 m	Pb	X.,	a.
			260-284 all broken but men						
			grinding in many places of 278'						
			Pauding 284' (86.5(m) 45"					ļ	
295 (40.83)	350 107.21	Carbonate schick	Carbonate-rich pliated rol						
		dark 14	Grew with daile bline . Calate						
			Throughant expecially in white						
300 191.44	310 94.49		hands	449R	6.4	322	25	63	1.6
310 (94.49)	320 97.54		300-303 calete lenses up to 6" Ka) 400 R	40	394	21	56	1.8
320 197.54	370 100-5B		Printe mainly dessens, only few	45/X	7.34 10	239	114	239	2.0
330 (100.58	340 103.13		knuds	4528	7.4	129	19	36	1.3
340(103.63	358 107.29		The sice sections - with out Hack	4/538	64/a	286	36	41	1.5
			bline have very little carbonate	•					
-			Fud rame at 295 298 303 307 311						
			321 3265 329 5 333 335 344.2						
			347 352						
			Mud cram 334-335 (101.8-102.1m)						
		₩ - I '	Banding 315 (96 2)450						
			332/10/.19 2450	•]	
		<u> </u>							
			-						
		* 1 7 - 1							
		5				1			
		• • • • • • • • • • • • • • • • • • •			- · · · ·				
							•		

)

LEGEND

R	OCK TYPES
INTRUS	IVES
19	Diabase
CAPPIN	S SEDIMENTARY UNIT
18	Greenish coarse clastic
17	Black slates
UPPER	PYROCLASTIC UNIT
16	Folioted fine-grained white tuff
15	Foliated grey dacite
14	Limy grey dacite
13	Foliated black porphyritic dacite
12	Block porphyritic (orthopyroxene) dacite
11.	Grey docite ; some black porphyritic docite
MIDDLE	SEDIMENTARY UNIT
10	Greenish sharpstone conglomerate
9	Grey to black slates
8	Mainly grifs and greywacke
7	Acidic tuffs
6	Block slotes

 SYMBOLS

 35°
 Bedding

 40°
 Foliation or clearage

 50°
 Fracture system

 5
 Mapped exposure (number indicates rock type)

 -- Geological contact (assumed)

 -- Slide area

 -- Crest of ridge

 ++
 Slashed control lines

Heliport

Lake

