ON
INDUCED POLARIZATION AND MAGNETICS SURVEYS

CK PROPERTY

Raft River Area, B.C., Kamloops Mining Division
Latitude: $51^{\circ} 55^{\prime} \mathrm{N}$; Longitude: $119^{\circ} 35^{\prime} \mathrm{W}$

Work Performed: May 19-23
June l3-July ${ }^{3}$
Sept l4-oct 2
On Claims: CK 6, 7, 8, 34, 39, 40, 42, 45, $46,63,65,69-73,75,76,78$, 87-90
NORTH 1; RAFT 23-28; ULO 1-4
PARK 1

TABLE OF CONTENTS

EXPLORATION WESTERN DISTRICT
N.T.S. $82 \mathrm{M} / \mathrm{I} 3$

GEOPHYSICAL REPORT

ON
INDUCED POLARIZATION AND MAGNETICS SURVEYS
CK PROPERTY

INTRODUCTION

The CK Property is located some 50 kilometers by road northeast of Clearwater, B.C. Plate 157-79-1 shows the general location of the property. Plates 157-79-2, 3, and 4 show the location of the survey lines relative to the claims.

Geophysical surveys were carried out in three separate stages on the CK property during the 1979 field season. The first survey (May 19-23) consisted of 2.1 line kilometers of detail induced polarization (IP) over the "main boulder area". The second survey (June 13-July 3) consisted of 3.8 line kilometers of magnetics and reconnaissance IP on the Autumn grid and 28.8 line kilometers on the Mist grid.

The above surveys were conducted by COMINCO geophysical crews. The third survey (Sept l4-Oct 2) was done under contract by Peter E. Walcott \& Associates Ltd. in the "Raft Synform" area, and consisted of 6.5 line kilometers of IP.

This report presents the data from the various surveys, describes the procedures, and discusses the results obtained.

Geoph. Report: IP AND MAGNETICS...CK Page -2-

LOCATION AND ACCESS

Road access to the CK property can be gained by turning north off highway number 5 , three kilometers east of Clearwater onto a well maintained logging road which follows the Raft River valley. The survey grids are in the vicinity of the junction of McCloskey Creek and Raft River, some 50 road kilometers northeast of Clearwater.

GEOLOGY

The CK property is underlain by highly metamorphosed sedimentary rocks of the Shuswap Complex. Dominant rock types are biotite gneiss and pegmatite along with amphibolite, calc silicate, marble, and lamprophyre and diabase dykes.

Exploration interest in the area was aroused by the presence of mineralized ($\mathrm{Zn}-\mathrm{Pb}$) boulders. The geology has been described in more detail elsewhere (Murrel 1979).

GEOPHYSICAL SURVEYS

Magnetics: A Scintrex MP-2 total field proton precession magnetometer was used for the magnetics survey. The instrument has a scale sensitivity (digital readout) of 1 gamma. The data was corrected for diurnal variation using the standard base and sub-base station looping method. Tie-in to the 1978 survey data was accomplished by repeating stations.

Magnetic surveys

Geoph. Report: IP AND MAGNETICS...CK
Page -3-

Magnetic surveys were conducted over the Mist and Autumn grids. The values are plotted on Plates 157-79-5 and 6, respectively.

Induced Polarization; Detail Survey: ARScott, geophysicist, was the receiver operator on the detail IP survey.

A Huntec Mk IV LOPO portable IP transmitter, in combination with a Scintrex IPR-8 receiver, was used on the detail survey. Chargeability (IP) response was measured in the time domain employing a 2 second current on $/ 2$ second current off alternating square wave signal. The chargeability values plotted are the M_{232} values, and units are millivolts per volt. A more detailed description of the IPR-8 receiver can be found in the operator's manual.

The dipole-dipole electrode array was used on the detail survey, with an "a" spacing of 25 meters and " n " separation normally of 1 and 2 only. The current dipole was maintained to the west of the potential dipole.

The apparent resistivity data is given in units of ohm meters. The values were calculated from the relation:

$$
\text { apparent resistivity }=(V / I) . K
$$

where V is the voltage drop across the potential dipole due to a transmitted current I, and K is a geometric factor dependent upon the array used, the "a" spacing, and the " n " separation.

Induced Polarization; Reconnaissance Survey: GJNiemeyer, geophysical technican, was the receiver operator on the

Geoph. Report: IP AND MAGNETICS...CK Page -4-

COMINCO reconnaissance IP surveys.

A Huntec 7.5 Kw motor generator/IP transmitter, in combination with a Scintrex IPR-8 receiver, was used for these recce surveys. Measurement parameters were the same as for the previously described detail survey, except that the pole dipole electrode array was used, with an "a" spacing of 50 meters and " n " separation of $1,2,3$, and 4.

GMacMillan was the receiver operator for the Walcott (Raft Synform) IP survey. A Huntec 7.5 Kw transmitter with a Huntec MK III receiver was used, with a delay time (t_{d}) of 240 msec and a basic integrating time (tp) of 60 msec . The MK III values were "converted" to IPR-8 equivalent by multiplying the total MK III chargeability . $6\left(M_{1}+2 M_{1}+4 M_{3}+8 M_{4}\right)$ by 1.47 . The array and spacings were the same as for the COMINCO recce survey.

The data from these surveys is plotted in standard pseudosection format. This is a schematic form of data presentation and no direct depth to target or target geometry is implied by it.

DISCUSSION OF RESULTS

Detail Survey: Main Boulder Grid
A detail IP survey was done over the "main boulder area" in 1979. This area was previously surveyed at a 50 meter electrode separation on lines 100 meters apart in 1978. Owing to the presumed steep dips and narrow width of the source of the anomalies detected, detail survey at a 25 meter electrode separation, and at a 50 meter line
interval, was

Geoph. Report: IP AND MAGNETICS...CK Page -5-
interval, was undertaken, to better define target location for drill testing. The results of the detail work are plotted on pseudosections 157-79-7 to l2. Chargeability anomalies are coded as follows:
strong (greater than $40 \mathrm{mv} / \mathrm{v}$ and well defined)

weak (20-40 mv/v)

Resistivity lows, defined herein as less than 500 ohm meters, are indicated by a dashed line.

Several strong coincident chargeability highs/apparent resistivity lows are indicated on the sections. The strongest coincident anomalies are:
line $100 \mathrm{~N}, 375 \mathrm{E}$ and 450 E
line 250N, 300E
line $300 \mathrm{~N}, 300 \mathrm{E}$
line 400N, 50E

Reconnaissance Survey: Mist Grid
The Mist Grid was surveyed with a 50 meter electrode spacing on lines 100 meters apart. The survey is a continuation to the north of work done in 1978, and consisted of line 600 N to 2600 N . The results are plotted on pseudosections 157-79-13 to 33.

Geoph. Report: IP AND MAGNETICS...CK
Page -6-

Chargeability anomalies are coded on the sections as follows:
strong (greater than $40 \mathrm{mv} / \mathrm{v}$ and
well defined)

Resistivity lows, defined as less than 500 ohm meters, are indicated by a dashed line.

Several strong and moderately strong chargeability anomalies were detected on the Mist Grid survey. As graphite and pyrrhotite are common in some of the rock types underlying the CK property (notably, portions of the biotite gneiss unit), it is not possible to assign a priority rating to these anomalies from an amplitude of response perspective alone. Detailed correlation to geochemistry data and geological information is required. Some of the main geophysical features are briefly described below.

Strong and moderately strong chargeability anomalies were detected in the southwest portion of the survey area on lines 600 N to 1200 N . These anomalies lie in a north to northwest trend, and are centered at the following locations:

> line 600N; 925, lloo, l225E
> line 700N; 925, ll25E
> line 800N; 950, ll25E
> line 900N; 825, 975E
> line l000N; 600, 825E
> line lloon; 550E
> line 1200N; 600, 750E

A north northwest

Geoph. Report: IP AND MAGNETICS...CK
Page -7-

A north northeast trend of strong and moderately strong chargeability anomalies was detected on the eastern portion of survey lines 600 N to 2600 N . These anomalies are approximately centered at the following locations, and often consist of very broad or multiple source responses:
$\left.\begin{array}{crl}\text { line } & 600 \mathrm{~N} ; & 1650 \mathrm{E} \\ \text { " } & 700 \mathrm{~N} ; & 1625 \mathrm{E} \\ " & 800 \mathrm{~N} ; & 1625,1775 \mathrm{E} \\ " & 900 \mathrm{~N} ; & 1575 \mathrm{E}\end{array}\right)$

The magnetometer survey results for the Mist grid are plotted in contour plan form on Plate 157-79-5. The magnetic trends correlate well to the previously mentioned IP trends. There is a definite northeasterly to north trend to the contours in the northern portion of the Mist grid, and a northwesterly trend in the southwestern portion of the grid.

A series of narrow subparallel magnetic highs were detected on the eastern portion of all the survey lines, particularly lines 1500 N to 2600 N . In general, they are spatially

Geoph. Report: IP AND MAGNETICS...CK Page -8-
coincident with the chargeability anomalies previously discussed.

The magnetic field highs in the southeastern portion of the grid tend to be more patchy and do not correlate as well from line to line (as in the north and eastern portion of the grid). A similar pattern was obtained for the chargeability anomalies. This may be partly due to the rather oblique angle of the survey lines to the apparent geological strike in that area.

Reconnaissance Survey: Autumn Grid
The Autumn Grid was surveyed with a 50 meter electrode spacing on lines 100 meters apart. Lines surveyed were 4100 S to 4500 S , and the results are plotted on pseudosections 157-79-34 to 38 .

Chargeability anomalies are classified as described for the Mist Grid. No resistivity lows of less than 500 ohm meters were detected on the Autumn Grid survey.

The strongest chargeability anomaly of the Autumn survey was $40 \mathrm{mv} / \mathrm{v}$ which plots at l025E on line 4300 S . It is coincident with a weak resistivity low.

The magnetic field values are plotted in contour plan form on Plate 157-79-6. The strongest highs of the survey were at 1075 E on line 4100 S and at 900 E on line 4500 S . They rise some 400 and 500 gammas, respectively, above local background.

Recon. Survey: Raft

Reconnaissance Survey: Raft Synform Grid

The Raft Synform Grid was surveyed, under contract, by P.E. Walcott \& Associates Ltd. The electrode spacing was 50 meters and lines were spaced 100 meters apart. Lines 4500N to 5100 N were surveyed, and the results are plotted on pseudosections 157-79-39 to 45.

Chargeability anomalies and apparent resistivity lows are defined as described for the Mist Grid, and are indicated on the sections.

The highest chargeability of the Raft Synform Grid was obtained at $n=3$ on the westernmost portion of line 5100 N . It is coincident with a resistivity low of 297 ohm meters. The associated $n=1$ value plots at $3325 E$.

A strong chargeability high of $56.5 \mathrm{mv} / \mathrm{v}$, coincident with a resistivity low of 361 ohm meters, plots at 2875 E on line 4500 N .

CONCLUSIONS

Portions of the CK claims were surveyed with multi-separation time domain IP and total field magnetics in the 1979 field season. Work done consisted of detail IP on the Main Boulder Grid, reconnaissance IP on the Mist, Autumn and Raft Synform grids, and magnetics on the Mist and Autumn grids.

Chargeability (IP) anomalies detected on the survey have been classified as either strong, moderate or weak on the accompanying pseudosections. Apparent resistivity lows of

Geoph. Report: IP AND MAGNETICS...CK Page -10-
less than 500 ohm meters have also been noted. Some of the stronger geophysical responses are noted in the previous section. Due to the common presence of graphite and pyrrhotite in the rock types that occur on the CK property, numerous anomalies are present which are not necessarily related to economically interesting mineralization. Hence detailed correlation of these geophysical results to geological and geochemical information is required prior to any drill testing.

- 0

Respectfully submitted:

Endorsed for release:

ARS/tlp
5/12/79

Distribution:
Mining Recorder - 2
western District- 1
Geophysics File - 1

APPENDIX I

IN THE MATTER OF THE B.C. MINERAL ACT
AND IN THE MATTER OF A GEOPHYSICAL PROGRAMME
CARRIED OUT ON PORTIONS OF THE CK, RAFT, ULO, NORTH
AND PARK MINERAL CLAIMS ON THE CK PROPERTY
LOCATED 150 KM NORTH OF KAMLOOPS IN THE KAMLOOPS MINING DIVISION
OF THE PROVINCE OF BRITISH COLUMBIA, MORE PARTICULARLY

> N.T.S. 82M/l3

$$
\underline{S} \underline{T} \underline{A} \underline{E} \underline{M} \underline{N} \underline{T}
$$

I, ALAN R. SCOTT, OF THE CITY OF VANCOUVER, IN THE PROVINCE OF BRITISH COLUMBIA, MAKE OATH AND SAY:

1. That I am employed as a Geophysicist by COMINCO Ltd. and, as such, have a personal knowledge of the facts to which I hereinafter depose;
2. That annexed hereto and marked as "Appendix II" to this Statement is a true copy of expenditures incurred on geophysical survey and linecutting on the abovenoted claims;
3. That the said expenditures were incurred for the purpose of mineral exploration of the above-noted claims between the l9th of May and the 2 nd of October 1979.

ARS/tlp
5/12/79

APPENDIX II

STATEMENT OF EXPENDITURES

(IP and magnetics survey; linecutting)
 CK Property

I. DETAIL SURVEY, May 18-23)

Salaries:

ARScott	May	$20-22$	3	days	@	$\$ 150.00$	\$	450.00
NTHopkins	$"$	$19-22$	4	$"$	$" \$ 125.00$		500.00	
G Radway	$"$	$19-22$	4	$"$	$\$ 81.00$	324.00		

Charges per operating day
(towards report, drafting, supervision)
3 days IP survey @ \$l75/day. 525.00
Miscellaneous (travel expenses,gas, consumables) 272.00
Camp costs: 14 man days @ $\$ 15210.00$
Equipment rentals \& charges
Portable IP system 3 days @ $\$ 65.00195 .00$
Truck rental, May l7-23 221.00
II. COMINCO RECONNAISSANCE SURVEY,

June 13-16, 18-23, 25-30; July 1-3
Salaries:

GJNiemeyer	19	days	@ $\$ 105.00$	$\$ 1995.00$	
RPrefontaine	19	$"$	$" \$ 881.00$	1539.00	
ICummings	19	$"$	$" \$ 881.00$	1539.00	
JBell	19	$"$	$" \$ 88.00$	1539.00	
DSaunders	19	$"$	$" \$ 81.00$	1539.00	
SKirstiuk	12	$"$	$"$	$\$ 81.00$	972.00

Charges per operating day
(towards report, drafting, supervision)
17 days IP survey @ \$175/day \$2975.00
Miscellaneous (travel exp., gas, cons.) 808.47
Camp costs: 120 man days @ $\$ 15$ 1800.00
Equipment rentals and charges
7.5 Kw IP system 19 days @ $\$ 2514769.00$

Linecutting
Per contract with Martinson 6827.00
Supervision of linecutting (Murrel,
2 days @ \$172.31) 344.62
Truck rental, 3 days @ $\$ 20.9762 .90$
Gas $\quad 30.00$
26,739.99

CK: Appendix II
Page -2-

Total brought forward. . . $\$ 29,436.99$
III. WALCOTT RECONNAISSANCE SURVEY, Sept 14-Oct 2

13 days IP survey per contract
(Invoice No. 1457)
Linecutting, 10 kms @ $\$ 300$ Gas \& fuels
Domicile, 70 man days @ $\$ 20 /$ day 1400.00
Drafting, 2 days @ $\$ 90 \quad 180.00$
Supervision (Murrel), l day @\$172 172.00
Report preparation (ARScott), 2 days @ $\$ 150.00$
$\$ 8437.94$
3000.00
27.00
$300.00 \quad 13,516.94$
GRAND TOTAL. $\$ 42,953.93$

ARS/tlp
$5 / 12 / 79$

CK OPTION

29 October 1979
SSS:hmr

I, ALAN R. SCOTT, of 4013 West lith Avenue, in the City of Vancouver, in the Province of British Columbia, do hereby certify that:

1. I graduated from the University of British Columbia in 1970 with a B. Sc. in Geophysics;
2. I am a member of the Association of Professional Engineers of the Province of Saskatchewan, the Society of Exploration Geophysicists of America, and the British Columbia Geophysical Society;
3. I have been practising my profession for the past nine years.

ARS/tlp
5/12/79

COMINCO LTD
C.K. PROPERTY

DETAIL-MAIN BOULDER AREA
KAMLOOPS M.D., B.C

COMINCO
LTD

C.K. PROPERTY

DETAIL-MAIN BOULDER AREA KAMLOOPS M.D.,B.C

TITrid

- - APPAREITT RESISTVI: LOM

COMINCO LTD. C.K. PROPERTY DETAIL-MAIN BOULDER AREA KAMLOOPS M.D., B.C.

APE: ZEAT EESSSTVITY INTEPPRETATION

- APPARENT RESISTMITY OATE SURVEYEO...MAY 21, 1979

CONCHE INTEFVAIS:
APP RES $1,1.5,2,3,5,7,5,10$
APP CHARG --5.0 Mv/V

current dipole west

tran smitter - - hunteg we wid
244
$21,99^{5}$
EXPLISRATION DIVIS

DW6. No. 157-79-14

\square
 \square 26.0.0 28.0

COMINCO LTD
C.K. PROPERTY

MIST GRID
KAMLOOPS M.D., B.C
lineno. ztoen

\cdots
$+\square^{c_{1}}$
OLiotring point
$0=1,2,3,4$
0,1

contour intervals:

induceo polarization and resistivity

$\left.\right|^{\text {N.T. } . ~ S . ~} 82-M-13 \quad$ DWG. No. $157-79-21$
COMINCO
MIST GRID
KAMLOOPS M.D., B.C.
Line no. $14+00 \mathrm{~N}$
$\underset{\substack{\text { POLE-OLPOLE } \\ \text { ELLETROOE CONFIGURATIO }}}{ }$
∞

Plotting pont

DWG. No. $157-79-22$

Line no. $15+$ eon

$\infty \xrightarrow{+a_{1 / 2}^{c_{1}}}$

- $x=50 \mathrm{~m}$

JUNE 25,1979

PT. $\mid \$ 3$
URVEYED BY COMINCO LTD., XXPLORATION DIVIIIIO

Line no. letoon

PoL E-OIPOLE
ELETROOE CONFIGURAT

$\cdots \square^{c_{1}} \Gamma_{\square}^{(v)}$

Plotring point
$n=1,2,3,4$

Contour intervals:

induced polarizatio
1644

COMINCO LTD
C.K. PROPERTY

MIST GRID
KAMLOOPS M.D.,B.C.

Line no. $\xlongequal[8]{ }+\frac{000}{}$

NTour Nifeval: :
$=$

Ransmiter - humite 7
inouced polariz

Line no. hq+00N

contour intervals:

$\int^{\text {N.T. S. } 82-M-13}$

COMINCO LTD
C.K. PROPERTY

MIST G RID
KAMLOOPS M.D.,B.C.
Line no. $24+00 \mathrm{~N}$
POLE-OIPOLE

$\xrightarrow[\square]{a^{p_{2}}}$

〇Lorting poin
$n=1,2,3,4$

current electrooe west of potential oipole

Celver - iprs
inouceo polarizatio
PEL 13
C.K. PROPERTY

MIST GRID
KAMLOOPS M.D., B.C
LINE No. $25+00 \mathrm{~N}$
LINE NO. 25

∞
$\underset{\substack{\text { Plorting point } \\ n=1,2,3,4}}{ }$

为

ransmitter - humteo
7644
eceiner - ibr b PT,
为

	OOOE	OE	位	400E	S0E			OE	兂	，	L50E	${ }^{1700 E}$	1750E	E 1800 E	｜ 185	18505	1900E	195	S00	2000E	${ }^{2050 E}$	OE 2100E	E 2150E	2200E	E 2250E	E 230	300E 2	＋	${ }^{2400 E}$	${ }^{2450 E}$	${ }^{2500 E}$	${ }^{255}$	2600	OOOE 2650E	2200	ORE 27	2750E 28	28000	E 285	S0E 2	2900 E	2950e				
														早																																
																					－																									
												\cdots																																		
					－																																									
													＋	\pm																																

COMINCO LTD
C．K．PROPERTY
MIST GRID
KAMLOOPS M．D．，B．C．
line no． $26+00 \mathrm{n}$

∞
\because Olotting poin
Current electrooe west－．．of potential oipo

Contour witevals：
APP．Res
．

receiver－ipr a
induced polarizat
AND RESISTVITTY

COMINCO LTD.
C.K. PROPERTY

AUTUMN GRID
KAMLOOPS M.D.,B.C.

urrent electrone wesi of potential dipole

Trers

CHACERAB1:

contour intérval.s
$\begin{array}{ll}\text { APP } & \text { RES }-1,1.5,2,3,5,7.5,10 \\ \triangle P Q & C H A R G-5 \\ -50 M y\end{array}$
DATE SURVEYEO JUNE_14,19Z9

APP CHARG - $5.0 \mathrm{Mv} / \mathrm{V}$
transm.rien huntec 7.5kw
rectyen ipr a
nouceo polarization
 Apparent Resistivity

$n-2$
n-3
$n-4$

COMINCO LTD. C.K. PROPERTY

AUTUMN GRID KAMLOOPS M.D.,B.C.

LINE NO. $42+00 N$
POLE-DIPOLE
electrode configuration

∞
$x=50 \mathrm{~m}$

Plotting point
$n=1,2,3,4$
current electrode west of potential dipole

TITEMEAK CHARGEAZLLTYY HIGH
appagent resistivity interpretation

家
ontour intarvals.
App Res -- H.,5.2.3.5.7.510

$$
\begin{aligned}
& \text { APP RES - }-1, .5,2,3,5,5,5,51 \\
& \text { APP CHARG }-5.0 \mathrm{Mv} / V
\end{aligned}
$$

TRANSMITTER -- Huntec 75 K
RECEIVER -- IPR b
induced polarization and Resistivity sly y
SURVEYED BY COMINCO LTD., EXPLORATION DIVISION

$$
n-4
$$

900e 950E loooe lo50e llooe li50e l200e l250e

COMINCO LTD. C.K. PROPERTY AUTUMN GRID KAMLOOPS M.D.,B.C.

Gurrent flectrode west of potential dipole

THITMGEEAGEARGAGELITY HIGH
poparent pesistiver abilut hoh

- .-...appañent resistivity low
ontour intervals:
APP. RES $-\cdots-1, .5,5,3,5,7,7,10$
APP CHARG $-5.0 \mathrm{Mv} / \mathrm{V}$

TRANSMITTER - huntec 7.5 Km
RECEIVER - IPR
date surveyed june 15,-1979

7644
PT. 183
NDUCED POLARIZATION AN M MESISTIVY SVE

944
PT. 183

COMINCO LTD
C.K. PROPERTY

RAFT SYNFORM GRID RAFT SYNFORM GRID
KAMLOOPS M.D., B.C
line no. $46+0 e n$

$\square \prod_{1}^{c_{1}}{ }_{1}^{p_{1}}{ }^{1}(v)$

Confent electrode west

-

COMINCO LTD.
C.K. PROPERTY RAFT SYNFORM GRID KAMLOOPS M.D.,B.C

Hegetsury

ontour witervals:

\qquad

a
3000 E 3050E 3100 E 3150E 3200 E 3250E 3300 E 3350E 3400 E 3450 E 3500E Aprent Chargeability MV/V !ererareror!

BOOOE 3O50E 3IOOE 3I50E 3200E 3250E 3300E 3350E 3400E 3450E 3500E

COMINCO LTD.
C.K. PROPERTY

RAFT SYNFORM GRID
KAMLOOPS M.D,B.C.
LINE NO. $49+00 N$
POLE-DIPOLE
electrone configuration
$\underbrace{C_{1}}{ }^{P_{1}}-\mathrm{V} \mathrm{D}^{P_{2}}$
ring poin
plotting poin
$n=1,2,3,4$
current electrode west of potential dipole

ApPARENT RESISTVITY IMTE-YRETGTION

Contour intervals:
APP RES - - $1,1.5,2,3,5,7.5$,
APP CHARG $-\frac{1.0}{}$

TRANSMITTER -- Huntec 75 K
beceiver - munte

NOUCED POLARIZATION AND RESISTIVITY SURVE
SURVEYED BY PETER E WALCOTT \& ASSOC. LTD
L.INE no. $50+00$

DTH

CNTOUR NEERMLS:

nouceo polarizat

C.K. P PROPERTY
RAF
SYNFORM GRID KAMLOOPS M.D.,B.C

LINE NO, 5L+OON

C.

7644
PT. 183

