REPORT ON PERCUSSION DRILLING

DAWN CLAIMS

LORNEX MINING CORPORATION LTD.

by

N. V. Holowachuk

Dawn #6 - Record No. 38236 M Dawn #8 - Record No. 38238 M CLAIMS:

LOCATION: Highland Valley - about 24 miles southeast of Ashcroft, B. C., Kamloops Mining Division

121° 00' W, 50° 27' N, N.T.S. 92-I/6E

TABLE OF CONTENTS

	PAGE
SUMMARY	1
INTRODUCTION	1
LOCATION AND ACCESS	2
PERCUSSION DRILLING RESULTS	2-3-4
CONCLUSION AND RECOMMENDATIONS	4
APPENDICES	

- LIST OF PERSONNEL AND COSTS
- II STATEMENT OF OUALIFICATIONS
- III ASSAY RESULTS FOR PERCUSSION HOLES 78-1 TO 78-8 INCLUSIVE

MAPS AND ILLUSTRATIONS

Figure A LOCATION MAPS

Figure B DRILL HOLE AND ROAD LOCATION

Figure C ROAD LOCATIONS

REPORT ON PERCUSSION DRILLING

DAWN CLAIMS

SUMMARY

A total of eight percussion holes were drilled on the Dawn #6 and Dawn #8 claims in the Highland Valley area of B.C. Ten foot sludge samples were taken at 10 foot intervals and assayed for copper and molybdenum. As shown by the included assay sheets the copper and molybdenum mineralization in the areas tested are non-economic.

INTRODUCTION

During November 1978, eight percussion holes were drilled on Dawn #6 and Dawn #8 claims owned by Lornex Mining Corporation Ltd. and located in the Highland Valley of B.C.

Drilling began on November 2, 1978 and continued through to November 16, 1978 under contract to Al Miller Percussion Drilling Ltd. of Kamloops, B. C. and was under supervision of M. W. Waldner and N. V. Holowachuk.

A total of 3,200 feet (8 - 400 foot holes) were completed to test for the existence of copper and molybdenum mineralization.

Two percussion holes were drilled on mineral claim Dawn #6 and six more were drilled on Dawn #8.

Sludge samples were collected each ten foot interval and the samples were assayed for total copper and molybdenum by the Lornex assay laboratory using the atomic absorption technique.

LOCATION AND ACCESS

The above claims are located in the Highland Valley, about 24 miles by road southeast of Ashcroft, B. C. between Highmont Mining Corporation Ltd. and Lornex Mining Corporation Ltd. Latitude 50° 27' N, Longtitude 121° 00' W, N.T.S. 92-I/6E.

PERCUSSION DRILLING RESULTS

A truck mounted percussion drill was used to drill all eight holes. Water was hauled by truck from the washbay situated by the Mine Operations office.

All access roads and drill sites were prepared prior to commencement of the drill program. All holes were drilled vertically to a depth of 400 feet.

Overburden depths ranged from 10 to 40 feet and averaged approximately 22 feet.

A total of 300 ten foot sludge samples were taken in bedrock. The samples averaged 0.031% total copper and the average molybdenum values were 0.007%.

The following is a resume' of the drill hole results.

DH 78-1

The hole was collared on November 2 and completed on November 3, 1978 on Dawn #8 M.C.

Depth - 400'

Overburden Depth - 35'

Average Total Cu - 0.0193%

Average Total Mo - 0.0012%

DH 78-2

The hole was collared on November 3, 1978 and completed on November 4, 1978 on Dawn #8 M.C.

Depth - 400'

Overburden Depth - 22'

Average Total Cu - 0.0395%

Average Total Mo - 0.0001%

• ′

DH 78-3

The hole was collared on November 5 and completed on Movember 6, 1978.

Depth - 400'

Overburden Depth - 40'

Average Total Cu - 0.0125%

Average Total Mo - 0.0005%

DH 78-4

The hole was collared on November 6 and completed on November 7, 1978.

Depth - 400'

Overburden Depth - 15'

Average Total Cu - 0.0840%

Average Total Mo - 0.0008%

DH 78-5

The hole was collared on November 8 and completed on Movember 9, 1978.

Depth - 400'

Overburden Depth - 15'

Average Total Cu - 0.0509%

Average Total Mo - 0.0016%

DH 78-6

The hole was collared on November 10 and completed on November 13, 1978.

Depth - 400'

Overburden Depth - 30'

Average Total Cu - 0.0243%

Average Total Mo - 0.0004%

DH 78-7

The hole was collared on November 14 and completed on November 15, 1978.

Depth - 400'

Overburden Depth - 11'

Average Total Cu - 0.0107%

Average Total Mo - 0.0005%

. 4

DH 78-8

The hole was collared on November 15 and completed on November 16, 1978.

Depth - 400'

Overburden Depth - 10'

Average Total Cu - 0.0033%

Average Total Mo - Tr.

CONCLUSIONS AND RECOMMENDATIONS

With the exception of a 0.46% total copper over 10 feet and a 0.23% total copper in the last 30 feet of drill hole 78-4, the copper and molybdenum grades were non-economic. Drill hole 78-4 was drilled on the south corner of Dawn #8 M.C., adjacent to Highmont's west pit. The percussion drill program results concur with previous exploration programs in the area.

N. V. Holowachuk Pit Geologist

NVH/els

APPENDIX I

CLAIM NAME		OZER & @ \$100/hr	PERCUSSION @ \$3.75		ASSAYING @ \$10)/SAMPLE	TOTAL
	Hours	Cost	Total Footage	Cost	Total No. Of Samples	Cost	
Dawn #8	18	\$1,800	2400'	\$9,000	225	\$2,250	\$13,050.00
Dawn #6	6 ≯	\$ 600 See below fo	800' r more details	\$3,000	75	\$ 750	\$ 4,350.00
Employee	Posi	· · · · · · · · · · · · · · · · · · ·	Work I	Done	No. of Days Worked	Cost/ Day	
M. W. Waldner	Mine Geo	logist	Field - Hole I supervision	locations and	3	\$165	\$ 495.00
N. V. Holowachuk	Pit Geol	ogist	Program planns supervision as writing	• •	11	\$135	\$ 1,485.00
A 1977, 3/4 ton, C	hevrolet, 4	x 4 Pickup t	ruck was used fo	or 4 days at a	cost of \$40/day		\$ 160.00
			y Lornex Mining				\$ 64.00

Dawn #6

GRAND TOTAL \$19,604.00

A road 180 meters long and 4 meters wide was built and/or improved (improved meaning; water holes filled and made passable, fallen trees removed and in general the road made wider and smoother.) Two percussion drill sites were prepared for a total of 6 hours at a cost of \$100 per hour for a bulldozer and operator.

Dawn #8

A road 700 meters long and 4 meters wide was built and/or improved and a total of 6 percussion drill sites prepared for a total of 18 hours at a cost of \$100 per hour for a bulldozer and operator.

The total hours for drill site preparation and road building or improving number 24 at \$100 per hour = \$2400.00.

NOTE See map marked figure B & figure C for road locations.

APPENDIX II

STATEMENT OF OUALIFICATIONS

N. V. Holowachuk

I graduated with a B. Sc. in geology from the University of Brandon,
Manitoba in 1971. Prior to graduating and until July of 1974, I was employed
by Newmont Mining Corporation as an exploration geologist. From August of
1974 to August 1977 I was employed by Newmont Mines Ltd. - Similkameen
Division as a geologist. Since August, 1977, I have been employed as pit
geologist by Lornex Mining Corporation Ltd.

A. U. Dolowschut

E DEPARTMENT	Date Sampled:	,
Sludges Percussion Dr. 11 Hole 78-1		
LOCATION/DESCRIPTION	TOTAL OXIDIZED % CU.	TOTAL % MO.
1 35.50	0.015	0.001
2 50-60	0.015	0.002
3 60-70	0.015	0.001
4 70 - 80	0.025	0.001
5 80-90	0.010	0 001
6 90-100	0.030	0 001
7 100 - 110	0.015	0.001
8 110-150	0.015	0.005
9 120-130	0.035	0.001
10 130-140	0.050	0001
11 40-150	0,025	0.002
12 150-160	0.025	0.001
13 160-170	0,020	0.001
14 170-180	0.015	(.001
15 180-190	0.020	6.002
16 190-200	0.015	0.002
17 200-510	0.020	500.0
18 5 10 - 550	0.015	0.002
19 550-530	0.015	.002
0 230-240	0015	0.002
1 240-250	0.015	2005

•	
le Reported: 5 - 11 - 78	Ch. Chemist: D. Lincoln

Sludges			
Footage	LOCATION/DESCRIPTION	TOTAL OXIDIZED	TOTAL % MO.
250-360		0015	0.001
266-270		0.010	0,001
270-280		0.010	0,001
280-290		0.015	0.001
290-300		0.015	0.001
300-310		0.050	5,002
310-320		0.025	0.001
520-330		0.020	0.001
330-340	S	0.030	0.001
340-350		0.030	7.001
<u> </u>		0.020	0.001
360-370		0.030	0.001
370-380		0.015	0.001
200-39		0.030	0.002
3,90-400		0.035	5.001
·			

e Reported:	5-11-78	Ch. Chemist: D. Lincoln	

	DEPARTMENT			Date Sampled:			
	Sludges	Percussion Dr. 11 Hole 78.	. <u>></u> ,				
ER	Footage	LOCATION/DESCRIPTION	TOTAL % CU.	OXIDIZED	TOTAL % MO.		
	0 - 55,	Overburden	_				
	22-40'		0.02		0.001		
	10 -50		0.02		1000		
	50-60		0.01		0001		
	60 - 70'		0.02		0.001		
	70 - 80'		0.01		0.001		
	<u> 30 - 90'</u>		0.01		0.001		
	90-100'		0.01		0. ∞1		
	100 - 110		0.02		0.001		
-	110-150,		0.04		0.001		
	<u> 20-130</u>	·	0.05		2002		
\dashv	130-140		0.04		0.001		
	140-150		0,03		0 001		
_	150-160		50.0		2000		
-	16,6-170		0,03		0,001		
\downarrow	170-180		0.03		Ty		
	150-190'		0.03		Tv		
	196-200		0.06		0,001		
-	500-510		0 0 7		Tr		
-	210-270		0.06		Ty		
\perp	550-530		0.05		0.001		

Reported:	7-11-78	Ch. Chemist:	₯.	Lincoln	

•	NE DEPARTME	NT	Date Sa	ampled:	
	Sludges	Percussion Dr.11 Hole 78.	. 7_ ,		
RDER	Footage	LOCATION/DESCRIPTION	TOTAL % CU.	OXIDIZED	TOTAL % MO.
1	230-240		0,04		<u> </u>
2	240-250		0.05		0.001
3	250-260		0.06		Tr
4	260-270		0.05		T,
5	270-280		0.04		Tv
6	280-290		0. 04		7,
7	290-300		0.08		0.001
8	300-310		0. 07		0.001
9	310-320		0.05		Т,
10	320 - 330		0.06		0.001
11	530-340	·	0.05		7,
12	340-350		0.05		
13	350-360		0.65		0.001
14	360-370		0.07		0.001
15	370-380		0.06		0.001
16	380-390		0.04		0.001
17	390-400		6.63		0.001
18					
19					
20					
ୁ 1					

tte Reported: 7, 11,197.8	Ch. Chemist:	. Lincoln

L DEPARTMEN	IT _	Date Sampled:	
Sludges	Percussion Dill Hole	78-3	
DER Footage	LOCATION/DESCRIPTION	TOTAL OXIDIZ	ED TOTAL % MO.
1 0 - 40'	Overburden		
2 40 - 50		0.01	0 005
3 50-60		001	0.005
4 60 - 70		0.61	0.005
3 70 - 20		0.01	0.005
3 80 - 90		001	0.005
1 90-10-0		001	0.005
100-110		0.01	0.005
110-120		0.01	0.005
10 170 - 130		0.01	0.001
1 30 - 140		0.01	0.005
12 140-150		0.01	0.002
13 150-160		001	500.0
160 -170		0.02	T+
5 170-180		0.01	Tv
·6 180-190		001	Tv
1 190-200		0.01	
3 200-213		0.01	· Tx
a 510-550	7116.	0.01	Ty
0 220-230	1441	0.01	Tr
1 230-240		1001	7,

Reported: 8, 11, 78	Ch. Chemist: Lincoln
---------------------	----------------------

	_ DEPARTMENT		Date S	ampled:	
	Sludges	Percussion Dr.11 Hole 78	5-3,	T	
DER O.		LOCATION/DESCRIPTION	TOTAL % CU.	OXIDIZED % CU.	TOTAL % MO.
	240-250		0.01		Tv
?	250-260		0.01		Т-
·	260-270		0.02		Tv
1	276-280		0. 01		Tv
5	290-290		0.01		Tr
;	290-300		0. 02		Tr
_	300-310		0.02		Tr
	310-370		50.0		T
	320-330		0.03		<u> </u>
0	330-340		0.02		Tr
	40-350		0.02		Tr
12	350-360		0.01		T
13	360 - 370		0:02		Tr
14	370-380		0.05		Tr !
5	320-390		0.02		Tv
6	390-400		0.02		Ty
7					
18					
19					
20					
1_					
		•			

	N ₂	NOOM! HE!	VIII.	
6	E DEPARTME	NT	Date Sampled:	
	Sludges	Percussion Dr. 11 Hole 78	3-4.	
RDER NO.	Footage	LOCATION/DESCRIPTION	TOTAL OXIDIZED % CU. % CU.	TOTAL 5 MO.
1	0 - 15'	Overburden		
2	15-30		0.04	T-
3	30-40		0.46	Tr
4	40-50		0.16	Tv
5	50-60		0.08	Tr
3	60-70		0. 03	Tr
7	70 - 80		0 62	Tr
3	80 - 90		0.03	Tr
э —	90-100		0.03	Т.
10	100-110		0.04	Tv
i 1	10-120		0.04	T-
12	120-130		0.67	Т.
i 3	130-140		0.01	T
4	140-150		0.62	T
15	150-160		0.05	Τ,
6	160-170		0.06	
.7	170-180		0.64	T
18	120-190		0.02	T.
9	190-200		1.04	-,

e Reported: 9	, 11, 1978	Ch. Chemist:	- Lincoln
	, ,		

210-220

0.04

0.54

Tr

Tr

•	NE DEPARTMEN	NT CONTRACTOR OF THE CONTRACTO	Date Sampled:			
	Sludges	Percussion Dall Hole 7	8-4,			
DER	Foutage	LOCATION/DESCRIPTION	TOTAL OXII	DIZED TOTAL % MO.		
1	220-230		0.05	T.		
2	230-240		0.06	7,		
3	240-250		0.06	7.		
4	250-260		0.05	7.		
5	260-270		0.06	Tr		
ô	270-280		0.15	0.003		
7	280-290		0,07	0.002		
a	290-300		0.11	500.0		
9	300-310		0.06	0.002		
10	310-320		0.05	0.002		
11	و20-330		0.05	0.003		
12	330-340	***************************************	0.05	0.002		
13	340-350		0.16	0.004		
14	350-360		0.08	0.003		
15	360-370		0.13	0.005		
16	370-380		0.30	0.003		
1 7	380-390		0.27	0.005		
18	390-400		0.22	500.0		
19						
20						
: 1						

ate Reported: 9, 11, 1978	Ch. Chemist: D. Lincoln
---------------------------	-------------------------

NE DEPARTMENT			Date Sampled:					
	Sludges Percussion Dr. 11 Hole 78-5.							
RDER	Footage	LOCATION/DESCRIPTION	TOTAL OXIDIZED	TOTAL % MO.				
1	15-30	Dreiburgen	0.02	Tr				
2	30-40		0.01					
3	40-50		0.01	0.001				
4	50 - 60		0.02	0.001				
5	60-70		50.0	0.007				
6	70 - 80		0.05	500.0				
7	80-90		0.04	0.001				
8	90-100		0.03	0.001				
9	100-110		0.04	0.001				
10	110-120		0.04	0.001				
126	120-130		0.21	0.003				
12	130-140		0.08	0.002				
13	140-150		0.06	0.002				
14	150-160		0.08	0.002				
15	160 -170		0.68	0.003				
16	170-180		0.06	0.001				
17	180-190		0.06	0.002				
18	190-200		0.06	0.001				
19	200-210		0.04	0.001				
20	210-250		0.06	0.002				
21	720-230		0.05	0.001				

ate Heported.	ate Reported: 12, 11,	1978	Ch. Chemist:	Lincoln	
---------------	-----------------------	------	--------------	---------	--

6	NE DEPARTME	NT	Date Sampled:	
	Sludges	Percussion Drill Hole 7	R-5 '	
RDER NO.	Footage	LOCATION/DESCRIPTION	TOTAL OXIDIZED % CU.	TOTAL % MO.
1	230-240		0.04	0.001
2	240-250		0. 04	500.0
3	250-260		0, 05	0,002
4	260-270		0.06	0.002
5	270-280		0.20	0.007
6	280-290		0.05	0.002
7	290-300		0.05	0.002
8	300-310		005	0.003
9	310-320		0.05	0.002
10	320-330		0.05	0.002
11	330-340		0.04	500.0
12	340-350		0.04	0.001
13	350-360		0.03	200.0
14	360 - 370		0.02	0.001
15	370-380		0.04	0.002
16	380-390		0.04	0.001
17	390-400		0.05	0.001
18				
19				
20				
21				

ate Reported: 12, 11, 1978	Ch. Chemist: D. Lincoln
----------------------------	-------------------------

	FE DEPARTME	NT	Date Sampled:			
	Sludges	Percussion Drill Hole 7	18-6			
₹DER	Footage	LOCATION/DESCRIPTION	TOTAL OXIDIZED % CU. % CU.	TOTAL % MO.		
1	0-18	Over burden				
2	18-30		0.02	-1+		
3	30-40		0, 04	Tr		
4	40-50		0.02	T-		
5	Su - 60		0.03	T		
6	60-70		0.02	0 001		
7	70-80		0, 04	0.001		
3 	80 - 90		0, 04	0.001		
9	90-100		0.04	0.001		
10	100-110		0.04	0.001		
11	10-120		0.02	0.001		
12	170-130		0, 03	0.001		
13	130-140		0.02	0 001		
14	140-150		0.03	0.001		
15	150-160		0.02	0.001		
16	160-170		0.03	0.001		
17	170-180		0.03	0.001		
18	180-190		0.03	0.001		
19	190-200		0.03	0.001		
20	200-210		0.05	0.001		
2 1	510-550		0.03	0.001		

e Reported:	16,	115	1978	Ch. Chemist:	7	Lincoln	
to Hoportoo.						- · · · · · · · · · · · · · · · · ·	

4	JE DEPARTMENT		Date San	npled:	
	Sludges Pe	reassion Dr. 11 Hole 78	5-6		
RDEF		LOCATION/DESCRIPTION	l I	OXIDIZED % CU.	TOTAL % MO.
1	550-530		0.02		T,
2	230-240		0.02		Tr
3	240-250		0.03		Т,
4	5 20-500		002		Tr
5	260-270		0.02		Tr
6	270 -280		0.02		T,
7	280-290		0.02		7.
8	290-300		0.02		T,
9	300-310		0.03		Tv
10	310-370		0.03		N. D.
11	20-330		Tr		GN
12	330-340		Tr		N.D
13	340-350		Tr		N.D
14	350-360		Tr		N.D
15	360-370		Т		N.D
16	376-380		0.06		N-D
17	320-390		0.06		N.D.
18	390-400		0.03		N.D
19					
,O					

re Reported: 16, 11, 1978 Ch. Chemist: D. Lincoln

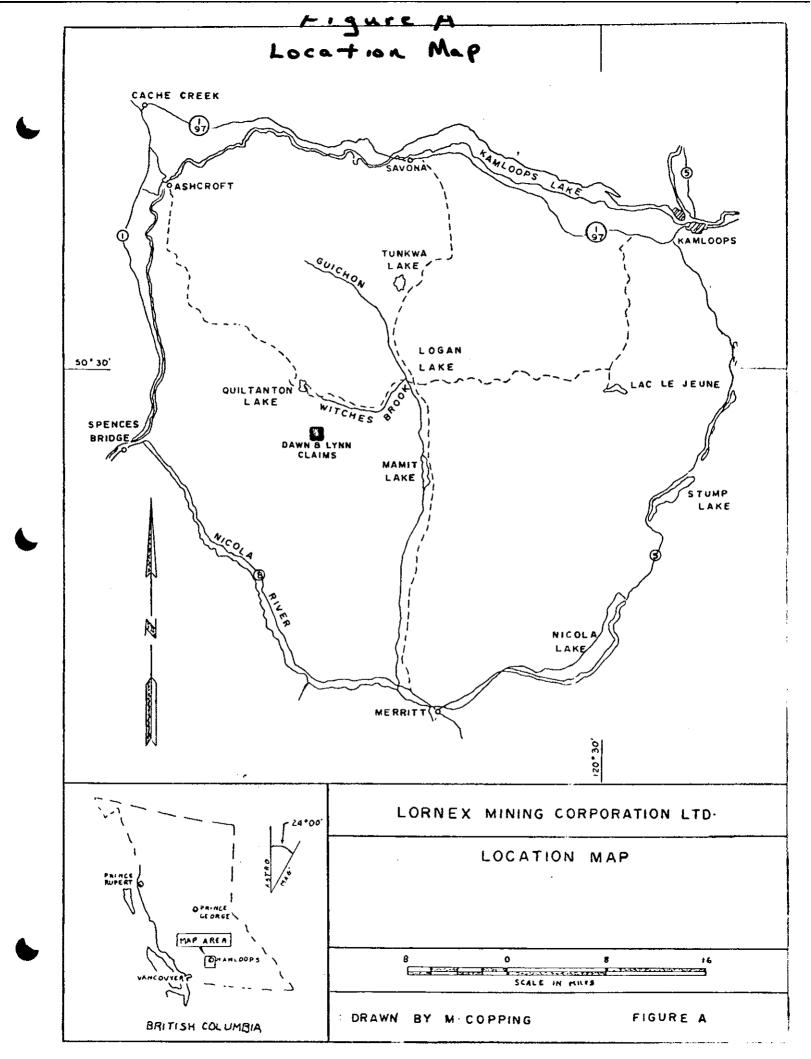
* N.D. - Not Detectable

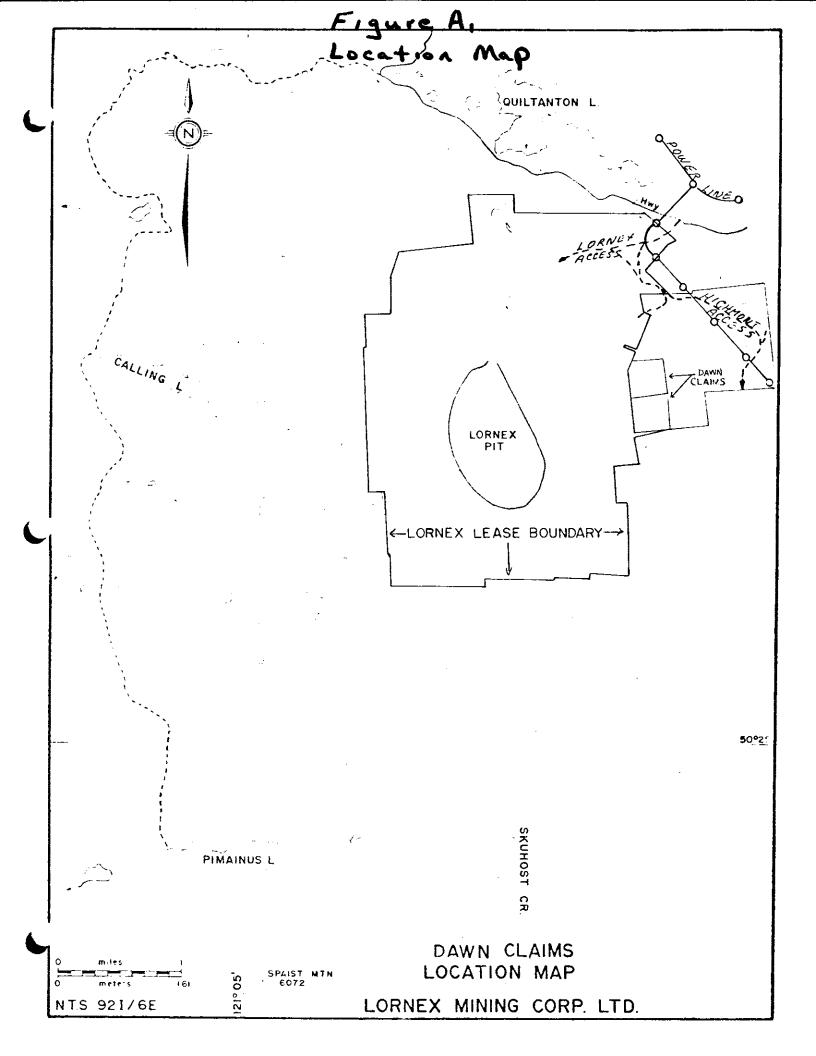
- 4	E DEPARTME	ENT	Date Sampled:				
	Sludges	Percussion Drill Hole 7	8-7 .				
(DER		1.001.710.1/0.700.707.001	TOTAL % CU.	OXIDIZED	TOTAL % MO.		
1	0-11	Over burden			,		
2	11 - 30'		0.02		G.N		
3	30-40		Tr		би		
4	40-50		Tr		N. D		
5	50-60		Tr		N. D		
o	60-70		Tr		G.N		
·	70-80		Tr		N.D		
3	80-90		Tr		Q.N		
9	90-100		Tr		<u> </u>		
10	100 - 110		Tr		G.N		
i 1_	10-120		T		GN		
12	120-130		Tr		Q.N		
i3	130-140		Tr		N.D		
14	140-150		Tr		N.D.		
15	150-160		Tr		N.D		
6	160-170		Tr		N.D		
7	170-180		Tr		G.N		
8	180-190		Tr		G.N		
9	190-200		Tr		N.D		
0.	200-210		Tr		Q.N		
1	510-550		Tr	4 1 > N	+ Detectable		
•				T N, U - No	1 DE LECTUDIE		

Reported:	16,	115	1978	Ch. Chemist: D
	•	,		

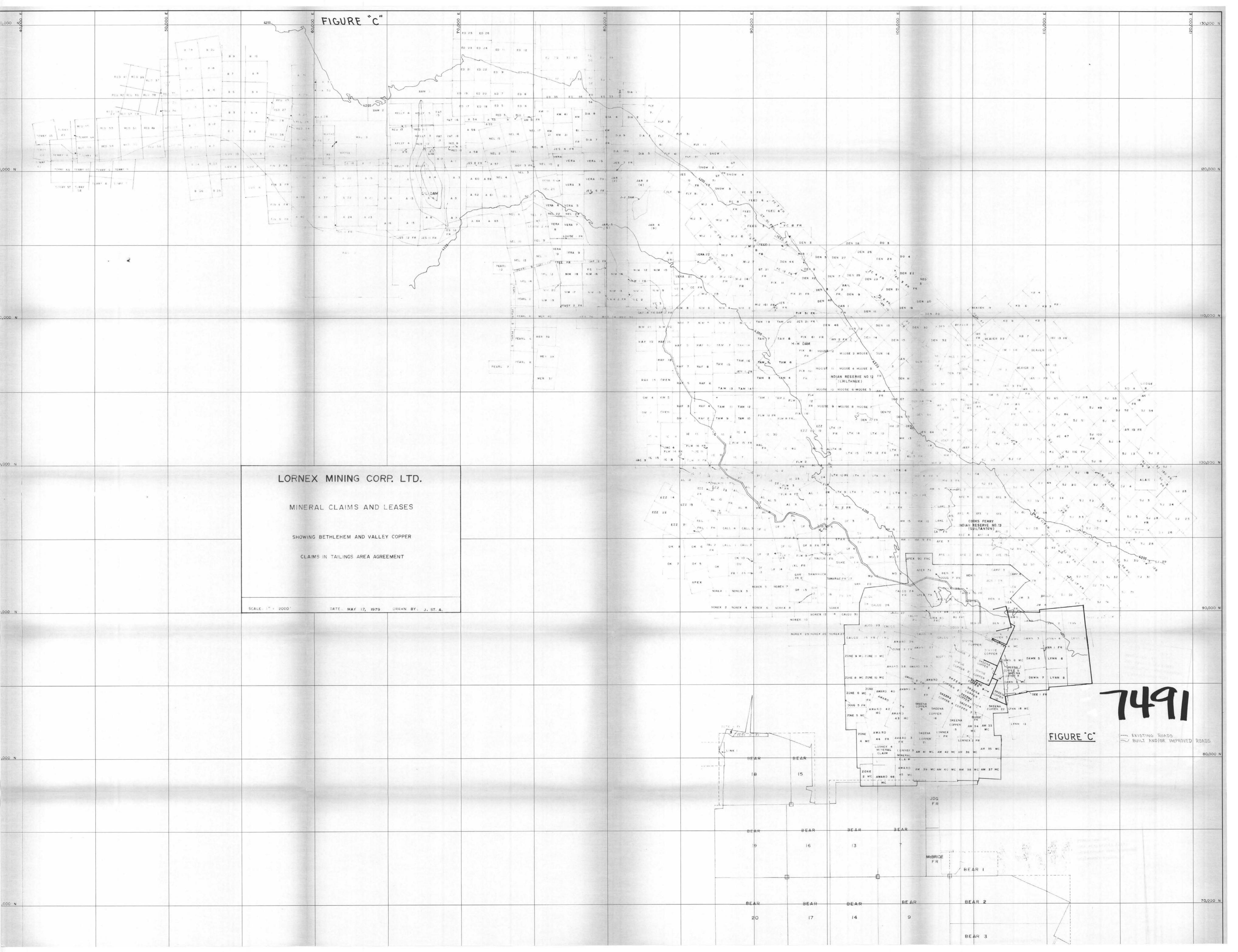
•	NE DEPARTMENT	r	Date S	Sampled:	
	Sludges	Percussion Drill Hole 78	3-7		
DER O.		LOCATION/DESCRIPTION	TOTAL % CU.	OXIDIZED	TOTAL % MO.
1	220-230		0.01		0.001
2	230-240		0.01		0.001
3	240-250		0,02		0.001
4	520-500		0.05		0.001
5	260-270		0.01		0.001
6 	2,70-280		0.01		0.001
7	280-290		0, 0,		0.001
8	290-300		0,01		0.001
9	3,00-310		0,03		0.001
10	310-320		0,02		0.001
11	320-330		0.04		0.001
12	350-340		0.03		0,001
13	340.350		0.03		0.001
14	350-360		0, 03		0.001
15	360-370		0.03		160 0
16	3.70-380		0.03		0.001
17	390-390		0.02		0.001
8	<u> उभे - 400</u>		0.03		0.001
9					
20					
1					

te Reported: 16, 11	, 1978	Ch. Chemist:	<u>D.</u>	Lincoln	
/	,				


	AUUAI	nei viii	
INE DEPARTMENT		•	Date Sampled:


	Sludges	Percussion Dr. 11 Hole 78	3-8,			:
RDER NO.	· -	LOCATION/DESCRIPTION	TOTAL % CU.	OXIDIZED		TOTAL % MO.
1	0-10	Over bur den				
2	10 - 20		- Tr			Tr
3	20-30		Tr		-	Tr
4	30 - 40		Tr			Tr
5	40-50		Tr			<u></u>
6	50-60		T.			T/
7	60-70		T-			T,
8	70 - 80		T_ <u>~</u>			T
9	80-90		Tr			_7 _Y
10	90-100		Tr			7,
11	.00-110		Tr			Т.
12	110-120		<u>т-</u>		-	7.
13	120-130		Tr			Tr
14	130-140					Tr
15	140-150		Tr		•	Tr
16	150-160		T-			T
17	160-170		Tr			_ T _
18	170-180		Tr			т\
19	180-190		T			TY
20	190-200		T,			Τ√
21	200-210		Tr			Tr

ate Reported: 17, 11, 1978	Ch. Chemist:	Lincoln	
----------------------------	--------------	---------	--


	₽ DEPARTMEN	т -	Date S	ampled:		
	Sludges	Percussion Dr. 11 Hole 78-8	•	T		
ADER	Footage	LOCATION/DESCRIPTION	TOTAL % CU.	OXIDIZED		TOTAL % MO.
1	510.550		Tv			-7x
2	220-230		7,			Tr
3	230-240		Tr			Tr
4	240-250		7,			Tr
5	250-260		Tr			Tr
6	260-270		Tr			Tr
7	270-280		7r			7.
8	285-290	`	0.02			N.D
9	290-300		0.04			N.D
10	300-310		Tr			Tr
11	10-320		Tr			
12	320-:30		0.01			N.D
13	330-340		Tr			Tr
14	340-350		0.01			N.D
15	350-360		Tr			Tr
16	360-370		0.01			6.11
17	370-380		0.03			N.D.
18	380- 590		Tr			<u> Tr</u>
19	390-100	THA	0.02			<i>d.N</i>
20						:
21						
			* N	. D - No	4 1264	ectable

e Reported:	1978	Ch. Chemist:	Lincoln	
#10 110F0110-1	,			

HIGHLAND VALLEY COMPASS AND CHAIN SURVEY OF THE LOCATION LINE OF MINERAL CLAIMS BEING LYNN I TO 8 INCLUSIVE KAMLOOPS MINING DIVISION. S.J. #92 M.C. SCALE: I INCH = 400 FEET 125 m DAWN #2 M.C. LYNN #1 M.C. DIRILL HOLE LOCATED DEC 7,1961 DAWN # 1 M.C. DORILL HOLE DRILL HOLE Q LOT 5700 DIVIDE COPPER #5 -D DRILL HOLE DAWN # 3 M.C. LYNN #3 M.C. DAWN #4 M.C. LUCATED-DEC 7, 1961 LOCATED SEPT. B. 1961 DRILL HELE OF LYNN #4 M.C. ANN # FR LOT 5698 1. Figure 15 DIVIDE COPPER *1 BY R/W CLEARIN DA LYNN #5 M.C. DAWN # 5 LOCATED DEC. 7, 1961 LOT 5730 SKEENA COPPER LYNN #6 M.C. LOCATED DEC 7, 1961 O ZS-8 DRILL HOLE 75-9 P.D. H. 78-3 LOT 5681 LOT 5682 LEGEND SKEENA COPPER " DIVIDE COPPER #3 OCIP DENOTES CAPPED IRON POST FOUND DENOTES IRON POST FOUND DENOTES ALUMINUM POST FOUND - SKEENA COPPER "8 LYNN #8 M.C. LOCATED SEPT R. 1961 DENOTES IRON POST FOUND (NO PREVIOUS RECORD) LYNN # 7 M.C. DENOTES TRAVERSE POINT LUCATED DEC. 7, 1961 DENOTES DRILL HOLE DRILL HOLE T LOCATED DEC. 7, 1961 BEARINGS ARE ASTRONOMIC AND DERIVED FROM LOCATION P.D.H. 78-5 P.D.H. 78-4 LOT 5679 SKEENA COPPER #10 DEE # I FR. LOCATED SEPT. 29,1966 MCELHANNEY ASSOCIATES PROFESSIONAL LAND SURVEYORS 1200 WEST PENDER STREET VANCOUVER, B.C. JOB Nº 13155-0 JULY , 1975.

