GEOCHEMICAL REPORT on the

PROSERPINE PROPERTY (Warspite & Kumangetit Groups) 53⁰04', 121⁰30', 93H/3W, Barkerville Area Cariboo Mining District

Owner: R.J. Barclay, B. Price

by ·

J.T. SHEARER, M.Sc.

for McINTYRE MINES LIMITED

Vancouver, B.C.

ſ

December 29, 1978

TABLE OF CONTENTS

÷,

Ę

LIST OF ILLU	STRATIONS AND TABLES	ii
SUMMARY		iii
INTRODUCTION		1.
LOCATION AND	ACCESS	3.
CLAIM STATUS		4.
FIELD PROCED	URES	4.
GEOLOGY 1)	General	9.
2)	Stratigraphy & Lithology	9.
3)	Local Geology and Petrology	14.
4)	Mineralization	17.
GEOCHEMISTRY	1) Soil Survey	19.
	a) Warspite Orientation Grid	19.
	b) Soil Profiles	19.
	c) Property Grid	25.
	2) Rock Geochemistry	27.
•	3) Pin Money & King Fraction	28.
CONCLUSIONS .	AND RECOMMENDATIONS	31.
REFERENCES		32.
APPENDIX I	Statement of Qualifications	
APPENDIX II	List of Employees	
APPENDIX III	Statement of Costs	
APPENDIX IV	Analytical Techniques and Assay Certifi	cates
APPENDIX V	Probability Distribution Graphs	
APPENDIX VI	Petrographic Summary	

í

į

1

		LIST OF ILLUSTRATIONS AND TABLES		
FIGURE	1	LOCATION AND CLAIM MAP 1:50,000		2.
	2	GRID INDIEX MAP 1:7,200		5.
	3	REGIONAL GEOLOGY 1:250.000		10.
	4	REGIONAL STRATIGRAPHIC COLUMN		12.
	5	SCHEMATIC PROSERPINE STRATIGRAPHY		15.
	6	SOIL PROFILE 1		20.
	7	SOIL PROFILE 2		21.
	8	SOIL PROFILE 3		22.
	9	SOIL PROFILE 4		23.
:	10	SOIL PROFILE 5		24.
:	11	ORIENTATION SOIL GRID, WARSPITE SHAFT,	GOLD i: 1:240	n pocket
	12	ORIENTATION SOIL GRID, WARSPITE SHAFT,	LEAD 1:240	11
-	13	ORIENTATION SOIL GRID, WARSPITE SHAFT, COPPER-ZINC	ARSENIC- 1:240	ŧ,
-	14	NORTH SOIL GRID, GOLD	1:2400	
-	15	NORTH SOIL GRID, LEAD	1:2400	
]	16	NORTH SOIL GRID, ARSENIC	1:2400	u
נ	17	SOUTH SOIL GRID, GOLD	1:2400	u
נ	18	SOUTH SOIL GRID, LEAD	1:2400	II
1	19	SOUTH SOIL GRID, ARSENIC	1:2400	71
â	20	PIN MONEY SOIL RESULTS	1:6,000	29.
-	21	KING FRACTION SOIL RESULTS	1:6,000	30
		TABLES		
TABLE	1	CLAIM STATUS		7.

ŝ,

Ć

TABLE II THRESHOLD VALUES

ii

SUMMARY

- Interest on the property is focussed on the Warspite Shaft area where a low grade gold zone is reported to have been defined by drifting and underground drilling for a 12 m width and 121 m length. Original records have apparently been lost.
- 2) The claims are underlain by Snowshoe Formation metamorphosed quartzites, siltstones and shale. Petrographic examination of 39 representative specimens reveal substantial cataclastic deformation.
- 3) A 59 sample orientation soil grid, limited rock geochemistry and soil profiles were completed near the Warspite Shaft. Gold and lead values correlate closely with the apparent location of the low grade gold zone.
- 4) Systematic soil sampling was completed over most of the claims for a total of 25.8 line km. Several anomalies require follow-up work.
- 5) A minimum of 364 m of diamond drilling is recommended to test the reported low grade gold in regard to bulk tonnage potential.

INTRODUCTION

The Proserpine Property is drained by the richest placer creeks in the Cariboo. Lode prospecting began in the 1860's and intensive surface and underground work was carried out between 1933 to 1946. The claim group is situated along a major regional structure referred to as the Island Mountain anticlinorium which contains the Cariboo Gold Quartz and Island Mountain mines.

An intriguing, fragmentary report of disseminated, low grade gold mineralization with bulk tonnage possibilities attracted the interest of McIntyre Mines Limited. In 1945-56 a program by Barkerville Gold Mines Ltd. (affiliate of Pioneer Mines) on the Warspite claim consisted of about 273 m of drifting and 515 m of underground drilling. This work traced a 12.1 m thick bed of altered quartzite for a length of 121 m. Unfortunately, the only concrete reference to this program is a short summary in the 1946 B.C. Minister of Mines Annual Report. A "selected" quartizte sample ran 0.10 ounces of gold per ton. Prior to 1945, efforts were largely directed toward gold bearing quartz veins which occur in abundance throughout the claims.

Essentially, gold content, orientation and composition of the altered quartzite unit is unknown. Underground workings are inaccessbile due to cave at the portal and Warspite Shaft. Specimens of likely looking material on the dump assayed from trace to 7.6 ppm Au.

Subsequent to a field examination and orientation studies an exploration proposal (J. Shearer, June 20, 1978) was formulated calling for geochemistry and limited diamond drilling. However, due to other priorities and allowing for a comprehensive search of the Pioneer records, the drilling phase was postponed until 1979. The tenure requirements of reverted Crown Grants necessitate filing only actual work in the first year. After contacting officers of Bralorne Resources and discussions with former Pioneer employees connected with the Warspite program, it became apparent that records of the work in question have been lost.

A detail analysis of McIntyre's exploration rational incorporating preliminary results of the present sampling is given in a compilation and progress report (J. Shearer, August 30, 1978).

LOCATION AND ACCESS

The claims are mainly located in the southwest corner of 93H/3W bounded in the north by Cronklin and McCallum gulches as shown in Figures 1 and 2. Parts of 5 claims extend into 93H/14W. The isolated King Fraction is in the southeast corner of 93H/4E.

The main access is by a 4.0 km road turning off at Cronklin Gulch which is 1.6 km from Barkerville Historic Park. Old roads are present within a few feet of the proposed drill sites at the Warspite shaft. Several long, strike trenches facilitate movement throughout the northern half of the claims. A road up Grouse Creek provides access to the middle of the group.

The claims are characterized by open forest and gentle topography mainly around 1667 m elevation.

CLAIM STATUS

The property is composed of 48 reverted Crown Grants as listed in Table I and shown on Figure 1. Two small fractions are included with larger adjacent claims making a total of 46 "Modified Grid System" units. The Warspite claim was originally staked by F.J. Tregillus and associates in September 1916. The original posts were found using the Land Surveyor notes obtained in Quesnel. The present owner, Petra-Gem Explorations of Canada, acquired the property through the efforts of R.J. Barclay and B.J. Price.

For applying assessment credit the claims are grouped into: a) Warspite Group (40 units) and b) Kumangetit Group (4 units). Two isolated units; Pin Money and King Fraction are considered separately.

FIELD PROCEDURES

The orientation soil sampling was completed by A.E. Angus and J.Shearer on June 18, 1978. A method of compass and "Hipchain" measurements was used to locate sample sites. Because of the close spacing of this grid a greater accuracy was not needed.

A base line was established along the middle strike trench with stations marked every 30 m by 1 m wooden pickets. A 0.5 m picket was placed between basestations (15 m) to further mark the line. The location of the baseline trench is accurately known from basemaps obtained from W.V. Smitheringale, constructed by a transit survey throughout the property in the 1930's. The occasional wooden and metal pins are still visible. Soil sampling was conducted by T. Brown and D. Blake of Amex Exploration Services under contract to McIntyre Mines Limited. Samples were taken at 30 m intervals on lines 30 m apart down to 300 S. From 420S to 3000S

lines are 120 m apart. Slope corrections were made in the field but were only severe around 1500 S. A tie line was run along 300W with negligible overall corrections. Lines were run with compass and chain and marked by blazes. Sample sites are marked by tyvek tags.

All samples, with a few exceptions were taken from the B horizon with a grubhoe. A set of 5 soil profiles, Figures 6 to 10, indicate the typical soil development. Standard forms listing soil characteristics and topography were completed in the field. Analytical techniques used by Chemex Labs Ltd. are contained in Appendix IV.

TABLE I

REVERTED CROWN GRANTED MINERAL CLAIMS CARIBOO MINING DIVISION - PROSERPINE AREA (GROUSE CREEK

WARSPITE GROUP

NAME OF CLAIM	LOT NO.	RECORD NO.	RECORD DATE
Hard Cash	9564	608	20 February, 1978
Independence	9563	6 09	20 February, 1978
Kitchener	10558	610	20 February, 1978
Tipperary	9561	611	20 February, 1978
Warspite	9560	612	20 February, 1978
Penelope	11045	613	20 February, 1978
Mars	10982	615	16 March, 1978
AM No. 6	11236	616	16 March, 1978
Antler No. 2	11032	618	16 March, 1978
Star Fraction	11035	620	16 March, 1978
Luna	10983	621	16 March, 1978
Discovery	9565	623	16 March, 1978
Luft	11047	626	16 March, 1978
Tor	11050	627	16 March, 1978
Porphyry	10555	628	16 March, 1978
Pre Cambrian	10554	629	16 March, 1978
Aviator	10553	630	16 March, 1978
Axoic	10552	631	l6 March, 1978
Amos	10551	632	16 March, 1978
Andy	10550	633	16 March, 1978
Norah	11046	634	16 March, 1978
Granite Faction Tourmaline	11038 10556	635	16 March, 1978
Antler	11030	636	16 March, 1978
Venus	10979	637	16 March, 1978
AM No. 2	11232	638	16 March, 1978
Mercury	10980	639	16 March, 1978
AM No. 3	11233	640	16 March, 1978
Saturn	10981	641	16 March, 1978
AM No. 4 Nut Fr.	11234 11036	642	16 March, 1978

continued

NAME OF CLAIM	LOT NO.	RECORD NO.	RECORD DATE
AM No. 5	11235	643	16 March, 1978
Tweedsmuir	11222	644	16 March, 1978
Grouse	11029	645	16 March, 1978
Jubitor	10978	646	16 March, 1978
AM No. 1	11231	647	16 March, 1978
Triumph	11223	648	16 March, 1978
Antler No. 3	11033	650	20 March, 1978
True Blue	10557	607	20 February, 1978
Antler No. 4	11034	650	20 March, 1978
• •			

1 :

•.

KUMANGETIT GROUP

NAME OF CLAIM	LOT NO.	RECORD NO.	RECORD DATE
Gogetter	10559	604	20 February, 1978
General Currie	9570	605	20 February, 1978
Blighty	9569	606	20 February, 1978
Kumangetit	10560	624	16 March, 1978
Ptarmigan Fraction	11049	622	16 March, 1978
Hackle	11048	625	16 March, 1978

ISOLATED CLAIMS

NAME OF CLAIM	LOT NO.	RECORD NO.	RECORD DATE
KING Fraction	11241	617	16 March, 1978
Pin Money	10420	619	16 March, 1978

Ť

ł

GEOLOGY

1) General

As a result of the large gold production, both lode and placer, the Barkerville-Wells area has been the subject of five full scale government mapping programs culminating in the work by Sutherland-Brown(1957). Several detail investigations on mining properties have been published (Benedict (1945), Skerl (1948).

The geology of the area is not simple. Sutherland-Brown summarizes the problem:

"Multiple deformation has rendered most of the rocks schistose and tightly compressed in complex repetitive folds. A subtlety of rock differences, an obscurity of bedding, facies changes in some formations, and a variation in intensity of hydrothermal alteration all combine to make a complex relationship which poor rock exposure further compounds."

Regional geology is shown on Figure 3. A schematic stratigraphic column is shown as Figure 4.

2) Stratigraphy and Lithology

The thick predominately coarse clastics of the Kaza Group (Hadrynian,Windermere equivalents) are the oldest rocks and conformably underlie the Cunningham Formation. The Cunningham Formation consists primarily of massive limestone with lesser dolostone, shale, and sandstone thickening westward away from the Rocky Mountain Trench.

The Yankee Belle Formation is composed of shales and siltstones together with minor quartzite and limestone in the eastern Cariboo Mountains but becomes thicker and more calcareous toward the west.

(from SuttierLand - Brown 1957)

The Yanks Peak Formation is dominated by distinctive clean quartzites. Regional correlation of the Yanks Peak Formation with the basal Gog Group and the Hamill Group 150 miles southeast in the Big Bend area by Young et al (1973) has been generally accepted. A rough correlation of the underlying rock units can also be made. Facies changes within the clastic units suggests a more distal part of the shelf environment to the west. The Midas Formation is composed mostly of black, quartzose fine grained rocks.

The Snowshow Formation is the youngest formation of the Cariboo Group, although Campbell et al (1973) consider the Snowshoe Formation as Kaza Group equivalent. It is the most intensely studied because the majority of productive vein and replacement systems are found along favourable structural settings within the Lower Snowshoe Formation.

Sutherland-Brown describes the Snowshoe Formation as follows:

"The Snowshoe Formation is composed predominantly of clastic rocks. In general the amount of coarse detrital particles decreases eastward and probably upward. In the west the formation is composed dominantly of coarse clastic rocks, but in the east only the lower 200 to 300 feet is dominantly coarse. The clastic rocks are subgreywackes which are characteristically poorly sorted, schistose, and deposited in very lenticular beds. The proportion of clastic to carbonate rocks in the sections exposed in the mines averages about 15 to 1. The limestones are characteristically thin, lenticular and impure.

The arenaceous rocks are mostly micaceous quartzites which are normally a middle to dark grey, but can be light brown or greenish-grey. The typical rock is a darkgrey coarse - to medium-grained micaceous quartzite in which the large quartz eyes are black or opalescent. "

The Slide Mountain Group unconformably overlies the Snowshoe Formation. It contains a typical "Cache Creek" Assemblage of ribbon cherts, limestone and basic volcanics.

FIGURE 4

•

Idealized Regional Stratigraphy

Thickness		Unit and Thickness	Lithology		
		TILL, river gravels			
4500'+		Slide Mountain Group	Chert, argillite		
1000'+		Snowshoe Formation	Grev to brown, micaceous		
		(see note below)	<pre>guartzite; brown, grey or green phyllite, metasiltstone; black to whie limestone, granule</pre>		
	leo)		conglomerate.		
1000'+	(г. Ра.	Midas Formation	Black to dark grey, guartzose phyllite, and metasiltstone; black to grey limestone.		
0-200'	O GROUP	Yanks Peak quartzite	Grey to white, massive medium- grained quartzite.		
300-500'	CARIBC	Yankee Bell Formation	Brown phyllite, metasiltstone, fine grained quartzite.		
2000'+		Cunningham limestone	Thinly bedded to massive, grey finely crystalline limestone, buff, coarsely crystalline ferroan dolomite; minor limy		
			phyllite.		
6000'+	-	Kaza group (Hadrynian)	1000' white cross bedded quartzite. 5000'+ green schist, schistose greywacke, micaceous quartzite.		
			base not seen		
		I	note: according to interpretations by Campbell et al 1973 the Snowshoe Formation is considered equivalent to the Kaza Group.		

.

12.

-

The only intrusives with any relationship to the Cariboo Group are the Proserpine dykes. The Proserpine dykes are quartz porphyries that are commonly very altered. Most dykes are 1 to 4 feet wide.

c) Structure

The Cariboo Group has been closely compressed into northwesterly trending complex folds which are overturned toward the southwest. All folds plunge at low angles to the northwest. Most folds are asymmetrical and vary in cross-section along strike. The original stratigraphic succession is disrupted throughout many folds by shearing, rupture and flowage.

The most important major structure in the Warspite area is the Island Mountain anticlinorium which can be traced from Grouse Creek to Island Mountain and contains the gold ore bodies mined by Cariboo Gold Quartz and Newmont.

Because of the spatial association of economic gold vein mineralization and northerly striking faults coupled with the presence of readily fractured host rocks, an emphasis on defining major faults characterizes all previous investigations. A major fault follows the trace of Grouse Creek with a dextral separation of about 240 m.

Smitheringale (1940) recognizes at least three 005[°] to 345[°] trending faults. Two of these faults occur near the Warspite showings and have apparent displacements of around 100 m.

Smitheringale (1940) describes the main rock units as follows:

"The rock units observed consist of two zone of dark to grey quartzites with interbedded argillaceous members; a thinly bedded very fissile group of argillites; a sericite schist with both finely quartzitic and argillaceous members; and a brownish to buff weathering sericitic quartzite with some argillite. Cleosely associated with the latter are quartzites and argillites with a greenish base. A few scattered dikes of quartz porphyry were observed."

From limited observations, check sampling and the data presented by Smitheringale, an approximate stratigraphic sequence is shown in Figure 5. A complex hinge line of a subsidiary antiform appears to trend just north of the Warspite shaft. Detail mapping for at least 1500 feet north of the shaft is recommended to define this possible important structure.

Geological interpretation is complicated by intricate interlacing of lenticular beds. Individual lenses often have gradational contacts and vary in compostion along strike. Smitheringale notes that more work is needed to define the smaller scale folding that he has indentified in the sericite schist unit.

3) Proserpine Geology & Petrology

Natural outcrop is scarce on the Proserpine Prospect, however the extensive hand and Dozer trenches completed during the 1930's and 40's allows a reasonable geological picture to be constructed. Much of the trenched area is now sluffed but when the trenches were fresh, Dr. Wm. V. Smitheringlae produced an overall interpretation at 1:2400 based on detail mapping at 1:600. Beds generally strike 295° and dip 60° to 80° NE.

FIGURE 5

SCHEMATIC STRATIGRAPHIC COLUMN WARSPITE GROUP

REPETITION OF SECTION

+ thin carbonate horizons

THICKNESS

A detail examination was made of 39 thin sections cut from representative lithologies. The petrographic suite consists of 25 surface and 14 Warspite dump specimens. A summary description of each specimen is included in Appendix VI and locations are shown on Figure 14.

As discussed by Sutherland Brown (1957) on pages 22, 29-31 and 94-96, the rocks underlying the claim group have undergone substantial mechanical deformation. This deformation and much of the attendent chemical metamorphism is not readily apparent on a macroscopic scale.

Evidently the principle stress exceeded the breaking strength of the rock constituents resulting in extensive rupture. All thin sections are characterized, to differing degrees, by cataclastic features such as microfracture of individual grains, large grains broken into mosaic granules and lattice displacements. In addition the chemical processes of solution, recrystallization and formation of layer silicates are well developed.

In spite of the intense metamorphism many primary fabric relicts are fairly conspicuous. A "porphyroclastic" (Turner and Verhoogen 1960) texture is common. Relict framework grains usually exhibit undulatory extinction, marginal granulation, bending of cleavage cracks and microinclusion streaks suggesting intracrystalline gliding. True augen development was only noted in a few examples. Original sorting is highly variable when sufficiently well preserved for determination. Based on this sample suite, no general statement can be made on the probable degree of primary sorting where granulation is intense.

The term micaceous quartzite (Sutherland Brown 1957) may not be acceptable if detail property mapping is warranted. An accurate scheme of rock nomenclature should recognize a deformation component. The most common rock type in the coarser grained clastics is a phyllonite or phyllonitic quartzitesiltstone where the fine-grained structure of a phyllonite is the reduction of grain during deformation of originally coarser rocks.

Consideration should be given to collecting geographically oriented specimens for comparison of data determined microscopically and in the field. The target gold mineralization within the altered quartzite could be some function of granulation intensity in relation to fold pattern or faulting. The degree of leaching whereby carbonaceous matter is removed, grain size increased and a mosaic texture produced maybe another important factor.

4) Mineralization

With the exception of the Pioneer Mines Ltd. program in 1945-46, all previous exploration has been for quartz veins or bedded pyritic replacements. Not having the Pioneer records precludes commenting on their exploration strategy. Previous reports, Dolmage (1939),1940),Wilson et al(1933), Woods-Smith (1939) and Smitheringale (1940) indicate quartz veins were the only target.

However, the unique qualities of the zone outlined by Pioneer was not totally unrecognized by earlier workers. Hanson (1935) notes:

> "At the time of the writer's visit, the adit had penetrated a light coloured rock full of irregular quartz veinlets. The rock is too much altered for identification but is believed to be a quartz-porphyry."

Dolmage (1940) comments:

"Still farther back in the tunnel is a closely spaced group of well mineralized crossed veins which occur in a very favorable bed of coarse quartzite which is itself intensely altered and impregnated with pyrite. Richmond got some fairly good samples from these veins, and the writer took three additional ones, one of which ran 0.41 ounces of gold per ton. If the main vein should be found to extend to this quartzite, some highly favorable conditions might be encountered. The bed itself contains so many veins and is so intensely mineralized that it warrants some testing. It is exposed at two places on the surface to the southeast of the tunnel and is not here noticeably mineralized. nevertheless it looks so promising in the tunnel that it should not be passed by without some further investigation."

The two exposures mentioned by Dolmage were not positively identified in the present examination, but all likely looking outcrops were sampled with poor results.

A large amount of pyritic, silicified quartzite is present on the dump. Samples of this rock ran from 10 ppb to 7600 ppb gold.

There is a possibility that the quartzite bed is actually irregularly mineralized only within the small tranverse quartz veinlets and does not have a regular pervasive gold content. If this is the case then representative samples will be difficult to obtain.

GEOCHEMISTRY

1) Soil Survey

a) Warspite Orientation Grid

On June 16, 1978, a detail orientation soil grid of 50 close spaced samples was completed over the assumed position of the pervasive gold zone. The results are shown on Figure 11,12 and 13 (in pocket).

Extrapolating the positional information from old plans to Figure 13, the soil samples directly over the pervasively mineralized quartzite bed have a definite anomalous response for Au and Pb with weaker, threshold values in Cu and Zn. Arsenic exhibits a somewhat erratic but contourable pattern. Gold in soils is elongated in the general strike direction and gives the most distinctive indication of the zone. The other elements are elongated to the north which is actually slightly up-slope but could indicate dispersion from a down dip extension.

Lead, zinc, copper and arsenic have anomalous values in the extreme western corner of the grid but gold is not represented.

There is a wide, prominent gold anomaly to the west of the projected underground workings. This probably indicates the extension of the gold bearing quartz vein that was intersected in the shaft. Some minor downslope contamination from the shaft dump is likely.

It is evident that soil geochemistry, in particular Pb and Au, will be a useful guide to this disseminated-type mineralization

b) Soil Profiles

Five soil profiles were taken throughout the grid area. Locations are shown on Figure 14. Profiles are surprisingly difficult to obtain due to dense roots and pebbles. Although natural outcrop is not abundant, solid bedrock is commonly encountered only a few inches below surface. Samples were analysed for Cu, Zn, Pb, Ag and Au plus cold extractable Cu, Zn, Pb, and Ag. Figures 6 to 10 show results for Cu, Zn and Pb for both cold (Cx) and total(Tx) extractions. Analytical technique is outlined in Appendix IV.

FIGURE6

FIGURE 6

7

1 T.

Profiles 1, 2 and 4 exhibit large Cx/Tx ratios, especially for lead. This indicates relatively weak metal bonds suggesting dominately hydromorphic accumulation. The marked decrease of all elements with increasing depth in profile 1 is probably due to substantial physical down slope creep from the source. Profile 3 is located near the Warspite shaft within a main coincident Au, Pb, and As anomaly. Metal content increases sharply with depth and cold extractable lead is very low, indicative of dominately residual origin. The general high mobility of zinc is reflected in a high Cx/Tx ratio. Cold extractable lead is actually greater than total lead in profile 5. This is caused by an insoluble Pb complex which forms during the perchloric-nitric acid leach in the presence of excess Ba or SO4. A variation of up to 50% of total Pb content is experienced depending on the time the leachate is allowed to stand.

Soil profiles show that some anomalous areas (profile 2) are largely hydromorphic whereas the large coincident Au,Pb-As Warspite shaft anomaly is likely dominately residual for Pb. The analytical technique should be carefully controlled in regard to lead total extraction.

c) Property Grid

A total of 942 soil samples were taken on a grid extending from the Norah claim in the north to the Antler claim in the south as shown in part on Figure 2. The results for Au, Pb and As are plotted on Figures 14 to 19 (in pocket).

Graphical analysis of the frequency distributions as cummulative percentage probability plots (Parslow 1974, Sinclair 1976) and histograms is contained in Appendix V. The curves were partitioned where necessary and a threshold value taken at an arbitrary 95% of the lower population as tabulated below:

TABLE II

THRESHOLD VALUES

(from Cummulative % Probability Plots in Appendix V)

Cummulative percentile of lower population

	50%	95%
GOLD	Truncated	40 ppb
LEAD	30 ppm	160 ppm
ARSENIC	4 ppm	44 ppm
COPPER	8 ppm	40 ppm
ZINC	40 ppm	150 ppm
SILVER	Truncated	1.5 ppm

A major consideration when evaluating gold significance in soils is the "censorship" of low values (10 ppb) by the analytical method. Chemex personnel (Appendix IV) adivse that strict reproducability is not possible below about 40 - 50 ppb on account of sifted sample inhomogeneities. Neutron Activation analysis will give much greater accuracy for the same costs when this method is available on a commercial basis.

An inspection of Figures 14 and 17 (Gold) reveals several east-west trending anomalous areas approximately parallel to local stratigraphy. A strongly anomalous area immediately downslope from the Warspite shaft, 30N to 150N, reflects previously know mineralization and perhaps minor contamination from the dump. High values on 180S are probably due to small transverse quartz veins exposed by trenching. Other small or isolated gold anomalies that should be checked by prospecting and limited follow up soils are;660S - 180W,1260S - 150W, 1650S - 120W, 1950S - 2250S and 2850S. The northeastern portion of the 30 m X 30 m grid has remarkably low gold, lead and arsenic responses.

Several strong lead anomalies are indicated by the 1000 ppm contour shown on Figures 15 and 18. The area 90N to 00 overlaps with the previously discussed gold high. In the north from 270N - 330N, 90W - 270W the complex lead pattern requires follow up work. Small galena bearing transverse veins are well defined at 660S - 150E and likewise the lead bearing mineralization exposed in the Bell and Newberry adits. Lower amplitude lead results appear on Figure 18 south of the Grouse Creek fault.

Higher arsenic values (Figures 16 and 19) generally coincide with both lead and gold most notably near the Warspite workings. Isolated anomalies occur at 2850S and 2100S to 2250S.

In summary soil geochemistry has outlined all of the old workings where old data for comparison is available. If the proposed drilling intersects a significant pervasive gold zone in the Warspite workings a systematic follow up of coincident Au-Pb anomalies and fill in of the south grid would be warranted.

2) Rock Geochemistry

A suite of 39 rock specimens containing several examples of each major lithological type was run for the following 12 elements; Ba, Cu, Pb, Zn, Ag, Au, Sr, Ca, Na, As, Sb, Hg. Petrographic descriptions of most specimens are contained in Appendix VI. Likely looking candidates for the reported gold bearing silicified, pyritic quartzite found on the Warspite dump are 57951, 57955 and 57957 with possiibly 57958, 59, 61, 62 and 57964. With the exception of 57955 which ran 7600 ppb Au the other specimens are much the same as the rest of the collection. While values up to 60 ppb Au are encouraging geochemically they certainly do not have any economic significance.

The Proserpine dyke (57595) contrasts sharply in Ba, Na, Pb, Sr and Mg to the enclosing metasediments.

This limited sample suite indicates that major lithologies have similar trace element content and no systematic variations are apparent.

3) Pin Money and King Fraction

The Pin Money and King Fraction are isolated from the main Proserpine claim block as illustrated on Figure 1. One day of soil sampling and prospecting was spent on each claim. The claims were located by carefully measuring along the Cronklin Gulch- Warspite road and then traversing to the approximate claim boundary as shown on current claim maps and figures drawn by Richmond (1940). A base map was constructed from 1:50,000 topographic maps which also have the crown grants plotted.

Results of sampling on Pin Money are shown on Figure 20. Geological notes are taken from Sutherland-Brown (1957). Apparently the area is somewhat "higher" stratigraphically than the Warspite Group as indicated by extensive carbonate units immediately to the southeast. A prominent Proserpine quartz porphyry dyke occurs in the center of the claim. Gold content is anomalous for several samples near a large area of trenching on quartz veins but Cu, Pb, Zn, Ag and As results are generally low.

The King Fraction (Figure 21) straddles a major normal fault (Barkerville Fault) marking the Williams Creek valley. This fault is thought to have at least 300 m of displacement and separates Midas Formation black phyllites from Snowshoe Formation micaceous quartzites. Soil samples are characterized by anomalous gold values throughout the claim although other elements are within background levels. The source of the high gold values should be investigated by soil profiles to check for alluvial concentration or contamination.

1997 - S.

i

- · · ·

CONCLUSIONS AND RECOMMENDATIONS

Pervasive gold mineralzation is reported to have been investigated by Pioneer Mines Ltd. by an extensive program of underground drifting and diamond drilling in 1945-46. The dimensions of the zone are quoted as 40 feet wide and was sampled 400 feet along strike with an indicated grade in the neighbourhood of 0.1 oz Au/ton. This grade figure is based on one sample and should be taken as only a rough guide.

McIntyre in 1978 has completed preliminary surface rock sampling and a comprehensive soil grid. The Warspite area is outlined by coincident Au, Pb, and As soil anomalies with several large subsidiary highs throughout the property. An overall geological interpretation has been obtained from Dr. Wm. V. Smitheringale supplemented by thin section examination. However, the true significance of the Pioneer work can only be property assessed by an underground sampling program or a thorough study of the detail Pioneer reports. Unfortunately neither of these avenues can be acted upon due to badly caved workings and unavailability of records. Surface rock sampling has not proven acceptable on other properties in the district.

It is considered essential, therefore, to proceed with a short diamond drill program of 365 m minimum to fully test and verify the nature of the reported pervasive-type gold mienralization. Detail mapping around the Warspite workings should be completed to assess the possibility of additional gold zones.

Respectfully submitted,

J.T. Shearer, M.Sc., F.G.A.C. Project Geologist

REFERENCES

Bacon, W.R., 1975 Lode Gold deposits in Western Canada A.I.M.E. 1975 meeting, Portland, Ore. Benedict, P.C. 1945 Structure at Island Mountain Mine Trans., C.I.M. Vol. 48, p 755-770. 1948 Island Mountain Mine C.I.M. 1948 Spec. Vol. p 149-162. Campbell, R.B., Mountjoy, E.W., and Young R.G., 1973 Geology of McBride Map Area, B.C. Geol. Suv. Canada Paper 72-35, 104 pp. Dolmage, V., 1938 Proserpine Gold Mines Ltd. Proserpine Mines Report 16 pp. 1940 Gold deposits of Proserpine Mountain Proserpine Mines Report 5 pp. Guiget, M., 1961 Cariboo Gold Quartz Western Miner July 1961, p 21-24. Hanson, G., 1935 Barkerville Gold Belt G.S.C. Memoir 181. Johnston, W.A. and Uglow, W. Placer and vein gold deposits of Barkerville G.S.C. Memoir 149. Long, A.H., 1948 Regional Structure of Barkerville District C.I.M. 1948 Spc. Vol. p 141-149. Parslow, G.R. 1974 Determination of Background and Threshold in Exploration Geochemistry J. Geochem. Explor, 3: p 319-336. Price, B.J., 1976 Proserpine Property Goldrop Mines report, 21 pp. Sinclair, A.J., 1976 Application of Probability Graphs in Mineral Exploration Spec. Vol. 4, Assoc. Expl. Geochem. 95 pp Shearer, J.T., 1978 Interoffice Correspondence - Proserpine (Grouse Creek) Prospect, McIntyre Mines Limited files. June 30, 1978 Exploration Proposal, Proserpine Prospect McIntyre Mines Limited files. Aug. 30,1978 Compilation and Progress Report, Proserpine Prospect Sker1, A.C. 1948 Geology of the Cariboo Gold Quartz Mine, B.C. Econ Geol Vol. 43 p 571-597. Smitheringale, W., 1940 Proserpine Prospect Privateer Mines report, 17 pp.
Turner, F.J. & Verhoogen, J., 1960 Igneous and Metamorphic Petrology 2nd Ed; McGraw-Hill Co, 1960. 694pp

Wilson, R.R., Campbell, C.M. and Galloway, L.D., 1933 Proserpine Syndicate, Proserpine Syndicate Report, 23 pp.

Woods-Smith, T.A., 1939 Proserpine Mines Proserpine Syndicate Report, 12 pp.

Young, F.G., Campbell, R.B. and Poulton, T.P. 1973. The Windermere supergroup of the southeastern Canadian Cordillera. University of Idaho - Belt Symposium 1, pp 181-203.

ł

APPENDIX I

STATEMENT OF QUALIFICATIONS

the second se

APPENDIX 1

STATEMENT OF QUALIFICATIONS

I, J.T. Shearer of the City of Port Coquitlam in the Province of British Columbia, hereby certify that:

- 1} I am a graduate of the University of British Columbia (1973) B.Sc., and University of London, Imperial College (1977) M.Sc., DIC.
- 2) I am a Fellow of the Geological Association of Canada.
- 3) I have worked continuously in Mineral Exploration since 1973 for McIntyre Mines Limited and Cities Service Minerals Corp.
- 4) I personally worked on the Warspite and Kumangetit Groups between June and August 1978. This report is based on an interpretation of data collected.

Dated at Vancouver, British Columbia November 27,

J.T. Shearer, M.Sc., F.G.A.C.

APPENDIX II

LIST OF EMPLOYEES

•

÷

LIST OF EMPLOYEES

Proserpine Group

ĺ,

DATES	NAME	TITLE	ADDRESS
June 16-18 July 27 Aug. 18-24	J.T. Shearer	Geologist	R.R.#1, Mason Ave. Port Coquitlam, B.C.
June 16-18 July 27 Aug. 22-25	A.E. Angus	Prospector	12474 Crescent Road Surrey, B.C.
Aug. 18,19	R. Good	Field Assistant	General Delivery Quesnel, B.C.
Dec. 13-15	G. Ensor	Secretary	2812 West 10th Ave. Vancouver, B.C.
Aug. 22 -	Amex Services	Managan	Kamloops, B.C.
Sept. 5	R.E. Brown	Soil Sampler	659 Richmond Ave. Kamloops, B.C.
Aug. 22- Sept. 5	D. Blake	Soil Sampler	ll7 Thor Drive Kamloops, B.C.
Drafting			
Aug 18,19,20	R. Cawood	Draftsman	220 Front Street Quesnel, B.C.
Sept.	F. Clark	Draftsman	448 Seymour St. Vancouver, B.C.
Aug.	T. Falck	Draftsman	4609 Hoskins Road North Vancouver, B.C.
Sept.	A. Gunther	Draftsman	Ste. 5100, Commerce Court West Toronto, Ontario

APPENDIX III

STATEMENT OF COSTS

ł

.

WAGES			TOTAL	WARSPITE	KUMANGETIT
J.T. Shearer	Field 10 days @ \$80/d Office 10 days @ \$80/d	lay lay	800.00 800.00	720.00 600.00	80.00 200.00
A.E. Angus	Field 6 days @ \$80/d	lay	480.00	480.00	
R. Good	Field 2 days @ \$75/d	lay	150.00	150.00	
A. Gunther	Office 3 days @ \$65/d	ay	195.00	195.00	
T. Falck	Office 4 days @ \$65/d	ay	260.00	260.00	
GEOCHEMICAL CON Amex Exploration Invoice 78 20 days by	MTRACT SERVICES on Services Ltd., Box 2 3-74, wages, supplies & 7 T. Brown and D. Blake	86, Kamloops, transport	B.C. 3,324.40	2,851.67	472.73
ACCOMODATION AN	ID MEALS				
Amex Exploratio	n Hubs Motel - 16 day	s @ \$24.15/day	7 386.40	331.45	54.95
McIntyre Mines	Hubs Motel - 10 day	s @ \$18.90/day	7 189.00	189.00	
Meals -Total Co	st 48 man days @ \$8.37	/man	401.83	373.70	28.13
TRANSPORTATION Gas bills for 2 Truck costs 1 Sample Shipment	trucks 56 miles @ 20¢/mile s Bus		159.22 31.20 6.90	148.07 31.20 6.90	11.15
CONTRACT DRAFTI	NG				
R. Cawood, Circ	le Drafting, Quesnel 5	hrs @\$15/hr	75.00	75.00	
Versatile Indus	tries, Vancouver 22	hrs @\$12/hr	264.00	226.46	37.54
PETROLOGY					
Rock cutting (8	hrs)	~. 7 .	40.00	30.00	10.00
Thin Sections (Vancouver Petrographic	s Ltd.)	256.25	192.19	64.06
GEOCHEMISTRY (C	HEMEX LABS)				
Invoice: 28082	628 soil samples @	\$7.82/sample	4,910.96	3,862.96	1,048.00
27978	49 rocks & soils,v	aried elements	828.83	663.06	165.77
33777	15 rocks @ \$2.98/s	ample	44.62	44.62	
27300 27915	52 soils &15 rocks 294 soils @\$7/sampl \$2,204.09 less 250	,varied elemen e plus 38 rock .24(charges to	ts 544.63 s	544.63	
	King Fraction and	Pin Money)	1,953.85	1,953.85	
MISCELLANEOUS					
Grid pickets			53.87	53.87	
Paint, flagging	, soil bags		82.28	82.28	
REPORT PREPARAT	ION AND REPRODUCTION		420.00	336.00	84.00
		TOTALS	\$16,658.24	\$14,401.91	\$2,256.33

٠

STATEMENT OF COSTS

PIN MONEY

WAGES	
A.E. Angus l day August 24, 1978 @ \$80/day	\$ 80.00
TRANSPORTATION	
Vehicle cost plus gas	4.50
ACCOMODATION AND MEALS	
Hubs Motel 1 day @ \$9.00/day plus \$8.37 for meals	17.37
DRAFTING	
Versatile Industries Ltd. 3 hrs @ \$12/hr	36.00
GEOCHEMISTRY (CHEMEX LABS)	
Invoice 27915 16 soils @ \$7.82/sample	125.12
REPORT PREPARATION AND REPRODUCTION	40.00
TOTAL	\$ 302.99

•

.

-

1

STATEMENT OF COSTS

KING FRACTION

WAGES					
A.E. Angus	l day August 25,	1978,	@ \$80.00/day		\$ 80.00
TRANSPORTATION					
Vehicle cost plus ga	is				4.50
ACCOMODATION AND MEA	LS				
Hubs Motel	 1 day @ \$9.00/da	y plus	\$8.37 for meals		17.37
· · · · · · · · · · · · · · · · · · ·	-			·	
DRAFTING					
Versatile Industries	Ltd. 3 hrs @	\$12/hr.			36.00
		<i>+</i> ,	-		
CEOCHEMISTRY (CHEMEX	(LARS)				
CEOCHIMISTRI (CHIMIN	$\frac{16}{16} = \frac{16}{16} = 16$	(asmal)			125 12
Invoice 27915	10 20112 6 27.02	/Sampit	2		123.12
					40.00
REPORT PREPARATION A	ND REPRODUCTION				40.00
			TOTAL		\$ 302.99

ł

APPENDIX IV

ANALYTICAL TECHNIQUES AND ASSAY CERTIFICATES

۰.

Mr. J. Shearer- McIntyre Mines Ltd.,

SAMPLE PREPARATION

<u>Soils, silts, lake bottom sediments</u> - Samples are sorted and dried at 50°C for 12 - 16 hours. Dried material is then screened to obtain the -80 mesh component of each sample. Coarse material is discarded unless other instructions are received. Other mesh sizes are available if required.

Rock chips or pieces of core designated as rock geochem samples are dried, crushed and then pulverized to -100 mesh in a ring grinder. The sample is homogenized and packaged.

SAMPLE ANALYSES

(a) ppm Copper, Lead, Zinc, Silver: A 1.0 gm portion of sample is digested in conc. perchloric-nitric acid ($HClO_4-HNO_3$) for approx. 2 hrs. The digested sample is cooled and made up to 25 mls with distilled water. The solution is mixed and solids are allowed to settle. Copper, lead, zinc and silver are determined by atomic absorption techniques using background correction for lead and silver analysis.

(b) <u>ppm Arsenic</u>: Digest as above. Generate arsine using the borohydride technique and determine the arsenic concentration by atomic absorption analyses.

(c) <u>ppb</u> Gold: 5 gm samples ashed @ 800°C for 1 hr., digested with aqua regia - twice to dryness - taken up in 25% HCl⁻, Au extracted as the bromide into MIBK and analyzed via AA.

(d) <u>ppm Ba, Sr, Mg, Ca & Na</u>: 0.2 - 0.5 gm samples digested with $HClO_4$ -HNO₃-HF, to dryness taken up in 10% $HClO_4$ with an ionization suppressent added and analyzed via A.A. - acetylene-nitrous oxide for Ba, Mg, Ca & Sr.

(e) \underline{ppm} Te: 1 - 5 gm digested with aqua regia, the Te extracted into MIBK as the bromide and analyzed via A.A. using background correction.

(f) <u>Cold Extractable Metals</u>: 1 gm sample is leached for 1 hour with 25 mls of 0.1M HCl in a hot water bath, filtered (Whatman #31) and then analyzed via standard A.A. techniques.

(g) Assay Ag & Au - Fire Assay Method: 0.5 Assay ton sub-samples are fused in litharge, carbonate and silicous fluxes. The lead button containing the precious metals is cupelled in a muffle furnace. The Ag & Au alloy is weighed on a micro balance, parted, annealed and again weighed as Au. The difference in the two weighings is Ag. Results reported in Oz/Ton.

For low grade samples and geochemical materials 10 gram samples are fused as above with the addition of 10 mg of Au-free Ag metal and cupelled as above. The silver bead is parted with dilute HNO₃ and then treated with aqua regia. The salts are dissolved in dilute HCl and analyzed for Au on an atomic absorption spectrophotometer to a detection of 5 ppb.

 212
 BROOKSBANK
 AVE.

 NORTH VANCOUVER, B.C.
 CANADA
 V7J 2C1

 TELEPHONE:
 985-0648
 AREA CODE:
 604

 TELEX:
 043-52597
 104-52597
 104-52597

ANALYTICAL CHEMISTS

• GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd.,

1003 - 409 Granville St.,

Vancouver, B.C.

ATTN: V6C 1T8

ROCKS PROSPERINE B.C. GOLD CERTIFICATE NO. 45547 INVOICE NO. 27978 RECEIVED

ANALYSED

August 29, 1978 September 8, 1978

SAMPLE N	PPM	PPM	РРМ	PPM	PPM	PPM	РРВ
SAMIFLE N	Cu Cu	Мо	<u> </u>	Zn	Ag	Ni	Au
57576	6	1	1	6	0.1	330	10
57577	1	1	1	4	0.1	430	<10
57578	8	1	2	4	0.1		10
57579	2		2	16	0.1		10
57580	2		10	10	0.1		<10
57581	2		20	28	0.1		<10
57582	2		68	60	0.1		<10
57583	2		18	4	0.1		<10
57584	4		8	8	0.1		<10
57585	2		2	4	0.1		<10
57586	2		2	1	0.1		<10
57587	4		1	24	0.1		<10
57588	4		2	12	0.1		<10
57589	2		4	1	0.2		<10
57590	2		2	1	0.4		10
57591	16		2	24	0.1		<10
57592	2		12	10	0.1		<10
57593	6		2	14	0.1		<10
57594	6		2	28	0.1		<10
57595	14		160	82	0.1		<10
57596	32		194	114	0.1		<10
57597	26		62	940	0.1		<10
57598	8		78	38	0.1		<10
57599	4		10	б	0.1		<10
57600	8		12	4	0.1		<10
57951	14		8	14	0.2		<10
57952	24		44	42	0.2		<10
57953	8		10	24	0.1		<10
57954	16		54	78	0.2		<10
57955	6		4	2	1.2		7600
57956	20		34	14	0.4		<10
57957	18		46	18	0.2		10
57958	6		6	6	0.1		40
57959	4		6	4	0.1		<10
57960	16		24	66	0.2		<10
57961	4		20	22	0.1	·	20
57962	6		24	6	0.1		<10
579 ₆ 3	48		20	94	0.2		<10
57964	8		14	4	0.1		<10
NOTE ;	Silver values	below th	ne detection	limit of	0.2 maa	are reported	1 as 0.1 ppm.
STD.	72	5	16	160	<u> </u>		v.x ppm.
	• **	,	10	100	U.I	2	

CERTIFIED BY:

CERTIFICATE NO. 45548

INVOICE NO.

ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

ROCKS OSPERINE B.C. GOLD

RECEIVED August 29, 1978

27978

140 170	•		IX.				
ATTN YOU 110		PROSPERINE B.C. GOLD ANALYSED				ANALYSED	September 8, 1978
SAMPLE NO. :	PPM	PPM	РРМ	РРМ	PPM	PPB	
	Cu	Pb	Zn	Ag	As	Au	
57976	б	68	178	0.2	35	<10	
57977	46	1	96	1.2	35	<10	
57978	84	1	90	1.8	35	10	
57979	52	1	112	1.0	30	600	
57980	176	8	64	1.2	4	<10	

NOTE: Silver values below the detection limit of 0.2 ppm are reported as 0.1 ppm.

CERTIFIED BY:

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

ANALYTICAL CHEMISTS

Vancouver, B.C.

GEOCHEMISTS

. REGISTERED ASSAYERS

ROCKS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., CERTIFICATE NO. 45547 INVOICE NO. 27978 RECEIVED August 29, 1978 ANALYSED September 8. 1978

· · · · · · · · · · · ·

V6C_1T8	V6C 1T8		R	OCKS			August 27, 1970		
ATTN: 00 110			PROSPERIN	NE B.C. GOLD		ANALYSED	September 8, 19		
SAMPLE NO :	РРМ	PPM	PPM	РРМ	PPM	PPM			
	As	Ba	Sr	Ca	Mg	NaNa			
57576					-				
57577									
57578									
57579	1	700	65	400	1240	0,90			
57580	3		20	350	500	1.75			
57581	5	275	10	750	700	0.28			
57582	4	175	15	225	200	0.60			
57583	2	275	20	175	370	0.15			
57584	1	400	20	550	500	0.28			
57585	1	75	20	1400	145	1,17			
57586	5	400	10	125	110	0.05			
57587	5	500	45	150	810	0.80			
57588	1	425	40	100	590	0.83			
57589	1		30	6800	110	1.40			
57590	3	250	25	275	340	0.43			
57591	1	550	20	425	680	0.35			
57592	1	425	15	100	390	0.45			
57593	2	500	15 ·	75	440	0.28			
57594	4	500	40	50	440	0.50			
57595	8	1300	720	>10,000	>5,000	2.50			
57596	35	600	35	125	930	0.28			
57597	25	450	25	300	620	0.23			
57598	4	200	20	150	300	0.50			
57599	6	550	25	150	210	0.13			
57600	6	1050	30	2500	350	0.10			
57951	10	1550	20	775	220	0.10			
57952	15	375	105	>10,000	2000	0.18			
57953	18	175	20	350	125	0.08			
57954	18	450	80	7700	2600	0.20			
57955	300	650	30	250	175	0.08			
57955	18	450	60	4200	750	0.15			
57050	35	600	35	1000	780	0.08			
57950	35	1600	30	3000	430	0.10			
57959	3	900		1600	290	0.10			
57061	12	450	50	5300	2000	0.15			
57067	14	1600	110	>10,000	1700	0.08			
57023	د ۲	1000	30	2200	385	0.10			
5706/	4	1400	135	10,000	3300	0.23			
J/904	<u>ى</u>	1400	20	2300	350	0.08			
STD.	5								

CERTIFIED BY:

CHEMEX LABS LTD.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX. 043-52597

ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C. V6C 1T8 ATTN:

ROCKS PROSPERINE B.C. GOLD

CERTIFICATE NO.	45548
INVOICE NO.	27978
RECEIVED	August 29, 1978
ANALYSED	September 8, 1978

						•	
	РРМ	PPM	PPM	РРМ	PPM		
SAMPLE NO. :	Ba	Sr	Ca	Mg	Na		
57976	500	20		640	1.10		
57977	200	170	>10,000	>5,000	0.60		
57978	275	200	>10,000	5.00	0.40		
57979	20 0	240	>10,000	>5.000	1 60		[
57980	150	730	>10,000	>5,000	0.10		

:

CERTIFIED BY:

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

CERTIFICATE NO. 46382

29100

Oct. 30/78

Nov. 24/78

INVOICE NO.

RECEIVED

ANALYSED

• ANALYTICAL CHEMISTS

• GEOCHEMISTS

. REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St.,

Vancouver, B.C.,

COLD	EXTRACTABLE

V6C 1T8 ATTN: T. Shearer

J. BHEALEI							
	PPM	PPM	PPM	PPM	PPM		
SAMPLE NO. :	Cu	РЬ	Zn	Ag	As		
0+30N 0+60W A	2	4	2	0.1		45713	
0+30N 0+60W B	4	50	2	0.2			
0+30N 0+60W C	·4	66	2	0.2			
3+00S 0+90W A	12	600	12	1.6		45718	
3+005 0+90W B	6	740	18	1.0			
3+005 0+90W C	4	630	10	1.0			
3+30N 3+30W A	8	40	38	0.6			
3+30N 3+30W B	10	44	40	1.4			
3+30N 3+30W C	4	36	14	0.6			
9+00S 0+90W A	2	10	6	0.2		45720	
9+005 0+90W B	4	56	22	0.6			
9+005 0+90W B2	4	82	8	0.2			
9+00S 0+90W C	4	52	22	0.2			
JS-1	2	4	4	0.1		45543	
2	2	10	4	0.2			
3	4	24	4	0.1			
JS-4	4	22	2	0.1			
0+30S 0+60W A	missin	g					

NOTE: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

ANALYTICAL CHEMISTS
 + (

Prosperine

ATTN:

Y.

v

14

SAMPLE NO. :

• GEOCHEMISTS

REGISTERED ASSAYERS

PPM

CERTIFICATE OF ANALYSIS

B.C GOLD

PPM

PPM

TO: McIntyre Mines Ltd., 1003 - 409 Granville Street, Vancouver, B.C.

PPM

CERTIFICATE NO. 45542 INVOICE NO. 27915

ANALYSED

PPM

RECEIVED August 29, 1978

PPB

10.

September 6, 1978

	Cu	Pb	Zn	Ag	As	Au	
KG - 0	14	10	44	0.1	8	<10	
1	16	22	14	0.6	12	40	
2	16	16	52	0.2	8	80	
3	18	22	56	0.2	10	60	
4	12	22	86	0.2	4	20	
5	2	18	18	0.1	1	40	
6	30	52	72	0.4	15	20	
7	28	34	64	0.2	8	60	
8	26	28	60	0.2	10	40	
9	32	28	68	0.1	15	10	
10	15	28	54	0.1	7	50	
11	32	34	80	0.2	12	20	
12	22	30	60	0.1	12	80	
13 _ 15	30	30	74	0.1	12	20	
<u> </u>	48	28	82	0.2	7	30	
KG - 16 15	66	20	96	0.4	8	50	
PIN -0	18	28	82	0.4	10	20	
1	18	34	56	0.2	9	< 10	
2	32	50	130	0.6	50	<10	
3	26	34	128	0.4	8	60	
4	44	18	88	0.4	50	70	
5	10	20	52	0.1	9	20	
6	20	30	58	0.2	15	10	
7	12	28	50	0.1	7	40	
8	10	18	46	0.1	12	10	
9	20	36	62	0.2	12	<10	
10	16	34	50	0.2	9	<10	
11	14	18	58	0.1	9	<10	
12	18	42	58	0.1	30	10	
13	2	6	18	0.1	1	<10	
14	4	32	25	0.1	3	<10	
PIN -15	24	56	84	0.4	6	<10	
PR - 53	38	640	102	1.6	100	<10	
54	24	42	54	0.1	45	240	
55	32	200	104	0.6	30	40	
56	20	78	68	0.2	18	<10	
57	18	92	90	0.2	20	<10	
PR - 58 ⁽	14	22	60	0.4	8	<10	

Note: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

• ANALYTICAL CHEMISTS

1

GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines, #1003 - 409 Granville Street, Vancouver, B.C.

CERTIFICATE NO. 45543 INVOICE NO. 27915 RECEIVED August 29, 1978

ATTN: Pros	perine	B.C	. Gold		1	ANALYSED Se	ptember 6,	1978
	PPM	PPM	PPM	PPM	PPM	PPB	PPB	
SAMPLE NO. :	Cu	РЪ	Zn	Ag	As	Au	Hg	
JS-1	4	8	16	0.1	2	< 10	20	
<u>۱</u>	12	24	46	0.2	7	< 10	60	
3	20	36	66	0.1	18	< 10	60	
JS-4	22	34	68	0.1	7	< 10	70	

Note: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

PPM
Sb

JS-1	1
2	1
3	1
JS-4	1

		MEMBER			CERTIFIED	14antiscelle
STD.	NO.	70	18	160	0.1	
1.8			<u></u>			
.					<u> </u>	

CEATIFIED BY:

 212
 BROOKSBANK
 AVE.

 NORTH VANCOUVER, B.C.
 CANADA
 V7J
 2C1

 TELEPHONE:
 985-0648
 AREA
 CODE:
 604

 TELEX:
 043-52597
 043-52597
 043-52597

· ANALYTICAL CHEMISTS

• GEOCHEMISTS

. REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines, #1003 - 409 Granville Street, Vancouver, British Columbia CERTIFICATE NO. 45535 INVOICE NO. 27915 RECEIVED August 29, 1978

ATTN:	Prosperine	в.с.	Gold		ANALYSED September 6, 1978
<u> </u>		PPM	PPM	PPB	
SAMPL	E NO. :	РЪ	As	Au	
0+30N	2+10E	36	8	<10	
	2+40	16	6	<10	
	2+70	34	15	<10	
	3+00	14	6	<10	
	3+30	30	15	-10	
	3+60	24	8	20	
	3+90	12	4	<10	
	4+20	96	125	<10	
	4+50	34	250	10	
	4+80	190	80	<10	
	5+00	32	30	40	
	5+ 40	36	45	<10	
	5+70	48	18	<10	
0+30N	6+00E	52	35	20	
0+30N	0+30W	44	18	10	
	0+60	28	6	20	
	0+90	64	200	90	
	1+20	10	7	120	
	1+40	12	10	40	
	1+80	84	45	<10	
	2+10	275	50	10	
	2 + 40	46	7	30	
	2+70	28	10	<1 0	
	3+00	50	5	<10	
	3+30	290	35	<10	
0+30N	3+60W	36	8	10	
0+60N	0+0 0E	34	18	<10	
	0+30	28	80	10	
	0+60	20	8	10	
	0+90	18	7	<10	
	1+20	40	5	10	
	1+50	20	7	<10	
	1+80	42	12	<10	
	2+10	20	7	<10	
	2+40	24	6	10	
	2+70	28	20	20	
	3+00	34	6	10	
	3+30	38	12	<10	
	3+60	18	6	80	
0+60N	3+90E	196	10	20	
STD. N	0.	18	7		

CERTIFIED BY:

Hour Bielle

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

• ANALYTICAL CHEMISTS

ATTN:

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines 1003 - 409 Granville Street Vancouver, B.C.

CERTIFICATE NO.	45336
INVOICE NO.	27915
RECEIVED	Aug. 29/78
ANALYSED	Sept. 7/78

ATTN:		PROSPERINE	E B. C. GOLD)	ANALYSED	ocpt. ///
		PPM	PPM	PPB	·····	
SAMPLE N	0. :	Pb	As	Au		
0+60N	4+20E	136	100	50		··· ··· ··· ··· ··· ··· ··· ··· ··· ··
	4+50	22	18	40		
	4+80	20	150	< 10		
	5+10	100	15	< 10		
	5+40	26	175	< 10		
	5+70	80	500	< 10	_ <u>-</u>	
0+60N	6+00E	118	6	10		
0+60N	0+30W	62	30	< 10		
	0+60	270	100	< 10		
	0+90	14	18	180		
	1+20	38	75	80		
	1+50	84	20	200		
	1+80	870	20	40		
	2+10	54	20	10		
	2+40	34	10	10		
	2+70	270	45	20		
	3+00	20	3	NSS		
	3+30	34	4	< 10		
0+60N	3+60W	26	6	< 10		
0+90N	0+00E	48	12	10		
	0+30	86	18	600		
	0+6 0	46	4	< 10		
	0+90	46	8	< 10		
	1+20	18	6	10		
	1+50	20	4	10		
	1+80	38	150	260		
	2+10	58	18	10		
	2+40	24	15	< 10		
	2+70	26	10	10		
	3+00	52	10	< 10		
	3+30	40	18	20		·····
	3+60	54	15	20		
	3+90	80	150	20		
	4+20	170	200	240		
	4+50	840	125	< 10		
	4+80	114	125	< 10		····
	5+10	46	60	20		
	5+40	80	25	< 10		
	5+70	54	15	10		
	6+00E	26	18	< 10		
0+90N	0+30W	62	15	< 10		
	STD.	16	7			
	MEMBI CANADIAN T	ER TESTING		CERTIFIED BY:	Hant Siel	lle_

CHEMEX LABS LTD.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville Street., Vancouver, B.C.

CERTIFICATE NO.	45537
INVOICE NO.	27915
RECEIVED	August 29, 1978
ANALYSED	September 6, 1978

ATTN: Prosperine	B.C. GO	LD		ANALYSED	September 6,
	PPM	PPM	PPB		
SAMPLE NO. :	\mathbf{Pb}	As	Au		
0+90 N 0+60 W	44	18	70	· · · · · · · · · · · · · · · · · · ·	
0+90	460	200	580		
1+20	94	200	20		
1+50	14	7	300		
1+80	950	60	70		
2+10	1500	60	10		· · · · · · ·
2+40	58	12	40		
2+70	580	30	10		
3+00	46	85	NSS		
3+30	360	125	<10		
0+90 N 3+60 W	38	15	<10		
1+20 N 0+00 E	20	6	10		
0+30	40	8	<10		
0+60	26	9	<10		
0+ 90	18	8	<10		
1+20	22	5	<10		
1+50	32	7	<10		
1+80	24	4	< 10		
2+10	20	4	<10		
1+20 N 2+40 E	24	8	<10		
1+20 N 0+30 W	26	3	<10	.	
0+60	60	18	<10		
0+90	40	30	40		
1+20	46	35	20		
1+50	54	15	40		
1+80	72	45	180		
2+10	760	60	40		
2+40	660	45	20		
2+70	345	30	<10		
3+00	900	30	<10		
3+30	300	20	<10		•
1+20 N 3+60 W	215	25	<10		
1+50 N 0+00 E	50	12	<10		
0+30	30	2	<10		
0+60	34	12	<10		
0+90	34	7	<10		····
1+20	19	7	<10		
1+50	20	12	10		
1+80	28	15	<10		
1+50 N 2+10 E	42	15	<1 0		
STD.	18	8	······································	·	

CERTIFIED BY: Hart Bielle

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE. 604 TELEX: 043-52597

ANALYTICAL CHEMISTS

GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville Street, Vancouver, B.C.

CERTIFICATE NO.	45538
INVOICE NO.	27915
RECEIVED	August 29, 1978
ANALYSED	September 6, 1978

ATTN: Prosperine	B.C. GOLD			ANALYSED	September 6, 19
	PPM	PPM	PPB	<u>_</u>	
SAMPLE NO. :	Pb	As	Au		
1+50 N 2+40 E	20	15	10	···	-
1+50 N 0+30 W	42	8	10		
0+60	16	10	<10		
0 19 0	36	18	30		
1+20	54	100	580		
1+50	830	125	20		
2+10	260	125	3250		
2+40	134	45	60		
2+70	196	45	10		
3+00	94	8	20		
3+30	194	20	<10		
1+50 N 3+60 W	205	25	<10		
1+80 N 0+00 E	20	4	20		
0+30	14	7	<10		
0+60	10	3	- NS S		
0+90	32	6	<10		
1+20	14	7	<10		
1+50	28	30	40		
1+80	26	6	20		
2+10	42	12	<10		
1+80 N 2+40 E	44	10	<10	· · · · ·	
1 +80 N 0+30 W	14	8	20		
0+60	38	12	30		
0+90	20	8	20		
1+20	32	15	<10		
1+50	160	45	<10		
1+80	750	60	10		
2+10	156	90	<10		
2+40	64	10	20		
2+70	22	6	<10		
3+00	54	18	<10		
3+30	62	6	10		
1+80 N 3+60 W	50	8	10		
2+10 N 0+00 E	34	3	<10		
0+30	30	8	<10		
0+60	32	15	<10		
0+90	28	3	<10		
1+20	52	12	<10		
2+10 N 1+50 E	40	10	<10		
STD.	18	7			

STD.

1

18

CERTIFIED BY: Hant Bielle

212BROOKSBANK AVE.NORTH VANCOUVER, B.C.CANADAV7J 2C1TELEPHONE:985-0648AREA CODE:604TELEX:043-52597

ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines 1003 - 409 Granville Street, Vancouver, B.C. CERTIFICATE NO. 45539 INVOICE NO. 27915 RECEIVED August 29, 1978

ATTN:	Pros	Prosperine B.C. Gold		.d	ANALYSED September 6, 1978
	<u>.</u>	PPM	PPM	PPB	
SAMPLE	NO. :	РЪ	As	Au	
2+10N	1+80E	38	8	260	
	2+10	12	7	20	
2+10N	2 + 40E	38	15	<10	
2+10N	0+30W	22	7	20	
	0+60	8	45	140	
	0+90	52	15	200	
	1+20	126	30	10	
	1+50	320	18	< 10	
	1+80	300	8	≺ 10	
	2+10	160	7	<10	
	2+40	88	10	<10	
	2+70	66	18	10	
	3+00	38	8	<10	
	3+30	106	3	NSS	
2+10N	3+60W	255	50	<u><10</u>	
2+40N	0+00E	54	8	<10	
21404	0+30	44	8	<10	
	0+60	28	7	<10	
	0+90	20	7	<10	
	1+20	34	10	<10	
	1+50	14	10	<10	
	1+80	26	15	20	
	2+10	20	15	30	
2 1 4.0N	2+40r	28	9	<10	
2+40N	0+30W	16	5	<10	
	0+60	44	10	20	
	0+90	6	6	<10	
	1+20	330	18	< 10	
	1+50	76	10	<10	
	1+80	200	20	<10	
	2+10	350	30	< 10	
	2+40	300	20	<10	
	2+70	68	10	60	
	3+00	36	15	80	
	3+30	120	20	NSS	
2+40N	3+60W	500	15	10	
2+70N	0+00E	78	4	10	
	0+30	30	7	<10	
I	0+60	38	8	<10	
	0+90E	40	8	10	
STD. N	10.	16	7		

CERTIFIED BY: Hart Bielle

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

· ANALYTICAL CHEMISTS

GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines, 1003 - 409 Granville Street, Vancouver, B.C. CERTIFICATE NO. 45540 INVOICE NO. 27915 RECEIVED August 29, 1978 ANALYSED September 5, 1978

ATTN: Prosperine

B.C. Gold

	the second se			
5 A MADI +		PPM	РРМ	РРВ
SAMPLE	NO	Pb	As	Au
2+70N	1+20E	32	6	10
	1+50	50	10	10
	1+80	14	7	< 10
	2+10	28	6	60
2+70N	2+40E	62	10	< 10
2+70N	0+30W	20	10	< 10
	0+6 0	4	2	≺ 10
	0+90	84	5	< 10
	1+20	122	25	< 10
	1+50	1000	12	< 10
	1+80	2050	80	< 10
	2+10	32	7	< 10
	2+40	455	25	< 10
	2+70	270	10	< 10
	3+00	136	15	100
	3+30	104	8	60
2+70N	3+60W	64	20	20
3+00N	0 + 00E	10	1	< 10
	0+30	8	3	70
	0+60	78	5	10
	0+90	48	7	< 10
	1+20	54	8	< 10
	1+50	32	7	< 10
	1+80	24	4	< 10
	2+10	12	3	10
3+00N	2+40E	28	7	20
3+00N	0+30W	18	8	20
	0+60	66	10	20
	0+90	92	12	30
	1+20	120	7	20
	1+50	250	30	10
	1+80	430	45	< 10
	2+10	146	12	40
	2+40	4400	50	40
	2+70	1350	40	20
	3+00	560	20	< 10
	3+30	114	18	10
3+00N	3+60W	38	6	20
3+30N	0+00E	12	6	< 10
3+30N	0+30E	6	3	20
			4	

STD. NO.

16

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE 985-0648 AREA CODE. 604 TELEX: 043-52597

ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines, 1003 - 409 Granville Street, Vancouver, B.C.

CERTIFICATE NO. 45541 INVOICE NO. 27915 RECEIVED August 29, 1978 ANALYSED Sept. 6, 1978

ATTN: Prosp	erine	B.C. (bld	ANALYSED Sept.	6, 1978
SAMPLE NO. :	РРМ	РРМ	PPB		
	Pb	As	Au		
3+30N 0+60E	20	3	10		
0+90	16	7	10		
1+20	22	5	< 10		
1+50	28	6	< 10 [°]		
1+80	18	8	. 10		
2+10	20	9	60		
3+30N 2+40E	24	9	10		
3+30N 0+30W	78	10	< 10		
0+60	44	15	20		
0+90	94	20	10		
1+20	400	10	< 10		
1+50	146	15	< 10		
1+80	745	40	20		
2+10	430	50	< 10		
2+40	400	20			
2+70	88	20	< 10		
3+00	480	40	380		
3+30	360	35	80		
3+30N 3+60W	84	7	200		
STD. NO.	18				
GTA,	MEMBER			1 Jon () see	L

CERTIFIED BY: ...

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. V7J 2C1 CANADA TELEPHONE: 985-0648 AREA CODE 604 TELEX: 043-52597

• ANALYTICAL CHEMISTS

• GEOCHEMISTS

. REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO:

McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	45713
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.15/78

ATTN: Mr.J.Shearer

CAMPLE NO -	PPM	PPM	PPM	PPM	P₽B	PPM
SAMPLE IVO	Copper	Lead	Zinc	Silver	Gold	Arsenic
0+30N 0+60WA	2	8	10	0.1	<10	1
0+60B	16	58	58	0.2	10	10
0+30N 0+60C	30	128	138	0.1	40	35
0+300S0+00E	44	114	132	3.2	<10	55
0+30		4	28	0.1	<10	4
0+60	8	16	28	0.1	20	12
0+90	12	12	32	0.1	<10	20
1+20	20	38	56	0.1	<10	20
1+50 1	22	34	62	0.1	20	7
1+50 2	16	18	36	0.1	40	5
1+80	14	24	44	0.1	<10	5
2+10	10	16	34	0.1	<10	7
2+40E	12	34	46	0.1	<10	12
0+30W	28	14	18	0.1	<10	1
0+60	20	10	22	0.1	<10	2
0+90	10	18	32	0.1	20	8
1+20	20	48	58	0.1	20	20
1+50	28	38	94	0.1	<10	25
1+80	30	325	116	1.0	<10	30
2+10	8	120	90	0.1	<10	4
2+40	28	26	54	0.1	<10	5
2+70	48	815	240	2.0	<10	30
3+00	20	92	70	0.8	10	6
3+30	34	265	72	0.4	10	12
0+305 3+60W	14	90	54	2.0	<10	3
0+605 0+00E	18	44	70	0.1	<10	9
0+30	18	36	52	0.1	<10	35
0+60	20	40	64	0.6	<10	40
0+90	14	8	42	0.1	20	6
1+20	12	4	44	0.1	<10	2
1+80	18	82	50	0.1	<10	7
2+10	10	14	42	0.1	<10	7
2+40F	12	28	52	0.1	<10	5
0+30W	6	4	18	0.1	220	9
0+60	16	24	46	0.1	20	25
0+90	12	28	38	0.1	<10	5
1+20	32	152	146	0.1	<10	35
1+50	28	280	128	0.1	<10	20
1+80	62	340	290	0.1	20	80
505 2+10W	58	2600	305	3.2	20	40
Std.	72	18	158	0.1		6
ocu.	14	τo	100	0.1		ν ν

Silver values below detection limit of 0.2 ppm reported as 0.1 ppm. Bille

CERTIFIED BY:

tau

 212
 BROOKSBANK
 AVE.

 NORTH VANCOUVER, B.C.
 CANADA
 V7J 2C1

 TELEPHONE:
 985-0648
 AREA CODE:
 604

 TELEX:
 043-52597
 643

ANALYTICAL CHEMISTS

GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver,B.C.

CERTIFICATE NO.	45714
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.15/78

1

ATTN: Mr.J.Shearer

SAMPLE NO. :	PPM	PPM	PPM	PPM	PP_B	PPM
	Copper	Lead	Zinc	Silver	Gold	Arsenic
0+60S 2+40	44	1500	51 5	1.4	<10	45
2+70	12	184	48	0.1	10	18
3+00	8	10	18	0.1	<10	1
3+30	20	295	70	0.1	<10	8
0+605 3+60W	36	182	132	0.1	<10	20
0+90S 0+00E	26	120	84	0.1	<10	20
0+30	10	30	38	0.1	<10	4
0+60	26	28	46	0.1	10	8
0+90	8	12	22	0.1	<10	3
1+20	22	10	48	0,1	<10	6
1+50	20	18	52	0.1	20	9
1+80	22	36	50	0.1	20	10
2+10	14	32	48	0.1	10	7
2+40E	20	24	48	0.1	<10	1
0+30W	42	50	116	0_1	50	75
0+60	22	30	54	0.1	10	25
0+90	20	48	50	1.0	190	25
1+20	6	8	20	0.1	50	3
1+50	22	38	42	0.1	20	20
1+80	54	1950	260	2.0	20	40
2+10	56	595	192	8.0	30	30
2+40	24	24	52	0.1	10	4
2+70	18	26	96	0.1	10	7
3+00	14	88	58	0.1	20	4
0+90S 3+30W	26	50	68	0.1	<10	18
Q+90S 3+60W	26	128	98	0.4	20	18
0+120S 0+00E	18	32	54	0.1	<10	18
0+30	32	58	80	0.1	<10	8
0+60	8	12	24	0.1	<10	2
0+90	12	16	34	0.1	<10	5
1 +20	18	64	54	0.1	250	150
1+50	8	12	22	0,1	30	6
1+80	18	58	100	0.4	20	35
2+10	20	34	54	0.1	<10	5
2+40E	18	26	52	0.1	10	10
0+30W	10	80	36	3.2	10500	80
0+60	16	88	52	0.6	20	20
0+90	32	126	80	0.4	180	25
1+20	24	64	80	0.1	20	25
1+50	22	250	84	0.2	60	20
1+205 1+80W	36	385	162	0.6	20	20
Std	70	18	160	0.1		5
NOTE: CTA Silver val	lues below dete	ction limi	t of 0.2 pp	m reported a	as 0.1 ppm.	
CANADIAN TES	STING		CERTIFIED BY		NU : 21	-
	ON			1.4 000	2 1 march	

 212
 BROOKSBANK
 AVE.

 NORTH VANCOUVER, B.C.
 CANADA
 V7J 2C1

 TELEPHONE:
 985-0648
 AREA CODE:
 604

 TELEX:
 043-52597
 1043-52597
 1043-52597

ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Yancouver,B.C.

CERTIFICATE NO.	45715
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.14/78

ATTN: Mr.J.Shearer

	PPM	РРМ	PPM	PPM	PPB	PPM
SAMPLE NO. :	Copper	Lead	Zinc	<u>Silver</u>	Gold	Arsenic
1+205 2+10W	14	74	44	0.1	<10	8
2+40	6	78	30	0.6	<10	7
2+70	26	265	150	1.2	<10	40
3+00	20	144	90	0.1	<10	10
3+30	6	20	26	0.1	<10	2
1+205 3+60W	12	54	38	0.1	<10	5
1+50S 0+00E	12	18	38	0.1	<10	5
0+30	14	14	42	0.1	<10	4
0+60	10	6	24	0.1	<10	1
0+90	22	32	54	0.1	<10	10
1+20	16	16	36	0.1	<10	8
1+50	16	22	40	0.1	<10	5
1+80	8	18	28	0.1	20	3
2+10	10	18	24	0.1	<10	3
2+40E	24	48	128	0.1	<10	1
0+30W	18	40	64	0.1	<10	15
0+60	24	66	116	4.0	<10	35
0+90	20	52	52	0.6	40	12
1+20	28	48	82	0.1	50	20
1+50	52	3000	194	8.2	10	70
1+80		470	124	1.4	10	30
2+10	16	76	56	0.1	<10	8
2+40	16	38	54	0.1	<10	10
2+70	18	365	1.54	2.2	10	55
3+00	18	28	54	0.1	10	10
3+30	34	330	-110	1.2	10	
1+50S 3+60W	14	116	68	0.1	<10	12
1+80S 0+00E	10	28	28	0.1	<10	7
0+30	12	12	30	0.1	<10	6
0+60	18	18	38	0.1	<10	7
0+90	10	14	32	0.1	10	7
1+20	10	36	32	0.1	20	7
1+50	8	12	24	0.1	<10	4
1+80	16	16	42	0.1	<10	8
2+10	8	22	24	0.1	<10	7
2+40E	18		72	0.1	10	25
0+30W	18	40	48	0.1	<10	55
0+60	66	275	132	5.8	10	25
0+90	16	335	48	0.1	80	30
1+805 1+20W	22	28	42	0.6	50	20
Std.	70	18	154	0.1		5

NOTE: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

CERTIFIED BY:

00

...........

CHEMEX LABS LTD.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX. 043-52597

• ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	45716
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.14/78

ATTN: Mr.J.Shearer

CAMPLE NO .	PPM	PPM	PPM	PPM	PP B	PPM
SAMPLE NO	Copper	Lead	Zinc	Silver	Gold	Arsenic
1+80S 1+50W	34	770	124	1.2	20	40
1+80	12	36	36	0.1	< 10	22
2+10	12	120	44	0.4	10	7
2+40	4	22	16	0.1	< 10	3
2+70	46	885	176	7.2	< 10	80
3+00	28	156	90	0.1	40	25
3+30	16	124	74	0.1	260	7
1+80\$ 3+60W	18	235	112	0.1	< 10	18
2+10S 0+00E	12	26	28	0.1	< 10	10
0+30	8	24	26	0.1	< 10	6
0+60	14	16	44	0.1	< 10	6
0+90	14	14	36	0.1	< 10	5
1+20	26	48	58	0.1	< 10	8
1+50	12	14	76	0.1	< 10	9
1+80	14	70	48	0.1	< 10	12
2+10	14	36	34	0.1	< 10	10
2+40E	8	106	42	0.1	< 10	18
0+30W	8	58	58	0.4	< 10	18
0+60	8	96	26	0.1	100	85
0+90	22	4750	128	> 20	1680	200
1+20	18	54	52	1.0	10	18
1+50	12	40	46	0.1	20	15
1+80	20	1100	100	1.2	< 10	10
2+10	10	340	36	1.0	< 10	15
2+40	10	50	58	0.4	< 10	35
2+70	70	710	90	9.2	< 10	18
3+00	60	66	96	3.4	< 10	6
3+30	28	128	200	2.6	20	25
2+10s 3+60w	16	40	84	0.1	< 10	8
2+40S 0+00E	8	34	16	0.4	< 10	25
0+30	26	28	56	0.1	< 10	8
0+60	10	10	20	0.1	< 10	6
0+90	10	18	24	0.1	< 10	7
1+20	8	10	22	0.1	< 10	4
1+50	18	46	66	0.6	< 10	30
1+80	10	18	30	1.2	< 10	15
2+10	18	130	60	0.2	< 10	125
2+40E	10	18	30	0.1	< 10	4
0+30W	14	118	46	0.2	20	40
2+40s0+60W	6	32	28	0.2	60	100
Std.	72	18	162	0.1		7
NOTE: Silver values	below detection	n limit o	f 0.2 ppm re	eported as O	.1 ppm.	

CERTIFIED BY: Hart Bielle

CHEMEX LABS LTD.

· ANALYTICAL CHEMISTS

GEOCHEMISTS

. REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancovuer,B.C.

CERTIFICATE NO.	45717
INVOICE NO.	28082
RECEIVED	Sept.7/78

Sept.15/78

ANALYSED

ATTN: Mr.J. Shearer

CAMPII		PPM	PPM	PPM	PPM	PFB	PPM
SAWFL	e NO	Copper	Lead	Zinc	<u>Silver</u>	Gold	Arsenic
2+40S	0+90W	14	106	88	0.1 4	< 10	50
	1+20	16	46	50	0.6	40	7
	1+50	26	44	86	0.2	20	5
	1+80	18	285	150	0.4 🖪	(10	10
	2+10	24	44	72	0.8	(10	8
	2+40	14	70	50	0.2 <	< 10	35
1	2+70	72	162	32	3.8 -	< 10	4
	3+00	22	340	102	1.0 <	: 10	10
	3+30	34	138	295	1.6 🖪	< 10	30
2+40s	3+60W	22	250	140	1.8 <	< 10	25
2+70S	0+00E	12	56	44	0.1	10	25
ļ	0+30	4	10	8	0.1	10	6
	0+60	20	14	32	0.1 <	: 10	10
	0+90	14	20	40	0.1	10	35
	1+20	12	12	28	0.1 <	: 10	5
····	1+50	8	10	22	0.1 <	: 10	2
	1+80	8	18	32	0.1 <	: 10	5
	_ 2+10	14	28	64	0.1	10	9
	2+40E	16	18	52	0.1	20	12
	0+30W	10	44	38	0.2	10	20
	0+60	10	16	32	0.1	20	8
	0+90	10	26	38	0.1 <	: 10	7
	1+20	22	410	98	1.6	340	40
	1+50	8	78	66	1.0	40	15
	1+80	18	86	98	1.4	10	15
	2+10	22	38	122	0.1 <	: 10	15
	2+40	10	28	36	0.2 <	: 10	1
	2+70	34	610	200	7.2	20	50
	3+00	38	320	148	2.6	10	40
	3+30	30	675	168	2,2	90	65
2+705	3+60w	10	26	42	0,2 <	: 10	10
3+00s	0+00E	10	22	32	0.1 <	: 10	7
	0+30	6	26	20	0.1 <	: 10	40
	0+60	18	18	36	0.8 <	: 10	40
	0+90	24	40	46	0.1	10	8
_	1+20	16	18	58	0.1 <	: 10	12
	1+50	32	40	112	0.1 <	: 10	7
	1+80	12	28	58	0.1 <	: 10	15
	2+10	30	48	76	0.1	10	5
3+00S	2+40E	6	10	18	0.1 <	: 10	5
	Std.	- 72	18	164	0.1		6
NOTE:	Silver values below	detection	limit of 0.	2 ppm repoi	ted as 0.1	DDM.	~

CERTIFIED BY: Hart Bills

 212
 BROOKSBANK
 AVE.

 NORTH VANCOUVER, B.C.
 CANADA
 V7J 2C1

 TELEPHONE:
 985-0648
 AREA CODE:
 604

 TELEX:
 043-52597
 043-52597

ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granyille St., Vancouver, B.C.

CERTIFICATE NO.	45718
INVOICE NO.	28082
RECEIVED	Sept.7/78

Sept.15/78

......

ANALYSED

ATTN: Mr.J.Shearer

SAMPLE NO. :	PPM	PPM	PPM	PPM	PP_B	PPM
	Copper	<u> Lead </u>	Zinc	Silver	Gold	Arsenic
3+005 0+30W	10	34	30	0.1	< 10	10
0+60	24	10	40	0.1	< 10	50
0+90	36	1150	94	2.0	20	50
0+90A	20	635	68	1.4	20	35
0+90B	44	950	146	1.2	150	. 65
0+90C	66	885	146	1.2	10	100
1+20	8	32	38	0.2	< 10	7
1+30	6	420	32	0.8	60	7
1+80	10	24	28	0.1	< 10	12
2+10	8	44	28	0.1	100	4
2+40	8	56	26	0.1	< 10	8
2+70	20	405	88	1.6	< 10	15
3+00	24	275	108	2.6	< 10	18
3+30	16	38	68	0.1	< 10	5
3+00s 3+60w	24	34	66	0.1	< 10	8
3+30N 0+30AW	58	142	210	1.4	10	15
/ 0+30в 🔨	68	160	260	1.8	< 10	15
3+301 0+30Cw	34	56	146	0.2	< 10	12
4+20\$ 0+00E	18	102	70	0.1	< 10	10
0+30	8	14	28	0.1	< 10	5
0+60	8	166	48	0.4	10	18
0+90	16	26	44	0.1	< 10	5
1+20	24	40	48	0.1	< 10	40
1+50	16	28	52	0.1	< 10	18
1+80	14	28	56	0.1	≺ 10	7
2+10	12	16	36	0.1	< 10	3
2 + 40E	10	12	28	0.1	< 10	2
0+30W	10	16	36	0.1	< 10	2
0+60	8	6	18	0.1	10	2
0+90	8	4	20	0.1	< 10	1
1+20	30	164	78	0.1	20	20
1+50	16	50	60	0.1	< 10	10
1+80	50	42	76	0.6	20	25
2+10	10	32	14	0.1	20	18
2+40	8	10	22	0.1	< 10	2
2+70	6	16	22	0.1	< 10	3
3+00	10	28	20	0.4	< 10	1
3+30	14	16	38	0.1	< 10	2
4+20S 3+60W	44	40	112	1.0	< 10	5
5+40s 0+00E	8	64	24	0.1	< 10	3
Std.	74	18	160	0.1		5
Note: Silver values	below detectio	<u>n limit</u> of	Е 0.2 ррт те	ported as 0	.l ppm.	-

CERTIFIED BY: Hart Bielle

CHEMEX LABS LTD.

• ANALYTICAL CHEMISTS

GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver,B.C.

CERTIFICATE NO.	45719
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.15/78

ATTN: Mr.J.Shearer

SAMPLE NO. :	PPM	PPM	PPM	PPM	PP_B	PPM
5+405 0+308	Copper 14	Lead	Zinc	Silver	Gold	Arsenre
	14	110	02	0.8	< 10	15
0+00	14	104	12	0.1	< 10	50
1+20		100	30	0.1	< 10	50
1+50	4	28	14	0.1	00 10	7
	0		2	0.1	<u>< 10</u>	15
	14	54	26	0.1	< 10	15
2+10	6	42	12	0.1	10	4
	34	124	80	2.8	10	10
0160	8	200	20	0.1	< 10	2
0+60	24	28	34	0.1	< 10	
0+90	4	8	10	0.1	< 10	1
1+20	2	4	6	0.1	< 10	
1+50	20	445	196	0.1	< 10	30
1+80	20	78	68	0.1	20	40
2+10	16	26	44	0.1	< 10	
2+40	10	32	36	0.1	< 10	1
2+70	18	24	58	0.1	10	4
3+00	14	18	34	0.1	20	3
3+30	4	6	12	0.1	< 10	1
<u>5+405 3+60W</u>	20	24	54	0.1	< 10	4
6+60S 0+00E	22	78	70	0.1	10	5
0+30	10	365	36	0.1	< 10	5
0+60	16	66	56	0.4	< 10	6
0+90	30	1400	144	4.6	< 10	12
1+20	32	1000	130	3.8	20	35
1+50	44	2050	138	5.4	20	55
1+80	10	88	28	1.6	< 10	8
2+10	4	18	16	0.1	< 10	3
2+40E	18	72	60	1.6	< 10	8
0+30W	22	34	58	0.8	< 10	6
0+60	10	66	28	0.1	< 10	4
0+90	14	148	54	0.6	< 10	7
1+20	4	30	12	0.1	110	3
1+50	8	12	22	0.1	< 10	2
1+80	70	475	84	34	280	7
2+10	10	16	22	0.1	< 10	4
2+40	48	26	98	0.1	10	15
2+70	18	20	50	0.1	≺ 10	8
3+00	18	20	36	3 Û	< 10	4
6+605 3+30W	20	18	72	1.U 0 /	< 10	7
Std	7/	 1 Q	160	0.4		<u> </u>
NOTE: Silver values	14 halan data-ti-	10 - 11-11-14	τού Τού	V.1 0	1	ر

NOTE: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

CERTIFIED BY:

Hartsi

00

CHEMEX LABS LTD.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

• ANALYTICAL CHEMISTS

• GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO:

McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	45720
INVOICE NO.	28082
RECEIVED	Sept.7/78

ANALYSED

ATTN:

ATTN:	Mr.J.Shearer				ANALYSED		Sept.15/78
	~	РРМ	PPM	PPM	PPM	PPB	PPM
SAMPLE N	U. :	Copper	Lead	Zinc	Silver	Gold	Arsenic
6+60S 3+	-60W	16	16	40	0.1	< 10	5
7+80S 0+	-00E	6	48	14	0.1	20	3
0+	-30	32	850	138	3.4	20	15
0+	-60	12	30	42	0.1	< 10	3
0+	-90	20	68	82	0.1	< 10	15
1+	-20	8	36	24	0.1	< 10	2
1+	-50	12	34	52	0.1	< 10	5
1+	-80	10	52	36	0.1	< 10	18
2+	-10	12	380	76	1.4	< 10	35
2+	-40E	40	96	130	2.2	< 10	18
0+	-30W	16	42	52	0.2	< 10	12
0+	60	24	340	172	0.6	20	4
0+	90	6	32	16	0.4	10	3
1+	20	8	36	24	0.1	< 10	3
1+	-50	48	34	62	0.1	< 10	18
1+	80	10	505	50	1.6	< 10	35
2+	10	10	18	36	0.2	20	4
2+	40	86	20	86	0.1	20	35
2+	70	22	22	62	0.1	20	4
3+	00	6	12	12	0.1	< 10	2
3+	30	10	16	34	0.1	< 10	3
7+80S 3+	60W	22	12	8	0.8	< 10	12
9+00s 0+	00E	28	118	126	0.1	< 10	40
0+	30	22	400	134	0.1	10	25
0+	60	12	44	40	0.1	< 10	9
0+	90	10	18	28	0.1	20	
1+3	20	16	90	60	3.2	10	4
1+:	50	8	36	32	0.6	20	7
1+	80	14	330	78	1.4	20	20
2+2	10	14	250	74	0.2	10	8
2+4	40E	10	98	46	0.6	< 10	6
0+.	30W	16	46	76	0.1	< 10	18
0+0	60	22	330	92	0.1	< 10 .	20
0+9	90	8	20	22	0.1	10	5
0+9	90A	6	10	20	0.1	10	2
0+9	90B	18	52	86	0.1	10	2
0+9	90B2	26	78	82	0.1	≺ 10	8
0+9	90C	40	60	132	0.1	< 10	4
1+2	20	24	46	56	0.1	< 10	60
9+00s 1-	+50W	18	20	38	0.1	< 10	7
Sto	d.	72	20	160	0.1		5

Note: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

CERTIFIED BY: ..

· ANALYTICAL CHEMISTS

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	45721
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sant 15/7

Sept.15/78

ATTN: Mr.J.Shearer

	PPM	PPM	PPM	PPM	PPB	PPM
	Copper	Lead	Zinc	Silver	Gold	Arsenic
9+005 1+80W	8	66	22	0.1	< 10	4
2+10	14	14	30	0.1	< 10	4
2+40	16	18	64	0.1	< 10	8
2+70	6	6	12	0.1	< 10	4
3+00	8	18	10	0.4	< 10	4
3+30	10	10	16	0.1	< 10	5
9+00s 3+60W	12	14	16	0.1	< 10	4
10+205 0+00E	N.S.S.					
10+20S 0+30	26	370	134	1.0	20	18
0+60	14	34	50	0.4	< 10	10
0+90	28	500	196	3.2	< 10	20
1+20	34	440	142	2.2	< 10	45
1+50	14	196	66	2.2	< 10	8
1+80	18	188	96	1.2	≺ 10	10
2+10	10	190	54	0.6	< 10	15
2+40E	12	98	38	1.4	20	35
0+30W	20	2200	114	2.4	10	80
0+60	12	168	66	0.2	< 10	12
0+90	4	22	16	0.4	< 10	1
1+20	22	38	60	0.2	< 10	12
1+50	10	28	26	0.1	< 10	1
1+80	24	144	78	0.6	< 10	7
2+10	10	16	38	0.1	< 10	5
2+40	16	34	60	0.1	≺ 10	5
2+70	12	14	52	0.1	< 10	7
3+00	12	16	42	0.1	< 10	10
3+30	12	14	26	0.1	< 10	3
10+20S 3+60W	4	10	14	0.1	40	2
11+40S 0+00E	16	72	56	0.1	20	12
0+30	28	420	76	3.2	50	18
0+60	24	230	130	3.0	40	20
0+90	12	215	82	0.6	< 10	- 15
1+20	4	22	24	0.1	< 10	8
1+50	4	36	28	0.1	20	7
1+80	32	545	132	2.4	≺ 10	3
2+10	18	184	102	1.6	< 10	20
2+40E	8	56	46	0.4	< 10	8
0+30W	16	42	60	0.2	10	3
0+60	8	20	28	0.6	< 10	1
11+40S 0+90W	10	18	32	0.1	< 10	2
Std.	72	18	158	0.1		6
N 011	1 1 1		E 0 2		7 7 – – –	-

<u>Note</u>: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

Biell CERTIFIED BY: .

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

· ANALYTICAL CHEMISTS

• GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	45722
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sant 15/7

Sept.15/78

ATTN: Mr.J. Shearer

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMPLE I	NO. :	PPM Coppor	PPM Load	PPM Zipa	PPM Silver	PPB	РРМ
1+30 18 164 50 0.4 < 10 7 1+80 22 1000 62 1.8 <10	1+20		<u>6</u>	<u> </u>	<u> </u>	0.1	< 10	<u>Arsenic</u> 2
1+80 22 1000 62 1.8 < 10 15 2+10 24 168 66 0.4 < 10	1+30		18	164	50	0.4	< 10	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1+80		22	1000	62	1.8	< 10	15
2+40 38 56 78 2.0 $<$ 10 4 $2+70$ 4 16 20 0.1 $<$ 10 4 $3+00$ 6 10 28 0.1 $<$ 10 4 $3+30$ 14 46 52 0.1 $<$ 10 4 $12+60S$ $0+60W$ 8 16 34 0.1 20 12 $0+30$ $N.s.s.s.$ $ 0+60 16 1200 92 0.6 10 18 0+90 10 32 58 0.1 10 10 1+20 38 4950 230 4.4 10 75 1+50 24 695 156 1.4 20 40 1+80 10 178 66 0.6 10 12 2+10 26 6002+1024168660.4< 108$	2+10		24	168	66	0.4	< 10	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2+40		38	56	78	2.0	< 10	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2+70		4	16	20	0.1	< 10	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3+00		6	10	28	0.1	< 10	4
11440S3+60W816260.1< 10712460S0+00E816340.120120+30N.S.S. \cdot \cdot \cdot \cdot \cdot 0+60161200920.610180+901032580.110101+203849502304.410751+50246951561.420401+8010178660.610152+10266001061.0102012+60S2+40E14152840.610120+901230400.11081+2038400865.6190851+2038400865.6190851+501234320.11062+101038300.11031+801220280.11062+101038300.11031+501234320.11032+402058920.11032+402058920.11032+402058300.11032+402058300.11032+40 <t< td=""><td>3+30</td><td></td><td>14</td><td>46</td><td>52</td><td>0.1</td><td>< 10</td><td>6</td></t<>	3+30		14	46	52	0.1	< 10	6
12+60S0+00E816340.120120+30N.S.S. $0+60$ 161200920.610180+60161200920.610180+901032580.110101+203849502304.410751+50246951561.420401+8010178660.610152+10266001061.0102012+60S2+40E14152840.6101212+60S0+30W24555861.010120+901230400.11081+2038400865.6190851+501234320.110101+801220280.11032+101038300.11032+402058920.11032+402058920.11033+30650300.11033+30650300.11033+30650300.11080+301424300.11080+301424300.1108 <td>11+40s</td> <td>3+60W</td> <td>8</td> <td>16</td> <td>26</td> <td>0.1</td> <td>< 10</td> <td>7</td>	11+40s	3+60W	8	16	26	0.1	< 10	7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12+60s	0+00E	8	16	34	0.1	20	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0+30	N.S.S.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ĺ	0+60	16	1200	92	0.6	10	18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0+90	10	32	58	0.1	10	10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1+20	38	4950	230	4.4	10	75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1+50	24	695	156	1.4	20	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1+80	10	178	66	0.6	10	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2+10	26	600	106	1.0	10	20
12+60S $0+30W$ 2455586 1.0 10 12 $0+60$ 18 48 50 0.1 10 12 $0+90$ 12 30 40 0.1 10 8 $1+20$ 38 400 86 5.6 190 85 $1+50$ 12 34 32 0.1 10 10 $1+80$ 12 20 28 0.1 10 6 $2+10$ 10 38 30 0.1 10 3 $2+40$ 20 58 92 0.1 10 8 $2+40$ 20 58 92 0.1 10 3 $3+30$ 6 50 30 0.1 10 3 $3+30$ 6 50 30 0.1 10 2 $12+60S$ $3+60W$ 10 8 30 0.1 10 2 $12+60S$ $3+60W$ 10 8 30 0.1 10 2 $12+60S$ $3+60W$ 10 8 32 0.1 10 8 $0+30$ 14 24 30 0.1 10 8 $0+30$ 14 24 30 0.1 10 9 $1+20$ 24 74 66 0.1 10 9 $1+20$ 24 74 66 0.1 10 10 $1+80$ 16 54 56 0.1 10 15 $2+40E$ 8 <td>12+60S</td> <td>2+40E</td> <td>14</td> <td>152</td> <td>84</td> <td>0.6</td> <td>10</td> <td>12</td>	12+60S	2+40E	14	152	84	0.6	10	12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12+60S	0+30W	24	555	86	1.0	10	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	0+60	18	48	50	0.1	10	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0+90	12	30	40	0.1	10	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1+20	38	400	86	5.6	190	85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1+50	12	34	32	0.1	10	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1+80	12	20	28	0.1	10	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2+10	10	38	30	0.1	10	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2+40	20	58	92	0.1	10	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2+70	40	52	78	0.1	10	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3+00	20	38	52	0.1	10	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3+30	6	50	30	0.1	10	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12+60S	3+60W	10	8	30	0.1	10	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13+805	0+00E	24	78	54	0.1	10	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0+30	14	24	30	0.1	10	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0+60	4	18	14	0.1	10	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0+90	8	28	32	0.1	10	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1+20	24	74	66	0.1	10	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1+50	26	180	88	0.6	10	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1+80	16	54	56	0.1	10	12
2+40E 8 22 26 0.1 60 18 13+80S 0+30W 58 114 54 2.2 40 1 Std. 68 18 144 0.1 5		2+10	18	76	66	0.1	10	15
13+80S 0+30W 58 114 54 2.2 40 1 Std. 68 18 144 0.1 5		2+40E	8	22	26	0.1	60	18
Std. 68 18 144 0.1 5	13+80S	0+30W	58	114	54	2.2	40	1
		Std.	68	18	144	0.1		5

NOTE:

.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

ANALYTICAL CHEMISTS

ATTN:

GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St.-Vancouver,B.C.

CERTIFICATE NO.	45723
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.15/78

Mr.J.Shearer

SAMPLE N	IO. :	PPM	PPM	PPM	PPM	PPB	PPM
		Copper	Lead	Zinc	<u>Silver</u> Gold	Gold	Arsenci
0+60		28	26	58	0.1	<10	5
0+90		26	52	60	0.1	<10	7
1+20		20	62	58	0.1	10	50
1 +50		30	108	84	0.1	<10	15
1+80		14	48	58	0.1	<10	5
2+10		18	114	82	0.1	20	4
2+40		12	50	42	0.4	<10	3
2+70		8	34	24	0.1	<10	2
3+00		8	58	22	0.1	<10	2
3+30		6	56	28	0.1	<10	2
13+80s	3+60W	18	765	114	1.0	20	18
15+00s	0+30E	20	36	54	0.1	10	10
	0+60	16	40	44	0.1	80	15
	0+90	22	112	62	0.1	40	18
	1+20	36	122	80	0.1	10	25 .
	1+50	24	66	42	0.1	70	30
	1+80	16	16	42	0.1	10	12
	2+10	14	20	46	0.1	10	4
	2+40	12	28	52	0.1	<10	8
	2+70	12	56	54	0.1	20	15
	3+00	22	395	130	0.1	10	45
	3+30	26	104	88	0.1	40	18
	3 + 60E	16	36	46	0.1	30	2
	0+00	6	10	16	0.1	40	2
	0+30	18	16	32	0.1	20	4
	0+60	54	122	98	0.1	<10	10
	0+90	16	12	40	0.1	<10	4
	1+20	12	12	34	0.1	<10	3
	1+50	12	20	46	0.2	<10	12
	1+80	14	34	20	0.1	40	3
<u></u>	2+10	18	20	32	0.1	<10	18
15 + 005	2+40W	34	300	28	2.4	<10	4
16+50S	0+00E	16	42	38	0.1	<10	6
	0+30	12	42	44	0.1	<10	3
	0+60	42	100	82	0.8	<10	35
	0+90	30	108	64	1.0	<10	4
	1+20	16	60	52	0.1	<10	4
	1+50	$\tilde{2}$	6	8	0.1	30	1
	1+80	-2	6	10	0.1	<10	$\overline{2}$
16 ± 505	2+10E	14	4	28	0.1	<10	5
NOTE:	Std.	74	13	160	<u> </u>		5
	·····	# **	د. <u>ب</u>		A*T		2

Sliver values below detection limit of 0.2 ppm reported as 0.1 ppm.

CERTIFIED BY: Har Biell

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

• ANALYTICAL CHEMISTS

• GEOCHEMISTS

. REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	45724
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.15/78

ATTN: Mr.J.Shearer

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLE N	IO. ;	PPM	PPM	PPM	PPM	PPB	PPM
2440 6 8 16 0.1 <10 2 3400 N.S.S. 3430 N.S.S. 3430 N.S.S. $3460E$ N.S.S. 3430 N.S.S. $3460E$ 1.0 <10 4 04400 14 26 44 0.4 <10 5 04400 36 54 70 0.6 20 8 $0+90$ 24 48 52 0.4 160 15 1420 20 58 60 0.6 <10 12 1450 36 310 96 1.4 <10 30 1480 32 136 90 0.1 <10 12 $16450S$ $2440W$ 26 52 74 0.1 <10 12 18400 44 146 98 0.6 0.1 10 12 $0+90$ 34 52 66 0.1 10 10 10			Copper	Lead	Zinc	Silver	Gold	Arsenio
$2^{+7/0}$ 8 16 24 1.0 <10 4 3^{+700} N.S.S. 3 3 N.S.S. 3 3 10 4 3^{+60E} N.S.S. 3 3 0 S.S. 3 5 5 5 0^{+300} 14 26 44 0.4 -10 5 0^{+90} 24 48 52 0.4 160 15 1^{+20} 20 58 60 0.6 <10	2+40		6	8	16	0.1	<10	2
3H00 N.S.S. 3H30 N.S.S. 3H60E N.S.S. 0H60 36 54 70 0.6 20 8 0H90 24 48 52 0.4 160 15 1420 20 58 60 0.6 <10	2+70		8	16	24	1.0	<10	4
3+30 N.S.S. 0+30W 14 26 44 0.4 <10	3+00		N.S.S.					
3460E N.S.S. 0+30W 14 26 44 0.4 <10	3+30		N.S.S.					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3+60E		<u>N.S.S.</u>	<u> </u>				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0+30W		14	26	44	0.4	<10	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0+60		36	54	70	0.6	20	8
1+20 20 58 60 0.6 <10	0+90		24	48	52	0.4	160	15
1+50 36 310 96 1.4 <10 30 1+80 32 136 90 0.1 <10	1+20		20	58	60	0.6	<10	12
1+80 32 136 90 0.1 <10	1+50		36	310	96	1.4	<10	30
16+50S 2+10W 22 30 52 0.1 20 7 16+50S 2+40W 26 52 74 0.1 10 12 18+00S 0+00E 28 110 76 0.1 10 7 0+30 8 8 28 0.1 20 2 0+60 70 34 108 0.1 20 2 0+60 70 34 108 0.1 20 2 0+90 34 52 66 0.1 40 8 1+50 18 34 58 0.1 <10	1+80		32	136	90	0.1	<10	12
16+50S 2+40W 26 52 74 0.1 <10	16+50	5 2+10W	22	30	52	0.1	20	7
18400S 0+00E 28 110 76 0.1 10 7 0+30 8 8 28 0.1 20 2 0+60 70 34 108 0.1 20 8 0+90 34 52 66 0.1 <10	16+50	5 2+40W	26	52	74	0.1	<10	12
0+30 8 8 28 0.1 20 2 0+60 70 34 108 0.1 20 8 0+90 34 52 66 0.1 20 8 1+20 44 146 98 0.6 <10	18+009	5 0+00E	28	110	76	0 1	10	7
0+60 70 34 108 0.1 20 2 0+90 34 52 66 0.1 20 8 1+20 44 146 98 0.6 (10 15 1+50 18 34 58 0.1 (10 8 1+80 38 420 118 0.8 100 75 2+10 N.S.S. 2+70 N.S.S. 2+70 N.S.S. 3+30 N.S.S. 3+30 N.S.S. 3+30 N.S.S. 3+30 100 4 0+30W 16 20 46 0.1 10 4 0+90 20 24 48 0.1 10 4 1+20 12 18 42 0.1 410 2 1+80 2 4 8 0.1 410 2 1+80 2 4 8 0.1 410 2 1+80 2		0+30	8	8	28	0.1	20	2
0+90 34 52 66 0.1 <10		0+60	70	34	108	01	20	8
1+20 44 146 98 0.6 <10		0+90	34	52	66	0 1	~10	8
1+50 18 34 56 0.0 10 15 1+80 38 420 118 0.8 100 75 2+10 N.S.S. 2+40 N.S.S. 2+70 N.S.S. 2+70 N.S.S. 3+30 N.S.S. 3+30 N.S.S. 3+60E N.S.S. 3430 16 20 46 0.1 40 0+30W 16 20 46 0.1 10 4 0+30W 16 20 46 0.1 10 4 0+30W 16 20 24 48 0.1 10 4 0+40 20 24 48 0.1 10 4 1+50 10 10 28 0.1 410 2 1+80 2 4 8 0.1 410 2 1+80 2 4 8 0.1 410 1 19+505 0+00E 6 28 34 0.1 410 4 19+505 0+00E		1+20	44	146	98	0.6	<10	15
1480 38 420 118 0.1 100 75 2+10 N.S.S. 2+40 N.S.S. 2+70 N.S.S. 2+70 N.S.S. 3+30 N.S.S. 3+30 N.S.S. 3+30 N.S.S. 3+400 N.S.S. 3+30 100 4 0+30W 16 20 46 0.1 10 4 0+400 18 34 50 0.1 10 4 0+90 20 24 48 0.1 10 4 1+20 12 18 42 0.1 40 4 1+50 10 10 28 0.1 410 2 1+80 2 4 8 0.1 40 2 2+10 18 12 56 0.1 410 2 18+00S 2+40W 12 14 26 0.2 10 4 19+50S 0+00E 6 28 34 0.1 40 5 0+90 10 12		1+50	18	34	58	0.0	<10	8
2410 N.S.S. 2440 N.S.S. 2440 N.S.S. 2470 N.S.S. 3400 N.S.S. 3430 N.S.S. 3460E N.S.S. 0430W 16 20 46 0.1 40 0430W 16 20 46 0.1 10 4 0430W 16 20 46 0.1 10 4 0460 18 34 50 0.1 10 4 0490 20 24 48 0.1 10 4 1450 10 10 28 0.1 40 2 1480 2 4 8 0.1 40 2 18+00S 2.4 8 0.1 40 2 18+00S 2.4 8 0.1 40 2 19+50S 0+00E 6 28 34 0.1 40 19+50S 0+00E 6 28 34 0.1 10 80		1+80	28	57 620	118	0.1	100	75
2+40 N.S.S. 2+70 N.S.S. 3+60 N.S.S. 3+30 N.S.S. 3+60E N.S.S. 3+60E N.S.S. 3+60E N.S.S. 3+60E N.S.S. 3+60E N.S.S. 3+60E N.S.S. 0+30W 16 20 46 0.1 40 0+90 20 24 48 0.1 10 4 1+20 12 18 42 0.1 40 4 1+50 10 10 28 0.1 410 2 2+10 18 12 56 0.1 410 2 18+00S 2+40W 12 14 26 0.2 10 4 19+50S 0+00E 6 28 34 0.1 10 60 0+30 30 230 104 0.1 1580 60 0+40 10 12 32 0.1 40 4 1+20 4 16		2+10	NSS			0.0	100	
2+70 N.S.S. 3+00 N.S.S. 3+30 N.S.S. 3+60E N.S.S. 0+30W 16 20 46 0.1 0+30W 16 20 46 0.1 10 4 0+60 18 34 50 0.1 10 4 0+90 20 24 48 0.1 10 4 1+20 12 18 42 0.1 <10		2+40	N C C					
3+00 N.S.S. 3+30 N.S.S. 3+60E N.S.S. 0+30W 16 20 46 0.1 <10		2+70	N S S					
3+30 N.S.S. 3+60E N.S.S. 0+30W 16 20 46 0.1 <10		3+00	NSS					
3+60E N.S.S. 0+30W 16 20 46 0.1 <10		3+30	NSS.					
0+30W 16 20 46 0.1 <10		3+60E	NSS.					
0+60 18 34 50 0.1 10 4 0+90 20 24 48 0.1 10 4 1+20 12 18 42 0.1 10 4 1+50 10 10 28 0.1 <10		0+301/2	16	20	46	0 1	~10	4
0+90 20 24 48 0.1 10 4 1+20 12 18 42 0.1 <10		0+60	18	34	50	0.1	10	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0+90	20	24	48	0.1	10	4
1+20 12 10 42 0.1 (10 4 1+50 10 10 28 0.1 (10 2 1+80 2 4 8 0.1 (10 2 2+10 18 12 56 0.1 (10 1 18+00S 2+40W 12 14 26 0.2 10 4 19+50S 0+00E 6 28 34 0.1 <10		1+20	12	18	40	0.1	<10	4
1150101010200.1(102 $1+80$ 2480.1(102 $2+10$ 1812560.1(101 $18+00S$ $2+40W$ 1214260.2104 $19+50S$ $0+00E$ 628340.1(106 $0+30$ 302301040.1158060 $0+30$ 302301040.1158060 $0+60$ 1458780.1(1080 $0+90$ 1012320.1(104 $1+20$ 416160.1305 $1+50$ 850520.1(1010 $19+50S$ $1+80E$ 1278500.110 $19+50S$ $1+80E$ 1278500.15NOTE: N.S.S. = Not Sufficient Sample. MEMBER CERTIFIED BY:CERTIFIED BY:MEMBER CERTIFIED BY:CERTIFIED BY:CERTIFIED BY:CERTIFIED BY:Silver values below detection limit of 0.2 ppm reported as 0.1 ppm		1+50	10	10		0.1	<10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1+80	10	10	20	0.1	<10	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2+10	2 19	4	56	0.1	<10	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18+005	2110	10	14	26	0.1	10	1
194303 04001 0 20 34 0.1 410 0 0430 30 230 104 0.1 1580 60 0460 14 58 78 0.1 410 80 0490 10 12 32 0.1 410 4 1420 4 16 16 0.1 30 5 1420 4 16 16 0.1 30 5 1450 8 50 52 0.1 40 10 194505 1480E 12 78 50 0.1 10 40 194505 1480E 12 78 50 0.1 10 40 Std. 70 18 158 0.1 5 5 MANDE: N.S.S. = Not Sufficient Sample. MARKER CERTIFIED BY: MARKER CERTIFIED BY: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm	101500	2140W 0400V	12	14 90	20	0.2	-10	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	134303	0+30	20	220	 	0.1	1580	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0100	50	230	104 70	0.1	100	80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0100	10	20 10	10	0.1	<10 -10	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1420	10	16	32	0.1	20	4 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1720	4	10	10	0.1	.3U -10	10
It is the second sec	101500		0	<u> </u>		0.1	<u>10</u>	
TE: NOTE: N.S.S. = Not Sufficient Sample. CTA NOTE: N.S.S. = Not Sufficient Sample. CANADIAN TESTING ASSOCIATION TE: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm	T34,202	TTOUR	12	78	50	0.1	TO	4U 6
TE: NOTE: N.S.S. = Not Sufficient Sample. CERTIFIED BY: Haut Sielle CERTIFIED BY: Haut Sielle Silver values below detection limit of 0.2 ppm reported as 0.1 ppm	·	Sta.	/0	<u> </u>	158	0.1		
CERTIFIED BY: CERTIFIED BY: CERTIFIED BY: TO CERTIFIED BY:TO CERTIFIED BY:	<u>נס</u>	NOTE:	N.S.S. = Not S	ufficient	Sample.	1 tral	Asil	2
TE: \mathbf{V} Silver values below detection limit of 0.2 npm reported as 0.1 npm	I ▲	CANADIAN TE	STING		CENTIFIED B	sγ:		And the owner of the owner.
\sim	TE: V	Silver va	ues below det	ection lim	it of 0.2	opm reported	as 0.1 ppm	

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

· ANALYTICAL CHEMISTS

V

• GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO:

McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

Mr.J.Shearer

CERTIFICATE NO.	45725
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.15/78

ATTN:

SAMPLE NO. :	PPM	PPM	PPM	PPM	PPB	PPM		
	<u> </u>	Lead	Zinc	Silver	Gold	Arsenic_		
2+10	14	56	68	0.1	40	18		
2+40	10	34	32	0.1	20	12		
3+00	10	52	66	0.1	40	18		
3+30	8	36	28	0.4	70	15		
<u>3+60E</u>	18	48	48	1.0	< 10	35		
0+30W	38	146	122	0.8	160	40		
0+60	16	18	44	0.1	10	5		
0+90	8	10	24	0.1	10	2		
1+20	10	6	20	0.1	20	4		
1+50	12	106	52	0.1	< 10	8		
1+80	6	18	30	0.1	< 10	3		
2+10	2	4	14	0.1	10	2		
19+50S 2+40W	14	14	54	0.1	20	3		
21+00S 0+00E	14	186	180	0.8	60	55		
0+30	14	72	90	0.6	130	65		
0+60	2	8	26	0.1	< 10	5		
0+90	2	16	18	0.4	30	7		
1+20	4	30	32	0.1	20	30		
1+50	18	76	68	0.2	40	65		
1+80	12	36	64	0.2	< 10	50		
2+10	18	194	56	2.4	20	60		
2+40	8	38	18	0.1	< 10	15		
2+70	12	20	36	0.6	< 10	20		
3+00	4	26	10	0.8	< 10	12		
3+30	4	26	22	0.1	< 10	7		
3+60E	16	68	92	0.6	< 10	18		
0+30W	18	84	104	0.1	10	100		
0+60	4	14	18	0.1	< 10	5		
0+90	12	26	36	0.1	< 10	10		
1+20	22	16	54	0.1	< 10	4		
1+50	14	20	32	<u><u><u></u><u>n</u>1</u></u>	< 10	7		
1+80	8	6	26	0.1	110	ģ		
2+10	NSS	Ŭ.	20	0.1		2		
21+005 2+4012	NSS							
22+50S 0+00F	6	44	28	1 0	50	30		
0+30	16	116	54	1.0	60	70		
0+50	22	275	68	2.0	140	200		
0100	12	100	38	0 4	40	70		
1+20	10	68	50	0.8	40 50	45		
22+508 1+50F	36	72	106	1.6	< 10	75		
44 544	70	20	160	<u> </u>	× 10	5		
N C C - Not ouffile	iv	20	100	0.1		ر.		
<u> </u>	<u>ver values bel</u>	ow detecti	on limit of	0.2 ppm ret	orted as O	.i ppm.		
MEMBE								
CANADIAN TE ASSOCIAT	ESTING ION			1tan	X1Seel	Le.		

CHEMEX LABS LTD.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE 604 TELEX: 043-52597

ANALYTICAL CHEMISTS

GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver,B.C.

Mr.J.Shearer

CERTIFICATE NO.	45726
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	0

Sept.15/78

ATTN:

TO:

	PPM	PPM	PPM	PPM	PPB	РРМ
SAMPLE NO	Copper	Lead	Zinc	Silver	Gold	Arsenic
1+80	30	98	124	0.1	<10	55
2+10	32	64	80	0.6	<10	18
2+40	22	36	56	0.4	<10	20
2+70	12	48	42	0.1	<10	35
3+00	10	10	40	0.4	10	40
3+30	2	16	10	0.2	30	10
3+60E	4	18	22	0.1	10	10
0+30W	8	90	50	0.6	50	175
0+60	20	32	56	0.4	<10	12
0+90	12	58	64	0.6	<10	12
1+20	12	28	34	0.1	<10	8
1+50	12	54	54	0.2	<10	1 5
1+80	16	18	28	0.1	<10	4
2+10	10	965	545	1.4	<10	55
22+50S 2+40W	28	52	60	0,2	10	18
24+005 0+00E	14	78	10	0.8	10	2
0+30	12	18	30	0.1	30	15
0+60	6	10	12	0.1	<10	1
0+90	4	2	8	0.1	<10	1
1+20	4	6	4	0.1	<10	2
1+50	6	22	16	0.4	<10	18
1+80	8	40	20	0.6	<10	20
2+10	6	24	16	0.1	<10	12
2+40	14	18	36	0.1	<10	8
2+70	4	10	4	0.1	<10	5
3+00	10	18	30	0.1	20	5
3+30	6	24	14	0.1	<10	12
3+60E	10	14	28	0.1	<10	8
0+30W	4	26	12	0.1	20	12
0+60	20	270	58	1.4	40	30
0+90	10	18	30	0.1	10	1
1+20	6	18	16	0.1	<10	6
1+50	12	72	54	0.1	<10	20
1+80	6	28	26	0.1	<10	4
2+10	10	8	24	0.1	<10	5
24+00s 2+40w	4	4	6	0.1	<10	2
25+50S0+00E	8	24	24	0.1	40	18
0+30	10	36	28	0.1	<10	25
0+60	4	12	10	0.2	<10	3
25+50S 0+90E	10	18	24	0.1	<10	25
Std.	68	18	156	0.1		5

NOTE: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

Hant Bi

CHEMEX LABS LTD.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

· ANALYTICAL CHEMISTS

• GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	45727
INVOICE NO.	2808 2
RECEIVED	Sept.7/78
ANALYSED	Sept.15/78

٦

ATTN: Mr.J.Shearer

		PPM	PPM	PPM	PPM	РРВ	PPM
SAMPLE NO. :		Copper	Lead	Zinc	Silver	Gold	Arsenic
1+20		4	6	12	0.1	<10	9
1+50		4	4	10	0.1	<10	8
1+80		8	4	24	0.1	<10	9
2+10		6	8	12	0.1	<10	7
2+40		8	16	24	0.1	70	8
2+70	,	4	6	10	0.1	<10	3
3+00		12	12	28	0.1	<10	12
3+30		6	14	14	0.1	<10	4
25+50S 3+6	0E	8	12	18	0.1	20	5
25+505 0+3	OW	8	275	38	0.1	<10	15
0+6	0	10	20	42	0.1	<10	6
0+9	0	12	46	34	0.1	<10	6
1+2	0	8	24	54	0.1	<10	1
1+5	0	6	12	22	0.1	<10	8
1+8	0	16	420	60	1.8	<10	15 .
2+1	OW	14	24	52	0.2	20	18
25+50s 2+4	OW	26	615	138	3.8	30	20
27+005 0+0	0E	6	18	24	0.1	10	12
0+3	0	6	24	30	0.1	90	40
0+6	0	8	10	14	0.1	<10	15
0+9	0	4	6	10	0.1	10	3
1+2	0	6	10	16	0.1	<10	8
1+5	0	14	22	36	0.1	<10	18
1+8	0	4	8	12	0.1	<10	10
2+1	0	8	12	20	0.1	20	15
2+4	0	10	18	30	0.1	<10	20
2+7	0	10	8	20	0.2	<10	8
3+0	0	8	16	16	0.2	20	4
3+3	0	6	10	18	0.1	10	5
27+005 3+6	0E	18	24	42	0.1	10	10
27+005 0+3	OW	6	2	14	0.1	10	5
0+6	0	38	186	106	1.2	<10	12
0+9	0	16	160	52	0.4	<10	8
1+2	0	8	60	28	0.2	<10	7
1+5	0	14	150	94	0.1	40	80
178	0	6	14	24	0.1	<10	8
2+1	0	10	18	34	0.1	<10	15
27+00S 2+4	ÔW	42	845	106	1.8	<10	40
28+50S 0+0	0E	10	18	32	0.1	<10	6
28+50s 0+3	0E	4	12	10	0.2	<10	4
Std	• 1 1 2	70	18 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	156	0.1	1	6

Silver values below detection limit of 0.2 ppm |NOTE: report

Hart CERTIFIED BY:

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

· ANALYTICAL CHEMISTS

• GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	45728
INVOICE NO.	28082
RECEIVED	Sept.7/78
ANALYSED	Sept.15/78

ATTN:

Mr.J.Shearer						
SAMPLE NO	PPM	PPM	PPM	PPM	PPB	PPM
SAMELE NO	Copper	Lead	Zinc	Silver	Gold	Arsenic
0+60	10	18	18	0.1	<10	3
0+90	10	8	24	0.1	<10	1
1+20	16	14	42	0.1	10	5
1+50	10	8	26	0.1	<10	5
<u>1+80 </u>			32	0.1	<10	55
2+10	4	18	12	0.2	<10	7
2+40	4	20	14	0.1	10	12
2+70	18	102	46	0.4	<10	25
3+00	22	170	54	0.8	<10	20
3+30	14	18	34	0.6	<10	15
3+60E	8	18	24	0.2	10	8
0+30W	20	46	54	0.1	10	6
0+60	18	44	40	0.1	30	8
0+90	16	126	56	0.1	<10	18
1+20		48	54	0.2	<10	20
1+50	10	158	54	0.1	200	>500
1+80	12	435	48	0.4	20	40
2+10	26	84	72	0.1	<10	50
28+50S 2+40W	38	50	74	0.8	<10	18
30+005 0+00E	14	450	54	1.0	<10	60
0+30	6	14	20	0.1	<10	15
0+60	8	14	26	0.1	<10	5
0+90	12	16	28	0.2	10	8
1+20	4	8	20	0.1	<10	5
1+50	18	24	38	0.1	<10	5
1+80	18	30	50	0.2	100	18
2+10	2	6	60	0.2	^{<} 10	3
2+40	10	14	22	0.2	^{<} 10	1
2+70	16	14	40	0.1	^{<} 10	15
3+00	8	14	24	0.8	^{<} 10	3
3+30		12	24	0.1	<10	5
3+60E	2	6	6	0.1	10	3
0+30W	10	66	24	0.6	20	20
0+50	8	18	32	0.1	^{<} 10	8
0+90	6	36	36	0.1	10	7
1+20	14	174	74	0.1	<10	15
1+50	24	124	112	0.1	<10	15
1+80	18	14	54	0.1	<10	5
2+10	38	100	72	0.6	<10	12
30+005 2+409	40	50	94	0.2	20	8
Std	72	18	160	0.1		2
0644	· —					

NOTE:

Silver values below detection limit of 0.2 ppm reported as 0.1 ppm. MEMBER

CERTIFIED BY: ..

CANADIAN TESTING ASSOCIATION

	CHEMEX LABS	212 BROOM NORTH VAR CANADA TE SEPHON ARTICON TELEX:	KSBANK AVE. NCOUVER, B.C. V2L 201 980-0648 504
+ ANALYTICAL CHEMI	STS • GEOCHEMISTS • REGISTERE	D ASSAYERS	
CI	ERTIFICATE OF ASSAY	CERTIFICA	TE NO. 93777
TO: McIntyre Min 1003 - 409	aes Ltd., Granville St.,	INVOICE N	0. 27318 June 20, 1978
V6C 1T8		ANALYSED	June 28, 1978
	c.c. Quesnel	,	
SAMPLE NO. :	Gold		
57026	<0.003		
57028	<0.003		
57029	<0.003		
57030	<0.003		
57031	<0.003		•
570 3 2	<0.003		
57034	<0.003		
57035	0.096		
57036	<0.003		
57037	<0.003		
57038	<0.003		
57041	<0.003		
57042		- 19595	
	•		
		Z 11 - 11	-

/ lin monim

REGISTERED ASSAYER. PROVINCE OF BRITISH COLUMBIA

į

J.

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 043-52597 TELEX.

1 superi

• GEOCHEMISTS . REGISTERED ASSAYERS • ANALYTICAL CHEMISTS

TO:

ATTN:

SAMPLE NO. :

CER	TIFIC			YSIS		CER	TIFICATE N	io. 44540
McIntyre Mi	nes Lto	i.				INV	OICE NO.	26935
1003 - 409 Vancouver,	Granvil B.C.	lle Stree	t	ROCKS		REC	EIVED	July 25/78 August 2/78
J. Shearer		I	B.C. GOLI)				
	РРМ	PPM	PPM	PPM	PPM	PPM	PPM	PPM
E NO. :	Cu	Мо	РЬ	Zn	Ag	Ba	Sr	Са

57039	10	1	20	30	0.4	350	15	900	
57457	38	2	1800	6	8.4	500	370	800	
	РРМ	PPB							
		U~							
	<u>A5</u>	<u>ng</u>							
57039	4								
57457	100	1400				ı			
51751	400								

Note: Te analysis not available at present.

Note: Silver values below detection limit of 0.2 ppm reported as 0.1 ppm.

CHEMEX LABS LTD.

212 BROOKSBANK AVE. NORTH VANCOUVER,B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597 Ą

. ANALYTICAL CHEMISTS

GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville Vancouver, B.C. CERTIFICATE NO. 43585 INVOICE NO. 27300 RECEIVED June 20/78 ANALYSED June 29/78

ATTN: J. Shearer		Quesnel	"Rocks"			ANALYSED	Jun	e 29710
· · ·	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPN
SAMPLE NO. :	Ca	РЬ	Zn	Ag	As	Sr	Ca	Ba
57026	8	54	55	0.1		70	5000	500
57027	22	12	85	0.1	4	45	700	550
57028	8	14	20	0.1	24	25	600	350
57029	8	34	70	0.1		25	650	450
57030	8	14	20	0.1		25	600	425
67031	34	108	110	0.4		55	650	775
57032	38	102	90	0.2	75	45	650	550
57033	34	154	85	0.8	120	40	700	450
57034		96						
57035	30	>4000	20	>20	390	25	1200	.50
57036	14	116	110	0.4	35	50	850	500
57037	10	64	50	0.1	8	40	850	225
57038	36	26	90	0.1	18	70	1200	650
57041	6	152	30	0.1	19	20	800	175
57042		86	10					

Note: Silver values below detection limit of 0.2 ppm - reported as 0.1 ppm

2

CERTIFIED BY:

Harride

212 BROOKSBANK AVE. NORTH VANCOUVER, B.C. CANADA V7J 2C1 TELEPHONE: 985-0648 AREA CODE: 604 TELEX: 043-52597

ANALYSED

. ANALYTICAL CHEMISTS

• GEOCHEMISTS

REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

McIntyre Mines Ltd., TO: 1003 - 409 Granville Street,

Tancouver, B.C.

V6C 1T8

CERTIFICATE NO. 43583 INVOICE NO. 27300 RECEIVED June 20, 1978

June 29, 1978

•

ATTN:	J.	Shearer

	PPM	PPM	PPM	PPM	PPB	PPM
SAMPLE NO. :	Cu	РЪ	Zn	As	Au	Те
PR - 1	4	10	10	3	<10	
2	22	120	58	<u>12</u> 0	40	
3	18	106	40	40	20	
4	14	38	38	27	70	
	14	28	30	14	80	
6	18	285	68	40	100	SORRY, Te analysis
7	12	620	108	18	10	not available at this
8	22	450	106	40	40	time - only in off
9	6	12	24	4	<10	season due to work
10	6	14	22	6	40	load and complicated
11	2	4	14	2	20	Te procedure.
12	14	24	36	45	90	
13	4	2	12	3	140	
14	16	104	52	60	20	
	12	28	28	17	30	
16	24	172	72	400	140	
17	36	200	144	220	30	
18	30	365	96	60	40	
19	28	122	122	80	40	
20	30	64	118	27	<10	
21	14	38	44	2	<10	
22	12	30	42	6	20	
23	16	84	50	28	50	
24	20	90	72	25	<10	
25	4	14	18	6	60	
26	4	10	10	2	20	
27	6	20	14	11	120	
28	8	20	20	10	140	
29	10	16	10	23	130	
30	4	36	22	5	220	
31	6	16	22	9	110	
32	10	114	38	20	20	
33	60	210	200	190	50	
34	10	42	30	22	40	
35	16	32	42	30	10	
36	2	12	14	2	10	
37	26	46	58	60	190	
38	16	154	26	23	40	
39	8	50	18	45	10	
PR - 40	14	70	32	70	3400	
STD.	92	40	126	8		

CERTIFIED BY: Hartrile

 212
 BROOKSBANK
 AVE.

 NORTH VANCOUVER, B.C.
 CANADA
 V7J 2C1

 TELEPHONE:
 985-0648
 AREA CODE:
 604

 TELEX:
 043-52597
 643-646

ANALYTICAL CHEMISTS

• GEOCHEMISTS

• REGISTERED ASSAYERS

CERTIFICATE OF ANALYSIS

TO: McIntyre Mines Ltd., 1003 - 409 Granville St., Vancouver, B.C.

CERTIFICATE NO.	435	84
INVOICE NO.	273	00
RECEIVED	June	20/78
ANALYSED	June	29/78

ATTN: J. Shearer

		PPM	PPM	PPM	PPM	PPB	PPM
SAI	MPLE NO. :	Cu	РЪ	Zn	As	Au	Те
PR	41	6	4	12	3	10	
	42	30	58	24	80	180	
	43	8	46	28	24	<10	
	44	16	114	54	23	<10	
	45	16	1 18	70	75	<10	
	46	18	96	88	42	10	
	47	22	52	82	30	<10	
	48	16	90	56	26	10	
	49	26	25 5	98	85	10	
	50	28	40 0	106	55	60	
	51	22	140	64	45	10	X
PR	52	14	16	24	60	40	

SORRY, Te analysis not available at this time - only in off season due to work load and complicated Te procedure.

CERTIFIED BY: HartRille

APPENDIX V

PROBABILITY DISTRIBUTION GRAPHS

Log 3 Cycles x Probability

d mda

Log 3 Cycles x Probability

Log 3 Cycles x Probability

80 Equal Divisions x Probability

99,9°	9		9	9.0 S	99.B	.		99	9		1	85		90	· · · · ·	80		70	60	5	0	40	30		20			10		/.	. 2	2	;	c	5	ο.	2 0	.1_0.	05
·	•	•					1		1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1					· · · · ·			 			· · · · ·	· · ·										1 -				-			
	•		· · · · · · · · · · · · · · · · · · ·			-					:				4 2 0 0 9 1 0 1 0 1 1 1 1 0 4 1 1 1 1 4 1 1 1 1				· · · · · · · · · · · · · · · · · · ·												Ag	• • • • •			1				
		, . 			1		• • • • • • • • • • •		· · · ·	 					· · · · ·		· · · ·		· · ·	· · ·	• 1 • 1				• •			•						1 · · · ·			- + +		
	•	· ·	·				• • • • • • •			; ; ;										. . • . • . • • • •								ļ			21					1 1 1	, , , ,	· · · · ·	
	•		· · ·	-			: ، : ب : ب ، : ، ، : ، ، • • •	4 • 4 • 4 •	1 · · · • · · ·		-	• • •	· • • • • • • • •															ł		, .				<u>⊶</u> 					
	•	· · ·	· · · · · · · · · · · · · · · · · · ·	, , , , , ,	i i					1											· · · · ·							$\left[\right]$		·									
-			با د ر ۱۰۱۰ ۱۰۱۰ ۱۰۰۰			1																				1	/ /		·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		1	1	····	
		· · ·			-					• •	4		. . 									ji F	140	2 tu n t R 1 2	. 7						· ·	· · · · · · · · · · · · · · · · · · ·		1.1.1 1.1.1 1.1.1 1.1.1 1.1.1			• • •		+ - + - + + +
, _		· · ·	· · · · · · · · · · · · · · · · · · ·			!		· · ·		:	• •				1 1 1											1,					· · ·			· · · ·		-	FP C	R	
		· · ·	1 . 1 . 1 .			 					 			· · · ·					;															· · · ·			•		
		· · ·						· ·	• • • i • • i •			1	· · ·	· · · · ·	، ا ۱۰۱۱ ۱۰۱۱ ۱۰۱۱											X					1			· · · ·					
		- 	1			*	.1	· ·					· · ·	· · · ·	 4 . 4 1 						×				-11			95	ectu n t					· · · · ·				· · · · · ·	
	'	· ·		;		-		· · ·					. I 		 		::;								I	11 - i -								· · · · · · · · · · · · · · · · · · ·			•	· · · · ·	
				 								7															A		· · · ·		· · ·						• • •	· · · ·	
	, , ,	• • • •	· · · · ·		-	! ! 					, ,			×															• • •		· · ·			· · · · · · · · · · · · · · · · · · ·				····	
			· · t) · · ·							, 1	, 7		• • •										*	1	•	• • • • • •	-1		• • •		• • · · • · · · · · · · · · · · · · · ·			•••••				- + + + + - + + + + - + + + + - + + + -	

a second s

· · ·

and the second second

APPENDIX VI

PETROGRAPHIC SUMMARY

.

٠.

.

•

i

.

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP DATE: DECEMBER 6, 1978 EXAMINED BY: JS	
SPECIMEN NUMBER 57951 LOCATION WARSPITE DUMP	
HANDSPECIMEN DESCRIPTION:	
COLOURSILVERY GREY- WHITE	
TEXTURE SILKY TO CLASTIC TOUGHNESS VERY HARD & WELL INDURATED	
GRAIN SIZESO.5 - O.7 MM	
FABRIC AND PACKINGEQUIGRANULAR, CLOSE PACKED	
STRATIFICATION SCHISTOSE IN H.S.	
MINOR STRUCTURES	
COMPOSITION (%)80% QUARTZ 19% SERICITIC MUSCOVITE 1% PY %	
FIELD NAME PHYLLITIC QUARTZITE	
THINSECTION DESCRIPTION:	
COLOUR AND MICROTEXTURE CLEAR, SCHISTOSE - CATACLASTIC	
GRAIN SIZES AND SHAPES SUTURED AND EMBAYED GRAIN BOUNDARIES, OTZ, ELONGATE MUSCO	OVITE
FABRIC AND PACKING STRONG PLANAR, IRREGULAR	
STRATIFICATION SCHISTOSE, GRANULATION, NO PRIMARY STRUCTURES	
MICROSTRUCTURESCALCITE AND MUSCOVITE REPLACING QTZ, MN STAIN	
COMPOSITION (%) 85% QUARTZ 10% MUSCOVITE - THICKEST LAYER .7 MM WIDE 3% CALCITE - REPLACING QTZ IN PATCHES 1 MM 1% PYRITE 1% EPIDOTE - SUBRECTANGULAR CLEAVAGE, SMALL GRAINS	
NAME QUARTZ MUSCOVITE SCHIST	
COMMENTS: UNDULATORY EXTINCTION NOT WELL DEVELOPED, GRANULATION "BEHIND"	
LARGE COMPOSITE QTZ GRAINS	

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 6, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57952 LOCATION WARSPITE DUMP HANDSPECIMEN DESCRIPTION: COLOUR DARK GREY-BLACK TEXTURE SCHISTOSE WITH RELICT SANDYTOUGHNESS WELL INDURATED GRAIN SIZES 1 MM, SOME SILT SIZE FABRIC AND PACKING WELL SORTED, PENETRATIVE CLEAVAGE STRATIFICATION MASKED BY CLEAVAGE MINOR STRUCTURES DK VEINLETS, MICRO FRACTURES COMPOSITION (%)70% QUARTZ 10 & MUSCOVITE 5_% ANKERITE FIELD NAME DARK (BLACK) PHYLLITIC QUARTZITE THINSECTION DESCRIPTION: COLOUR AND MICROTEXTURE LIGHT GR TO COLOURLESS GRAIN SIZES AND SHAPES _ ELONGATE MUSCOVITE UP TO .3 MM, SMALL QTZ .05, LARGE COMPOSITE QTZ UP TO .8 MM FABRIC AND PACKING LRG GRAINS FLOATING IN GRANULATED MTX STRATIFICATION NO PRIMARY, EXTREME CATACLASIS, SCHISTOSITY MICROSTRUCTURES ANKERITE PORPHROBLASTS, LRG QTZ GRAINS STRAINED, SMALL GRAINS CLEAR COMPOSITION (%)40% QUARTZ 35% MUSCOVITE 25% CALCITE ONE EPIDOTE GRAIN 0.08 MM RECTANGULAR CLEAVAGE ક્ષ V. HIGH RELIEF 8 NAME FLASER QUARTZITE COMMENTS: COMPOSITE QTZ WITHIN GRANULATED ZONES, TWO AGES OF MUSCOVITE (A) EARLY DEFINING SCHISTOSITY (B) SMALL, RANDOMLY ORIENTED NEEDLES THROUGHOUT

SOME ROUNED "BALLS" OF INGROWN MUSCOVITE NEEDLES AND "CHERT"

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP DATE: December 6, 1978 EXAMINED BY: J.S.
SPECIMEN NUMBER 57953 LOCATION WARSPITE DUMP
HANDSPECIMEN DESCRIPTION:
COLOUR BLACK
TEXTURE "CHERTY", SILICIFIED TOUGHNESS VERY WELL INDURATED
GRAIN SIZES PHENOS 0.5 MM
FABRIC AND PACKING
STRATIFICATION NON, MASSIVE, VAGUE SCHISTOSITY
MINOR STRUCTURES QTZ. VEINLETS
COMPOSITION (%)70 % QUARTZ 5 % <u>MICA</u> 25 % <u>MTX</u> 1 % PY
FIELD NAME
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURE COLOURLESS, EQUIGRANULAR, PSEUDO PORPHYRITIC
GRAIN SIZES AND SHAPES COMPOSITE QTZ UP TO 2.0 MM, MOST 0.15-0.3 MM, ELONGATE MICA
FABRIC AND PACKINGALL GRAINS STRAINED, GRANULATED APPEARANCE, MOSAIC
STRATIFICATION VEINLETS OF MUSCOVITE, CRUDELY PARALLEL, VERY FINE NEEDLE MUSCOVITE
MICROSTRUCTURES MICROFRACTURES PARALLEL TO SCHISTOSITY, MINOR SUTURED GRAINS
COMPOSITION (%)75% QUARTZ 15% MUSCOVITE 8% OPAQUES (PY?) 1 - Tr% EPIDOTE - YELLOW-GREEN, SLIGHTLY PLEO % UNIAXIAL FIGURE
NAME FLASER
COMMENTS: SOLUTION FEATURES - QTZ GRAINS CUT IN HALF, NON-MATCHING SIDES,
MUSCOVITE REPLACEMENT, SOME QTZ. GRAIN GHOSTS (CENTERS).

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: December 7, 1978 EXAMINED BY: J.S. .

SPECIMEN NUMBER 57954 LOCATION WARSPITE DUMP
HANDSPECIMEN DESCRIPTION:
COLOURBLACK TO DARK GREY
TEXTURE <u>CONGLOMERATIC(BX)</u> TOUGHNESS VERY WELL INDURATED
GRAIN SIZES ANKERITE - 3 MM, PY - 5 MM, CLASTS - 20 MM.
FABRIC AND PACKING COARSE, PORPHYROBLASTIC
STRATIFICATION SCHISTOSE
MINOR STRUCTURES PORPHYROBLASTS OF ANKERITE
COMPOSITION (%)30 % <u>QUARTZ</u> 30 % <u>ANKERITE</u> 30 % <u>LITHIC CLASTS</u> 10 % PY
FIELD NAMESCHISTOSE_CONGLOMERATE
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURE <u>CLEAR TO LIGHT GREY</u> XLINE GRAIN SIZES AND SHAPES <u>Py-3.5 MM, ANKERITE POIKIOBLASTIC - 1.5 MM, OTZ VARIABLE</u>
(see below) (see below) (see below)
VAGUE ALIGNMENT OF STRATIFICATION _ SCHISTOSE, NO RELICT SEDIMENTARY STRUCT., COMPOSITE QTZ.
MICROSTRUCTURES COMPOSITE OTZ GRAINS WITH GRANULATED MARGINS BY NEEDLE MUSCOVITE
COMPOSITION (%) 25% <u>CALCITE (ANBRITE)</u> 35-40% <u>QUARTZ</u> 30-35% <u>MUSCOVITE (BOTH GENERATIONS)</u> 1% <u>EPIDOTE</u> 5% PY
NAME BLASTO MYLONITE?
COMMENTS: ANKERITE POIKIOBLASTIC TEXTURE MANY INCLUDED QTZ GRAINS, LARGE CLAST
(Primary) COMPOSED OF 50T OTZ 0.08 MM LINEATED AND 50% ELONGATE + RANDOM NEEDLE MUSCOVITE
ANKERITE SUPERIMPOSED ON ALL STRUCTURE WIL RELICT LINEATION PRESERVED, TWO AGES

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP	DATE: December 6, 1978 EXAMINED BY: J.S.			
SPECIMEN NUMBER 57955	LOCATION WARSPITE DUMP, * 7.6 ppm Au.			
HANDSPECIMEN DESCRIPTION:				
COLOUR LIGHT GREY, BANKS OF XLINE	PYRITE			
TEXTURE VAGUELY CLASTIC	TOUGHNESS WELL INDURATED, SILICIFIED			
GRAIN SIZES <u>3 - 5 MM</u>				
FABRIC AND PACKING REXLIZED, CLOSE	<u> </u>			
STRATIFICATION VAGUE				
MINOR STRUCTURES				
COMPOSITION (%)90 % QUARTZ 5 % MUSCOVITE 5 % PYRITE %				
FIELD NAMESILICIFIED MICACEOUS C	UARTZITE			
THINSECTION DESCRIPTION:				
COLOUR AND MICROTEXTURE INTERLOCKIN	COLOURLESS IG MOSAIC, SOME ROUNDED EMBAYMENTS OF QTZ,			
GRAIN SIZES AND SHAPESSUBRECTANGU	LAR TO SUBOCTAHEDRAL, 0.1 TO 0.3 MM, IRREGULAR			
FABRIC AND PACKING UNDULATORY TO	FRINGE EXTINCTION.			
STRATIFICATION NONE				
MICROSTRUCTURES REXLIZATION, MINOR	FLOWAGE OF SIO ₂ + MUSCOVITE			
COMPOSITION (%)60 % <u>QUARTZ</u> 10 % MUSCOVITE 30 % OPAQUES (PYRITE) % TRACE APATITE BE %	FORE SILICIFICATION, SMALL GRAINS			
NAMEPYRITIZED, SILICIFIED META ARENITE?				
COMMENTS: AU CONTENT 7.6 ppm, HIGH As.				

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP	DATE: December 6, 1978 EXAMINED BY: J.S.			
SPECIMEN NUMBER 57956 I	OCATION WARSPITE DUME			
HANDSPECIMEN DESCRIPTION:				
COLOUR DARK GREY				
TEXTURE SILTY	OUGHNESS MODERATELY INDURATED, FLAKEY			
GRAIN SIZES SILT, MINOR 0.5 MM GRAINS	3			
FABRIC AND PACKING TOO FINE-GRAINED				
STRATIFICATION PHYLLITE, VAGURE PRIM	MARY (?) PARALLEL TO FOLIATION			
MINOR STRUCTURES _ WISPY LAYERS, DAR	FRACTURES			
COMPOSITION (%)70 % <u>QUARTZ</u> 30 % <u>MUSCOVITE</u> Tr % <u>PYRITE</u> %				
FIELD NAMEPHYLLITIC SILTSTONE				
THINSECTION DESCRIPTION:				
COLOUR AND MICROTEXTURE CLEAR, FLATT	ENED (COMPRESSED) QTZ GRAINS			
GRAIN SIZES AND SHAPES MAINLY QTZ @	0.05 MM AND "RELIEF" GRAINS @ 0.3 to 0.7 MM			
FABRIC AND PACKINGEUHEDRAL CALCITE	REPLACING QTZ.			
STRATIFICATION NONE, SCHISTOSITY, S	SOME GHOST INCLUSION RINGS			
MICROSTRUCTURESRELICT SAND SIZE GH	RAINS			
COMPOSITION (%)80% <u>QUARTZ</u> 10-15% <u>MUSCOVITE</u> 5% CALCITE @% PYRITE %				
NAMEMYLONITIC_QUARTZITE				
COMMENTS: LARGE SLIGHTLY STRAINED QTZ (RAINS "ISLANDS" (KNOTS) IN LINEATED SMALL			
QTZ FLOWAGE WITH EMBAYED (RAGGED) GRAD	IN BOUNDARIES.			

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 8, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57030 LOCATION
HANDSPECIMEN DESCRIPTION:
COLOUR MEDIUM GREY, 2MM WHITE QTZ VEINLET, SPECKLED
TEXTURE PHYLLITIC TOUGHNESS BRITTLE FROM FRACTURES
GRAIN SIZES SAND, 1 MM "PORPHYROCLASTS" SOME SILT GRAINS?
FABRIC AND PACKING FOLIATED DEVELOPMENT OF MICA
STRATIFICATION VAGUE ALIGNMENT OF PORPHYROCLASTS
MINOR STRUCTURES WELL FRACTURED CONJUGATE SET?
COMPOSITION (%) ⁹⁰ % QUARTZ 10 _% MICA
8
FIELD NAME GREY QUARTZITE
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPECKS
GRAIN SIZES AND SHAPESSUBRNDED LRG OTZ GRAINS SURROUNDED BY EQUIGRANULAR MOSAIC
FABRIC AND PACKING OF SUBRECTANGULAR SMALLER GRAINS, UP TO 5% RANDOM NEEDLE MUSCOVITE
STRATIFICATION MUSCOVITE STRONGLY ALIGNED (HEALED FRACTURES)
MICROSTRUCTURES UNDULATORY EXTINCTION, GRANULATION OF GRAIN BOUNDARIES
COMPOSITION (%) 85% QUARTZ 1.5% MUSCOVITE 5% NEEDLE VARIETY TR% EPIDOTE 2 XLS % %
NAME GREY PHYLLONITE
COMMENTS:SOME OF THE LARGER QTZ GRAINS HAVE PRONOUNCED MICROFRACTURE
MANY 0.005 MM INCLUSIONS

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: December 8, 1978 EXAMINED BY: J.S.

SPECIMEN NUMBER 57961 LOCATION WARSPITE DUMP					
HANDSPECIMEN DESCRIPTION:					
COLOUR <u>GREENISH GREY, SPOTTED, BRN FRACTURES</u>					
TEXTURE CONGLOMERATIC (VAGUE) TOUGHNESS VERY WELL INDURATED					
GRAIN SIZES VERY SILICIFIED, PEBBLES(?) UP TO 10 MM					
FABRIC AND PACKING POORLY SORTED (RELICT) SECONDARY SILICIFICATION					
STRATIFICATION NONE APPARENT IN H.S.					
MINOR STRUCTURES CURVED FRACTURES					
COMPOSITION (%)60 % QUARTZ QUARTZ 40 % MTX-MUSCOVITE + OTHERS? % %					
FIELD NAME QUARTZ PEBBLE CONGLOMERATE (SILICIFIED)					
THINSECTION DESCRIPTION:					
COLOUR AND MICROTEXTURE COLOURLESS					
GRAIN SIZES AND SHAPES PEBBLES MADE UP OF INTERLOCKING MOSAIC WITH MINOR MUSCOVITE					
FABRIC AND PACKING REXLIZED, NO DIRECT RELICT TEXTURE DISCERNABLE.					
STRATIFICATION NONE, SLIGHT SCHISTOSITY, MUSCOVITE IN FRACTURES					
MICROSTRUCTURES CALCITE NOT STRAINED					
COMPOSITION (%)55% QUARTZ					
35 ⁸					
10 [%] MUSCOVITE					
PPRITE					
NAMEIIMY MYLONITE (CONGLOMERATE?)					
COMMENTS: CALCITE REPLACING OTZ AT GRAIN BOUNDARIES AND SPREADING IN A "MTX" POSITION,					
CALCITE NOT IN XL CONTINUITY WITH ADJACENT XLS AND OPTIC AXIS RANDOMLY ORIENTED					

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: December 8, 1978 EXAMINED BY: J.S.

SPECIMEN NUMBER 57962	LOCATION	WARSPITE DUMP
HANDSPECIMEN DESCRIPTION:		
COLOUR LIGHT GREY, REDDISH STAIN		
TEXTURE SANDY (COARSE)	TOUGHNESS_	HIGHLY FRACTURED
GRAIN SIZES _2 MM TO 6MM, COASE FL	AKY MUSCOVIT	E
FABRIC AND PACKING	. SOME FLATTI	ENING, CLOSE PACKED
STRATIFICATION CRUDE STRAT, PAR	ALLEL TO FRA	CTURE (SOME SOLUTION?)
MINOR STRUCTURESABUNDANT_FRAC	TURES	<u>,</u>
COMPOSITION (%)80% <u>QUARTZ</u> 20% <u>MUSCOVITE</u> Tr% <u>PYRITE</u> %		
FIELD NAME <u>SILICIFIED COARSE GR</u>	AINED QUARTZ	ITE
THINSECTION DESCRIPTION:		
COLOUR AND MICROTEXTURE COLOULES	S TO LIGHT G	REY
GRAIN SIZES AND SHAPES <u>OVOID GRAI</u>	NS (SINGLE G	RAINS) OF QUARTZ UP TO 2.5 MM
FABRIC AND PACKING GRANULATED A	ND REXLIZED,	PERHAPS POORLY SORTED.
STRATIFICATION _ CRUDE ALIGNMENT O	F QUARTZ GRAI	INS, MAYBE ONLY 2° FLATTENING
MICROSTRUCTURES STYLOLITES AND G	RANULATION A	LONG TIN, WAVY EXTINCTION
COMPOSITION (%)60% QUARTZ 20-40% MUSCOVITE V 5-20% CALCITE - VAR % EPIDOTE - 2 G	ARIABLE IABLE RAINS DETRIT/	AL.?
NAME LIMY REXLIZED QUARTZITE (P)	HYLONITE)	
COMMENTS: GRANULATION IN PRESSUR	E SHADOW OF I	LARGE QUARTZ GRAINS, SOME SUTURED
GRAIN BOUNDARIES, ANOMA	LOUS BLUE IN'	TERFERENCE COLOUR COMMON

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: December 8, 1978 EXAMINED BY: J.S.

SPECIMEN NUMBER 57963 LOCATION WARSPITE DUMP

HANDSPECIMEN DESCRIPTION:

COLOUR BLACK, WHITE STREAKS AND LAYERS

TEXTURE SCHISTOSE, SILKY, FISSLE TOUGHNESS FAIRLY SOFT

GRAIN SIZES VERY FINE, CLAY TO MUD SIZE

FABRIC AND PACKING TOO FINE GRAINED

STRATIFICATION VERY SCHISTOSE, INTENSELY CONTORTED

MINOR STRUCTURES FOLDS, LINEATED " MICROBOUDINS"

COMPOSITION (%)20% <u>SECONDARY QUARTZ</u> (OR PRIMARY SILTY LAMANAE) 5% <u>ANKERITE</u>

75 % MUSCOVITE & QUARTZ (MUDSTONE PRIMARY)

FIELD NAME BLACK SCHIST (PHYLLITE)

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE DARK GREY (BLACK) TO LIGHT BROWN, COMPLEX LAMINATED

GRAIN SIZES AND SHAPES VERY FINE SILTY WITH OCCASSIONAL GRANULATED AGGREGATES

FABRIC AND PACKING MICROCRENULATION 120° TO PRIMARY BEDDING

STRATIFICATION EXTREMELY WELL LAMINATED, FLATTENED COMPOSITE AGGREGATES OF QUARTZ CALCITE MICROSTRUCTURES MICROSCOPIC CRENULATION, FOLDS IN CALCITE RICH SECTIONS

COMPOSITION (%)20% QUARTZ (COARSER GRAINED)

15[%] CALCITE 20[%] MUSCOVITE 55[%] FINE LAMINATIONS (BLACK) - TOO FINE % FOR THIN SECTIONS

NAME LIMY SILTY PHYLLITE (POSSIBLY PHYLLONITE) MORE SPECIMENS NEEDED FOR CONCLUSIONS COMMENTS: CALCITE FRACTURES, CALCITE REPLACING "COARSER" QUARTZ, BOUDINS (LENTICULAR) OF COARSE GRAINED MATERIAL IN FINELY LAMINATED BLACK MATRIX

PETROGRAPHIC DESCRIPTION

SPECIMEN NUMBER ______ 57964 _____ LOCATION _____ WARSPITE DUMP

PROSERPINE GROUP

DATE: December 8, 1978 EXAMINED BY: JS

HANDSPECIMEN DESCRIPTION:
COLOUR LIGHT GREY TO CREAMY WHITE
TEXTURE MASIVE (SLIGHTLY FOLIATED) TOUGHNESS VERY WELL INDURATED
GRAIN SIZES FLOATING PORPHYROCLASTS TO 2 MM
FABRIC AND PACKINGMASSIVE, NO FABRIC OR PACKING APPARENT
STRATIFICATION SILICIFIED, MASSIVE
MINOR STRUCTURES PARALLEL FRACTURES, VAGUE "HORIZONTAL" STAIN LINES
COMPOSITION (%)95% QUARTZ

58	MUSCOVITE		
Tr %	PYRITE		

FIELD NAME LIGHT GREY MASSIVE QUARTZITE

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS, PYRITE SPECKS, EQUIGRANULAR

GRAIN SIZES AND SHAPES .08 AVERAGE QUARTZ SUBRECTANGULAR, MANY LARGER .3MM

FABRIC AND PACKING NEEDLE MUSCOVITE, MOST FLAKY

STRATIFICATION NONE IN T.S., CALCITE NOT STRAINED

MICROSTRUCTURES LARGER QUARTZ GRAINS HAVE GRANULATED BOUNDARIES

COMPOSITION (%)80% QUARTZ

NAME <u>MICACEOUS PHYLLONITE</u>

COMMENTS: MUSCOVITE MAINLY IN IRREGULAR (BUT THROUGH GOING) SOLUTION CHANNELS,

MANY QUARTZ GRAINS ARE FRACTURED.

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 8, 1978 EXAMINED BY: J.S.

SPECIMEN NUMBER 57579 LOCATION Line 210N, 300W

HANDSPECIMEN DESCRIPTION:

COLOUR BROWNISH GREY TO LIGHT GREY, DARK BROWN WEATHERING

TEXTURE SANDY TO PEBBLY TOUGHNESS MODERATELY INDURATED, BLOCKY

GRAIN SIZES 3 MM TO .5 MM "PORPHYROCLASTS", 2 MM HEAMATITE PATCHES

FABRIC AND PACKING VERY POORLY SORTED, ANGULAR GRAINS

STRATIFICATION POORLY BEDDED (ALTHOUGH WELL PRESERVED)

MINOR STRUCTURES HEALED HAIRLINE FRACTURES

COMPOSITION (%) 40% SAND QUARTZ 50% MTX OUARTZ 10% MUSCOVITE 2% PYRITE

FIELD NAME SUBGREYWACKE (MICACEOUS SCHIST)

THINSECTION DESCRIPTION:

FABRIC AND PACKING POORLY SORTED, VERY LOOSELY PACKED WITH FRAMEWORK GRAINS

STRATIFICATION MUSCOVITE TO .3 MM FLAKES SOME DEGREE OF GRANULATION APPARENT

* PLAGIOCLASE, EPIDOTE, APATITE (?)

COMMENTS: SLIGHT REMOBILIZATION OF OTZ AT BOUNDARIES OF LARGE FRAMEWORK GRAINS

AND INTRO OF MUSCOVITE, SOME TENDENCY TOWARD COMPOSITE GRAINS IN OTZ

COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPOTS, POORLY SORTED CLASTIC

GRAIN SIZES AND SHAPES WELL ROUNDED OTZ UP TO 1.8 MM

MICROSTRUCTURES WAVY EXTINCTION ON OTZ AND MUSCOVITE

20 & OUARTZ (MATRIX) 5 % PYRITE (HEAMATITE)

NAME SUBGREYWACKE (POORLY SORTED) (MYLONITIC)

COMPOSITION (%) 55% QUARTZ (FRAMEWORK)

FRAMEWORK CLASTS

20 % MUSCOVITE
GRAIN SIZES 1 MM, SOME SILT SIZE
FABRIC AND PACKING WELL SORTED, PENETRATIVE CLEAVAGE
STRATIFICATION MASKED BY CLEAVAGE
MINOR STRUCTURES DK VEINLETS, MICRO FRACTURES
COMPOSITION (%) 70g QUARTZ 10g MUSCOVITE 5g ANKERITE 15g "MTX"
FIELD NAME DARK (BLACK) PHYLLITIC QUARTZITE
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURE LIGHT GR TO COLOURLESS
GRAIN SIZES AND SHAPES ELONGATE MUSCOVITE UP TO .3 MM, SMALL QTZ .05 LARGE
FABRIC AND PACKING LRG GRAINS FLOATING IN GRANULATED MTX
STRATIFICATION NO PRIMARY, EXTREME CATUCALERS, SCHISTOSITY
MICROSTRUCTURESANKERITE PORPHROBLASTS, LRG QTZ GRAINS STRAINED, SMALL GRAINS C
COMPOSITION (%)40 % QUARTZ 35 % MUSCOVITE
% ONÉ EPIDOTE GRAIN 0.08 MM RECTANGULAR % V. HIGH RELIEF % V. HIGH RELIEF
IAME FLASER QUARTZITE
COMMENTS: COMPOSITE QTZ WITHIN GRANULATED ZONES, TWO AGES OF MUSCOVITE
(A) EARLY DEFINING SCHISTOSITY (B) SMALL RANDOMLY ORIENTED NEEDLES THROUGHOUT
SOME ROUNDED "BALLS" OF INGROWN MUSCOVITE NEEDLES AND "CHERT"

HANDSPECIMEN DESCRIPTION:

COLOUR DARK GREY-BLACK

PROSERPINE GROUP

TEXTURE SCHISTOSE WITH RELICT SANDY TOUGHNESS WELL INDURATED

SPECIMEN NUMBER 57952 LOCATION WARSPITE DUMP

PETROGRAPHIC DESCRIPTION

DATE: DECEMBER 6, 1978 EXAMINED BY: JS

MCINTYRE MINES LIMITED Vancouver, B.C.

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 8 1978 EXAMINED BY: JS

.

SPECIMEN NUMBER _ 57580A LOCATION LINE 240N, 210W
HANDSPECIMEN DESCRIPTION:
COLOUR BROWN WHITE TO LIGHT GREY, BROWN GREY ON WEATHERING
TEXTURE APHANITIC, SPECKLED TOUGHNESS VERY WELL INDURATED
GRAIN SIZES CRYPTOXLINE, PYRITE CUBES UP TO 2 MM
FABRIC AND PACKING VERY FINE GRAINED, PACKING UNKNOWN
STRATIFICATION LAYERING ACCENTUATED BY MN STAIN ON FOLIATION
MINOR STRUCTURES WEATHERING OF PYRITE, MN HAIRS AND DENDRITES
COMPOSITION (%)90% QUARTZ 10% MTX %
FIELD NAMESILICIFIED SILTSTONE (ARGILLITE) (BLEACHED MUDSTONE)
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURE LIGHT BROWN YELLOW WITH BROWN SPOTS, SILTY
GRAIN SIZES AND SHAPES QTZ: .03 AVERAGE SUBRECTANGULAR, MUSCOVITE NEEDLES
FABRIC AND PACKING PY UPTO 2.5 MM, PORPHYROBLASTS, LOOSELY PACKED QTZ
STRATIFICATION CRUDE STRAT, ALIGNMENT OF MUSCOVITE
MICROSTRUCTURES POIKOBLASTIC PYRITE INCLUDING OTZ
COMPOSITION (%) 65% QUARTZ 35% MUSCOVITE 10% OPAQUES % %
NAME METASILISTONE
COMMENTS: ONE GRANULATED QTZ GRAIN .5 MM AROUND PYRITE 3 LONG COMPOSITE
QTZ VEINLETS .2 MM WIDE, 3-4 QTZ GRAINS WIDE (.2 MM) VEINLETS BEND
AROUND PY PORPHYROBLASTS

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 8, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57580B LOCATION LINE 240N, 210W

HANDSPECIMEN DESCRIPTION:

COLOUR LIGHT GREY WITH DK BROWN SPOTS, SOME BLEACHED (BUFF) AREAS, SILVERY BROWN ON WEATHERING TEXTURE SANDY, APHANITIC MTX TOUGHNESS MODERATELY INDURATED, BLOCKY GRAIN SIZES QTZ PORPHYROCLASTS UP TO 1 MM, MTX FINELY X LINE FABRIC AND PACKING LOOSELY PACKED, SAND GRAINS FLOATING, SANDY STRATIFICATION VAGUE, POORLY DEFINED PRIMARY BEDDING, MODERATE FISSILITY MINOR STRUCTURES HEALED HAIRLINE CRACKS, WEATHERED PYRITE, BLEACHING COMPOSITION (%) 10% QUARTZ (FRAMEWORK)

 -	~ .
50-	QUARTZ (MATRIX)
20-	MUSCOVITE
10	PYRITE

FIELD NAME SILVERY SERICITE SCHIST (SLIGHTLY BLEACHED)

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPOTS, RELICT CLASTIC, SCHISTOSE

GRAIN SIZES AND SHAPES QTZ FRAMEWORK : UP TO 1.7 MM, MTX AVERAGE 0.01 MM

FABRIC AND PACKING VERY POORLY SORTED, RELICT CLASTIC APPARENT

STRATIFICATION MTX CRENULATED (MINOR)

MICROSTRUCTURES BOUDINAGE OF GRANULATED OTZ GRAINS

COMPOSITION (%)30 % QUARTZ (FRAMEWORK)

25% QUARTZ (MATRIX)

35% MUSCOVITE

15 % OPAOUES

1% PLAGIOCLASE, EPIDOTE

NAME SILVERY MUSCOVITE PHYLLONITE

COMMENTS: MANY FRAMEWORK QTZ GRAINS GRANULATED AT BOUNDARIES, SUGGESTION OF

FLATTENING, GHOST OUTLINES BY INCLUSIONS

SLIGHT WAVY EXTINCTION, PLAGIOCLASE STRAIGHT EXTINCTION

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

 SPECIMEN NUMBER
 57581
 LOCATION
 LINE 350N, 240W

 HANDSPECIMEN DESCRIPTION:
 COLOUR
 LIGHT BROWN-GREY (BLEACHED), DARK BROWN WEATHERING

 TEXTURE APHANITIC, FINE SUGARY
 TOUGHNESS
 SLIGHTLY FRIABLE (WEATHERED)

 GRAIN SIZES
 VERY FINE, PYRITE TO 2 MM

 FABRIC AND PACKING
 MASSIVE, MICRO X LINE,

 STRATIFICATION
 PARALLEL DARK HAIRLINE FRACTURES, SUGGESTION OF SCHISTOSITY

 MINOR STRUCTURES
 WEATHERED CAVITIES

 COMPOSITION (%)80 %
 QUARTZ

 15 %
 MICA

 ?%
 OTHER

FIELD NAME PYRITIC BLEACHED SILTSTONE

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN-ORANGE SPOTS, RECRYSTALLIZED CLASTIC GRAIN SIZES AND SHAPES FRAMEWORK GRAINS UP TO 1.5 MM, MUSCOVITE .4 MM FABRIC AND PACKING POORLY SORTED, POORLY LAYERED, LOOSELY PACKED STRATIFICATION NO MICROBEDDING, GENERALLY POOR FOLIATION, LOCALLY INTENSE MICROSTRUCTURES GRAIN MARGIN GRANULATION COMMON, WAVY EXTINCTION

COMPOSITION (%)20% QUARTZ (FRAMEWORK) 40% QUARTZ (MATRIX) 25% MUSCOVITE (LOCALLY MORE ABUNDANT) 15% PLAGIOCLASE (SOME SERICITIZED) 5% OPAQUES, HBL TR-EPIDOTE

NAME ARKOSIC SILTSTONE (SILTY ARKOSE)

COMMENTS: PLAGIOCLASE GRAINS ARE REPLACED BY SILICA AND SERICITE, POIKIOBLASTIC

PYRITE, PLAG TO 0.5 MM, MINOR SOLUTION FRACTURES, SOME TWIN

GLIDING IN GRANULATED MARGINS OF PLAG GRAINS

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57582 LOCATION LINE 00, 176W

HANDSPECIMEN DESCRIPTION:

COLOUR MEDIUM BLUISH GREY, DARK GREY WEATHERING

TEXTURE SILTY-SPECKLED TOUGHNESS WELL INDURATED, ALTHOUGH WEATHERED

GRAIN SIZES SILT SIZE, PURITE TO 2 MM, ABUNDANT CRYPTO XLINE COMPONENT

FABRIC AND PACKING SILICIFIED, NO ORIGINAL FABRIC ?

STRATIFICATION CRUDE SCHISTOSITY, LENTICULAR QUARTS RICH AREAS

MINOR STRUCTURES HEALED SOLUTION FEATURES, WISPY BLACK LINES.

COMPOSITION (%)80% QUARTZ

	20.4.10	
L0 % -	MUSCOVITE	
5%	PYRITE	
58	VOIDS	

FIELD NAME SPECKLED SILTSTONE (PHYLLITIC-MICACEOUS)

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS, INTENSE GRANULATION, SLIGHT RELICT CLASTIC GRAIN SIZES AND SHAPES QTZ RELICT GRAMS TO .04 MM, MUSCOVITE FLAKES TO 0.2 MM FABRIC AND PACKING RECRYSTALLIZED - GRANULATED, ORIGINAL PACKING NOT APPARENT STRATIFICATION POOR ALIGNMENT OF MUSCOVITE (RANDOM), THROUGHGOING SOLUTION CRACKS, MICROSTRUCTURES UNDULATORY EXTINCTION IN RELICT GRAINS COMPOSITION (%)20% QUARTZ (RELICT FRAMEWORK)

> 35-45% QUARTZ (GRANULATED AND MATRIX) 30-35% MUSCOVITE 5% OPAQUES - FINE GRAINED AND IN FRACTORES

218 HBL, EPIDOTE

NAME SILTY PHYLLONITE (FINELY PYRITIC)

COMMENTS: SOLUTION FRACTURES COMMON (IRREGULAR), CIRCULAR VOIDS

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

 SPECIMEN NUMBER 57583
 LOCATION LINE 00 140W

 HANDSPECIMEN DESCRIPTION:

 COLOUR DARK GREY, LIGHTER GREY WEATHERING, KNOBBY WEATHERING

 TEXTURE LOOSE SANDY
 TOUGHNESS VERY WELL INDURATED

 GRAIN SIZES 40% SAND (0.5 MM), REST 0.1 MM

 FABRIC AND PACKING PPORLY SORTED, LOOSELY PACKED

 STRATIFICATION NONE EVIDENT, WELL DEVELOPED SCHISTOSITY

 MINOR STRUCTURES
 WEATHERED LRG PYRITE, FRESH FINE X LINE PYRITE, FLATTENED PY

 COMPOSITION (%)73%
 QUARTZ

 2%
 PYRITE

 ?%
 ROCK FRAGS

FIELD NAME PYRITIZED DARK GREY SILTY PHYLLITE

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPOTS, RELICT CLASTIC, SOME GRANULATION GRAIN SIZES AND SHAPES MUSCOVITE FLAKES UP TO .5 MM LONG, LRG WELL ROUNDED OTZ -1.2MM

FABRIC AND PACKING ORIGINALLY POORLY SORTED, MARGINAL GRANULATION

STRATIFICATION VERY SCHISTOSE, NO RELICT MICRO BEDDING

MICROSTRUCTURES SOLUTION CRACKS FILLED WITH OPAQUES, ABUNDANT MICRO FRACTURES

COMPOSITION (%) 70% QUARTZ (FRAMEWORK AND MTX)

25-30 % MUSCOVITE 5% OPAQUES (PYRITE) TR% HORNBLENDE %

NAME SANDY PHYLLITE. (PYRITIZED, DARK GREY) (PHYLLONITIC)

COMMENTS: ONLY LOCAL GRANULATION IN LINEAR ZONES AND GRAIN MARGINS ONE GRAIN

EXHIBITS UNUSUAL "FISH SCALE" INTERNAL TEXTURE (LOCATION MARKED ON

THIN SECTION, 0.015 MM LONG)

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

 SPECIMEN NUMBER 57584A
 LOCATION
 LINE 00 AND 130W

 HANDSPECIMEN DESCRIPTION:

 COLOUR
 LIGHT GREENISH GREY, BLACK TO SILVERY WEATHERING

 TEXTURE
 FOLIATED CLASTIC
 TOUGHNESS

 GRAIN SIZES
 MANY SAND GRAINS IN FINE MTX

 FABRIC AND PACKING
 SCHISTOSE, HACKLY FRACTURE, LOOSELY PACKED

 STRATIFICATION WELL DEVELOPED SCHISTOSITY (BLOCKY), MAYBE PARALLEL TO ORIGINAL BEDDING

 MINOR STRUCTURES
 FLATTENED PYRITE, WISPY HAIRLINES

 COMPOSITION (%)70%
 QUARTZ

 20%
 MUSCOVITE

20% MUSCOVITE 5% PYRITE %

FIELD NAME GREENISH SERICITE PHYLLITE (QUARTZITE)

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPECKS, GRANULATED (RELICT CLASTIC) GRAIN SIZES AND SHAPES MUSCOVITE TO .1 MM, QTZ RELICTS TO 1.5 MM, REXLISED QTZ VARIABLE FABRIC AND PACKING POORLY SORTED (MAYBE DUE TO GRANULATION) STRATIFICATION PRONOUNCED SCHISTOSITY, ORIGINAL BEDDING OBLITERATED

MICROSTRUCTURES POIKIOBLASTIC PYRITE, SUGGESTION OF AUGEN TEXTURE

COMPOSITION (%)10% QUARTZ (RELICT LARGE GRAINS)

40 % QUARTZ (MATRIX AND REXLISED)

45% MUSCOVITE (ACCORDING TO "LAYERING")

5 % OPAQUES

1% SERICITIZED PLAGIOCLASE, EPIDOTE, HBL

NAME SANDY PHYLLONITE (PERHAPS PEBBLY)

COMMENTS: SOME GHOSTS OF WELL ROUNDED QTZ GRAINS WITHIN INTERLOCKING MOSAIC

OF REXLISED GRAINS, GRANULATED MARGINS, SOME COMPOSITIONAL LAYERING

ONE PLAGIOCLASE CLAST .4 MM (SERICITIZED)

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57584B LOCATION LINE 00 AND 130W
HANDSPECIMEN DESCRIPTION:
COLOUR MEDIUM GREY, LIGHT GREY WEATHERING
TEXTURE PEBBLY SAND TOUGHNESS WELL INDURATED (IN THIN PLATES)
GRAIN SIZES PEBBLES UP TO 20 MM, AVERAGE 1-2 MM
FABRIC AND PACKING RELATIVELY CLOSE PACKED, SCHISTOSE BUT PEBBLES NOT FLATTENED
STRATIFICATION CRUDELY BEDDED, PARALLEL TO SCHISTOSITY
MINOR STRUCTURES PEBBLES ACTING AS AUGEN ?? WELL FRACTURED
COMPOSITION (%) 40% QUARTZ (FRAMEWORK)
35, MUSCOVITE
3° PYRITE (OXIDIZED)
FIELD NAME PEBBLY PHYLLITIC QUARTZITE
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURECOLOURLESS WITH BROWN SPECKS, PYLLONITIC
GRAIN SIZES AND SHAPES COLLESING OF FRAMEWORK GRAINS TO LARGE INTERLOCKING MOSAIC
FABRIC AND PACKING GRANULATED AND RECRYSTALLIZED, RELICT WELL RNDED OTZ UP TO 1.8 MM
STRATIFICATIONCRUDE ALIGNMENT OF COMPOSITE GRAINS, RECRYSTALLIZED, MTX QTZ .081MM
MICROSTRUCTURES COMPOSITE GRAINS, INTENSE "END" GRANULATION
COMPOSITION (%)25 % QUARTZ (RELICT FRAMEWORK GRAINS, NOW COMPOSITE GRAINS)
Variable 35 % <u>QUARIZ (MAIRIX)</u> Variable 35 % MUSCOVITE
5 % OPAQUES
TR & PLAGIOCLASE, EPIDOTE
NAME QUARTZ PEBBLE PHYLLONITE
COMMENTS: SOME LARGE GRAINS WITH UNDULATORY EXTINCTION ALTHOUGH MOST SMALL GRAINS

STRAIGHT (RECRYSTALLIZED), MUSCOVITE NEEDLES 0.05 MM LONG, MUSCOVITE AS RANDOM

NEEDLES AND FELTED MASSES FILLING FRACTURES

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

. -

SPECIMEN NUMBER 57585 LOCATION LINE 00 AND 060W
HANDSPECIMEN DESCRIPTION:
COLOUR DARK AND LIGHT GREY SPOTTED, LIGHT GREY-TAN WEATHERING
TEXTURE CONGLOMERATE TOUGHNESS VERY WELL INDURATED
GRAIN SIZES PEBBLES AVERAGE 6 MM, MINOR PINE SAND GRAINS
FABRIC AND PACKINGCLOSE PACKED, IMBRICATION, ALTHOUGH ABUNDANT MATRIX
STRATIFICATIONBEDDING WELL PRESERVED
MINOR STRUCTURES
COMPOSITION (%)55 % QUARTZ (FRAMEWORK)
15 % MUSCOVITE
5 8 PYRITE (WEATHERED TO HEAMATITE)
FIELD NAME PHYLLITIC QUARTZ PEBBLE CONGLOMERATE (SILICIFIED)
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURE COLOURLESS, INTERLOCKING MOSAIC
GRAIN SIZES AND SHAPESEXTREMELY VARIABLE, VERY SMALL .05 MM TO 4 MM, MAJORITY 0.3MM
FABRIC AND PACKING RECRYSTALLIZATION, ORIGINAL PACK TO COARSE FOR SECTION
STRATIFICATION NOT APPARENT AT LOWEST MAGNIFICATION ALTHOUGH READILY SEEN IN H.S.
MICROSTRUCTURES WAVY EXTINCTION, MAJOR RECRYSTALLIZATION
COMPOSITION (%)20-% QUARTZ (RELATIVELY UNALTERED FRAMEWORK) 60 % QUARTZ (GRANULATED AND MATRIX) 5-10 % MUSCOVITE
2 % OPAQUES 5+% PLAGIOCLASE, SERICITIZED "PLAG", TR, EPIDOTE, + HBL
NAME QUARTZ PEBBLE PHYLLONITE
COMMENTS: ONE FRAMEWORK GRAIN IS A LITHIC CLAST CONTAINING MAINLY OTZ
DUI MINUR FLAGIUCLASE, LACAL INIENSE GRANULATED UF GRAIN MARGINS

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57587 LOCATION LINE 00 015W

HANDSPECIMEN DESCRIPTION:

COLOUR MEDIUM GREY-GREEN (BLEACHED), TAN-GREY ON WEATHERING

TEXTURE APHONITIC, PORPHYROBLASTIC TOUGHNESS POORLY INDURATED (WEATHERED)

PY

GRAIN SIZES ABUNDANT WELLROUNDED SILT SIZE QTZ GRAINS

FABRIC AND PACKING LOOSELY PACKED, FLOATING SILT GRAINS

STRATIFICATION RANDOM SILT PARTICLES, VAGUE FOLIATION

MINOR STRUCTURES CLAY ALTERATION ?

COMPOSITION (%) 80% <u>QUARTZ AND MTX</u> 10% <u>MUSCOVITE</u> 10% <u>PYRITE (OXIDIZED)</u>

FIELD NAME BLEACHED GREEN SERICITE PHYLLITE

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPOTS, SCHISTOSE

GRAIN SIZES AND SHAPES QTZ FRAMEWORK - .2 TO 1.3 MM, MATRIX QTZ - .03 AVERAGE

FABRIC AND PACKING MARGINAL GRANULATION AND REPLACEMENT OF LARGE GRAINS

STRATIFICATION MASKED BY STRONG SCHISTOSITY (ALIGNMENT OF MUSCOVITE)

MICROSTRUCTURES POIKIOBLASTIC PYRITE

COMPOSITION (%) 45% QUARTZ (FRAMEWORK) 35% QUARTZ (MATRIX) 20% MUSCOVITE TR % PLAGIOCLASE

NAME BLEACHED PHYLLONITIC SERICITE SCHIST

COMMENTS: MICROFRACTURES PERPENDICULAR TO FOLIATION ? SOME LARGE MUSCOVITE

XLS PERPENDICULAR TO FOLIATION

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

UNNERFORMEN RECORD		-
HANDSFECIMEN DESCK.	IPTION:	
COLOUR LIGHT GREY	SILVERY, DARK GREY-BROWN WEATHERING	
TEXTURE RELICT SIL	TOUGHNESS WELL INDURATED	_
GRAIN SIZES	GRAINS .05 MM, APHANITITIC MTX	
FABRIC AND PACKING	POORLY SORTED, LOOSE, MAYBE RESULT OF GRANULATION?	
STRATIFICATION	CRUDE LINE OF QTZ GRAINS - CHECK T.S	
MINOR STRUCTURES	BLEACHING ANHEDRAL PY	
COMPOSITION (%)10% 85% 5%_ %_	QUARTZ (FRAMENORK) QUARTZ AND MICA MATRIX OXIDIZED PYRITE	
FIELD NAME SILTY H	BLEACHED SERICITE SCHIST	
THINSECTION DESCRIP	TION:	
COLOUR AND MICROTEX	TURE COLOURLESS WITH MANY BROWN SPOTS	
GRAIN SIZES AND SHA	PES FRAMEWORK QTZ .1 TO 1.2 MM, PLAGIOCLASE5, HBL	8 LONG
FABRIC AND PACKING	MTX QTZ06 TO .1 MM, SOME TENDENCY TO STAR GROUPS IN	MUSCOV
STRATIFICATION VERY	SCHISTOSE, STRONG ALIGNMENT OF MUSCOVITE	
MICROSTRUCTURES AI	LTERATION OF PLAGIOCLASE, POIKIOBLASTIC PYRITE	
COMPOSITION (%) 20% 4 30 % 30 % 5 % TR % 10-20	<pre> QUARTZ (FRAMEWORK) AND GRANULATED GRAINS QUARTZ (MATRIX) MUSCOVITE PLAGIOCLASE (SERICITIZED) HORNBLEDE OPAQUES, VOIDS SERICITE SCHIST (PYRITIZED) </pre>	-

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57589 LOCATION NEAR WARSPITE SHAFT (SOUTHEAST)

HANDSPECIMEN DESCRIPTION:

COLOUR DARK GREY, RUSTY WEATHERING

TEXTURE SANDY, CLASTIC TOUGHNESS VERY WELL INDURATED

GRAIN SIZES FRAMEWORK GRAINS : 3-5 MM, ABUNDANT FINE MATRIX

FABRIC AND PACKING WELL ROUNDED, LOOSELY PACKED

STRATIFICATION VAGUE BEDDING NOT WELL PRESERVED, FOLIATION POORLY DEVELOPED

MINOR STRUCTURES WHITE QUARTZ VEINLETS, OPALESCENT QUARTZ GRAINS

COMPOSITION (%)50 % OUARTZ (FRAMEWORK)

- 25 % <u>QUARTZ (MTX)</u>
- 20 % <u>MUSCOVITE</u>
- 5 % PYRITE (OXIDIZED)

FIELD NAME DARK GREY PHYLLITIC CRS QUARTZITE

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPECKS, INTERLOCKING MOSAIC

GRAIN SIZES AND SHAPES RELICT FRAMEWORK OTZ UP TO 1.8 MM, MOST RESULTING QTZ 0.3 MM

FABRIC AND PACKING MOST LARGE QTZ GRAINS GRANULATED, PLAG AVERAGE 0.2 MM

STRATIFICATION NONE, ALMOST COMPLETE GRANULATION

MICROSTRUCTURES WAVY EXTINCTION, MICROFRACTURES

COMPOSITION (%)60 % QUARTZ

20-25	8	PLAGIOCLASE AND SOME K-SPAR
10-15	8	MUSCOVITE
10	8	OPAQUES, VOIDS
	8	EPIDOTE

NAME DARK GREY QUARTZITE PHYLLONITE

COMMENTS: TWIN LINES IN PLAGIOCLASE COMMONLY DISLOCATED

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

SPECIMEN NUMBER 57590 LOCATION NEAR WARSPITE SHAFT (SOUTHEAST)
HANDSPECIMEN DESCRIPTION:
COLOUR DARK GREY GREEN, BROWNISH-RED WEATHERING
TEXTURE SANDY TOUGHNESS VERY WELL INDURATED
GRAIN SIZES WELL ROUNDED FRAMEWORK GRAINS 3-4 MM AVERAGE, ABUNDANT DARK
FABRIC AND PACKING CLASTS (ROCK FRAGS?) CLOSE PACKED, RLATIVELY LITTLE MTX
STRATIFICATION POOR FOLIATION, CRUDE BEDDING (MAYBE WEATHERING LINES)
MINOR STRUCTURES FINELY X LINE PYRITE, SOLUTION LINES, SUGGESTION OF GRAIN FLATTENING
COMPOSITION (%)70 % <u>QUARTZ (FRAMEWORK GRAINS) AND LITHIC(?)</u> CLASTS 30 % <u>QUARTZ AND MICA (MATRIX)</u> 2 % <u>PYRITE</u> %
FIELD NAME PHYLLITIC GREYWACKE
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPECKS, GRANULATED WITH RELICT CLASTIC
GRAIN SIZES AND SHAPES FRAMEWORK QTZ 1.5 MM TO 3.4 MM, FRAMEWORK PLAGIOCLASE
FABRIC AND PACKING MANY FRAMEWORK GRAINS ARE COMPOSITE WITH GRANULATED
STRATIFICATION MARGINS, STRON POLIATION, WIDE INTRO OF SERICITE FLAKES
MICROSTRUCTURES REXLIZATION, RAGGED GRAIN BOUNDARIES
COMPOSITION (%)25% QUARTZ (FRAMEWORK) 25-30 % QUARTZ GRANULATED AND MATRIX 40 % MUSCOVITE 5 % PLAGIOCLASE (MAINLY SERICITE ALTERATION) 5 % OPAQUES, VOIDS EPIDOTE
NAME SILTY PHYLLONITE
COMMENTS:TWIN GLIDING ON SOME PLAGIOCLASE GRAINS,

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57591A LOCATION BASELINE AT 945S

HANDSPECIMEN DESCRIPTION:

COLOUR TAN-BROWN (BLEACHED), DARK BROWN WEATHERING

TEXTURE BLEACHED, RELICT CLASTIC TOUGHNESS WELL INDURATED IN SPITE OF WEATHERING

GRAIN SIZES SAND - 1 MM, SILT 0.5 MM, FINE GRAINED MATRIX

FABRIC AND PACKING FLOATING WELL ROUNDED QTZ GRAINS, LOOSELY PACKED

STRATIFICATION NONE APPARENT, INCIPIENT FOLIATION (WEATHERED)

MINOR STRUCTURES PY COMPLETELY WEATHERED - MANY IRREGULAR CAVITIES BLACK HAIRLINE COMPOSITION (%) 20% QUARTZ (SAND AND SILT)

(8) 208	QUARTZ	(SAND AND 2	2171	ļ	
60%	MATRIX	(MUSCOVITE	AND	QUARTZ)	
20%	VOIDS				
<u>-</u> १		· · · · · · · · · · · · · · · · · · ·			

FIELD NAME DEEPLY WEATHERED SILTY PHYLLITE (LUSTROUS SERICITE SCHIST)

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE LT BROWN WITH DARKER BANDS, SCHISTOSE AND GRANULATED GRAIN SIZES AND SHAPES PRAMEWORK .15 TO .7 MM, MATRIX QTZ .07 MM FABRIC AND PACKING WELL ROUNDED FRAMEWORK, POORLY SORTED, LOOSELY PACKED? STRATIFICATION STRONG FOLIATION AND GRANULATION PARALLEL TO SCHISTOSITY MICROSTRUCTURES RANDOM INCLUSIONS IN FRAMEWORK GRAINS, WAVY EXTINCTION COMPOSITION (%)10 % QUARTZ (FRAMEWORK) 20-40 % QUARTZ (MATRIX AND GRANULATED AND VEIN) (VARIABLE) 20-40 % MUSCOVITE (VARIABLE) 5 % OPAQUES, HORBLENDE, PLAGIOCLASE 30 % VOIDS NAME SANDY PHYLLONITE

COMMENTS: ? STAINED (YELLOW) FRACTURES IN SOME FRAMEWORK GRAINS (HAS HIGH

RELIEF)? UNKNOWN SIGNIFICANCE? MICROFRACTURES COMMON

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57591B LOCATION ON BASELINE @ 945S
HANDSPECIMEN DESCRIPTION:
COLOUR STREAKY LIGHT AND DARK BROWN, REDDISH-BROWN WEATHERING
TEXTURE RELICT SANDY, FINE MTX TOUGHNESS WELL INDURATED
GRAIN SIZESABUNDANT OTZ GRAINS 1-2 MM, WELL ROUNDED
FABRIC AND PACKING RELATIVELY LOOSE PACKED
STRATIFICATION NO PRIMARY BEDDING IN H.S., MODERATE FOLIATION
MINOR STRUCTURES SOLUTION CRACKS, MANY CAVITIES
COMPOSITION (%)40% <u>QUARTZ</u>
40% MUSCOVITE AND QUARTZ MATRIX
20% VOIDS (PYRITE?)

FIELD NAME WEATHERED SANDY PHULLITE (LUSTROUS SERICITE SCHIST)

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS WITH LIGHT BROWN STREAKS

GRAIN SIZES AND SHAPES FRAMEWORK WELL ROUNDED QTZ 0.2 TO 1.4 MM, MTX QTZ .05 MM

FABRIC AND PACKING SCHISTOSE, MINOR GRANULATION, ONE MUSCOVITE 1.0 MM LONG

STRATIFICATION ORIGINALLY POORLY SORTED, GENERALLY SLIGHT DEVEL. OF FOLIATION

MICROSTRUCTURES BUT LOCALLY INTENSE

COMPOSITION (%)40% QUARTZ (FRAMEWORK) + 40_{g} QUARTZ MATRIX INCLUDES MINOR GRANULATION 20_{g} MUSCOVITE TR_g OPAQUES

8_____

NAME MICACEOUS PHYLLITE (QUARTZITE)

COMMENTS: _____ SOME FRAMEWORK GRAINS ARE COMPOSITE TYPE AND MINOR GRANULATION

OCCURRED. MAINLY ONLY WAVY EXTINCTION AND MARGINAL REXLIZATION, SOME "PEAR"

SHAPED GRAINS

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9. 1978

SPECIMEN NUMBER 57592 LOCATION ON BASELINE @ 6555

HANDSPECIMEN DESCRIPTION:

COLOUR MEDIUM GREY SPECKLED, DARK GREY-BROWN WEATHERING

_____ TOUGHNESS VERY WELL INDURATED TEXTURE SANDY

GRAIN SIZES MANY "LRG" GRAINS 1-2 MM, MAJORITY 0.5 MM

FABRIC AND PACKING CLOSE PACKED, MODERATELY WELL SORTED

STRATIFICATION FINE BEDDING ? (ALIGNMENT OF LRG GRAINS) POOR SCHISTOSITY

MINOR STRUCTURES IRREGULAR LIGHT GREY QUARTZ VEINLETS

COMPOSITION (%)60% QUARTZ (FRAMEWORK) QUARTZ (MATRIX) AND LITHIC CLASTS ? 20% MUSCOVITE 10%

FIELD NAME DARK GREY PHYLLITIC QUARTZITE

THINSECTION DESCRIPTION:

NAME MEDIUM GREY PHYLLONITE

COMMENTS: UNDULATORY EXTINCTION

COLOUR AND MICROTEXTURE COLOURLESS, GRANULATED AND REXLIZED

GRAIN SIZES AND SHAPES RNDED FRAMEWORK QTZ UP TO 1 MM, MOSAIC OF ANGULAR .1 QTZ

TR, OPAQUES, EPIDOTE, PLAGIOCLASE, K-SPAR? VOIDS

FABRIC AND PACKING EPIDOTE RNDED .1 MM, ORIGINALLY FAIRLY WELL PACKED ?

STRATIFICATION SCHISTOSE AND REXLIZED, PRIMARY STRAT OBLITERATED

COMPOSITION (%) 10% QUARTZ (WHOLE FRAMEWORK)

20% MUSCOVITE

50_% QUARTZ (GRANULATED) 20% QUARTZ (MATRIX)

MICROSTRUCTURES EXTREME GRANULATION OF FRAMEWORK GRAINS

10% FINE VOIDS

EXAMINED BY: JS

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

SPECIMEN NUMBER 57593 LOCATION ON BASELINE @ 600S
HANDSPECIMEN DESCRIPTION:
COLOUR VERY DARK GREY-BLACK, SILVERY BLACK WEATHERING (BRN STAINED)
TEXTUREPHYLLITIC (SILTY?)TOUGHNESSWELL INDURATED (BUT FISSILE)
GRAIN SIZES VERY FINE, OCCASSIONAL SILT GRAIN
FABRIC AND PACKING CLOSE PACKED (TOO FINE GRAINED)
STRATIFICATION VAGUE BEDDING - MAYBE FOLIATION, MODERATELY WELL FOLIATED
MINOR STRUCTURES FRACTURES PARALLEL TO SCHISTOSITY
COMPOSITION (%) % TOO FINE
15 % PYRITE (OXIDIZED - FRESH)
FIELD NAME BLACK PHYLLITE
THINSECTION DESCRIPTION:
COLOUR AND MICROTEXTURECOLOURLESS, BRN SPOTTED
GRAIN SIZES AND SHAPES FRAMEWORK QTZ UP TO .6 MM, MTZ AND GRANULATED XLS02 MM
FABRIC AND PACKING SCHISTOSE, COARSE MUSCOVITE ALONG FRACTURE LINES
STRATIFICATION NO PRIMARY, ALIGNMENT OF MUSCOVITE
MICROSTRUCTURES MANY GRANULATED FRAMEWORK GRAINS
COMPOSITION $(%)^{70}$ QUARTZ $25_{\%}$ MUSCOVITE $+5_{\%}$ OPAQUES (HEAMATITE) TR $_{\%}$ PLAGIOCLASE $_{\%}$
NAMEBLACK SILTY PHYLLONITE (PYRITIZED)
COMMENTS: <u>MANY LINES OF INCLUSIONS IN ALL FRAMEWORK GRAINS, UNDULATORY</u> EXTINCTION, INCLUSIONS LINES SEMI PARALLEL (40-50° TO SCHISTOSITY)

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

Į.

(

SPECIMEN NUMBER 57594 LOCATION LINE 600S, 85E				
HANDSPECIMEN DESCRIPTION:				
COLOUR SILVERY MEDIUM GREY, DARK GREY, BRN STAINED, WEATHERING				
TEXTURE SCHISTOSE (RELICT SILTY?) TOUGHNESS WELL INDURATED				
GRAIN SIZES VERY FINE GRAINED				
FABRIC AND PACKING TOO FINE FOR IDENTIFICATION				
STRATIFICATION WELL LAYERED, PROBABLY NOT PRIMARY, SCHISTOSE				
MINOR STRUCTURES CRENULATED FOLIATION, BLACK HAIRLINE NETWORK				
COMPOSITION (%) % TOO FINE				
% 10 % PYRITE (OXIDIZED AND FRESH)				
FIELD NAME GREY CRENULATED PHYLLITE (SCHIST)				
THINSECTION DESCRIPTION:				
COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPOTS				
GRAIN SIZES AND SHAPESQTZ TO .3 MM, PLAG TO .2 MM, MUSCOVITE SMALL NEEDLES & FLAKE				
FABRIC AND PACKING SCHISTOSE, RECONSTITUTED				
STRATIFICATION				
MICROSTRUCTURES QTZ GENERALLY FLATTENED, GRAIN BOUNDARIES RAGGED				
COMPOSITION (%) ⁶⁰ % QUARTZ 40 % MUSCOVITE (VARIABLE ACCORDING TO LAYERING) 1-2 % PLAGIOCLASE 4 % OPAQUES TR % HORNEBLENDE (DETRITAL)				
NAME GREY PHYLLONITE				
COMMENTS: OPAQUES (PYRITE) ARE POIKIOBLASTIC, PROBABLE GRANULATION				
QTZ RICH AREAS MAY BE DISINTEGRATION OF LARGER CLASTS				
i de la construcción de la constru				

*SOME SLIGHTLY FRACTURED

COMMENTS: <u>OUARTZ EYES ENVELOPED BY .07 MM OF FINE FELTED QTZ AND SERICITE,</u> QUARTZ EYES*NOT STRAINED, SOME QTZ EYES INVADED BY QTZ-SERICITE ALTERATION

MINOR STRUCTURES WEATHERED VOIDS				
COMPOSITION (%) 5 % QUARTZ EYES 2 % FELDSPAR PHENOS 90 % "SALT AND PEPPER" 3 % VOIDS				
FIELD NAMEPROSERPINE ACID DYKE (INTRUSIVE)				
THINSECTION DESCRIPTION:				
COLOUR AND MICROTEXTURE LIGHT BROWN, IGNEOUS (IRREGULAR)				
GRAIN SIZES AND SHAPES				
FABRIC AND PACKING SUGGESTION OF RADIATING "GLOMEROPORPH" FEW QTZ PATCHES 0.1MM				
STRATIFICATION QUARTZ EYES TO 2.1 MM, SLIGHTLY IRREGULAR KIDNEY SHAPED				
MICROSTRUCTURES ROUNDED VOIDS, RELICT TWINS IN HBL				
COMPOSITION (%)35% SERICITIZED PLAGIOCLASE (ALMOST ENTIRELY ALTERED) 25% HORNBLENDE ALSO ALTERED +40.				
2 g OPAQUES				
8				
NAMEPROSERPINE DYKE (ANDESITIC?)				

STRATIFICATION NONE (IGNEOUS)

FABRIC AND PACKING CRYSTALLINE

GRAIN SIZES QTZ EYES TO 2 MM, ELONGATE FELDSPAR TO 3 MM

PROSERPINE GROUP

TEXTURE _____ SPECKLED QTZ EYE PORPHYRITETOUGHNESS INDURATED, BUT RELATIVELY SOFT

HANDSPECIMEN DESCRIPTION:

COLOUR LIGHT GREY SALT AND PEPPER, DARK GREENISH BROWN WEATHERING

SPECIMEN NUMBER 57595 LOCATION ON LINE 600S, 122E

MCINTYRE MINES LIMITED Vancouver, B.C.

PETROGRAPHIC DESCRIPTION

DATE: DECEMBER 9, 1978

EXAMINED BY: JS

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

į

SPECIMEN NUMBER 57596 LOCATION LINE 600S, 120E				
HANDSPECIMEN DESCRIPTION:				
COLOUR BROWN-LIGHT GREY, SILVERY BROWNISH GREY ON WEATHERING				
TEXTURE BLEACHED AND WEATHERED TOUGHNESS WELL INDURATED IN SPITE OF OXIDATION				
GRAIN SIZES VERY FINE				
FABRIC AND PACKING TOO FINE GRAINED				
STRATIFICATIONSCHISTOSITY WELL DEVELOPED, NO RELICT BEDDING				
MINOR STRUCTURES BLACK HAIR LINES (MND) VAGUE OUTLINE OF QTZ VEINLET				
COMPOSITION (%)70% QUARTZ AND MUSCOVITE (FINE GRAINED) 30% VOIDS, PYRITE AND ANKERITE? % %				
FIELD NAME PHYLLITIC BLEACHED MUDSTONE (VERY WEATHERED) MYLONITIC?				
THINSECTION DESCRIPTION:				
COLOUR AND MICROTEXTURE LIGHT BROWN-BUFF, SCHISTOSE (SILTY)				
GRAIN SIZES AND SHAPES MOST QTZ .03 MM, MUSCOVITE .01 MM				
FABRIC AND PACKING STRONGLY LINEATED ORIGINALLY POORLY SORTED (?)				
STRATIFICATIONQTZ RICH AREA @ 30° TO SCHISTOSITY - PROBABLE PRIMARY BEDDING				
MICROSTRUCTURES HIGHLY FRACTURED, FED STAINED				
COMPOSITION (%) 45% QUARTZ 40% MUSCOVITE 5% OPAQUES (HEAMATITE) 10% VOIDS %				
NAME PHYLLITIC SILTY MUDSTONE (BLEACHED)				
COMMENTS: COMPOSITE VEINLET ON EDGE OF SLIDE MADE OF SUTURED XLS				

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

Ń

SPECIMEN NUMBER 57597 LOCATION 419S ON 00 (BASELINE)				
HANDSPECIMEN DESCRIPTION:				
COLOUR _ GREEN TO UNIFORM GREY, SILVER WHITE ON WEATHERING				
TEXTURE CHERTY TOUGHNESS VERY COMPACT				
GRAIN SIZES CRYPTOXLINE				
FABRIC AND PACKING TOO FINE GRAINED, ANKERITE PORPHYROBLASTS (BOUDINS?)				
STRATIFICATION WELL FOLIATED, NO PRIMARY SED FEATURES				
MINOR STRUCTURES SOME BLACK WISPY LINES, OVOID PYRITE				
COMPOSITION (%) % TOO FINE GRAINED (MOSTLY QUARTZ AND MUSCOVITE) 15 % ANKERITE AFTER PYRITE (OXIDIZED PYRITE) % %				
FIELD NAME SILVER SCHIST (SITICIFIED MUDSTONE) CHECK FOR PHYLLONITE				
THINSECTION DESCRIPTION:				
COLOUR AND MICROTEXTURE COLOURLESS WITH BROWN SPOTS, SCHISTOSE				
GRAIN SIZES AND SHAPES OXIDIZED PY PORPHYROBLASTS 4.0 MM, MOST OTZ .03 MM				
FABRIC AND PACKING MUSCOVITE .01 TO .03 MM, LOOSELY PACKED OTZ (REXLISED)				
STRATIFICATION ONLY FOLIATION AND CROSS CRENULATION APPARENT				
MICROSTRUCTURESSUGGESTION OF MICROCRENULATION, WELL FRACTURED				
COMPOSITION (%) ⁴⁰ % QUARTZ 45 % MUSCOVITE 15 % OXIDIZED PYRITE (OPAQUES) % %				
NAMESILVER SCHIST (APPARENTLY NOT MYLONITIC)				
COMMENTS: OCCASIONAL .2 MM FLATTEN COMPOSITE QTZ, THIN QTZ RICH SECTION MAY				
_INDICATE ORIGINAL SILTY LAYER NOW CONTORTED				

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

.

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

SPECIMEN NUMBER 57598 LOCATION NEAR 00, 00				
HANDSPECIMEN DESCRIPTION:				
COLOUR LIGHT BROWN, SILVERY-BROWN ON WEATHERING				
TEXTURE CLASTIC, SANDY TOUGHNESS VERY WELL INDURATED				
GRAIN SIZES BIMODAL 1 MM AND 0,5 MM, GRAINS SUBRND TO ANGULAR				
FABRIC AND PACKING MAINLY POORLY SORTED, VERY LOOSELY PACKED, IMMATURE				
STRATIFICATION INDISTINCT FOLIATION, POSSIBLE RELICT BEDDING, UNCERTAIN				
MINOR STRUCTURES SOLUTION CRACKS, WEATHERED PY ALONG FRACTURES				
COMPOSITION (%) 40% QUARTZ (FRAMEWORK) 60% MATRIZ (MUSCOVITE AND QTZ) % VOIDS, (OZIDIXED PY ETC) %				
FIELD NAME SANDY PHYLLITE				
THINSECTION DESCRIPTION:				
COLOUR AND MICROTEXTURE COLOURLESS TO LT BROWN, GRANULATED CLASTIC				
GRAIN SIZES AND SHAPES RNDED COMPOSITE GRAINS OF SUBRECT TO SUTURED 0.2 MM XLS				
FABRIC AND PACKINGINTERLOCKING MOSAIC WITHIN LOOSELY ? PACKED RELICT (COMPOSITE)				
STRATIFICATION GRAINS, DISTINCT FOLIATION, LRG GRAINS FLATTENED				
MICROSTRUCTURES NEEDLE MUSCOVITE COMMON, MICROFRACTURES IN LRG GRAINS				
COMPOSITION (%)75 % QUARTS 20 % MUSCOVITE 4 % OPAQUES TR % HBL CALCITE %				
NAME SANDY PHYLLONITE				
COMMENTS: SOME OPAQUES PREMUSCOVITE, SOME LOCAL EXTREME GRANULATION WHEREAS MOST				

ONLY OUTER EDGES GRANULATED, SUGGESTION OF SERICITIZED FELDSPAR

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

÷

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

ł

i

SPECIMEN NUMBER 57599 LOCATION ON BASELINE @ 1455				
HANDSPECIMEN DESCRIPTION:				
COLOUR DARK GREY TO BLACK, DARK GREY WITH SLIGHT BUFF ON WEATHERING				
TEXTURE TOUGHNESS_VERY WELL INDURATED				
GRAIN SIZES MOST GRAINS 0.5 MM, OCCASSIONAL 1 MM				
FABRIC AND PACKING FAIRLY WELL SORTED, MINIMUM OF MATRIX				
STRATIFICATION FINE (WEAK) FOLIATION, BEDDING POSSIBLY INDICATED BY IMBRICATION				
MINOR STRUCTURES MANY "GASH" OTZ VEINLETS AT SMALL ANGLE TO FOLIATION				
COMPOSITION (%) 70% QUARTZ 10 % DARK MTX 20 % VOIDS (FINE HOLES) % PYRITE - VARIABLE				
FIELD NAME BLACK SILTSTONE (SILICIFIED)				
THINSECTION DESCRIPTION:				
COLOUR AND MICROTEXTURE COLOURLESS WELL PRESERVED CLASTIC				
GRAIN SIZES AND SHAPESRELICT WELL RNDED QTZ AVERAGE .4 MM, GRANULATED HASH AS				
FABRIC AND PACKING MTX ABOUT 0.08 MM, SUBRECTANGULAR, ORIGINAL ROCK APPARENTLY				
STRATIFICATION LOOSELY PACKED OBSCURED BY FOLATION MAY BE PARALLEL, ALL MUSCOVITE VFG				
MICROSTRUCTURES SLIGHTLY RAGGED GRAIN BOUNDARIES ON MOST FRAMEWORK GRAINS				
COMPOSITION (%)60 % QUARTZ (RELICT FRAMEWORK) +15 % QUARTZ (MTZ AND PROBABLY SOME GRANULATION) +15 % MUSCOVITE 10 % VOIDS (MOSTLY WELL RNDED) 2 % OPAQUES, EPIDOTE, TREMALITE? DETRITAL HBL				
NAME BLACK "PHYLLONITIC" SILSTONE (GREYWACKE)				
COMMENTS: LARGE NUMBER OF SUBRND VOIDS (ALSO IN H.S.) SOME LRG FRAMEWORK				
GRAINS HIGHLY FRACTURED				

PETROGRAPHIC DESCRIPTION

PROSERPINE GROUP

DATE: DECEMBER 9, 1978 EXAMINED BY: JS

SPECIMEN NUMBER <u>57600</u> LOCATION <u>DRILL CORE FOUND ON OLD ROAD NORTH</u> OF WARSPITE PORTAL @ 190N, 150W HANDSPECIMEN DESCRIPTION:

COLOUR LIGHT GREY, WEATHERING UNKNOWN (DRILL CORE)

TEXTURE ______ SILICIFIED, RELICT CLASTIC TOUGHNESS VERY WELL INDURATED

GRAIN SIZES STRETCHED RELICT GRAINS 2 X 7 MM MOSTLY OBLITERATED BY INFLUX

FABRIC AND PACKING OF SIO, PERHAPS CLOSELY PACKED ORIGINALLY

STRATIFICATION VAGUE OUTLINES OF RELICT GRANS, OVOID AND ELONGATED

MINOR STRUCTURES BLACK INSOLUBLE STREAKS, WELL FRACTURED, SOME MILKY QTZ VEINLETS

COMPOSITION (%)95 % QUARTZ

-	~	
48	MUSCOVITE	
1,	PYRITE	
~ *		

FIELD NAME INTENSELY SILICIFIED QUARTZITE

THINSECTION DESCRIPTION:

COLOUR AND MICROTEXTURE COLOURLESS, EQUIGRANULAR WITH INCIPIENT GRANULATION

GRAIN SIZES AND SHAPES SUTURED SUBRECTANGULAR GRAINS 1 MM (LRG), .1 MM FOR

FABRIC AND PACKING COMPOSITE GRAINS, .01 GRAINS FOR INTENSE GRANULATION

STRATIFICATION METAMORPHIC OVERPRINTING OBLITERATES PRIMARY BEDDING .

MICROSTRUCTURES FRAMEWORK GRAINS FLATTENED, WAVY EXTINCTION NOT WELL DEVELOPED

COMPOSITION (%)50 & <u>QUARTZ (RELICT FRAMEWORK, NOW COMPOSITE</u> GRAINS)

30 % OUARTZ MAKING UP INTENSE GRANULATION

- 5-10% MUSCOVITE (VARIABLE) 5-10% CALCITE (VARIABLE)
- TR[®] EPIDOTE, OPAQUES

NAME ______SILICIFIED INICACEONS PHYLLONITE

COMMENTS: QTZ GRAINS REDUCED TO COMPOSITE GRAINS, LOCAL INTENSE GRANULATION

AT GRAIN BOUNDARIES, SOME REXLIZATION IMPORTANT, GRANULATED AREAS ARE STRONGLY

LINEATED, CALCITE OCCASSIONAL IN LARGE PATCHES

TRUE BLUE BLIGHTY $- \circ \varphi_{45}^{et} \left(\begin{array}{c} \mathbf{x}_{375} \\ \mathbf{x}_{375} \\ \mathbf{y}_{400}^{eto} \\ \mathbf{y}_{50}^{325} \\ \mathbf{y}_{50}^{eto} \\ \mathbf{y}_{50}^{325} \\ \mathbf{y}_{50}^{eto} \\ \mathbf{y}_{50}^{20} \\$ $\frac{10^{-9}}{10} = \frac{10^{-345}}{10} = \frac{10^{-38}}{10} = \frac{10^{-38}$ $= \int_{-\infty}^{\infty} \int_{-\infty}^$ $=\phi_{25}^{a_2}$ AMOS AZOIC AVIATOR) , 1 . i

