GEOLOGICAL, GEOPHYSICAL and GEOCHEMICAL REPORT

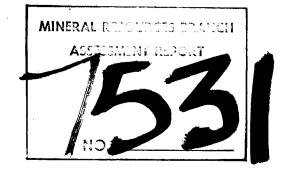
on the

"WAL" CLAIM

and

GENERAL WALHACHIN RECONNAISSANCE PROGRAM

KAMLOOPS MINING DIVISION


NTS Sheet	- 921/10,11,14 & 15	UIM Grid	-	Zone 10
Latitude	- 50 ⁰ 45'	North	-	5623500
Longitude	- 121 ⁰ 01'	East	÷	640000

BETHLEHEM COPPER CORPORATION 2100 - 1055 West Hastings Street Vancouver, B.C. V6E 2H8

October 30, 1979

R. G. Simpson . R. J. Nethery

Project Geologists

TABLE OF CONTENTS

SECTION A

SUMMARY OF WORK

Introduction Location and Access Topography and Physical Environment Mineral Title Geology Geophysical Survey Geochemical Survey Conclusions and Recommendations

.../2

SECTION B

STATEMENT OF EXPENDITURES

SECTION C	-	GEOPHYSICAL DATA
		Report by Glen E. White Geophysical Consulting and Services Ltd. - Vector E.M. Survey
SECTION D	- .	GEOCHEMICAL DATA
		Statement of Analytical Procedures Laboratory Reports
SECTION E	-	STATEMENT OF QUALIFICATIONS
		R. J. Nethery, P.Eng. R. G. Simpson
SECTION F	-	SCHEDULE OF MINERAL CLAIMS

SECTION G - ILLUSTRATIONS

Drawing No.

Title

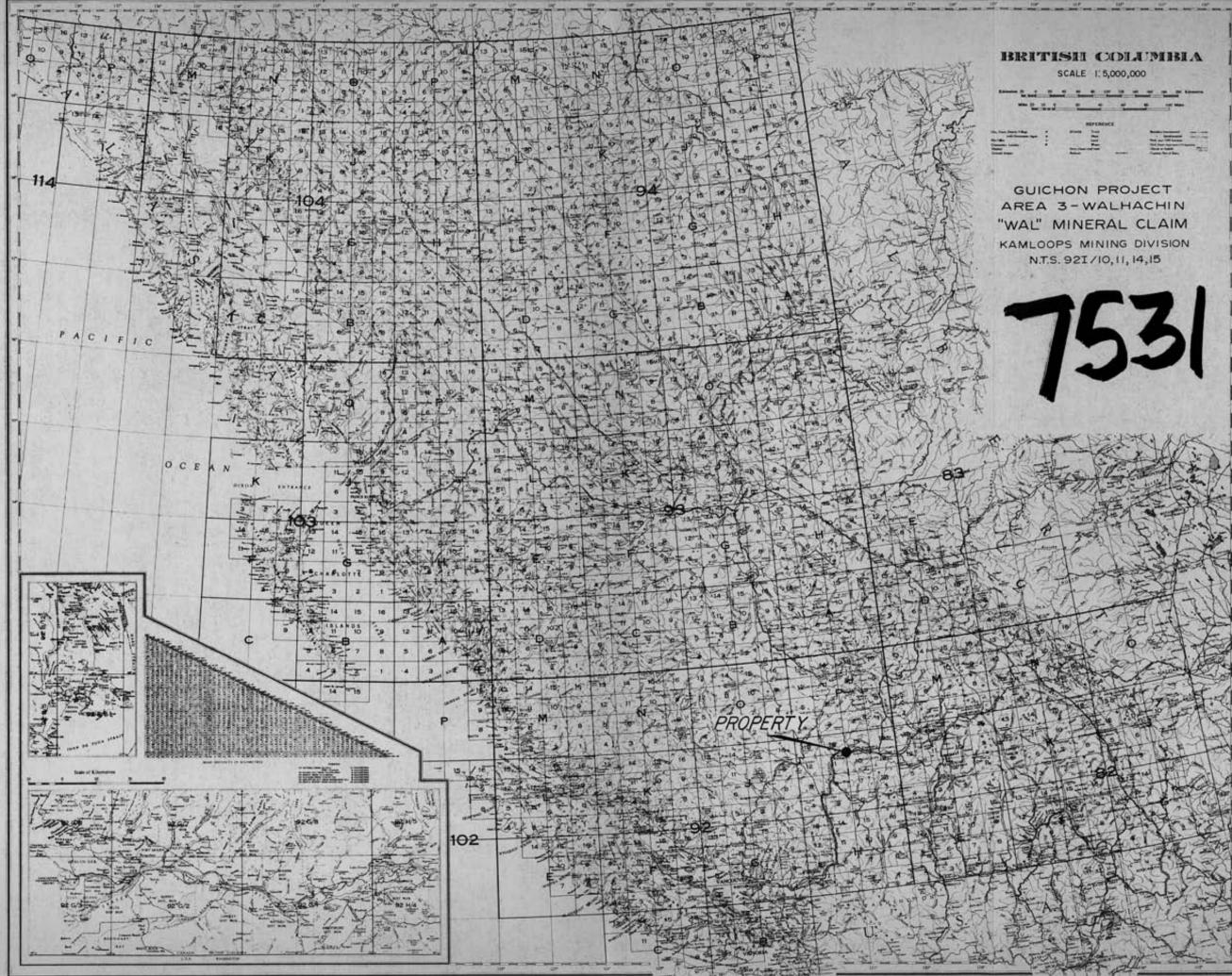
Scale

W-78-1	General Location Plan	1:250,000
W-78-2	Location Plan	1: 50,000
W-78-3	Topography - Sheet l	1: 10,000
W-78-4	Topography - Sheet 2	1: 10,000
W-78-5	Topography - Sheet 3	1: 10,000
W-78-6	Geological Plan - Sheet l	1: 10,000
W-78-7	Geological Plan - Sheet 2	1: 10,000
W-78-8	Geological Plan - Sheet 3	1: 10,000
W-78-9	Geochemical Plan - Cu - Sheet l	1: 10,000
W-78-10	Geochemical Plan - Pb - Sheet 1	1: 10,000
W-78-11	Geochemical Plan - Zn - Sheet l	1: 10,000
W-78-12	Geochemical Plan - Mo - Sheet l	1: 10,000
W-78-13	Geochemical Plan - (Cu,PB,Zn,Mo)-Sheet	2 1:10,000
W-78-14	Geochemical Plan - (Cu,Pb,Zn,Mo)-Sheet	3 1:10,000
W-78-15	1978 Geophysical Survey Plan	1;10,000
W-78-1 6	Proposed Percussion Drilling	1:10,000

SECTION A - SUMMARY OF WORK

Introduction

The Walhachin area was covered by reconnaissance rock geochemistry in August 1978. Favourable geology coupled with several anomalous rock geochemical values resulted in the staking of one claim (WAL claim, 15 units) in September. Further geological mapping and additional rock and soil geochemical sampling indicated several zones which warranted further testing with massive sulphides as the objective. Five E.M. lines were completed over the area of interest but no significant crossovers were encountered.


Location and Access

The main area of reconnaissance exploration is located immediately to the southwest of Walhachin and lies entirely on the south side of the Thompson River. Access is via gravel roads off Highway No. 1 at the Walhachin exit and via dirt roads off the Barnes Lake road.

A small contact area adjacent to the Trans-Canada Highway and immediately west of I.R. No. 5 was also explored. The project area is shown on drawing nos. W-78-1 and 2.

Topography and Physical Environment

The elevation of the mapped area varies from 1,100 m in the south to less than 400 m in the north. The upper region (above 800 m) is moderately timbered with pine whereas the lower areas are covered with grass and sagebrush. The region is semi-arid and receives less than 300 cm of precipitation annually. Two main drainages join on the north edge of the claim, Brassy Creek from SW and Rattlesnake Creek from SE.

MAP NO. 1397

Mineral Title

The WAL claim, which covers a small portion of the originally mapped reconnaissance region, was located on September 6, 1978 and recorded on September 25, 1978. A total of 15 units comprise the claim.

Geology

The mapped region south of the Thompson River is underlain mainly by Tertiary volcanic flows to the south and southwest and by Jurassic conglomerate to the east. In the central and northern portions of the area, upper Triassic Nicola Group rocks have been intruded by intermediate intrusives thought to belong to the border phase of the Guichon Batholith.

The Tertiary volcanics of the Kamloops Group are the youngest rocks exposed in the area and are typically flat-lying, red-brown to black basalt flows.

The Jurassic Ashcroft Group conglomerates and associated sediments are subhorizontal and unconformably overlie Triassic volcanic and intrusive rocks.

Exposures of the upper Triassic Nicola Group in the area are dominated by hydrothermally altered andesite flows and fragmental volcanic rocks containing moderate to high concentrations of fine grained, disseminated magnetite and variable amounts of pyrite (generally less than 1% but exceeding 5% locally). Several large limestone/marble bodies occur within the Nicola volcanics, commonly in fault contact. They strike north to northwesterly and are steeply dipping. Greywacke occurs locally on the west side of Brassie Creek.

Between Brassy and Rattlesnake Creeks a large body of hornblende diorite intrudes the Nicola Group. A smaller body of quartz porphyry intrudes both the Nicola and the diorite and is exposed along Rattlesnake Creek. In this vicinity a prominent gossan has formed due to weathering of heavily pyritized and silicified quartz porphyry and hornblende diorite. A small body of quartz diorite porphyry with associated intrusive breccia bodies crops out 600 m south of the quartz porphyry and also appears to intrude the diorite. The breccia contains disseminated chalcopyrite and was the main target of a 1976 percussion drilling program conducted by B.P. Minerals Ltd. Five holes were completed with copper grades averaging .02 to .03%. A few ten foot sections assaying up to .056% were encountered.

Surface mineralization is most prevalent in the central area and is contained in narrow skarn zones where limestone is in contact with intrusive rocks. Pyrite and minor chalcopyrite are the most noted sulphides.

Soil and rock geochemistry has indicated anomalous copper values (200-600 ppm) in the vicinity of the gossan on Rattlesnake Creek. A smaller gossan on Brassy Creek contains minor chalcopyrite within strongly pyritized Nicola andesite and was drilled in 1973 by Ursus Minerals Ltd. Other diamond drill holes to the south encountered only widely scattered grains and blebs of chalcopyrite in Nicola Group volcanic rocks.

Southwest of the WAL claim an old adit has been driven into a skarn zone on the east side of Brassy Creek and a narrow vein of massive, cupriferous magnetite located 400 m further south has been trenched. Significant Ag, Cu and Fe values occur in these zones but the showings are too small to be of any current economic interest.

. The geology of the surveyed area is shown on drawing nos. W-78-6 to 8.

Geophysical Survey

An E.M. survey was completed over lines 4, 5, 6, 7 and 8 and generally covered the area from station 25 to 105. Readings were taken every 50 m along these lines utilizing a pulse E.M. unit. The survey was carried out from October 10 to 12, 1978 by Glen E. White Geophysical and Consulting Services Ltd. Total line surveyed was 5.5 km and the location of the survey area is shown on drawing no. W-78-15. Most of the lines surveyed show deep seated foci of the vectors representing direction to a secondary eddy current source. The depth and position of the foci with respect to the primary current loop are typical field responses to a conductive half-space. They do not appear to be related to any anomalous conductive zones which could be interpreted as a prospective drill target. Nor does there appear to be near surface foci strong enough to be the basis for a drill hole recommendation. It also should be noted that the instrument response does appear to delineate a couple of contacts between different geological units.

A report detailing the results of the survey is appended in Section C. Geochemical Survey

Seven lines of soil geochemistry were completed, with lines spaced 250 m apart and samples taken every 100 m, these were assayed for Cu, Mo, Pb, Zn at the Kamloops Research & Assay Laboratory. The survey was over the northern half of the Wal claim which is mostly drift covered. Where available the sample was taken from the top of the 'B' horizon, but it should be noted that a clear differential between the horizons was noticeable in only 50% of the cases.

Double background readings in copper were obtained adjacent to the covered area on lines 3, 4 and 5 (generally at stations 8 and 9 S). An extremely high zinc value was obtained on line 9, station 4S which is near a large outcropping of limey Nicola sediments.

A rock geochemical survey of all the outcropping resulted in anomalous copper reading from three locations, all of which were incorporated by the soil survey. An anomalous molybdenum reading (37 ppm) also corresponded with an above background copper value (147 ppm) near line 6 station 8S.

All highly pyritized zones were also assayed for Au and Ag values but no significant values in these elements were detected. The areas covered by the reconnaissance program were all subjected to rock geochemistry with samples being assayed from Pb, Zn, Cu and Mo.

The results of the geochem survey are plotted on drawing nos. W-78-9 to 14.

Conclusions and Recommendations

The E.M. survey was undertaken on the WAL claim with the specific purpose of detecting a massive sulphide target. Unfortunately no significant conductors were delineated. There remains the possibility of a small or medium sized porphyry type orebody within intrusive rocks underlying Rattlesnake Creek and extending under Tertiary conglomerates to the north and east. Disseminated chalcopyrite occurs in intrusive breccia outcrops along Rattlesnake Creek south of the WAL Claim boundary and intensely pyritized diorite and quartz porphyry form a gossan in the center of the claim.

A short percussion drill program of five or six holes should be adequate to test the potential for copper mineralization adjacent to Rattlesnake Creek and beneath the Tertiary sediments to the east. If encouraging results are obtained, discussions should commence with the owner of the adjacent "Geo" and "Chief" claims in order to explore the ground to the south. The proposed locations of the percussion holes is shown on drawing no. W-78-16.

Respectfully submitted,

R. G. Simpson, R. J. Nethery, P.Eng. Project Geologists

- 5 -

SECTION B - STATEMENT OF EXPENDITURES

Expense Period - September 6, 1978 to September 25, 1979

1. Consultant's Expenditures

	(a)	Glen E. White Geophysical and Consulting Services Ltd 5.5 Km of vector pulse EM survey on October 10-12, 1978. - Invoice dated November 6, 1978 - \$1,555.00
		Total Consultant's Expenditures \$1,555.00
2.	Cont	ractor's Expenditures
	(a)	Kamloops Research and Assay Laboratory Ltd. - Invoice 1712 dated Sept. 15, 1978 - \$204.00 - " 1748 " Sept. 20, 1978 - \$104.00
		\$308.00 \$ 308.00
	. (Ъ)	General Testing Laboratories - Invoice V34838 dated Sept. 12, 1978 for Lab. Report 7808-3051A \$ 67.62
	(c)	Altair Drafting Services Ltd.
		Drafting - Nov. 1978 - 21.0 hrs. @ \$14.00 - \$294.00 Dec. 1978 - 42.0 hrs. @ \$14.00 - \$588.00 Sept.1979 - 5.0 hrs. @ \$14.00 - \$70.00 \$952.00
		Printing - Nov. 1978 - \$23.63 Dec. 1978 - \$47.25 Jan. 1979 - \$66.15 Sept.1979 - \$ <u>34.94</u>
		\$171.97 \$ <u>171.97</u>
		\$1123.97 1,123.97
		Total Contractor Services \$1,499.59

SECTION B - STATEMENT OF EXPENDITURES (Contd.)

3 Bethlehem Expenditures

(a) Personnel

	R.E. Anderson, P.Eng Exploration Manager 2 days in general project supervision @ \$185.00/day	\$	370.00
	R.J. Nethery, P.Eng Project Geologist (1978) Sept. 6,7, 26-28; Oct. 11-13, 18-19, 1978 10 days @ \$123.00/day	\$1	,232.00
	R.G. Simpson - Project Geologist (1978-79) Sept. 6,7,14,15,18, 1978 August 23-26, 1979 9 days @ \$79.31/day	\$	713.79
. •	J.G. Collins - Field Supervisor Sept. 11-15,20-22, 27,28; Oct. 12, 1978 11 days @ \$85.13/day	\$	936.43
	B. Kynoch - Field Assistant Sept. 6, 7, 14, 15, 1978 4 days @ \$52.09/day	\$; 208.36
	M. Fisher - Field Assistant Sept. 6,7,14,15, 1978 4 days @ \$49.43/day	\$	197.72
	E. Andersen - Property Agent 2 days in data compilation and report preparation @ \$96.23/day	\$	192.46
	A. Emo - Secretary 1.5 days @ \$55.52/day	\$_	83.28
	Total Personnel	\$3	,934.04
(ь)	Transportation		
	R.J. Nethery - Ford F-150 4WD Pickup 8 days @ \$35.00/day	\$	280.00
	J.G. Collins - Ford F-250 4WD Pickup 11 days @ \$35.00/day	\$	385.00
	R.G. Simpson - Ford F-150 4WD Pickup 9 days @ \$35.00/day	\$_	315.OO
	Total transportation	\$	980.00

SECTION B - STATEMENT OF EXPENDITURES (Contd.)

3. (c) Lodging and Meals

R.J. Nethery - expenses for the week ending Sept. 9, 1978 - \$68.73 Sept.30, 1978 - \$125.99 Oct. 14, 1978 - \$152.61
R.G. Simpson - expenses for the week ending Sept. 9, 1978 - \$ 86.59 Sept. 16, 1978 - \$ 56.00 Aug. 25, 1979 - \$ 78.01
Total Lodging \$567.93
Total Bethlehem Expenditures \$5,481.97
Total Project Expenditures \$8,536.56

Glen E. White GEOPHYSICAL CONSULTING & SERVICES LTD.

9251 Beckwith Road, Richmond, British Columbia, V6X 1V7

Telephone: (604) 273-6962

November 6, 1978

Mr. R. J. Nethery, P. Eng. Bethlehem Copper Corporation 2100 - 1055 W. Hastings St. Vancouver, B. C. V6E 2H8

4

1

INVOICE

To Professional Services -

Glen E. White Geophysical Consulting & Services Ltd. As per agreement, Oct. 4/78 and Oct. 10 - 12/78, three days @ \$485.....\$1455.00 -Data Reduction.....

Total.....\$1555.00

Amount of this invoice..... .\$1555.00

847-011 1.555.00 110-002 1.555.00 1-848 0.K.

Kamloops Research	B.C. CER	TIFIED AS	SEP 18 1978 RJJ SAYERS
	WEST TRANS CANADA HIGHWAY D95 Phone: 372-2784	XBOXXX	R - КАМLOOPS, В.С. ХХХК ЖАК Telex: 048-8320 VIS 1A7
Bethlehem Copper Corporat 2100 - 1055 West Hastings Vancouver, B. C. V6E 2H8		INVOICE: DATE: FILE No.	1712 [;] September 15, 1978. G-248

Geochemical Analyses -- soil -- ppm Copper, Lead, Zinc, Molybdenum @ \$2.75 60

Ņ

....

\$165.00 -39.00 -

204.00

12 Geochemical Analyses -- rock -- ppm Copper, Lead, Zinc, Molybdenum @ \$3.25

11-847

THIS IS AN ACCOUNT FOR PROFESSIONAL SERVICES AND IS DUE ON PRESENTATION

۰.

Kamloops Research Assay Laboratory

WEST TRANS CANADA HIGHWAY - 2007.2005 - KAMLOOPS, B.C. 2025 EXEC 2095 Phone: 372-2784 Telex: 048-8320 VIS 1A7

Bethlehem Copper Corporation, 2100 - 1055 West Hastings St., Vancouver, B. C. V6E 2H8 *INVOICE:* 1723 *DATE:* September 20, 1978. *FILE No.* G-252

32 Geochemical Analyses -- rock -- ppm Copper,

Lead, Zinc, Molybdenum @ \$3.25

\$104.00 /

11-842 Rak

THIS IS AN ACCOUNT FOR PROFESSIONAL SERVICES AND IS DUE ON PRESENTATION

BO 12	Superintend 1001 East Pende Vancouver, B.C. N Pb (604) 254-16	V6A 1W2		•		INVOICE V 34838 DATE September 12, 19 JOB NO.				
	EHEM COPPER CORP	ORATION LTD.	-			LAB NO. 780	8-305	1A/B		
	- 1055 West Hast uver, B.C. H8	ings Street		¥ BOL	CM	G.L.	<u>Þ</u> R			
•	Assaying submitte for: 7808-3051A	ed samples of Ore (as per end 21 CuPbZnMo (Geochem) sample prep. @ 0.50) =	-	0 - 0 - 73	;	/		
	for:	21 CuPbZnMo (Geochem)	x 3.00) = = =	10.5 25.5	0 / 7 3		-		

₹ :

; /

DUE AND PAYABLE ON RECEIPT OF INVOICE. 1%% PER MONTH (18%) PER ANNUM CHARGED ON OVERDUE ACCOUNTS.

ī

Ł

Glen E. While GEOPHYSIC

GEOPHYSICAL CONSULTING & SERVICES LTD.

9251 Beckwith Road, Richmond, British Columbia, V6X 1V7

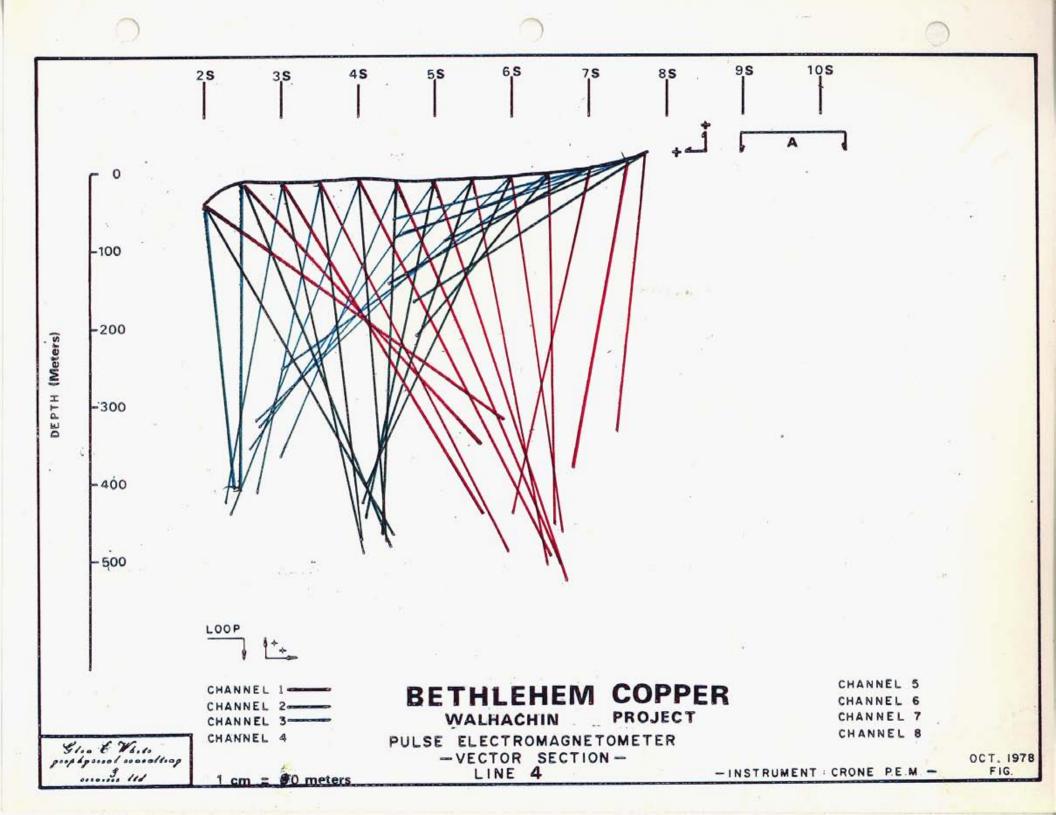
Telephone: (604) 273-6962

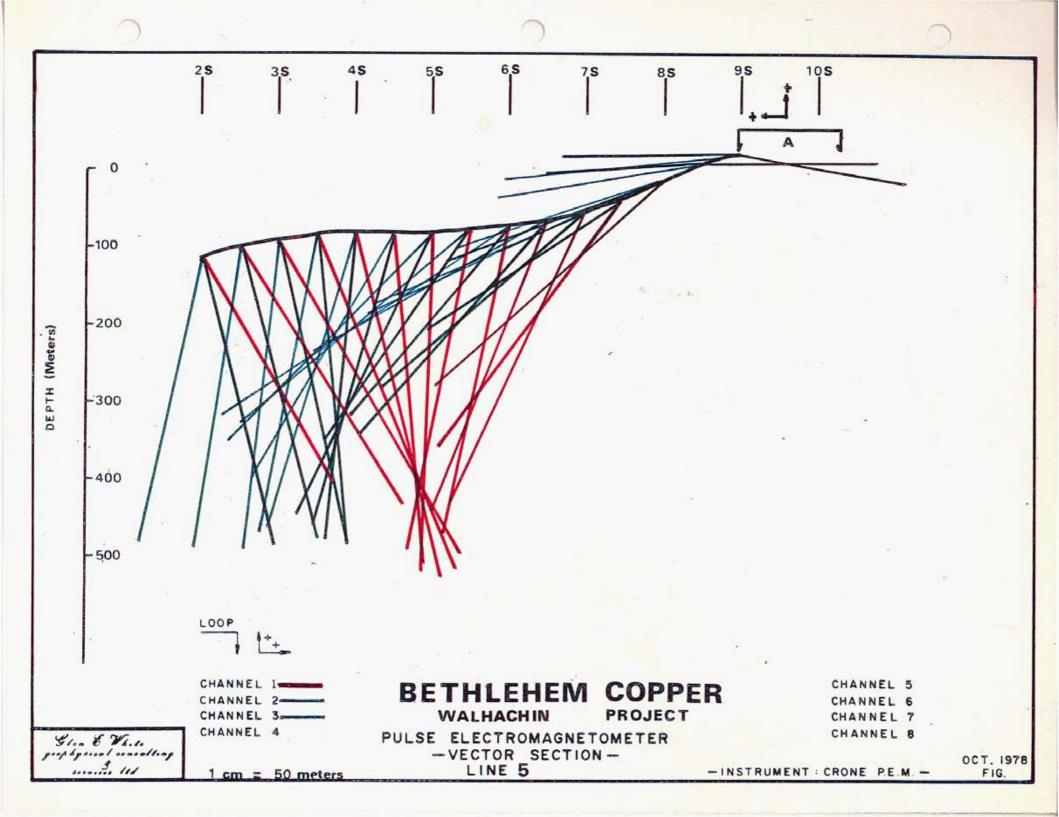
November 6, 1978

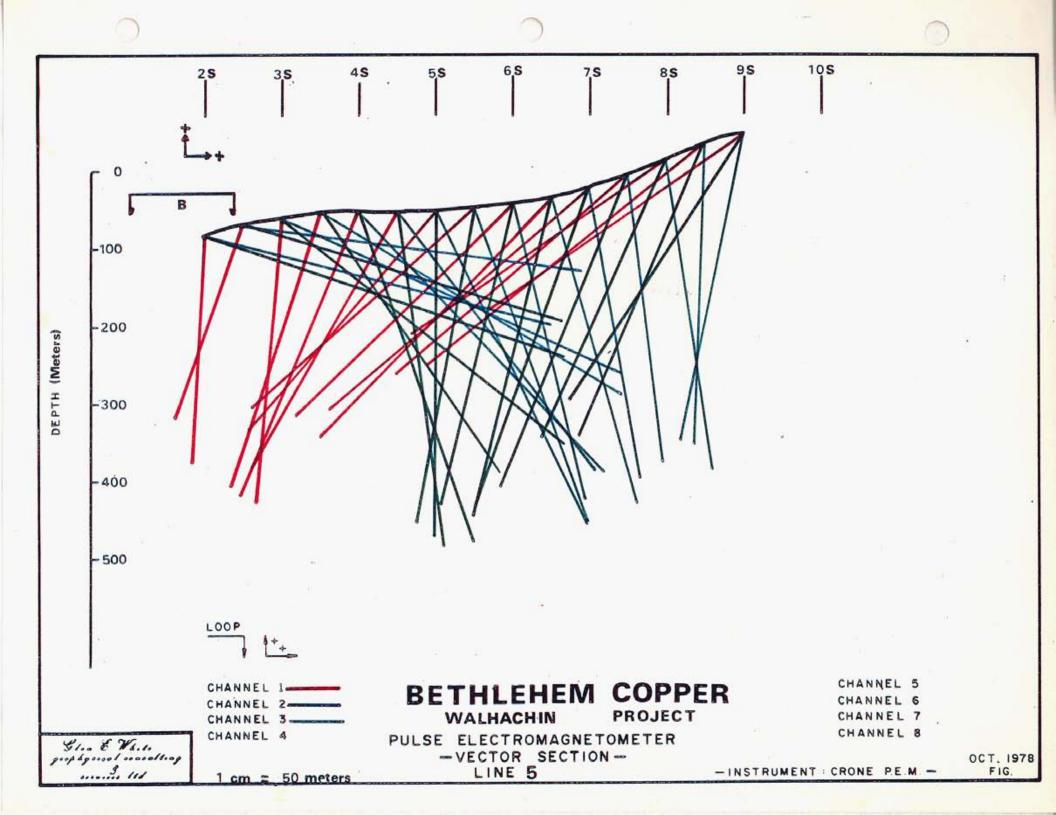
Mr. R. J. Nethery, P. Eng. Bethlehem Copper Corporation 2100 - 1055 W. Hastings St. Vancouver, B. C. V6E 2H8

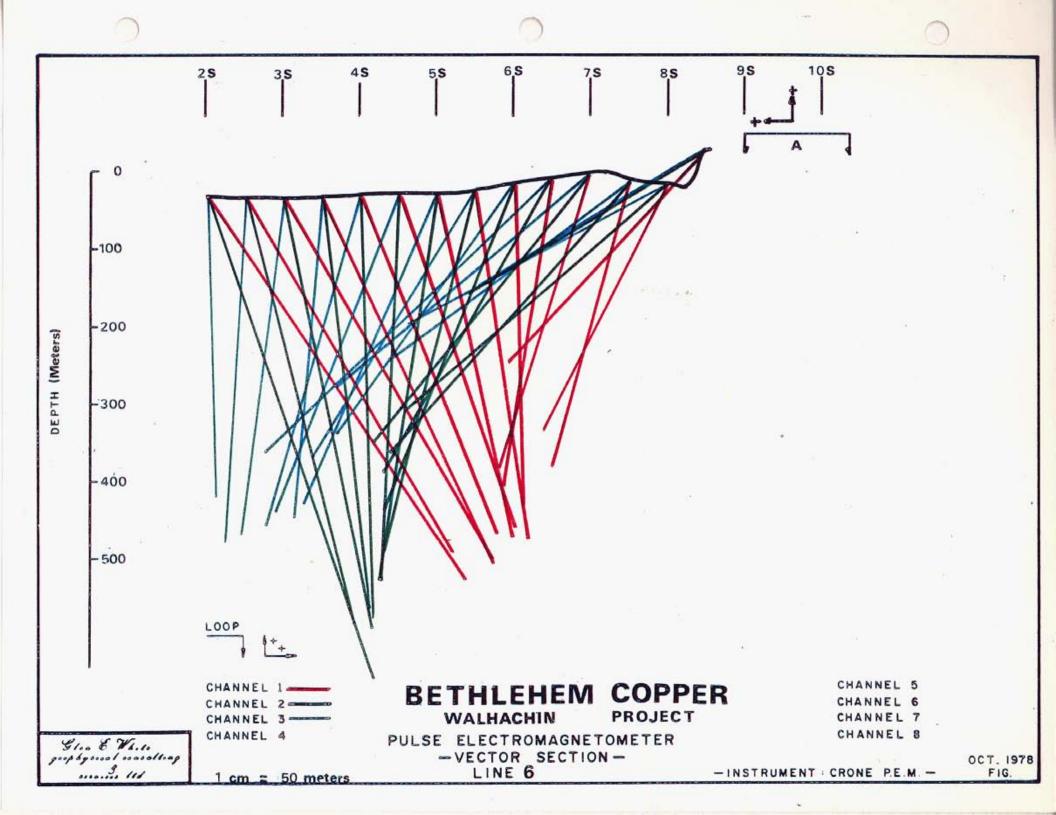
Dear Sir:

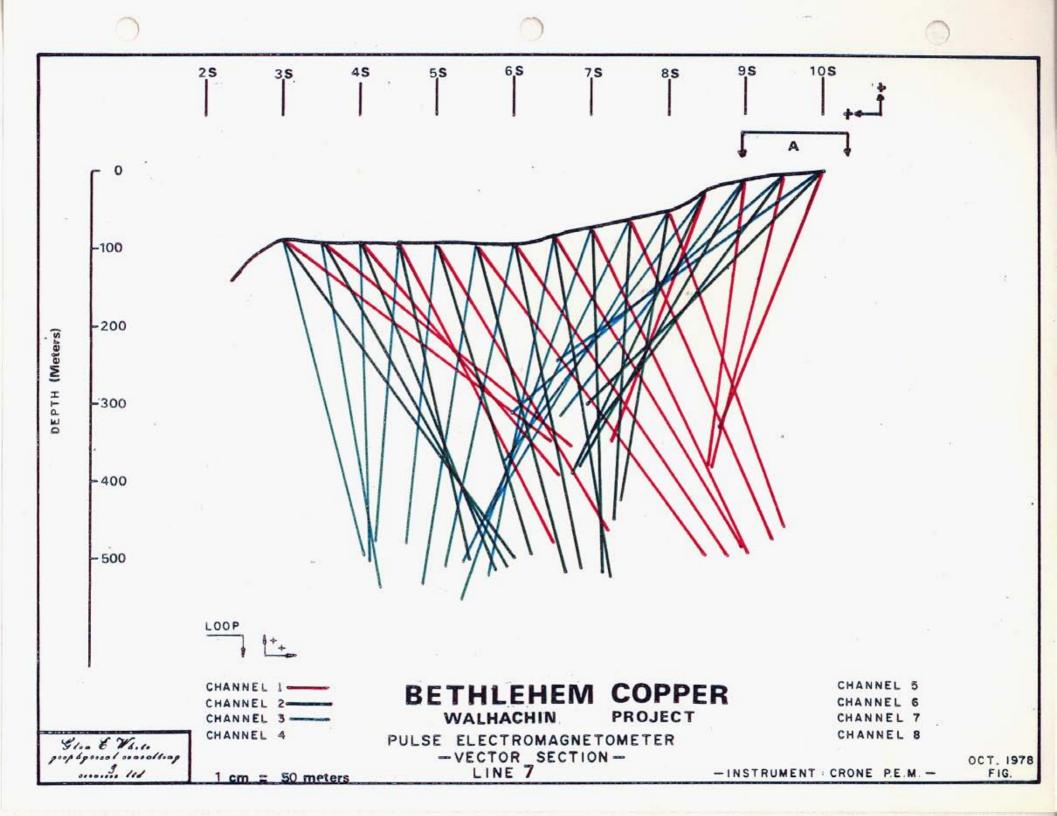
Pursuant to your request of October 4, 1978, 5.5 km of vector pulse electromagnetometer surveying was completed over the Walhachen claim from October 10 - 12, 1978.

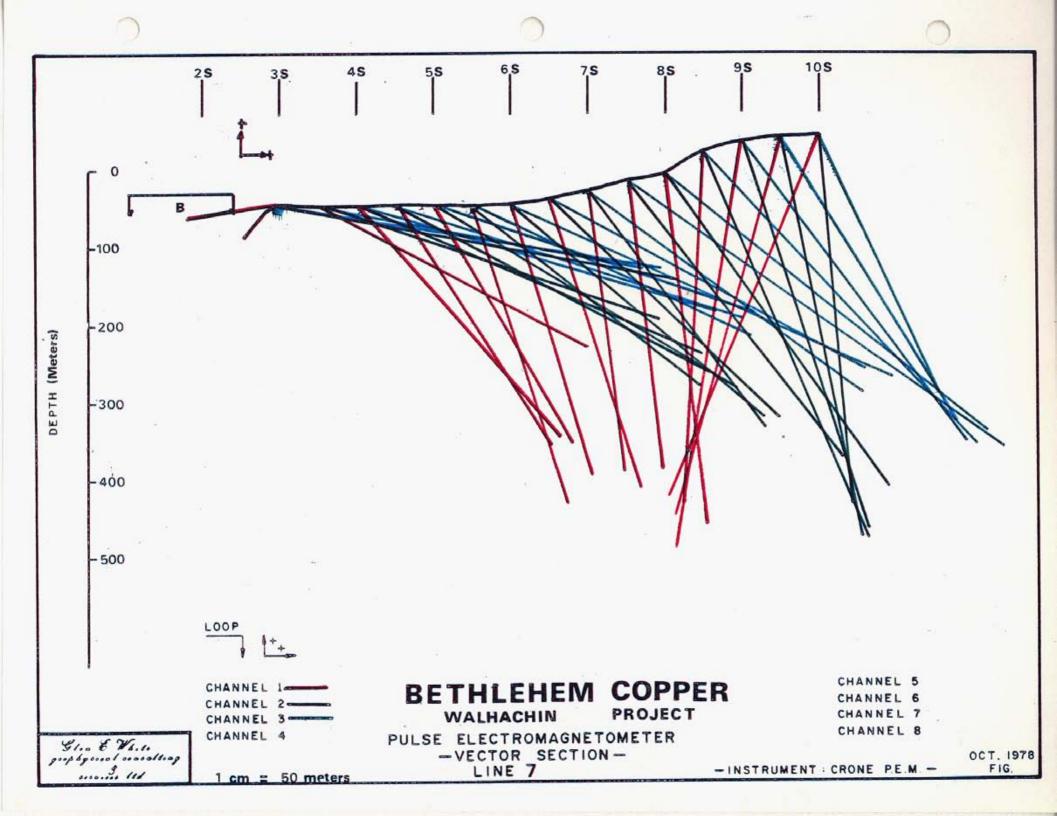

The lines surveyed show deep seated vector foci representative of a conductive half-space response from the overburden. Several lines, such as on line 7 from Loop A at $8 \neq 00S - 8 \neq 50S$, showed changes in vector angles which are usually suggestive of a geological contact. The trends of these possible contacts, or change in overburden conditions, are shown on the grid and loop location map.

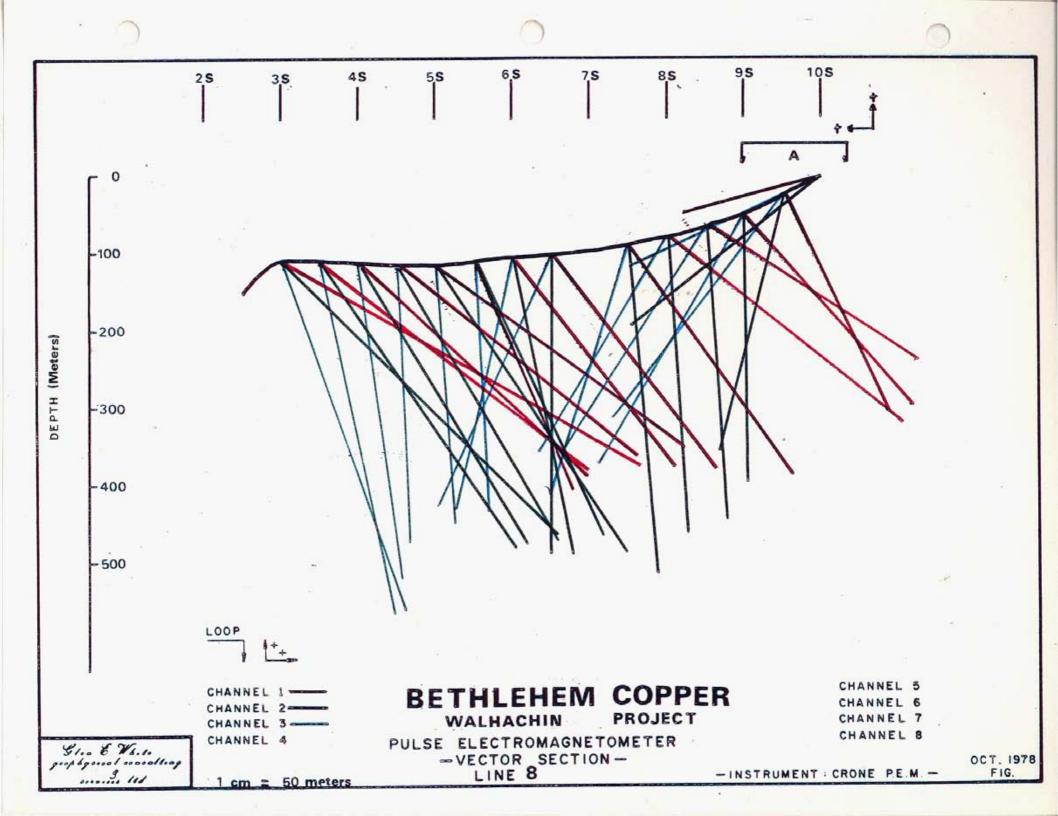

Thus, the vector foci likely represent secondary eddy current sources associated with the overburden and do not appear to be related to any anomalous conductive zone which co ld be interpreted as a prospective drill target.

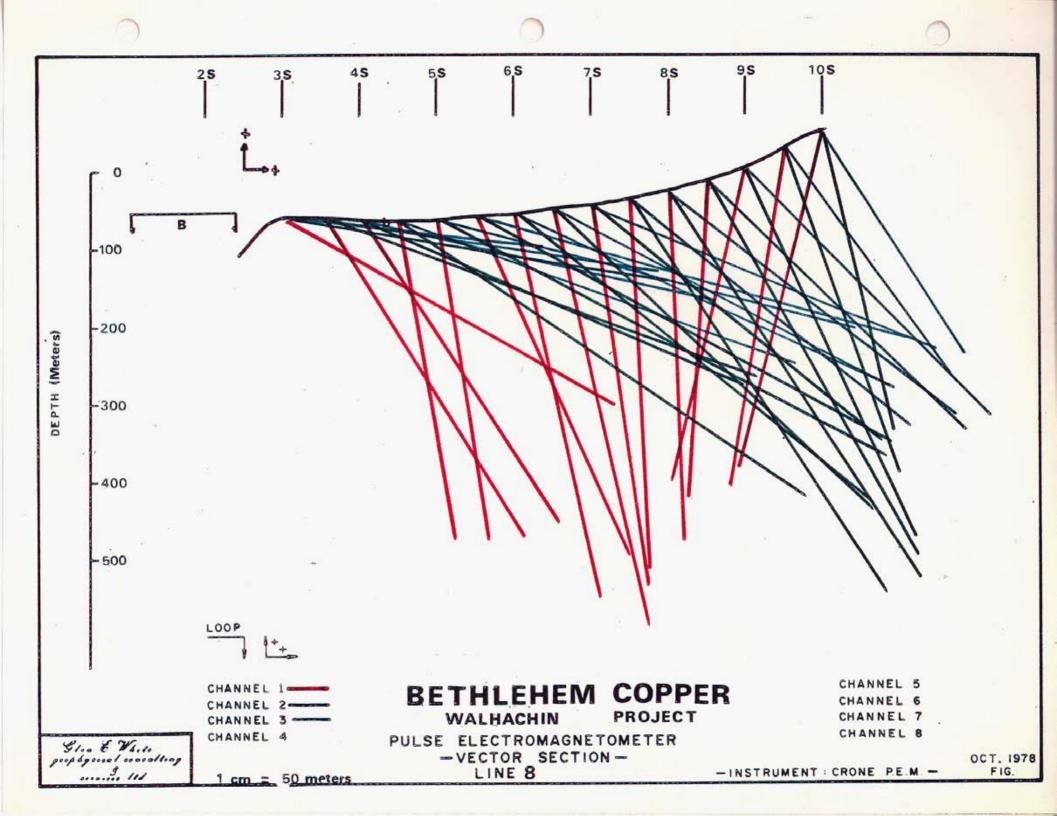

Respectfully submitted,


"B.Sc., P. Eng. Ε. hite Consulting Geomysicist


GW/kw







PEA

Assay Laboratory

LTD.

R. G. Blundell **Res.** 573-3016

> Mr. Eric Anderson, Bethlehem Copper Corporation, 2100 - 1055 West Hastings St., Vancouver, B. C. V6E 2H8

Dear Eric:

Further to our telephone conversation, I am pleased to outline our procedure for the analysis of your soil samples for copper, lead, zinc and molybdenum.

The samples are dried in our geochemical drying oven and then screened through a stainless steel 80 mesh sieve. The minus 80 mesh fraction is reserved for analysis and the plus 80 mesh fraction is discarded.

The samples are then weighed into test tubes, nitric acid is added, and they are placed in a hot water bath for thirty minutes. Hydrochloric acid is added at this time and the samples are then diluted with an aluminium chloride solution. The aluminium chloride suppresses the nitrous oxideacetylene flame interference in the analysis of molybdenum.

The samples are then mixed to insure homogeneity and are read, upon settling, on a Varian Techtron AA 5 atomic absorption spectrophotometer. An air-acetylene flame is used for the analysis of copper, lead and zinc, and a nitrous oxide-acetylene is used for the analysis of molybdenum.

All additions of reagents are from Oxford Model S-A pipettors.

Standards and re-assay checks are carried along with each run of 35 samples.

If you require greater detail I will be most happy to supply this information.

Yours very truly,

B.C. CERTIFIED ASSAYERS

WEST TRANS CANADA HIGHWAY – BOX 946 – KAMLOOPS, B.C. V2C 5N4 PHONE 372-2784

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

Sink A. Blundel

Derek A. Blundell, Manager.

DAR:d

Kamloops Research

.

Assay Laboratory LTD.

1:1

2095 WEST TRANS CANADA HIGHWAY - KAMLOOPS, B.C. VIS 1A7 PHONE 372-2784 - TELEX 048-8320

GEOCHEMICAL LAB REPORT

September 15, 1978. DATE

.

Г

Bethlehem Copper Corporation, 2100 - 1055 West Hastings St., Vancouver, B. C.

Ħ

Ħ

Ħ

Line 6

30

5 s

6 s

7 S

9 S

65

29

61

68

11

7

12

11

102

83

100

114

1

1

3

2

.

D.A.B. ANALYST

G-248

V6E 2H8 FILE NO. Attention: Mr. R. Netherly ppn ppm ppn ppm KRAL No. IDENTIFICATION IDENTIFICATION Cu Pb Zn No 1 2 0 a 1.5 74 1 22 1 .

Line	3 0 S	41	16	122	1		
Ħ	., 1 S	47	14	138	1		
 n	2 8	54	15	143	้า		
 n	3 S	49	16	140	ב'		
11	4 S	49	15	134	<u>1</u> .		
 11	5 S	57	16	146	<u>1</u>		
 n	6 S	69	16	147	2	 	
 n	PCN 7 S	163	18	182	3		
 Line	4 ′ 0 S	53	11	94	1	 	
 Ħ	1 5	48	10	122	1	 ,	
n	2 8	<u>1</u> 14	9	86	1		
n	3 S	41	9	96	1		
 n	4 S	48	13	113	l		
 11	5 S	45	12	122	1		
 n	6 S	45	_12	116	1		
 n	7 S	99	13	126	3		
 Line	5 1 5	67	11	107	2		
**	2 S	56	8	92			
 n	4 S	47	9	93	1	 	
 n	5 S	76	10	113	2		
n	7 S	83	10	108	2		
n	8 S	111	17	185	3		
Line (5 1 S	54	8	86	1		
n	2 S	44	8	86	1		
Ħ	3 S	48	9	90	1		
H	4 S	53	8	94	1		

Kamloops-Research & Assay Laboratory Ltd.

GEOCHEMICAL LAB REPORT

FILE NO. ______

•

ζ.

PAGE _____2

Γ

KRAL No.	IDENTIFICATION	ppm Cu	ppm Pb	ppm Zn	ppm Mo	IDENTIFICATION			
31	Line 6 / 10 S	84	11	114	2				
	Line 7 / 1 S	49	9	140 140	1				
	¶ ∕ 2 S	61	9	96	1				
	n / 3 S	95	8	90	1				
	n / 4 s	58	8	84	1				
	* <u>5</u> 5	60	8	84	1				
	" [/] 6 S	54	10	100	1				
<u></u>	n 7 S	46	9	80	2				
	** 8 S	65	10	108	<u>1</u> .				
	** 9 S	72	9.	75					
	* 10 s	69	10	93	<u> </u>			ļ	
	" 11 S	82	10	106	<u> </u>				
	Line 8 1 S	58	7	-84	l				
	" <u>3 S</u>	86	8	90	1		,		
	" 4 S	46	8	- 75	<u> </u>			 	
	<u>" 5 S</u>	47		76					
·····	n 65	56	9	79	2				
	# 7 S	35	6	81	1		_		
	n 8s	56	88	92	1				
	n '9s	91	10	110	2			 	
	Line 9 1 S	60	88	90	2				
	" 2 S	80	7	87	∥			ļ	
·····	# / 3 S	97	9	222	1				
	n 45	94	16	1700	2				
	" 5 S	56	11	135	<u>1</u>				
	* 6 S	40	10	88	2				ļ
	" 7 S	35	7	80	1		_	ļ	
	" 8 S	82	11	93	2				
	" 9+10 S	51	9	106	2				ļ
•	" 10 S	55	10	107	1				ļ
	14377	133	36	545	3				
	14378	140	21	115	16				
	14379	76	23	100	3				
64	14380	73	18	78	7				

Kamloops Research & Assay Laboratory Ltd.

G-248

•

÷.

GEOCHEMICAL LAB REPORT

PAGE 3

KRAL No.	IDENTIFICATION	ppm Cu	ppm Pb	ppm Zn	ppm Mo	IDENTIFICATION				
65	24382	55	53	74	5	Method:	-80) Mesh		
	14382	63	30	78	4	Method;	Hot Atç	Acid	Extra psorpt	ction lon
/	14383 2 + 75 s	200	51	142	8					
/	L 6 14384 8 + 85 S L 6	88	52	87	2					
<u></u>	14385 7 + 45 s L 6	557	19	69	10					
ź	14366 7 + 20 s	20	16	106	6					
v	14387 10 S L 6	122	17	148	1					
72	14388 8 S	180	16	90	74					
	N									
	· · · · · · · · · · · · · · · · · · ·									
						·····	-	· · · · · · · · · · · · · · · · · · ·		
								·····		
<u> </u>	· · · · · · · · · · · · · · · · · · ·		- <u></u>							
<u> </u>										
			· <u></u> .		 	ttt				.
			····							
										
									· ·	
								<u> </u>		
			- <u></u>							
										
								····		
						t 		 		ļ
									 	
									ļ	·
						· · · · · · · · · · · · · · · · · · ·				ļ
									ļ	
										[

Guichon - Assays (Wathachin) SEP 2 5 19/8 HOEV Kamloops Research REAV B.C. CERTIFIED ASSAYERS Assay Laboratory ĔA 2095 WEST TRANS CANADA HIGHWAY - KAMLOOPS, B.C. VIS 1A7 LTD. PHONE 372-2784 . TELEX 048-8320 RINV GEOCHEMICAL LAB REPORT DATE_ September 20, 1978. Bethlehem Copper Corporation, 2100 - 1055 West Hastings St., Vancouver, B. C. V6E 2H8 ANALYST D.A.B. G-252 FILE NO. Attention: Mr. R. Netherly ppm ppm ppm ppm IDENTIFICATION IDENTIFICATION KRAL No. Cu Pb Zn Мо - İ J

I

μ0

<u>1</u>

2.

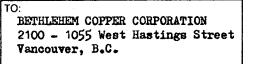
ł.

J

GEOCHEMICAL LAB REPORT

PAGE _____2

1


KRAL No.	IDENTIFICATION	ppm Cu	ppm Pb	ppm Zn	ppm Mo	IDENTIFICATION			
31 V	0289	100	18	103	1	Method: -80 1 Hot A	iesh		
32 J	0290	13	30	42	1	Hot A Atomi	cid Ex c Abso	tracti rption	on
_	c.c. Mr. Jon C	ollins			· ·	Gold & Silver	to fol	low	
	·····								
							<u> </u>		
							;		
	·····								
								L	
					·		_	L	
	·								
					·				
									-
	-							1	
		<u>}</u> }					1	 	1
		 					-	<u> </u>	
		<u> </u>				<u> </u>		†	†

FILE NO.

•

÷.

Attn: Mr. Ron Nethery

GENERAL TE TING LABORATORIES

DIVISION SUPERINTENDENCE COMPANY (CANADA) LTD.

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, VGA 1W2 PHONE (604) 254-1647 TELEX 04-507514 CABLE SUPERVISE GUICHON ASSays (Walhachin)

HGE PERTIN	FICATE OF ASSAY	
No.: 7808-3051A	DATE: Sept. 12/78	

We hereby certify that the following are the results of assays on: Ore

MARKED	BZZEŻX	xaztat	- /		~					
			Cu ((ppm)	Ph (1	opm)	Zn (ppm)	Mo (ppm		
31055 - B 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 - B			256 25318 25	3	39 1 1 49 29 1 4 1 48 25 19 20 33 1 46 1 4 1 1 33 88 30 1 2		113 122 318 277 158 78 90 84 88 819 952 150 490 499 554 116	7.2 10.2 5.3 2.6 3.0 4.2 2.3 2.6 1.1 1.2 1.5 1.55 1.55 1.55 1.66 2.3 2.3 1.99 3.44		
DTE: REJECTS RETAINED ONE MO PULPS AND REJECTS WILL	NTH. PULPS R	ETAINED THRE	E MONTHS	S. ON R	EQUEST	đ				
PULPS AND REJECTS WILL I L REPORTS ARE THE CONFIDENT ENTS, CONCLUSION OR EXTRACTS TTED WITHOUT OUR WRITTEN MITED TO THE FEE CHARGED.	IAL PROPERT	UR A MAXIMUN	PUBLICAT	TION OF	STATE-	2	tet	EAU, Cher	dean	

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers

MEMBER: American Society For Testing Materials - The American Oil Chemists' Society - Canadian Testing Association REFEREE AND OR OFFICIAL CHEMISTS FOR National Institute OI Oilseed Products - The American Oil Chemists' Society OFFICIAL WEIGHMASTERS FOR Vancouver Board OI Trade

RONALD J. NETHERY, P.ENG.

- 1. Attended the University of British Columbia from 1963 to 1967 and graduated with a B.Sc., Majors Geology.
- 2. Registered in good standing with the Association of Professional Engineers of British Columbia since February 7, 1973.
- 3. Geologist with Johns Manville Company from April to September, 1967 carrying out field exploration in Alaska.
- 4. Commenced employment with Bethlehem Copper Corporation in September 1967 and was continuously employed by this firm until mid-May 1979 and involved in the following activities:-
 - (a) 1967 to 1970 engaged at the Highland Valley Operations as a Mine and Exploration Geologist involved in large scale drilling projects, including the Lake Zone porphyry deposit.
 - (b) 1970 to 1972 engaged as a Project Geologist attached to the Copper Belt Joint Venture, a large scale regional exploration program conducted in South-Central British Columbia.
 - (c) 1972 to 1974 carried out general geological examinations of mineral properties in Canada and the Western United States.
 - (d) 1974 to 1976 involved as a Project Geologist attached to the Copper Belt (Washington) Joint Venture, a regional exploration program in North-Central Washington State.
 - (e) 1977 to May 1979 Project Geologist in charge of the Guichon Joint Venture, a regional program being carried out in the general Highland Valley area of South-Central British Columbia.

STATEMENT OF QUALIFICATIONS

RONALD GRAHAM SIMPSON

- 1. Attended the University of British Columbia and graduated in May 1975 with a B.Sc. degree in Geology.
- 2. Employed by the Geological Survey of Canada in their Vancouver office from May 1975 to April 1976.

I -

- 3. Commenced employment with Bethlehem Copper Corporation in April 1976 and has been continuously employed by this firm and involved in the following activities:-
 - (a) Summer 1976 Exploration geologist attached to the Bear-Twit Project, a diamond drilling venture in the MacKenzie Mountains of the Northwest Territories.
 - (b) Fall 1976 Project Geologist on a percussion drilling program in West-central B.C.
 - (c) Winter-Spring 1977 Project Geologist on a diamond drilling program at Bethlehem's Highland Valley copper mine.
 - (d) Summer 1977 Project Geologist in charge of the Plateau Joint Venture, a large scale regional program in the Taseko Lakes area of south-central B.C.
 - (e) Fall 1977 Project Geologist in charge of a percussion drilling program in the Nadina Lake area of West-central B.C.
 - (f) Summer 1978 In charge of the second phase of the Plateau Project (see (d)).
 - (g) Sept. 1978 to May 1979 Project Geologist on a diamond drilling program at Bethlehem's Highland Valley operations.
 - (h) May 1979 to Oct. 1979 Project Geologist in charge of the Guichon Project, a regional program in the general Highland Valley area.

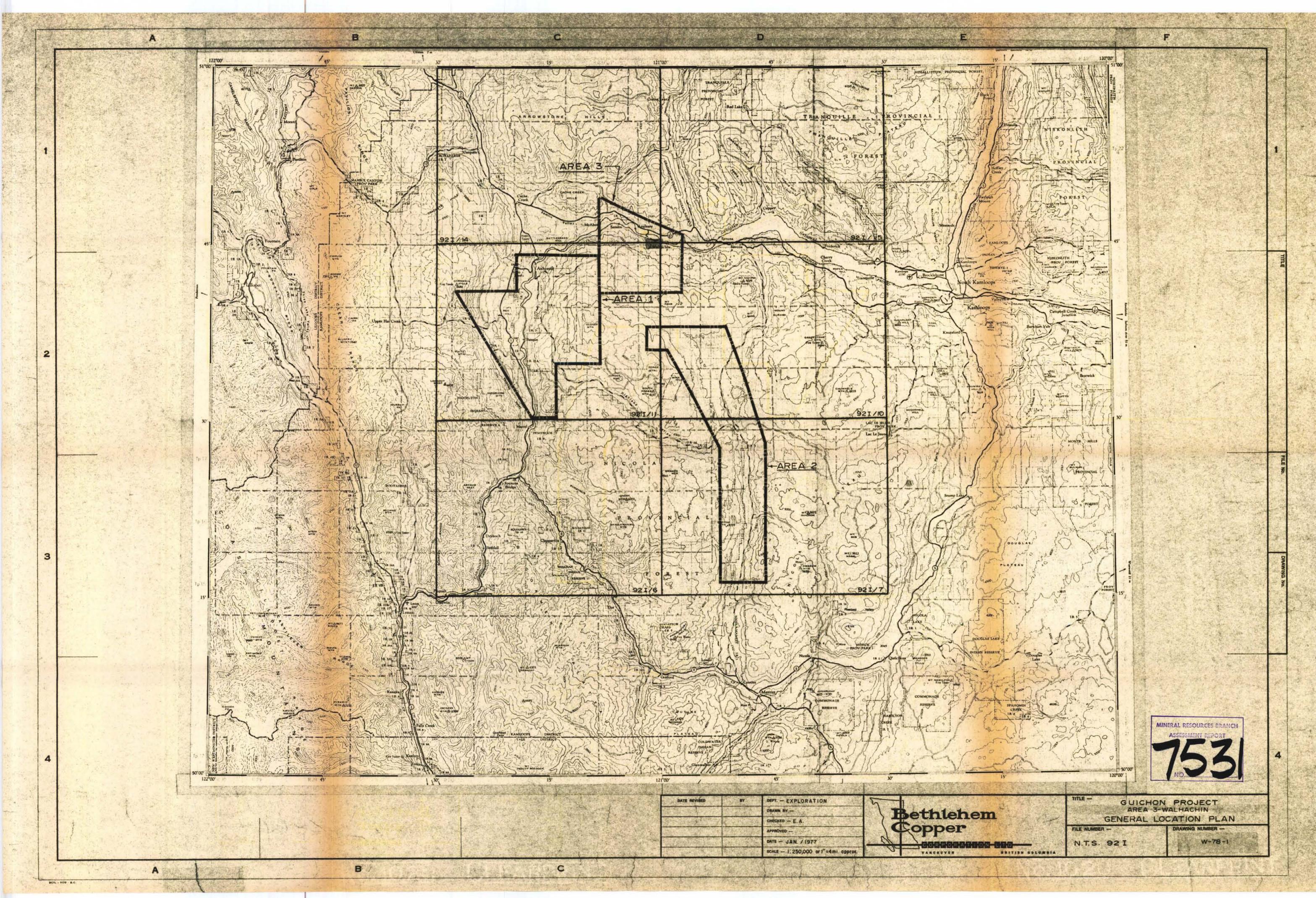
BETHLEHEM COPPER CORPORATION

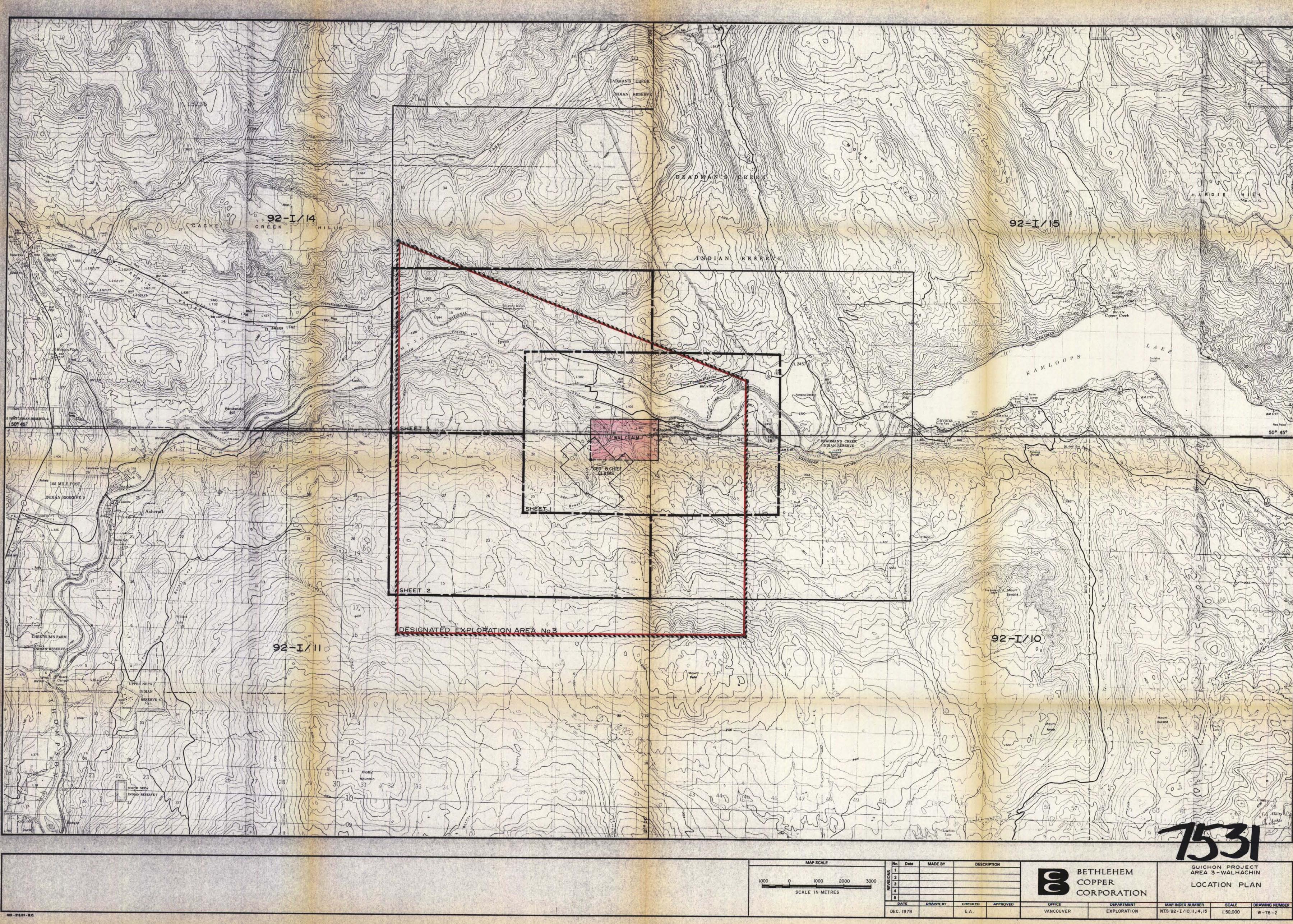
MINERAL CLAIMS

Property:

GUICHON - WALHACHIN

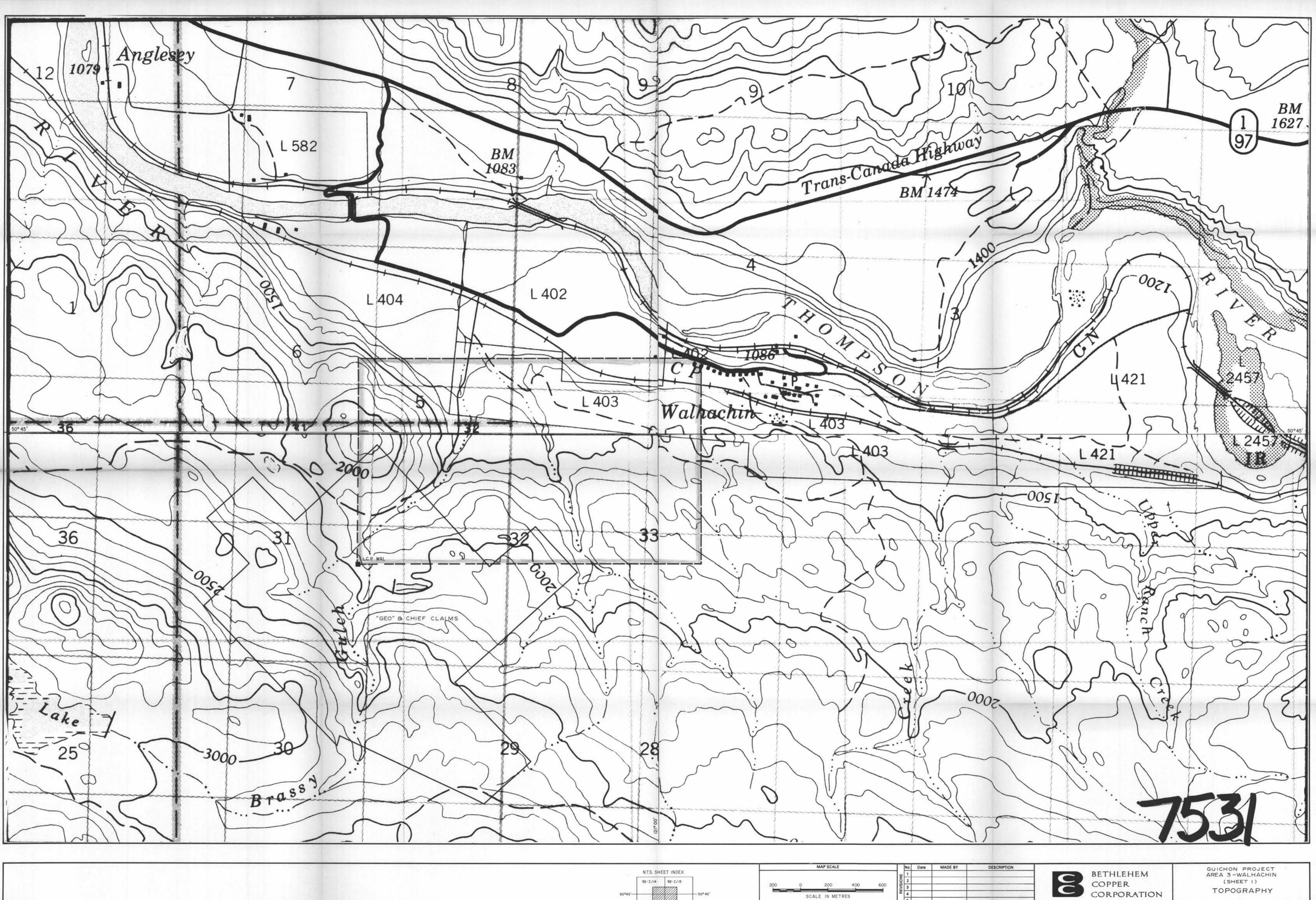
Mining Division: Kamloops

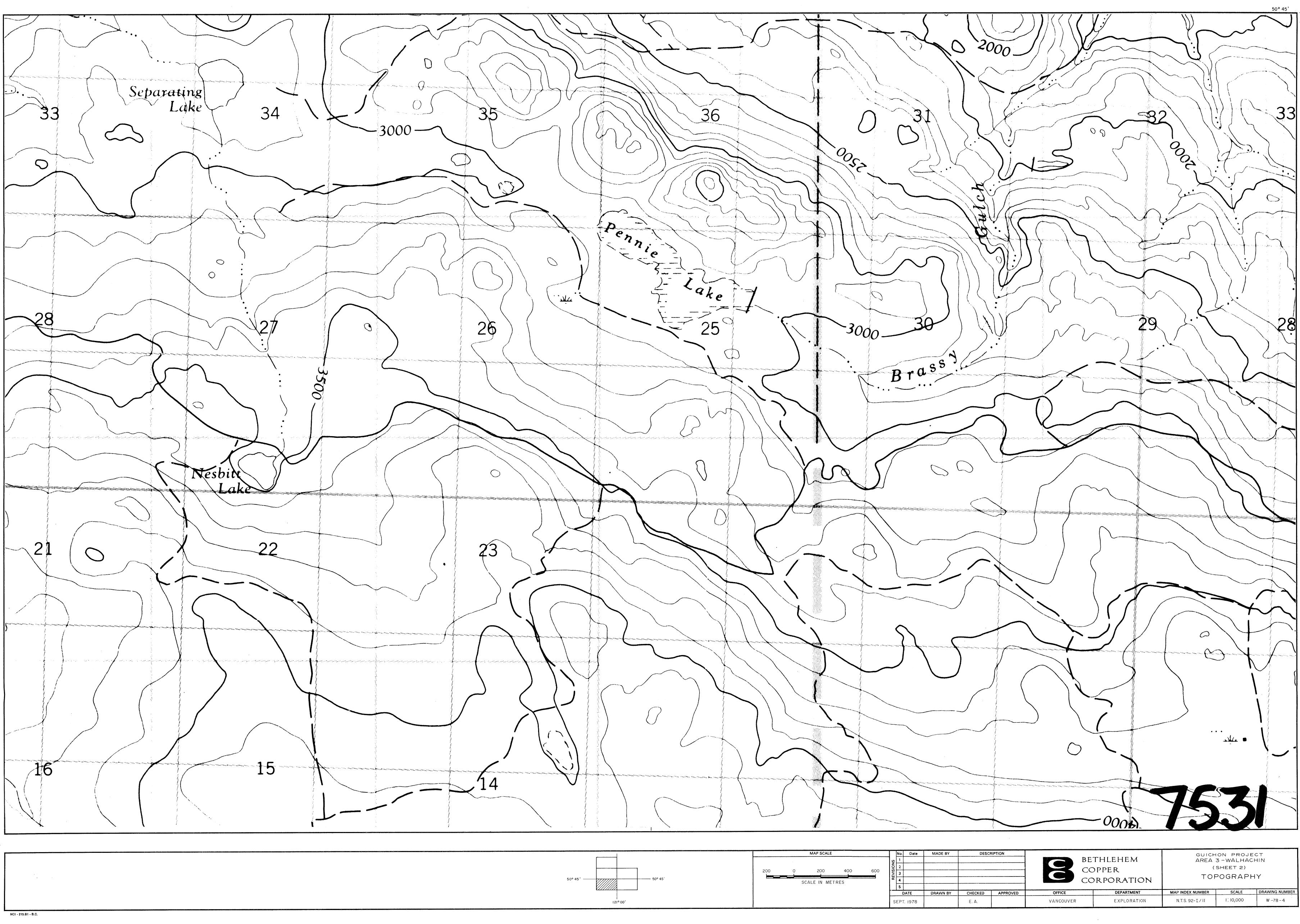

Name of Record Metal Tag Date Expiry Claim Number Number Recorded Date WAL 1407(9) 06824 Sept.25,1978 Sept. 25,1980 (15 units)

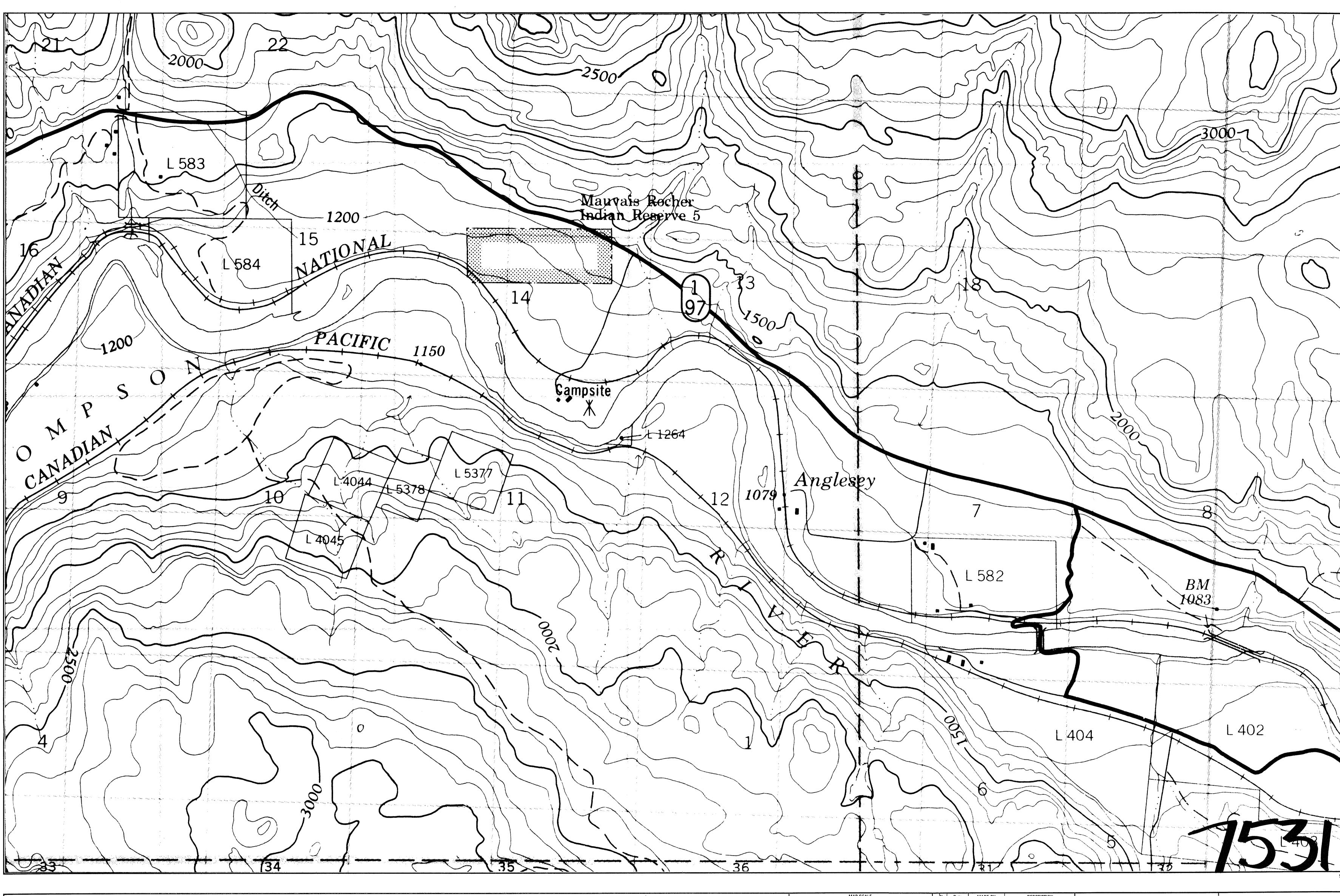

SECTION G - ILLUSTRATIONS

•

Drawing No.	Title	Scale
W-78-1	General Location Plan	1:250,000
W-78-2	Location Plan	1: 50,000
W-78-3	Topography - Sheet 1	1: 10,000
W-78-4	Topography - Sheet 2	1: 10,000
W-78-5	Topography - Sheet 3	1: 10,000
W-78-6	Geological Plan - Sheet l	1: 10,000
W-78-7	Geological Plan - Sheet 2	1: 10,000
W-78-8	Geological Plan - Sheet 3	1: 10,000
W-78-9	Geochemical Plan - Cu - Sheet 1	1: 10,000
W-78-10	Geochemical Plan - Pb - Sheet 1	1: 10,000
W-78-11	Geochemical Plan - Zn - Sheet l	1: 10,000
W-78-12	Geochemical Plan - Mo - Sheet 1	1: 10,000
W-78-13	Geochemical Plan - (Cu,Pb,Zn,Mo)-Sheet	2 1:10,000
W-78-14	Geochemical Plan - (Cu,Pb,Zn,Mo)-Sheet	3 1:10,000
W-78-15	1978 Geophysical Survey Plan	1:10,000
W-78-16	Proposed Percussion Drilling	1:10,000


.


ю	0		1000
-		SCALE	IN METRES

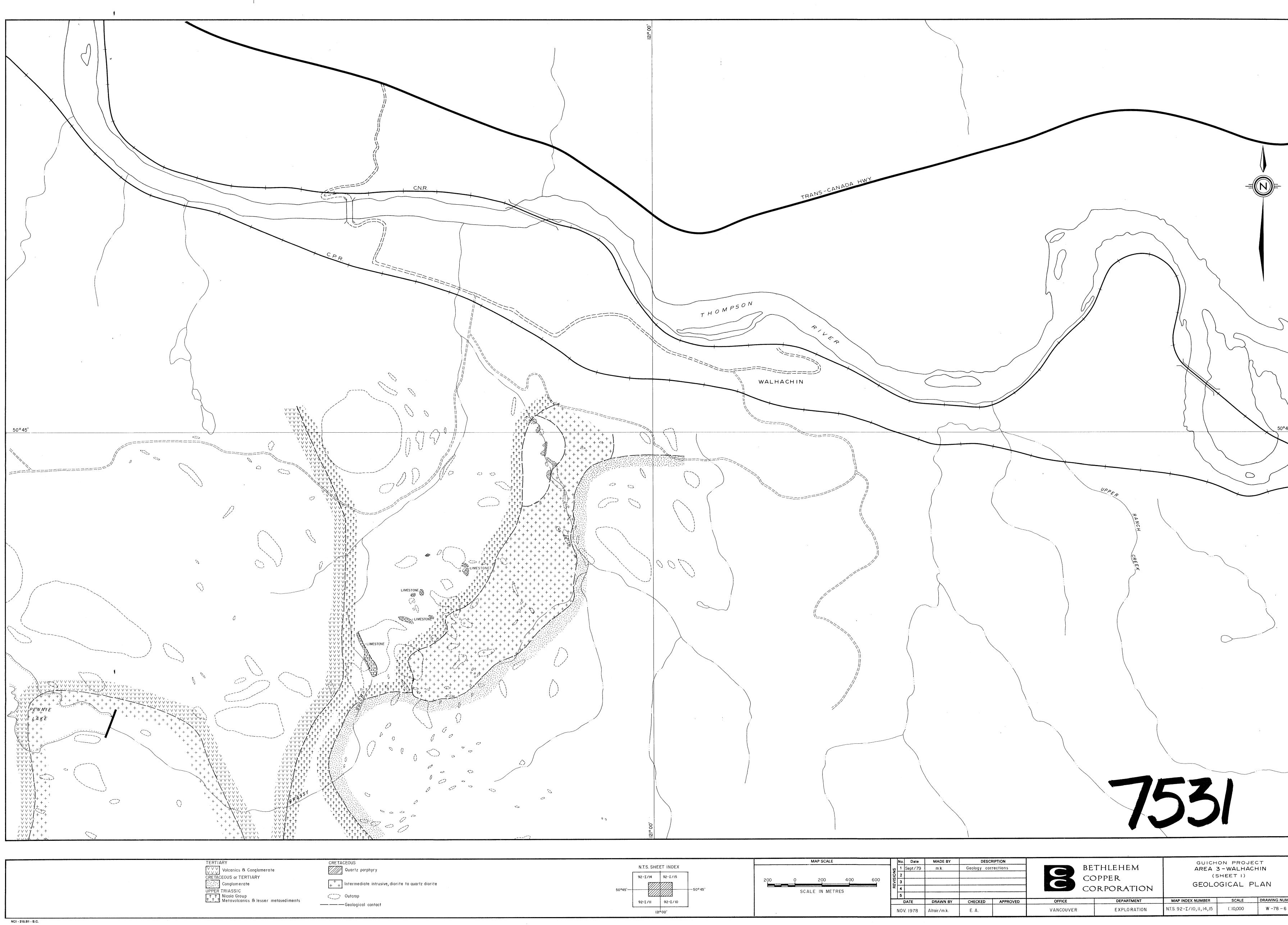


N.I.S. SHEET	INDEX		
211/20	-1/15	200	0 200 4
50°45' 92-1/11 9	50° 45' 2-1/10		SCALE IN METRES
1219 00	+:	and the second second	

00 600	No. Date 1 2 3 4 5	MADE BY	DESC	RIPTION	CC	THLEHEM PPER RPORATION	AREA 3 (S	ON PROJI	CHIN
	DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING NUMBER
	SEPT. 1978		E. A.		VANCOUVER	EXPLORATION	N.T.S. 92-1/10,11,14,15	1:10,000	W -78 - 3

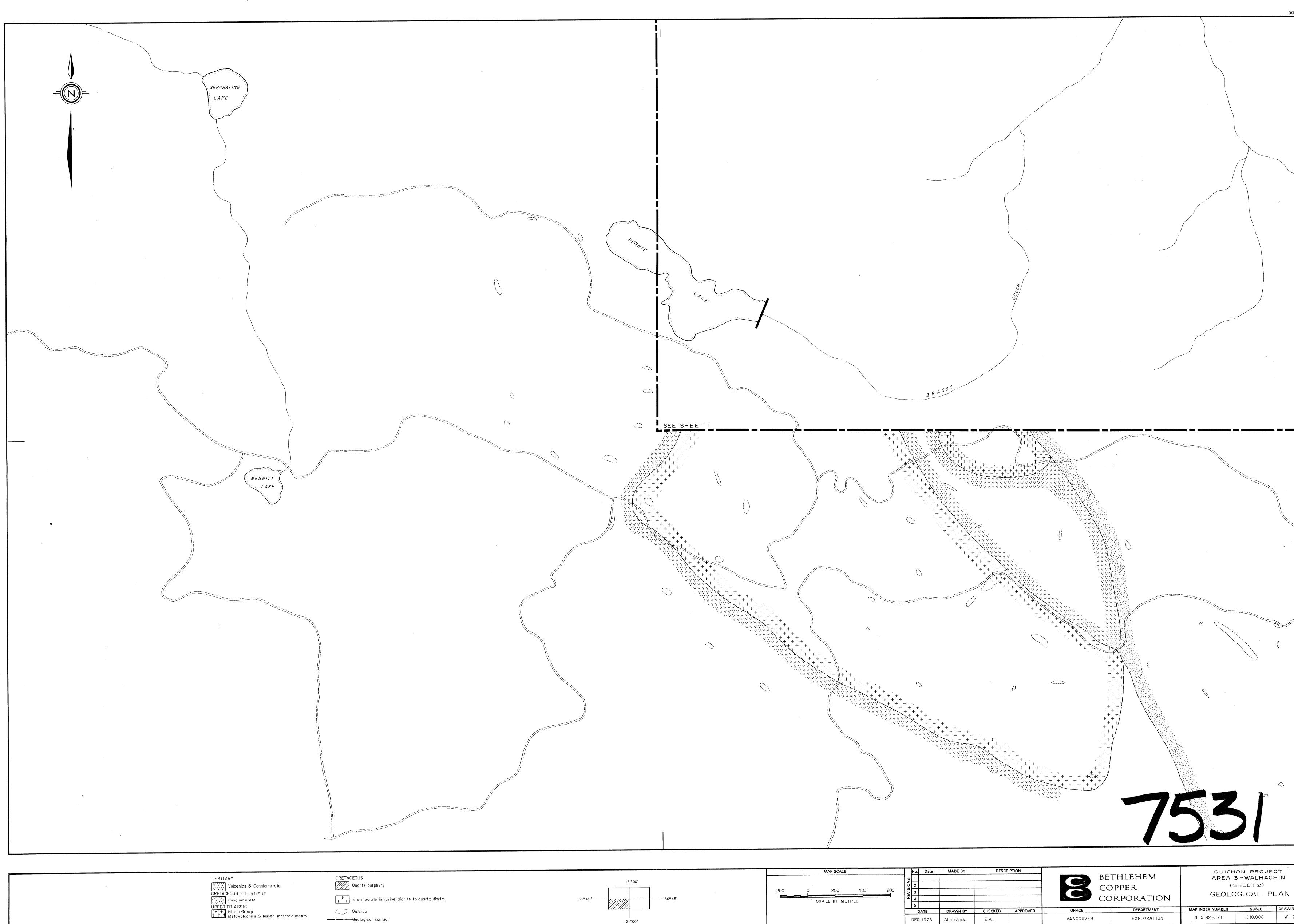
DATE DRAWN BY CHECKED APPROVED OFFICE DEPARTMENT MAP INDEX NUMBER SCALE DRAWING N 121°00' E.A. E.A. VANCOUVER EXPLORATION N.T.S. 92-I/II 1.10,000 W-78-1	50° 45' 50° 45'	200 0 200 400 600 SCALE IN METRES	No. Date MADE BY 1			BETHLEHEM COPPER CORPORATION	AREA	on proje 3-walhac sheet 2) POGRAPH	HIN
SEPT. 1978 E. A. VANCOUVER EXPLORATION N.T.S. 92-1/11 1. 10,000 W-78-			DATE DRAWN BY	CHECKED A	APPROVED OFFIC	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING N
	121° 00'		SEPT. 1978	E. A.	VANCO	UVER EXPLORATION	N.T.S. 92-1711	1: 10,000	W -78 -

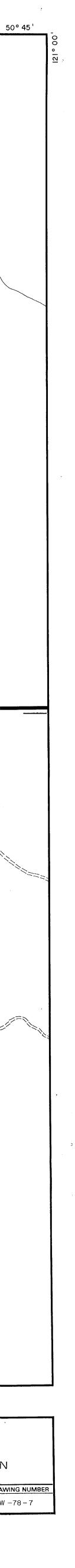


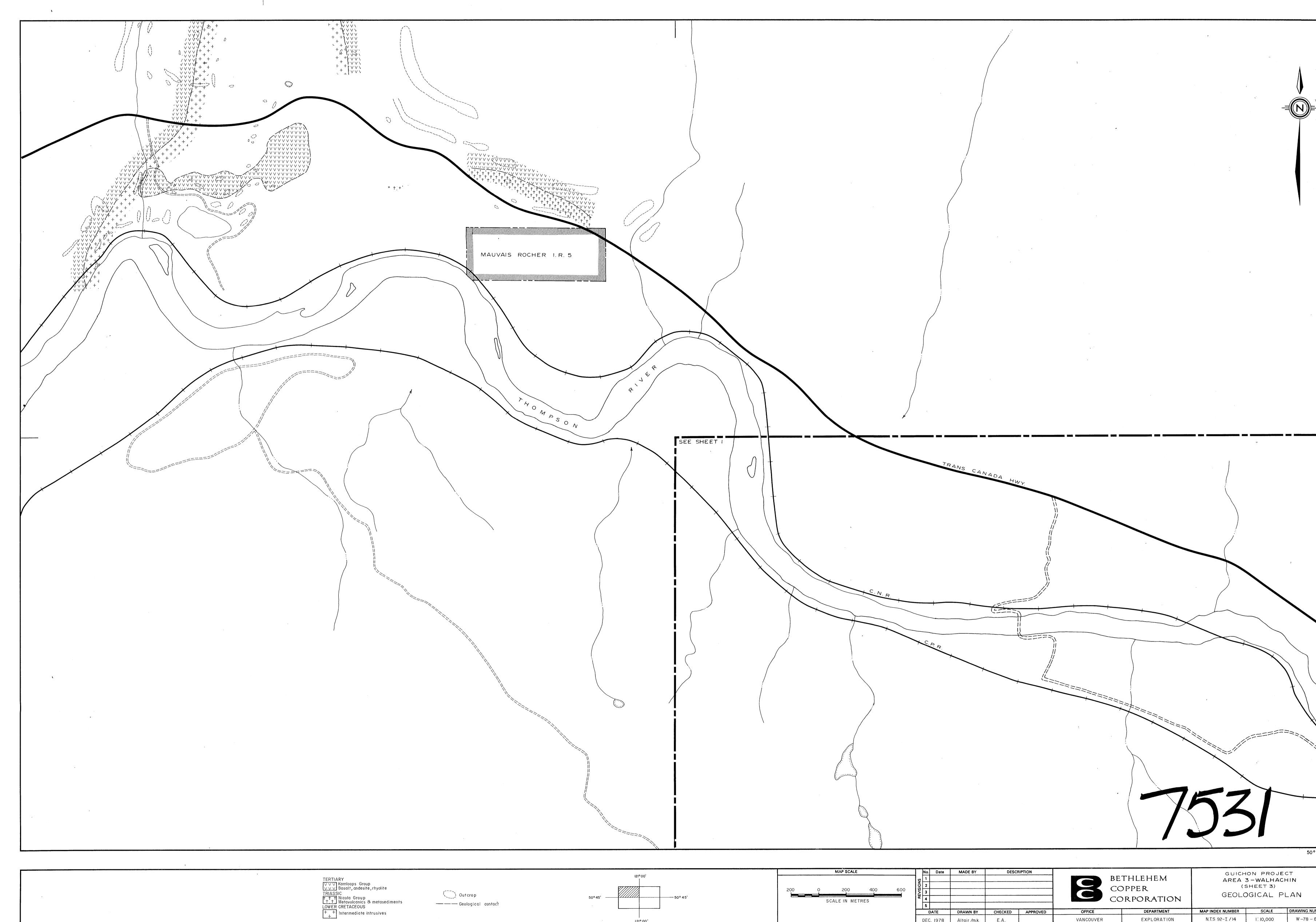

,

NCI - 215.B1 - B.C.

			MAP SCALE	
50° 45' 50° 45'	200	o s	200 CALE IN MET	4 RES

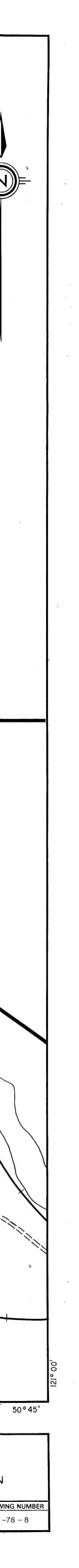

	S	EPT	. 1978		Ε.Α.		VANCOUVER	EXPLORATION	N.T. S. 92-I / 14	1:10,000	W -78-
		C	DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING N
400 600 	REVISION	2 3 4 5	j 					OPPER ORPORATION		sheet 3) POGRAPH	Y
	٦ş	1					BE	THLEHEM		3 -WALHACH	
		No.	Date	MADE BY	DESCF	RIPTION			бласн	ON PROJE	T

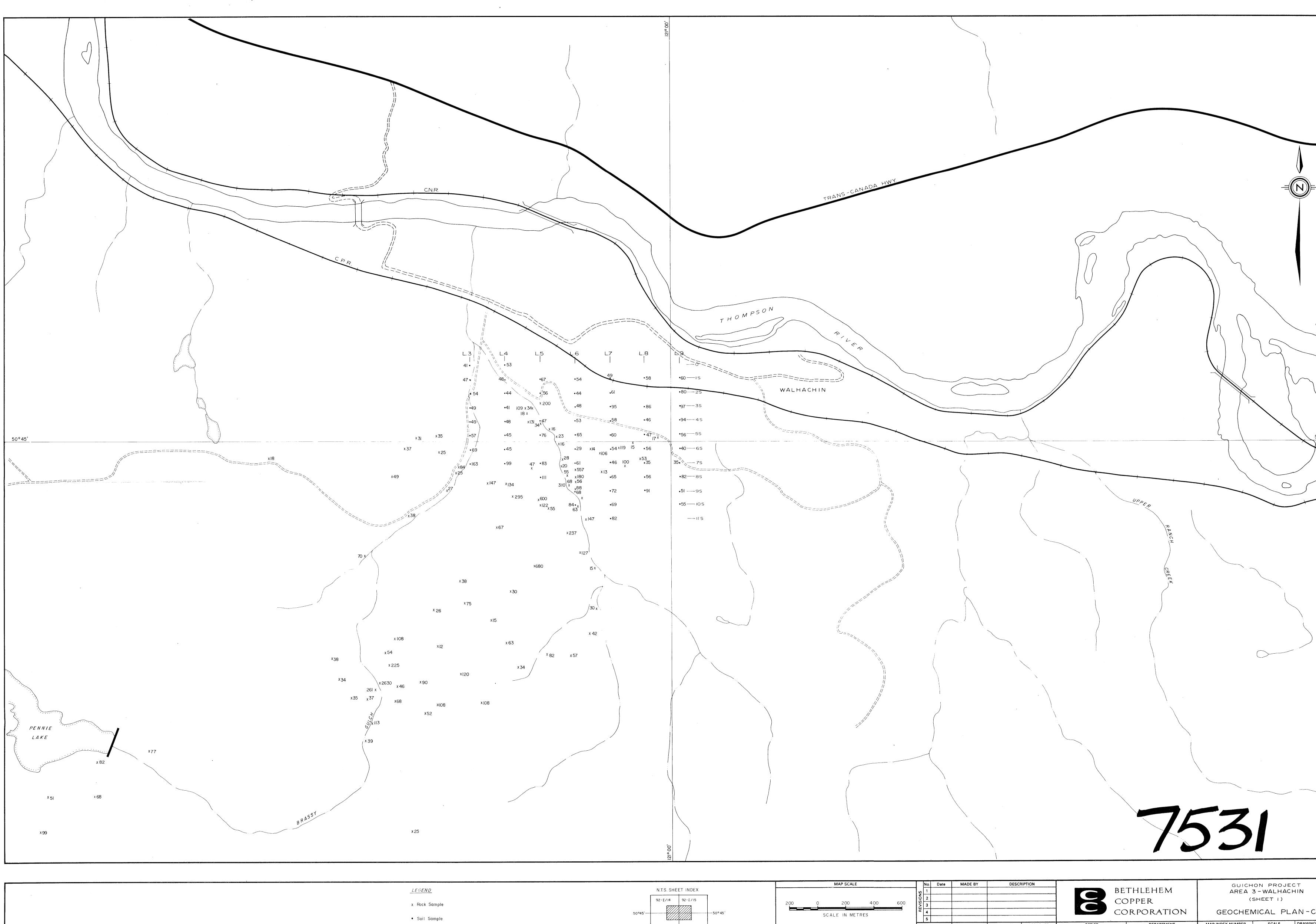

REVISIONS				rections	BETHLEHEM COPPER CORPORATION		AREA 3-WALHACHIN (SHEET I) GEOLOGICAL PLAN				
	┝─	DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING NUMB	
		NOV. 1978	Altair/m.k.	E. A.		VANCOUVER	EXPLORATION	N.T.S. 92-I/10,11,14,15	1. 10,000	W -78 - 6	
			_1								



NCI	- 215.B1	•	B.C.

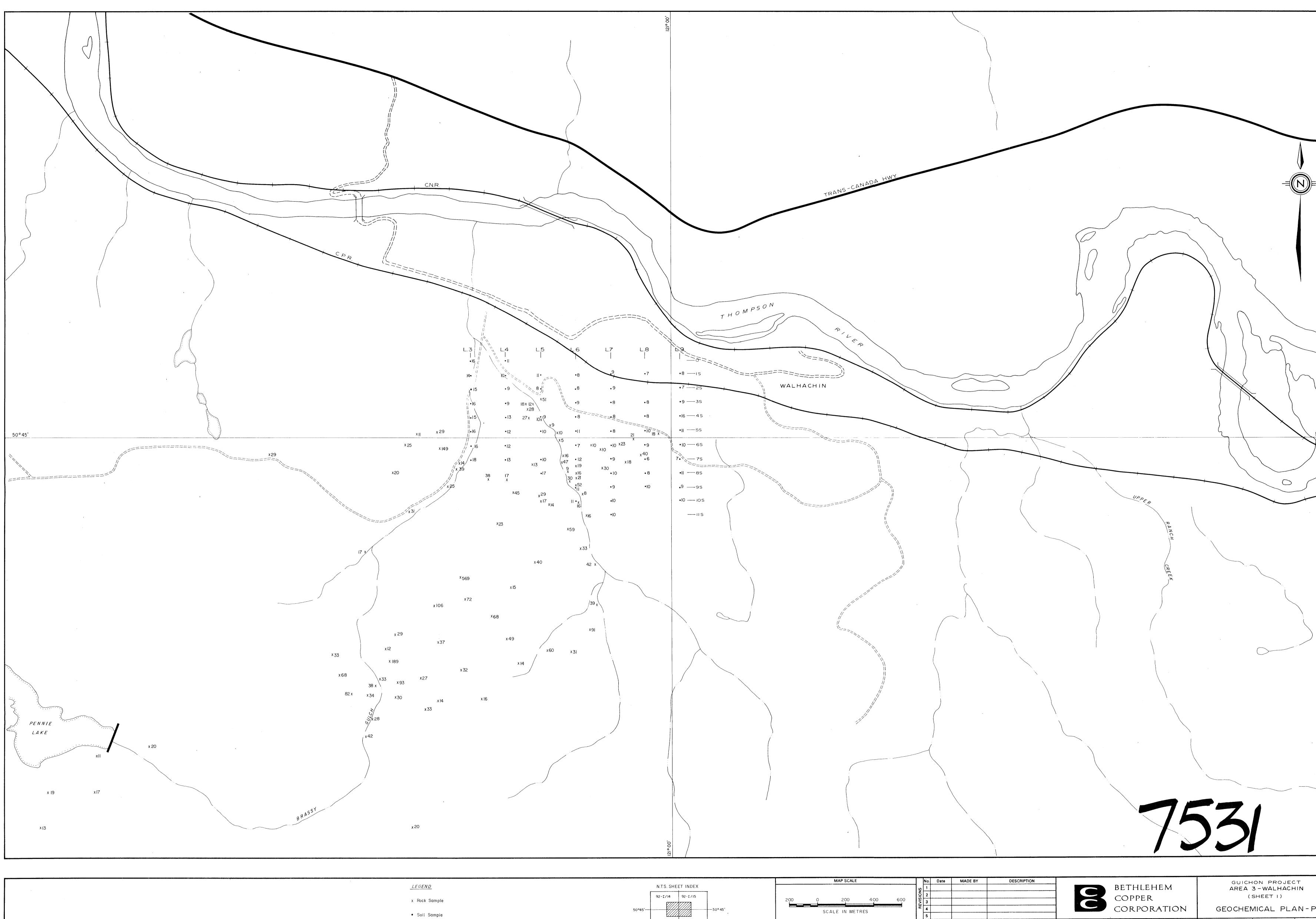
			DEC.	. 1978	Altair/m.k.	E.A .		VANCOUVER	EXPLORATION		1.10,000	
		-								N.T.S. 92 - I / 11	1:10,000	w -
			D	ATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWI
			5						· · · · · · · · · · · · · · · · · · ·			<u> </u>
		H ا	4					CO	RPORATION	GEULU	GICAL PL	
∞	600	1 <u>S</u>	3									
		VISIONS	2						PPER	(5	SHEET 2)	
]۵	1					BE	ГНLЕНЕМ	AREA 3	3 – WALHACI	HIN
			NO.	Date	MAUE BY	DESCH	NETION			GUICH	ON PROJE	




121° 00'

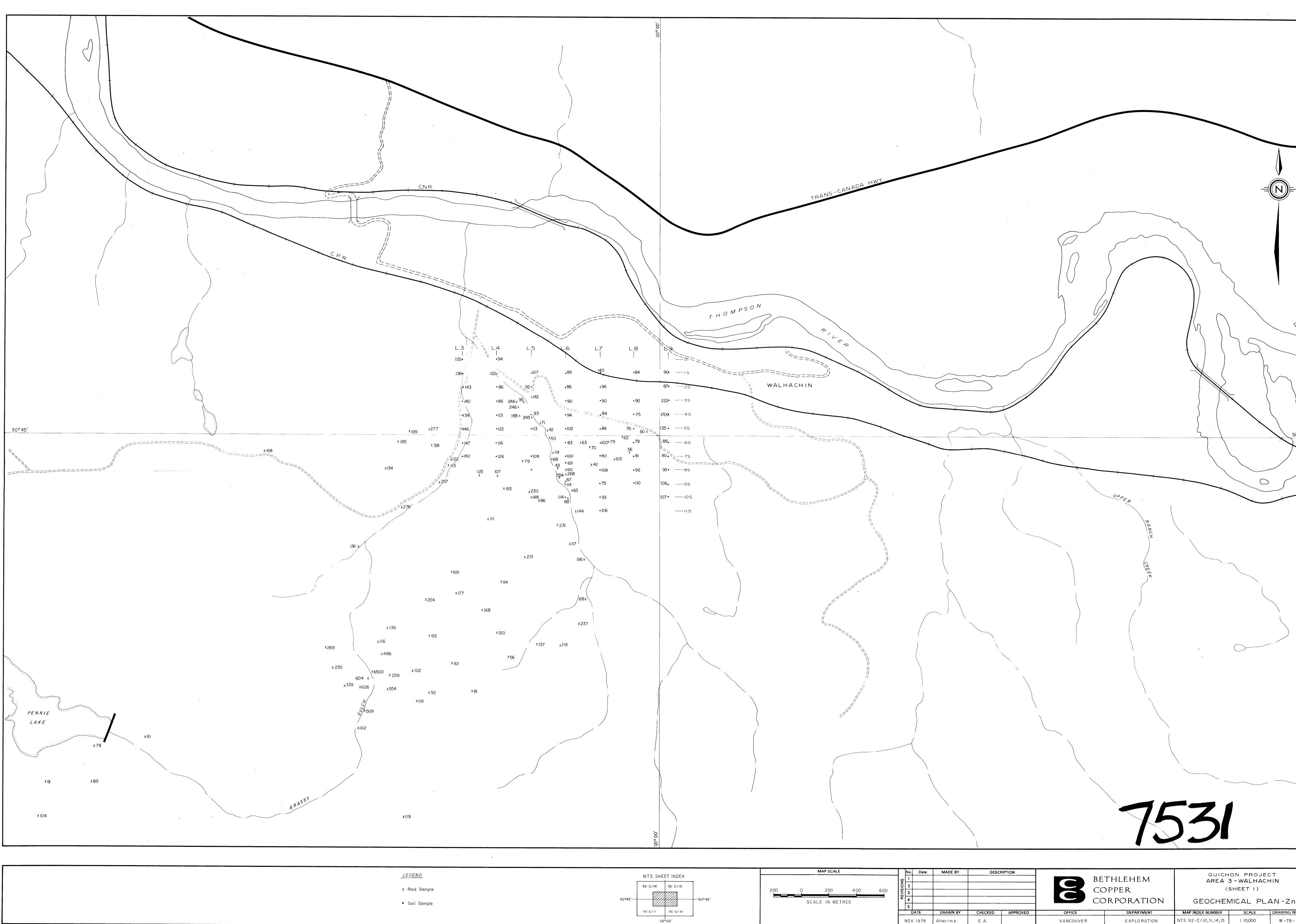
NCI -	215.B1	- B.C.	

0 600	3 3 4 5					DRPORATION	GEOLO	DGICAL F	PLAN
	DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING
	DEC. 1978	Altair /m.k.	E.A.		VANCOUVER	EXPLORATION	N.T.S 92-I /14	1:10,000	W78


.

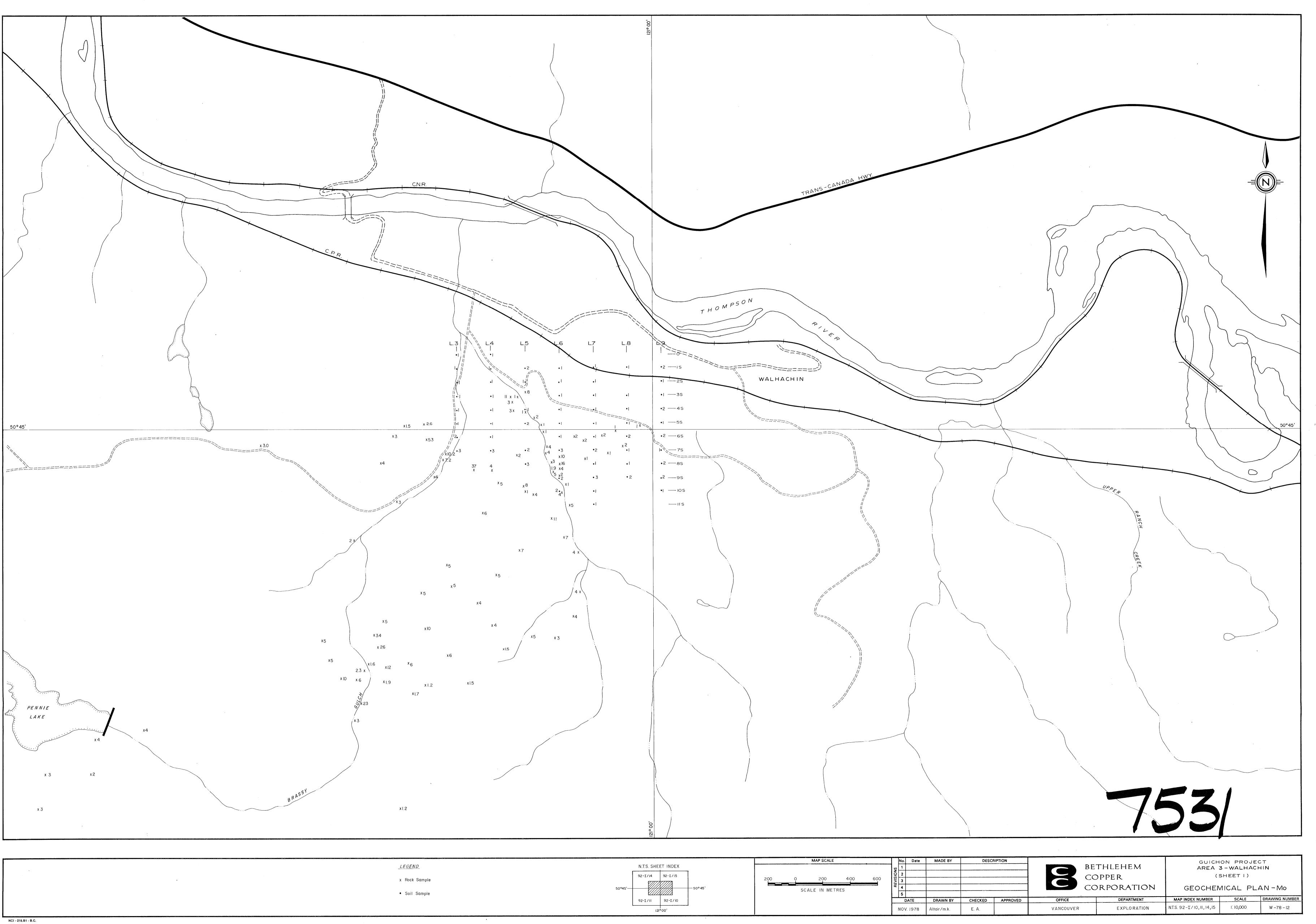
		MAP SCALE
	N.T.S. SHEET INDEX	
ample	92-1/14 92-1/15	200 0 200 4
ample	50°45' 50°45'	SCALE IN METRES
	92-1/11 92-1/10	
	121°00'	

00 600	No. Date No. Date 1 2 3 4 5	MADE BY	DESC	RIPTION		THLEHEM OPPER ORPORATION	AREA 3	DN PROJE -WALHAG HEET I) NICAL PL	CHIN
	DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING N
	NOV. 1978	Altair/m.k.	E. A.		VANCOUVER	EXPLORATION	N.T.S. 92-1/10,11,14,15	1.10,000	W -78 -



		MAP SCALE
-	N.T.S. SHEET INDEX	
	92-1/14 92-1/15	200 0 200 4
ample		
ample	50°45' 50° 45'	SCALE IN METRES
	92-1/11 92-1/10	
	I2I°00'	

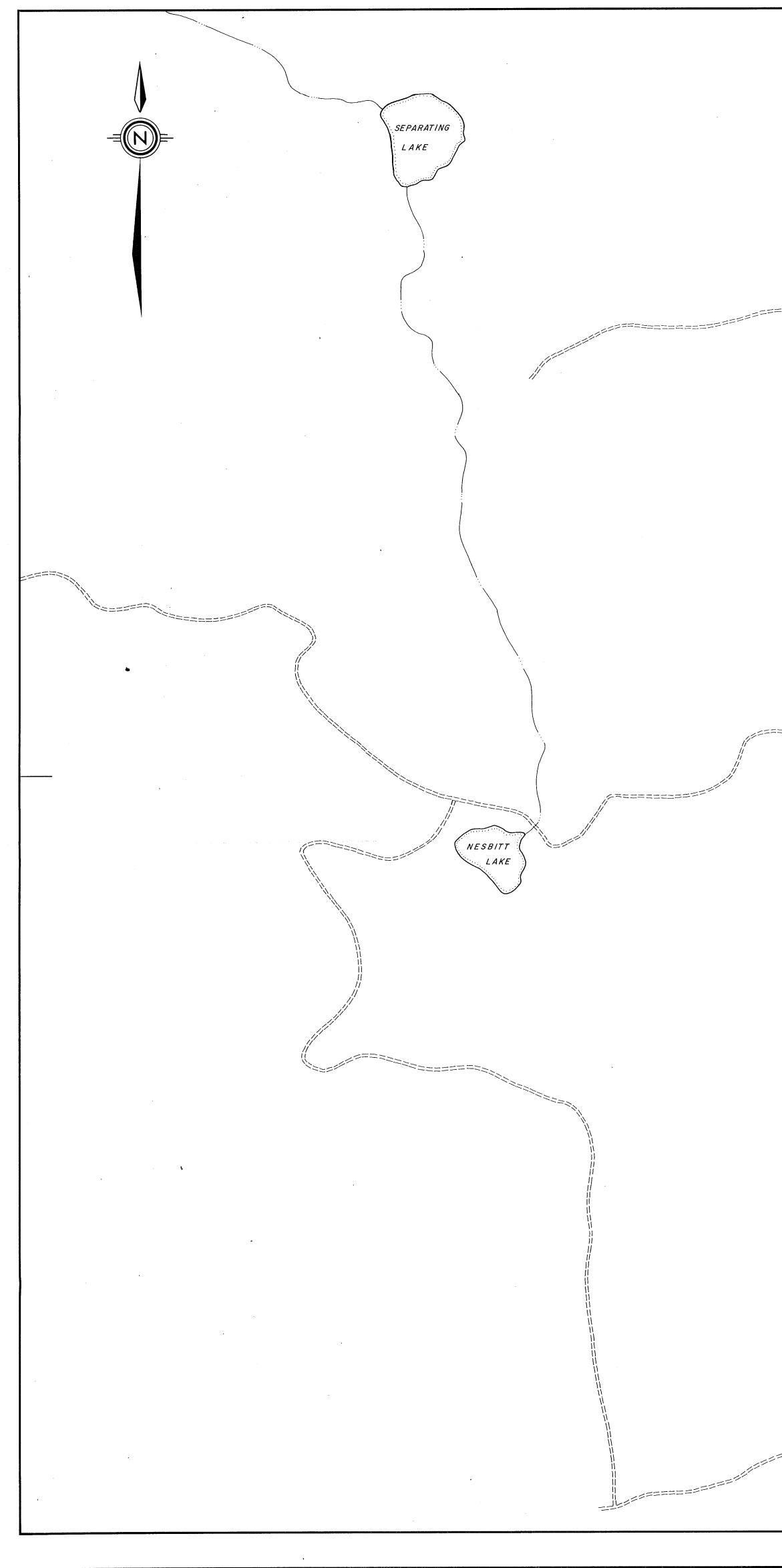
400 600	SNOISIA	b. Date	MADE BY	DESCF			THLEHEM PPER	AREA 3	ON PROJE 5 - Walha (5heet i)	
	∧ 3 4 5					,,,,,,	RPORATION	GEOCHEN		
		DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING N
	NC	V. 1978	Altair/m.k.	Ε. Α.		VANCOUVER	EXPLORATION	N.T.S. 92-1/10,11,14,15	1.10,000	W - 78 -



•

• ·		N.T.S. SHEET INDEX		
ample		92-1/14 92-1/15	200	0 200
ample	50 °45 '—	92-1/10 92-1/10		SCALE IN METRES
	l	121°00'		

		DATE NOV. 1978	DRAWN BY Altair/m.k.	CHECKED E. A.	APPROVED	OFFICE VANCOUVER	EXPLORATION	MAP INDEX NUMBER N.T.S. 92-1/10,11,14,15	SCALE 1: 10,000	DRAWING NUM W -78 - 11
	RE	4 5					CORPORATION	GEOCHEN	1ICAL PL	
600	VISION	2 3					COPPER		SHEET I)	
	s S	1					BETHLEHEM	_	ON PROJE	



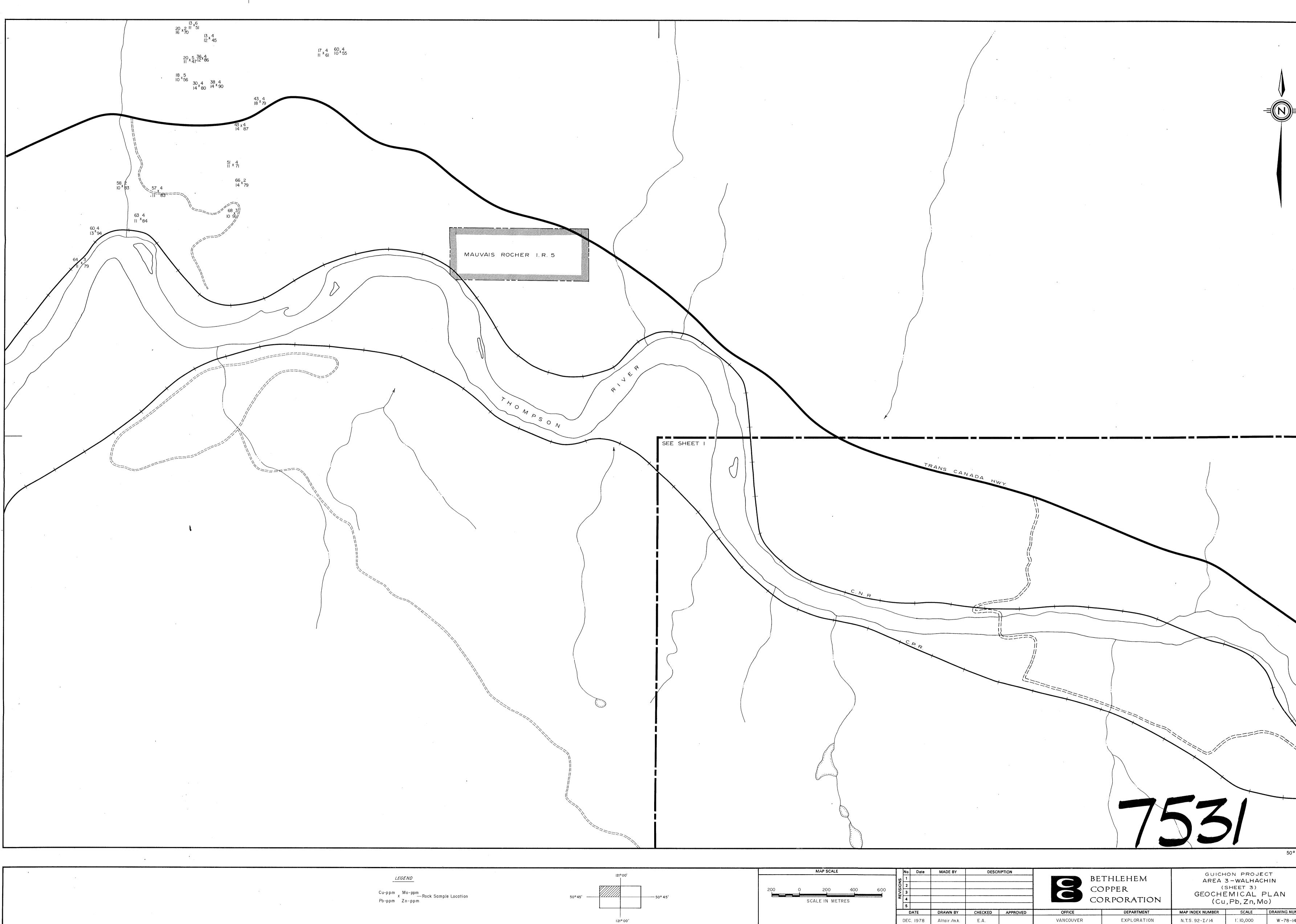
.

		MAP SCALE
2	N.T.S. SHEET INDEX	
Sample	92-1/14 92-1/15	200 0 200 4
ample	50°45' 50° 45'	SCALE IN METRES
	92-1/11 92-1/10	
	I 121°00'	

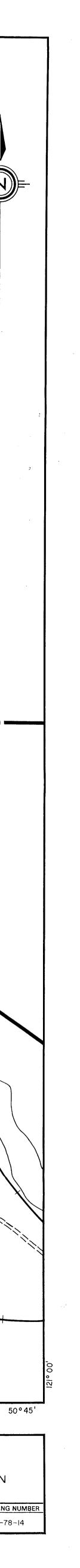
2 5 6					PPER RPORATION		HEETI)	_AN - Mc
DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING N
	DATE				DATE DRAWN BY CHECKED APPROVED OFFICE		DATE DRAWN BY CHECKED APPROVED OFFICE DEPARTMENT MAP INDEX NUMBER	DATE DRAWN BY CHECKED APPROVED OFFICE DEPARTMENT MAP INDEX NUMBER SCALE

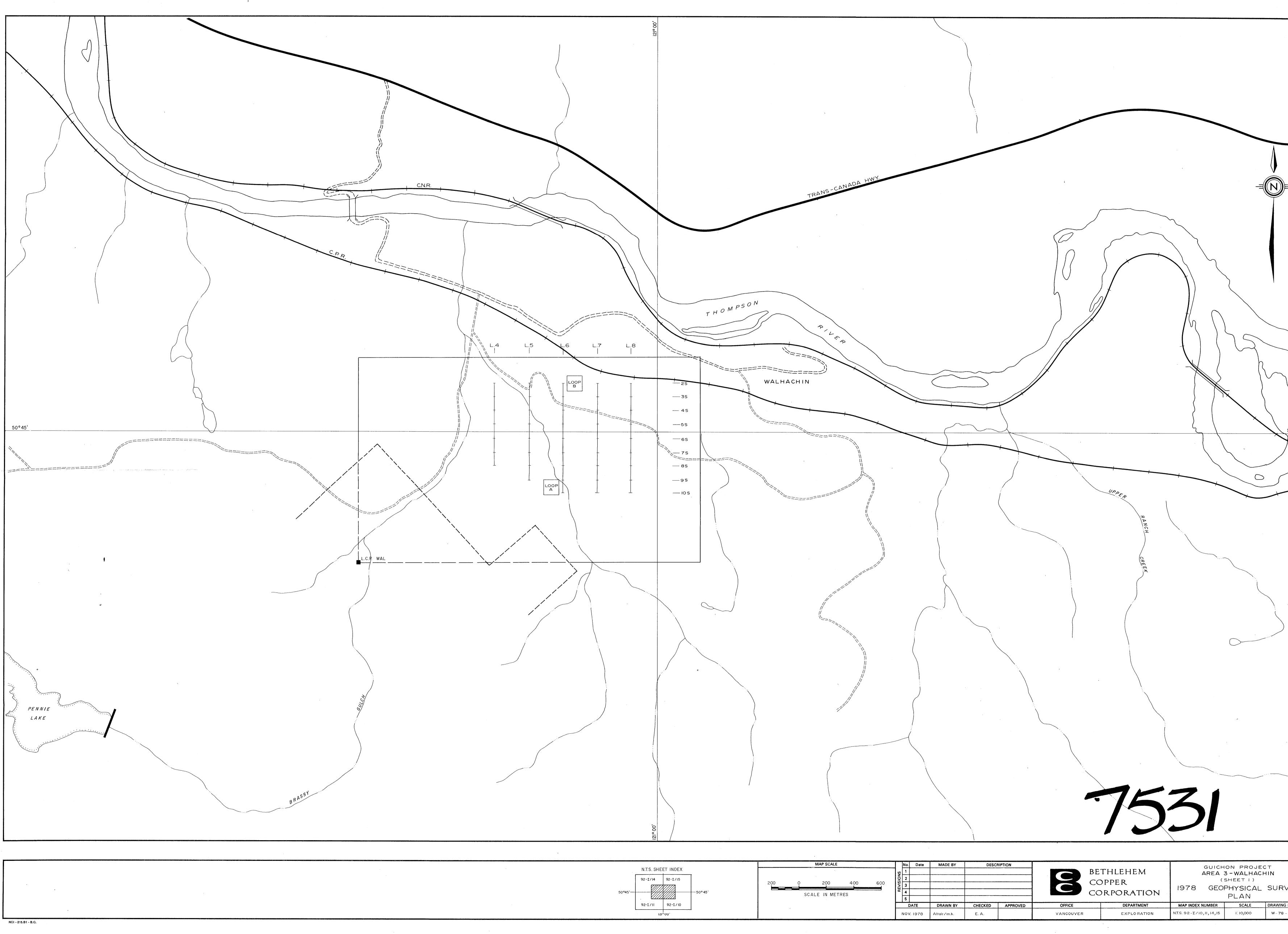
NCI - 215.B1 - B.C.

LEGEND Cu-ppm Mo-ppm Pb-ppm Zn-ppm

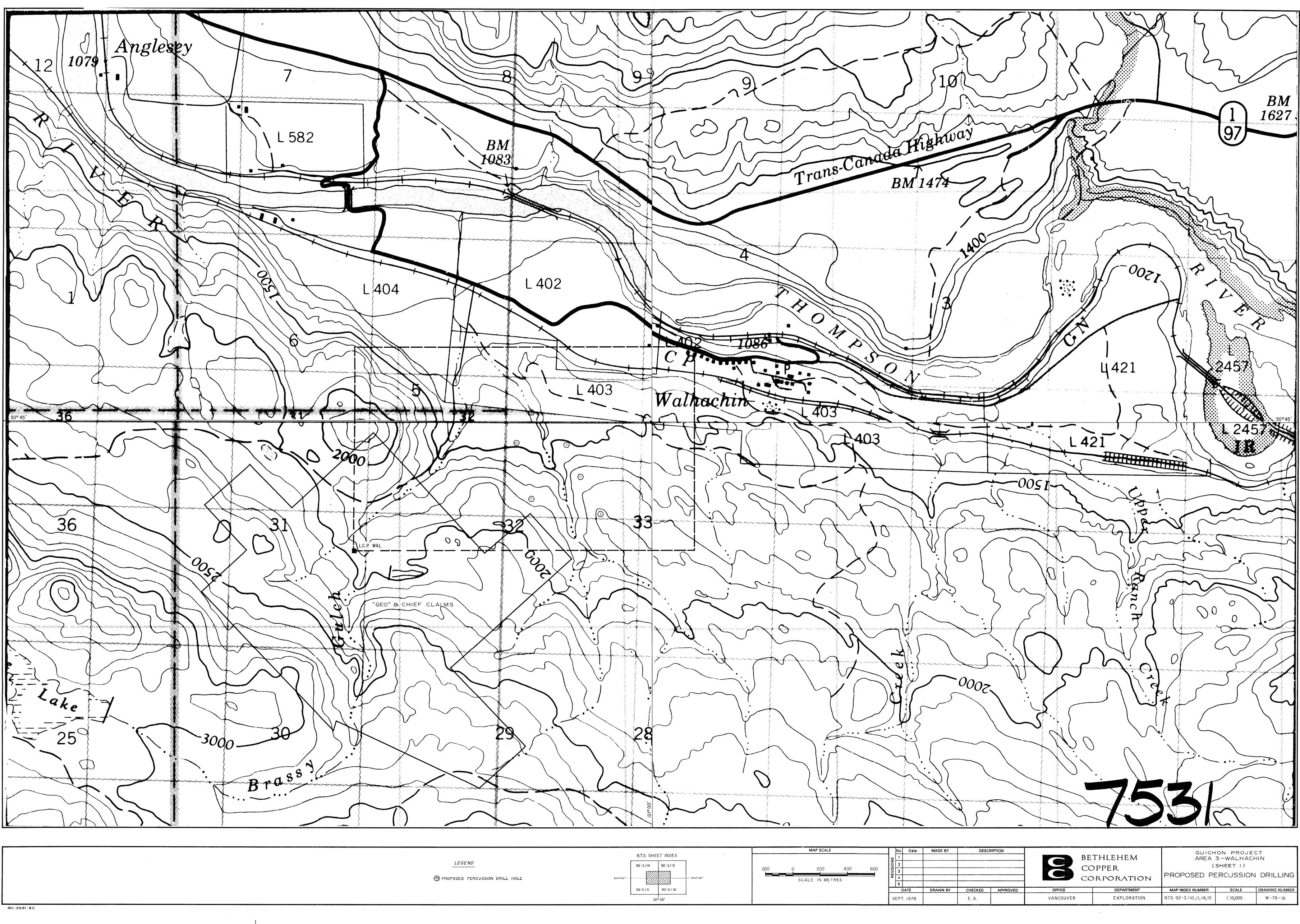

	ĺ		
28 xT=== 17 82			
17 82	30 x ² 15,96 °ENNIE		
•	20 x ² 1/5,96 ° FNNIK		
25 _x 3 18 80			
		internet in the second se	
	SEE SH	EET I	
		4 x 4 0 88	
		77 x ³ 20 84	
		58 x 3 15 ^x 69	
		15 69	
/			
		57 × 3 12 × 57	
	ľ		
			MAP SCALE
m — Rock Sample Location	50° 45' 50° 45'	200	
mRock Sample Location m			SCALE IN METRES
	121°00'		

∞ 600	SN 0 2 3 4				COPPER CORPORATION		AREA 3-WALHACHIN (SHEET 2) GEOCHEMICAL PLAN (Cu,Pb,Zn,Mo)		
	DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	DRAWING
	DEC. 1978	Altair/m.k.	E.A .		VANCOUVER	EXPLORATION	N.T.S.92-I/II	1:10,000	W-7


.



NCI - 215.B1 - B.C.


	DI	DATE EC. 1978	DRAWN BY Altair /m.k.	CHECKED E.A.	APPROVED	OFFICE VANCOUVER	DEPARTMENT EXPLORATION	MAP INDEX NUMBER N.T.S. 92-I/14	SCALE 1: 10,000	DRAWING W-78
	REV	3 4 5					DRPORATION		EMICAL P ,Pb,Zn,Mc	
600	SNOIS	2					THLEHEM DPPER	()	<mark>3-WALHACH</mark> Sheet 3)	

00 600	REVISIONS	1 2 3 4					CO	THLEHEM PPER RPORATION	A	REA 3 (SH GEOP	-WALHAC	HIN
			ATE 1978	DRAWN BY Altair7m.k.	CHECKED E. A.	APPROVED	OFFICE VANCOUVER	DEPARTMENT EXPLORATION	MAP INDEX NU	MBER	CALE 1: 10,000	DRAWING NU W- 78 - 15

			MAP SCALE
	N.T.S. SHEET INDEX		
LEGEND	92-1/14 92-1/15	200	0 200 400
PROPOSED PERCUSSION DRILL HOLE	50°45' 92-I/II 92-I/I0		SCALE IN METRES
	ISIo 00,		

	DATE SEPT. 1978		DRAWN BY	CHECKED E.A.		OFFICE VANCOUVER	EXPLORATION	MAP INDEX NUMBER N.T.S. 92 - I / 10,11,14,15	SCALE 1:10,000	W -78 - 16
600	REVISIONS	3 4 5					OPPER	PROPOSED PERCUSSION DRILLING		
		1 2					BETHLEHEM Copper	AREA 3-WALHACHIN (SHEET 1)		
		No. Date	MADE BY	DESCR	RIPTION			GUICHON PROJECT		