
ROTARY-PERCUSSION DRILL PROGRAM

ON THE

REEF CLAIMS NTS - 82L/3W

VERNON MINING DIVISION

UNION OIL COMPANY OF CANADA LIMITED

M.J. Gdiluck, P.Eng.(Ont.)
November, 1979

CONTENTS

	Page
INTRODUCTION	1
LOCATION	1
CLAIMS	ı
DRILLING PROCEDURES	2
SAMPLE TREATMENT	2
DOWN-HOLE LOGGING TECHNIQUE	3

APPENDIX

- A. COST STATEMENT
- B. EXPENDITURE DISTRIBUTION
- C. STATEMENTS OF QUALIFICATIONS

ROTARY-PERCUSSION DRILL LOGS

In Pockets

LOCATION MAP AND DRILL HOLE LOCATIONS

GAMMA RAY AND NEUTRON LOGS

79R-1 79R-2	(2 logs)	79R-6 79R-7
79R-4 79R-5		79R-8 79R-10

INTRODUCTION

The drilling program on the REEF claims was conducted primarily to determine the regional extent, thickness and nature of the paleo-channel sedimentary unit underlying the Miocene basalt flows which outcrop throughout the property. In addition these holes were used to test the potential of this sedimentary sequence for containing uranium mineralization.

The program commenced on September 21, 1979 under the supervision of the author and was completed by October 8th after a total of 3378 feet were drilled in 10 holes. The total direct cost of the work expended on this program and herein claimed for assessment credit is \$58,318.48.

The drilling method employed a combined rotary and percussion drill system which produced a rock chip type of sample. These samples were analyzed in the field with a spectrometer for radioactivity and later sent to a commercial laboroatory for chemical analysis. In addition 8 of the 10 holes drilled were also probed over their entire length with a combination gamma ray — neutron down hole logging tool. Two of the holes failed to penetrate through deep overburden and highly fractured volcanic flows.

LOCATION

The property is situated on the east side of Wood's Lake, 20 km due south of Vernon and 20 km. north of Kelowna. The claims are easily accessible from the village of Winfield on Highway #97, via a network of rural and old logging roads.

CLAIMS

The property consists of 9 valid claims (100 units), 8 of which are listed below and towards which the assessment credit is to be applied. The REEF #8 claim (2 units) is valid at the present time, but will be allowed to lapse on its expiry date of February 25, 1980.

The original REEF #7 claim was abandoned and restaked over the same ground in June 1979 and so it now has a new record number and expiry date.

REEF SOUTH GROUP

<u>Claim</u>	<u>Units</u>	Record No.	Record Date	New Expiry Date
REEF # 1	20	202	Dec. 8, 1976	Dec. 8, 1984
REEF # 7	5	634	June 15, 1979	June 15, 1984
REEF #10	15	406	Feb. 10, 1977	Feb. 10, 1985

REEF CENTRAL GROUP

Claim	Units	Record No.	Record Date	New Expiry Date
REEF # 2	15	203	Dec. 8, 1976	Dec. 8, 1983
REEF # 6	3	240	Feb, 25, 1977	Feb. 25, 1984

REEF NORTH GROUP

Claim	<u>Units</u>	Record No.	Record Date	New Expiry Date
REEF # 3	15	204	Dec. 8, 1976	Dec. 8, 1981
REEF # 4	20	238	Feb. 25, 1977	Feb. 25, 1982
REEF # 5	4	239	Feb. 25, 1977	Feb. 25, 1982
REEF # 9	1	371	Aug. 22, 1977	Aug. 22, 1983

DRILLING PROCEDURES

The drilling was performed by Alberta Southern Exploration Drilling Ltd. using a truck mounted Ingersall Rand TH-60 rotary drill equipped with a down-hole percussion hammer and a drill-through casing hammer.

A 6 inch diameter steel casing was driven down to bedrock and left in the hole. A $5\frac{1}{2}$ inch diameter hole was drilled through the bedrock lithologies and immediately upon completion of the drilling, before excessive caving could occur, a 2 inch diameter P.V.C. plastic pipe was installed. This was done in order that the gamma ray-neutron probe could be safely lowered to the bottom of each hole after the drill rig had moved off the site.

Percussion drilling was used to penetrate the hard volcanic flows and rotary drilling methods employing tricone type bits, were used to drill through the underlying poorly consolidated sediments.

No drilling additives, including water, were put down the hole during the course of drilling. The rock chip sample was returned to the surface using compressed air. Samples retrieved at the surface from below the water table were in the form of a slurry composed of ground water, natural mud and rock chips.

SAMPLE TREATMENT

Approximately a 30% split of each 10 foot interval drilled, was collected after being deflected above the drill collar into a galvanized

wash tub. Each sample was manually homogenized, scanned with an URTEC Model UG-135 spectrometer and geologically logged. Two, approximate 1 pound samples from all intervals below the basalt cap were then bagged. One sample was forwarded to Bondar-Clegg Laboratories in Vancouver and analysed geochemically for uranium and gold (gold on every second sample only). The other sample was retained for possible further analysis and examination and stored in a warehouse in Kamloops.

DOWN-HOLE LOGGING

Roke Oil Enterprises Ltd. of Calgary was contracted to run down-hole gamma ray and neutron logs in the completed holes. (2 holes were abandoned in overburden). The probing equipment is mounted in a four wheel drive vehicle, complete with winch and all the recording instrumentation. The two logging devices are contained within a single tool assembly, approximately 6 feet in length and $\frac{1}{4}$ inches in diameter. Both logs were run simultaneously. The first hole 79R-1 was logged twice, once through the steel drill pipe for comparative purposes then through the plastic pipe.

Both logging tools were designed and constructed by Roke Oil. The gamma ray detector is a standard sodium iodide crystal 1.77 cubic inches in size. The instrument measures total gamma radiation only. Total count readings are recorded on the chart with 15 API units equal to one division. Each division is approximately equivalent to 15 counts per second.

The neutron log inversely measures the hydrogen concentration in the lithologies and hence in this case measures the amount of contained water, ie. the porosity of each rock unit. High porosity units such as shales and clays show as low points on the graph whereas lower porosity sands and granites shift the log to the right.

Af Hollvela

APPENDIX A

COST STATEMENT

Salaries and Benefits: Union Oil Personnel		
M.J. Gidluck, Senior Geologist: Sept. 21 - Oct. 8 (18 days) @ \$200/day R. Sharp, Geologist:	=	\$ 3600.00
	=	300.00
	•	390.00
	=	1000.00
		\$ 5290.00
Drilling: Rotary-Percussion Machine, Alberta Southern Exploration Drilling, Invoice No. 01479 total of 3378 feet Contractors:		\$43929.86
Roke Oil Enterprises Ltd down hole probing Radiometric and Neutron logging of *"9" holes		\$ 4421.72
Macdonnell and McFarland TD-15 bulldozer 33 hours @ \$35.00/hour		\$ 1155.00
Transportation and Travel: Union Oil Personnel		
Airfare and taxis \$ 175.00 Bowmac, Kamloops - 4W drive 551.21 - fuel 133.94		\$ 860.15
Room and board - Union Oil Personnel 27 man days @ \$35.00/day		\$ 945.00
Rental of Spectrometer URTEC Ltd. (18 days)@ \$13.50		\$ 243.00
Material, supplies, freight and telephone		\$ 250.00
Maps, reports and airphotos		\$ 150.00
Analyses - Bondar-Clegg, Vancouver, 155 samples	_	<u>\$ 1073.75</u>
TOTAL:	\$	58,318.48
	_	

Total Cost Per Foot Drilled: \$17.26

^{* 8} different holes with one hole having been logged twice.

APPENDIX B

EXPENDITURE DISTRIBUTION

	REEF #1, #7, and #10 claims (40 units) drilled @ \$17.26/ft. =	\$	39,628.96
	REEF #2 and #6 claims (18 units) drilled @ \$17.26/ft. ==	s	10,442.30
North Group - 477 ft.	REEF #3, #4, #5 and #9 claims (40 united drilled @ \$17.26/ft. =		8,233.02

APPENDIX C

STATEMENT OF QUALIFICATION

Robert J. Sharp

- I, Robert Sharp, of Calgary, Alberta, do hereby certify that:
 - (1) I am a graduate of the University of Alberta B.Sc. Mineral Engineering (1975). I have practiced my profession for $4\frac{1}{2}$ years.
 - (2) I am employed as a geologist with Union Oil Company of Canada Limited, 335-8th Avenue, S.W., Calgary, Alberta. I reside at 206-3500 Varsity Drive, N.W., Calgary, Alberta.
 - (3) I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta as an "Engineer-in-Training", member no. 18311.

Robert J. Sharp

APPENDIX C

STATEMENT OF QUALIFICATIONS

Marcus J. Gidluck

I, Marcus J. Gidluck, am presently employed as a Senior Geologist with the Minerals Division of the Union Oil Company of Canada Limited and reside at 3303 Cedarille Drive, S.W., Calgary, Alberta.

I graduated with a B.Sc. degree in Geology from the University of British Columbia in 1965 and have been actively involved in mining exploration since that time.

I am a registered non-resident member of the Association of Professional Engineers of Ontario and a Fellow of the Geological Association of Canada.

Marcus J. Gdiluck, P.Eng. (Ont.)

HOLE No. 79R-1 PAGE 1 OF 3

PROJECT	REEF	BEARING INCLINATION Vertical	HOLE SIZE 54 Inches
PROPERTY	REEF #7 Claim	LOGGED BY M.J. Gidluck	COORDINATES
STARTED	September 23, 1979	ORILLED BY Alberta Southern Exploration	ELEVATION
COMPLETED	September 27, 1979	ORIU METHOD Kotary-Percussion	FINAL DEPTH 380 feet; 115.6 metres

DEPTH Feet (meters)	DESCRIPTION	CAMBLE	LENGTH ft(meter	R.A.		Au ppb			
00 (00)	Collar								
20 (6,1)	Overburden; casing								
30 (9.1)	Basalt; massive, f.g. dark green			85					
40 (12.2)	Basalt			84					L_
50 (15.2)	Basalt			83		 			
60 (18,2)	Basalt			84					
70 (21,3)	Basalt			85					
80 (24.3)	Basalt			85					
87 (26.5)	Basalt; slightly oxidized 86/-87'	1926	7	85	<0.2	< 5_		:	
90 (27,4)	Sand and gravels; sand, pea size pebbles; orange	1927	3	95	1	 _			
100 (30.4)	Quartz sand: buff brown, damp; some clasts to	1928	10	104	0.4	< 5			
	pubble size; mostly quartz, some granite and few								
	hasalt fragments			·· <u> </u>					
_110 (33.5)	Gravel; similar to above, increased grain size	1929	10	95	0.2				
120 (36.5)	Quartz sand: yellow brown colour	1930	10	93	<0.2	< 5			
130 (39.5)	Quartz sand: as above	1931	10	96	0.2	 -			
140 (42.6)	Sand: poor recovery; some water	1932	10	100	<0.2	₹.5			
150 (45.6)	Clay and sand: several feet of clay zone in	1933	10	95	0.4	_			
	upper part; coarse-medium grained sand								
160 (48.7)	Quartz sand and gravel: primarily quartz grains	1934	10	93	<0.2	< 5			
	lessor granite and gneiss fragments; few small								
	fragments of coal		:						
170 (51.7)	Quartz sand and gravel: as above	1935	10	92	<0.2	_			
180 (54.8)	Quartz sand: fine to medium grained; no peb-	1936	10	92	0.2	10			
	bies; poor sample return.						l i		

HOLE No. 79R-1

PAGE 2 OF 3

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH	R.A.	Un ppm	Au pp b				
200 (60.8)	Quartz sand and gravel: very poor return; ap-	1937	20	90	< 0.2]		
	parent increase in grain size									
210 (63.9)	Quartz sand and gravel: as above; poor return;	1938	10		⟨0.2	< 5				
	only enough sample for assay									
220 (66.9)	Sand and gravel: sample mostly cave from	1939	10		0.2		[11		
	above, abundant basalt.	L								
230 (70.0)	Sand and gravel: poor return and sample con-	1940	10		₹0.2	< 5	}			
	taminated from above]]		
240 (73.0)	Gravel and water table in channel: increased	1941	10	96	0.4	-				
	clast size; rounded, fluvial clasts, polymictic						<u> </u>			
	but abundant quartz ≈ 50%			·-	<u> </u>					
250 (76.0)	Gravels: as above 50% quartz	1942	10	99	<0,2	< 5	ļ			
260 (79.1)	Gravels: as above	1943	10	95	<0.2			<u> </u>		
270 (82.1)	Gravels: as above	1944	10	98	0.4	< 5	<u>.</u>			
280 (85.2)	Gravels and basement?: similar to above with	194 <u>5</u>	10	100	2		<u> </u>			
	less pebbles; small angular fragments of sili-		<u></u>					<u> </u>		
	ceous pale green rock - possible basement						<u> </u>			
290 (88.2)	Basement and gravels: pale green rock with	1946	10	95	2	< 5	<u> </u>	<u> </u>		
	traces of pyrite						<u> </u>	<u> </u>		
300 (91.3)	Basement and gravels: as above but green rock	1947	10	115	0.8					
	now 35% and larger chips appear to be dioritic,				<u></u>					
	frequently contains specks of pyrite								\longrightarrow	
310 (94.3)	Basement and gravels: as above	1948	10	101	1	45	.			
320 (97,3)	Diorite and gravels: diorite clasts becoming	1949	10	105	1			1		
	more angular, slight increase; decreasing	<u> </u>				<u> </u>	 			
	rounded quartz	ļ			<u> </u>		<u> </u>			
							<u> </u>			·
									- 1	

HOLE No. 79R-1

PAGE 3 OF 3

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter)	R.A.	Un ppm	Au ppb	<u> </u>		$\overline{\mathbf{T}}$
330 (100,4)	Gravels and diorite: increased quartz clasts to	1950	10	95	1	< 5			
	50% and some pubbles; 30% diorite but small and								
	angular								
340 (103.4)	Diorite: increased basement fragments to 65%	1951	10	95	1				
	of sample; quartz contaminated now only 20%								
350 (106.5)	Diorite: fragments now 75% of sample; quartz	1952	10	95	<u> </u>	< 5			
	to 15%							\bot	
360 (109.5)	Diorite: as above	1953	10	95	1		<u> </u>		
370 (112.5)	Diorite: sediment contaminated less than 10%;	1954	10	98	1	<u>< 5</u>			
	dark green fragments probable amphib, zones in								<u> </u>
	diorite								
380 (115.6)	Diorite: 90% of sample now basement; traces	1955	10	96	1		ļ <u>l</u> .		
	pyrite throughout						\bot		
380 (115.6)	BOTTOM OF HOLE						<u> </u>		
··	a) all steel casing left in hole								
	b) PVC plastic pipe (2 in. diameter) inserted in				\longrightarrow		<u> </u>		
	hole down to 375 feet and left in hole								
	c) - R.A. (radioactivity) of each sample inter-								
	val was determined with an URTEC Differential						<u> </u>		
	Spectrometer, model UG-135 averaging over 3,	<u> </u>							
	10 second count periods.						ļ. <u></u>		
	d) The hole was probed with a combination Gamma				ļ				
	Ray and Neutron log tool by Roke Oil Enterprises	Ltd.					 	_	
_ .	e) Un - uranium geochemical analysis with extrac	-					ļļ		
- 	tion by cone, nitrie acid,						<u> </u>		
	M. Hidluck						ļļ		
	· /		1			-		1	

HOLE No. 79R-2
PAGE 1 OF 4

PROJECT	REEF	BEARING INCLINATION vertical	HOLE SIZE 51/2 inches
PROPERTY	REEF # 1 Claim	LOGGED BY M.J. Gidluck	COORDINATES
STARTED	September 27, 1979	ORILLED BY Alberta Southern Exploration	ELEVATION
COMPLETED .	September 28, 1979	PRILL METHOD Rotary Percussion	FINAL DEPTH 406 ft.; 123.5 meters

DEPTH Foot(meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft (meter	R.A.	Un ppm				
00 (00)	Collar					 			
12 (3.6)	Overburden: 6 inch steel casing also tzo			69		[L		
20 (6.1)	Basalt: dark green-black massive, hard			67					
30 (9.1)	Basalt: limonitic weathered zones			67			ļ		[
40 (12,2)	Basalt: some weathering			66					
50 (15.2)	Basalt: fresh and weathered fragments; deeply			67					
	fractured basalt flows					 			
60 (18,2)	Basalt: as above			64					
70 (21.3)	Basalt: as above			66				L	
80 (24.3)	Basalt: as above			68		 			
90 (27.4)	Volcanic Ash and Clay Seam; light green, soft;			*73	<u> </u>				
	damp								<u> </u>
100 (30.4)	Basalt and Ash Clay: as above; some chips dark			75				L	
	green fresh basalt								
110 (33.5)	Basalt: as above becoming very wet from above		•	67					
	clay seam								
120 (36.5)	Basalt and mud: as above			68		;			
130 (39.5)	Basalt: as above, muddy			74				·	
140 (42.6)	Basalt: as above, large fresh basalt chips;			76					
	dark green colour	·				 			
150 (45.6)	Basalt: as above			73					
160 (48.7)	Basalt: as above			75		l			
166 (50.5)	Basalt: as above			70					
	* Note: Spectrometer recalibrated at 90'.					 			

HOLE No. 79R-2

PAGE_2 OF_4

DEPTH	DESCRIPTION	SAMPLE	LENGTH	R.A.	Un	 Au			Τ_
Feet (meters)		ft(meter)	cps	bbur	ppb		<u> </u>	<u> </u>
170 (51,7)	Base of basalt flow and clay: fine grained,			72		 			
	green, soft; contaminated with basalt cave						L		
180 (54.8)	Quartz pebble gravel: 65% rounded white quartz	1956		77	0.8	< 5			
	pebbles and sands; fluvial origin, some granite							<u> </u>	L
	and meta sediment clasts; basalt cave about 15%								<u>L</u>
190 (57,8)	Quartz pebble gravel: similar to above with	1957		71	1				
	abundant boulders; 75% quartz, 25% polymictic								\prod
	clasts and caving								
200 (60.8)	Polymictic conglomerate: very large boulders of	1958		74	0.8	 <u> </u>			
	pegmatite and granite; abundant white quartz								·
	pebbles and cobbles? of 85%								
210 (63.9)	Polymictic conglomerate: as above	1959		75	0.8				<u> </u>
220 (66.9)	Polymictic conglomerate: as above	1960		. 75	0,4	< 5			
230 (70.0)	Gravels and Clay; assorted comp'n. clasts but	1961		75	0.6	 		 - "	
	mainly quartz; clay seam @ 226'-230' of fragment							 	
	compacted grey clay								<u> </u>
238 (72.4)	Clay and coal: fragment grey clay and hard	1962		76	1	_5			
	black coal seam at 238°							 	
250 (76.1)	Polymictic conglomerate: as @ 200' but in-	1963		74	0.4				
	creased basalt cave material								
260 (79.1)	Quartz gravels: increased rounded quartz clasts	1964		70	0.6	〈 5		 	
	- 65%; boulders of variable comp'n, but mainly								
	chert and granite								
270 (82.1)	Quartz gravels: as above, quartz 55%	1965		71	l				Ĺ
280 (85.2)	Clay and coarse sand; quartz to 50%	1966		75	0,2	< 5			
290 (88.2)	Clay: compacted grey clay zone	1967		75	0.4	. =.			
300 (91.3)	Clay: semi-compacted clay	1968		74	0.6	5			

HOLE No. 79R-2

PAGE_3____ OF__4___

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.		Au ppb				
310 (94.3)	Clay and gravels: clay zone terminates at 307'	1969		73	2	-				
	then into gravel, 50% quartz, 35% variable comp'n									
	and 15% pale green granitic fragments		, i		<u> </u>			11		
320 (97.3)	Boulders and gravel: polymictic comp'n., quartz	1970		78	0.6	< 5				
	50%, 30% granitic and pegmatite, 20% basalt cave?								<u>I</u>	
330 (100.4)	Boulders and gravel: as above; 10% green granition	1971		76	¢0.2					
	fragments									
340 (103.4)	Boulders and gravel: as above	1972		7 3	0.4	₹ 5				
350 (106.5)	Gravels and boulders; smaller cuttings up to pea	1973		72	0.4					
	size only; increased green granitic fragments									•
	to 15%; quartz decreased to 35%; possible basement	??								
360 (109.5)	Gravels? similar to above, smoother drilling,	1974		71	1	< 5				
	no boulders; possibly into bedrock; small green			_						
·	granitic fragments 15-18%							[
370 (112.5)	Granodiorite: cuttings of very fine rounded sand	1975		72	3					
	grains, appears to be "beach sand", of greenish									
	granitic-granodioritic composition; possibly fine					Ì				
	cuttings of basement due worm out bit							.]		
380 (115.6)	Granodiorite: as above; grains subrounded of	1976	·	72	3	10				
	coarse sand size.									
389 (118.3)	Basalt: probably dyke, hard drilling; massive	1977	,	69	1			1		
	dark green-black									
400 (121.7)	Cranodiorite: similar to 370'-380' but par-	1978		73	2]	Ţ		
	ticles greener due fresh mafics									
406 (123.5)	Granodiorite and basalt: granitic sand clasts	1979		70	2	_				
	as above; basalt at 405'-406'; bit would not									
	drill; changed bits and old bit completely worn;									·
	metal left down prevented further penetration									

HOLE No. 79R-2

PAGE__4__ OF__4__

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.	Un ppm						
406 (123.5)	BOTTOM OF HOLE										
						<u> </u>					
	a) all the steel casing was left in the hole										
	b) PVC plastic casing of 2 inch diameter was in-										
	serted and left in the hole								• •		
	c) R.A. (radioactivity) of each 10 ft. sample was										
	determined using an URTEC Differential Spec-	1									
	trometer, model UG-135 and averaging 3 separ-] <u>-</u>						
	ate 10 second count periods							l			
	d) The hole was proped through PVC pipe with a										·
	combination Gamma Ray and Neutron log tool										
	by Roke Oil Enterprises Ltd.	. <u>-</u>								_	
	e) Un = uranium geochemical analysis with extrac-						<u> </u>				$oxed{oxed}$
	tion by concentrated nitric acid.										
						<u> </u>			<u> </u>		
			<u>.</u> .								
	M. Niollick				<u> </u>	<u>.</u> .					
								<u></u>			
	· · · · · · · · · · · · · · · · · · ·										
						_	.	<u> </u>			<u>.</u>
						ļ					
			·								
								<u> </u>	<u> </u>		
			_							<u></u>	
			<u> </u>					<u> </u>	L		

HOLE No. ________ PAGE__L___ OF__2___

inches

PROJECT	REEF	BEARING INCLINATION Vettical	HOLE SIZE 51s inches.
PROPERTY	REEF #6 Claim	tOGGED By N.J. Gidluck	COORDINATES
STARTED	<u>September 28, 1979</u>		
			MNAL DEPTH 180 feet, 54.8 meters

COMPLETE					NAL DEPT	H 18	Q feet	. 54.8	meters	<u>s</u>	
DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.	Մո ֆրա		Au ppb				
00 (00)	Collar					<u> </u>					
12 (3.6)	Overburden; steel casing to this depth					<u> </u>		<u> </u>			
20 (6.1)	Basalt: fractured with weathering along fracts.	<u></u>		77					<u> </u>		
30 (9.1)	Basalt: as above	<u></u>		78				<u></u>	<u> </u>		
40 (12,2)	Basalt: as above			73							
50 (15.2)	Basalt: fractured as above; small zone, orange,			.74			<u> </u>		<u></u>		
	weathered, damp, clay.					<u> </u>		ļ <u> </u>			
60 (18.2)	Basalt: as @ 20'; fractured	ļ		75				<u> </u>	<u> </u>		
70 (21.3)	Basalt: as above			75	 	. <u></u>		<u> </u>	<u> </u>		
80 (24.3)	Basalt: as above			70							<u> </u>
90 (27.4)	Basalt: as above			76	<u> </u>						<u> </u>
100 (30.4)	Basalt and acid volcanies: distinct change,	1980		75	0.4		< 5	<u> </u>	<u> </u>	<u></u>	
	chips smaller than above; fine brown cuttings					<u>.</u>					
	and dust - probable acid volcanics										
110 (33.5)	Acid volcaules and basalt: as above increased	1981		.77	1		_				
·	brown fragments to 35%; few minute white chips										L
120 (36.5)	Acid volcanic and basalt: as above, traces of	1982	- 	76	0.8		₹5				
	agate silca; intraformational sediments approxi-										<u>_</u> _
	mately 45%, basalt 55%										
130 (39.5)	Basalt and acid volcanics; similar to above; de-			76							<u> </u>
	creased brown fragments to 25%			———			<u></u> .	ļ			<u></u>
140 (42.6)	Basalt: minor acid volcanic cave			76							
150 (45,6)	Basalt: as above			75							
160 (48.7)	Basalt: as above			74							
							[į	1	1	

HOLE No. 79R-3

PAGE___2 OF__2

								_		_
DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH	R.A.	Un ppm					
170 (51,7)	Basalt: water table intersected; decreased			79				· · ·		
	sample return, loss apparently in fractured	[
	basalt around 50-70 feet; increased caving of							<u> </u>		
	large basalt fragments jamming rod string									
180 (54.8)	No sample return: rods jamming, further progress									
	impossible and hole abandoned									
180 (54.8)	BOTTOM OF HOLE					 				
	a) all steel casing left in hole									
	b) PVC plastle pipe of 2 inch diameter was									
	inserted only down to the 70 ft. level									
	c) R.A. (radioactivity) of each sample was					<u> </u>				
	determined using an URTEC Differential									
	Spectrometer, model UG-135 and averaging					ł				
	3 separate, 10 second count periods.									
	d) This hole was not probed.									
	e) Un = oranium geochemical analysis with					 				
	extraction by conc. nitric acid.					 <u></u>	<u> </u>			
					: j	 	<u> </u>			
								<u> </u>		
	Of Sidleck									
						 <u> </u>				
								,		
]			
,					,			•	- 1	

HOLE N	<mark>ا</mark> مار	79R-4		
PAG	F 1	. OF	4	_

PROJECT	REEF	SEARING INCUMATION	HOLE SIZE 5½ inches
PROPERTY	REEF #2 Claim	LOGGED BY R. Sharp	COORDINATES
STARTED .	September 30, 1979		ELEVATION
COMPLETED .	September 30, 1979	DRILL METHOD Rotary Percussion	FINAL DEPTH 425 feet; 129.3 meters

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter)	R.A.	Մո թթտ	 Au ppb				
00 (00)	Collar							·		
17 (5.2)	Overburden and casing			87						
20 (6.1)	Basalt; dense black, red-brown rinds, clay in			78						
	fractures									
30 (9.1)	Basalt, dense black			78						
40 (12.2)	Basalt, dense black, some red sand at 38'-39'			69						
50 (15.2)	Basalt, dense black			72		 <u> </u>	<u> </u>			
60 (18.2)	Basalt, dense black			75	<u> </u>		<u> </u>			
70 (21.3)	Basalt, dense black, some damp brown sand @ 68'			.73		 				
78 (23.7)	Basaltic sand and clay @ 701-78'			84		<u> </u>				
80 (24.3)	Basalt, dense black			84						<u> </u>
90 (27.4)	Basalt, dense black			75						<u> </u>
100 (30.4)	Basalt, some clay in fractures			77	. .					L
110 (33.5)	Basalt, deuse black, some red fracture surfaces			77				. <u> </u>		<u>L</u> .
120 (36.5)	Basalt, dense black			72						<u> </u>
130 (39.5)	Basalt, dense black			73		 				
140 (42.6)	Basalt, dense black, red-brown weathered surfaces			75		 				
150 (45,6)	Basalt, dense black			76						
160 (48.7)	Basalt, dense black			74						L
170 (51.7)	Basalt, dense black			78						
178 (54.1)	Basalt, dense black, basal contact			~r						
180 (54.8)	Clay to mudstone; brown, fine cuttings	1983		83	3				_ , <u></u> -	
_190 (57.8)	Clay with shale chips, brown	1984		85	3	< 5				<u> </u>
200 (60.8)	Clay with shale chips	1985		88	3	_				L

HOLE No. 79R-4

PAGE_2___ OF__4___

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.	Un ppm	Au ppb				
202 (61.4)	Clay, orange brown	1986		82	2	∢ 5				
210 (63.9)	Carbonaceous shale, brown to black	1987		82	2	_				
220 (66.9)	Basalt, dacite-rhyolite chips	<u> </u>		83						
230 (70.0)	Basalt, minor dac-rhyolite (10%)			83						
240 (73.0)	Basalt, black to grey, exidized, may be older			82						
250 (76.0)	Basalt, same as 240			80						L
260 (79.1)	Basalt, dense black with weathered (brown) rinds			78					•••	
270 (82.1)	Basalt, dense black, minor weathering			74						
280 (85.2)	Basalt, black to grey			79						
283 (86,1)	Basalt, black to grey				: 	 				
290 (88.2)	Felsic tuff to tuffite chips, (fine sandstone to	1988		87	0,8	< 5				<u> </u>
	siltstone) grey, weathered, fine grained									<u> </u>
300 (91,3)	Felsic tuff to tuffite; grey, bedded, clasts fine	1989		81	0.6	 				<u> </u>
	and angular than #290									
310 (94-3)	Felsic tuff to tuffite, gray, clay rich, fine clas	ts		83						
	in chips, hit water @ 305'	<u> </u>				 				<u> </u>
320 (97.3)	Felsic tuff to tuffite chips, grey, 10% rhyolite			82		 <u>-</u>	.			<u> </u>
	chips, felsic tuff may represent a siltstone or									
	mudstone deposited in aqueous environment derived					 				
	from a felsic volcanic source.					 				
330 (100.4)	Felsic toff, grey, clay rich, 15% rhyolite frag-			78		,				
	ments, 1% basalt chips from above									
340 (103.4)	Felsic tuff, contains some 1 mm. fragments of			78				:		
	quartz							ļ		<u> </u>
350 (106.5)	Felsic tuff or mudstone to siltstone, grey, less	1990	·	73	1	< 5				
<u>,</u>	compact than above units, contains quartz and					 	<u> </u>			
	feldspar clasts					 				
										•

HOLE No. 79R-4

PAGE 3 OF 4

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.	Un ppm	Au ppl				
360 (109.5)	Felsic tuff (siltstone?) grey, well consolidated,			70						
	10% thyolite chips									
366 (111.3)	Felsic tuff									
370 (112.5)	Agate and rhyolite: (1% green feldspathic rocks -	1991		71	1	_				
	may represent basement lithology), agate is yel-									
	low coloured							j		
380 (115.6)	Agate and rhyolite: 40% white quartz cuttings,	1992		84	1	45				
	small red (hematitic) and yellow agate chips,									
<u>.</u> .	thyolite tuff, white foldspars in cuttings	<u> </u>								
387 (117.7)	Agate and rhyolite; as above, finer grained cut-									· .
	tings of agate, rhyolite and felsic tuff.						_			
390 (118.6)	Granodiorite basement: green coloured, fine			77					<u> </u>	
	grained, chips are subangular							<u> </u>		
400 (121.7)	Cranodiorite basement; white quartz cuttings (60%			72			_			
	while feldspar and green granodiorite chips (25%)			· 		_			 	
	agate (15%)									<u>.</u>
410 (124.7)	Granodiorite basement; white quartz cuttings (60%	<u> </u>		82					<u> </u>	
	white feldspar and green granodiorite chips (35%)								ļ l	
	agate and felsic tuff (5%)									
420 (127.8)	Cranodiorite basement; white feldspar and green	1993		85	1	_				
	granodiorite (45%), white quartz cuttings (50%)									
	agate and felsic tuff (5%)									
425 (129.3)	Granodiorite basement; green granodiorite chips			88						
	plus white feldspars (55%), quartz cuttings (45%)								l	
	END OF HOLE @ 425'									
	a) all the steel casing was left in the hole									
	b) PVC plastic pipe was inserted to the bottom									
			:				T			

HOLE No. 79R-4

PAGE_4___ OF__4__

									_ ~		_
DEPTH	DESCRIPTION	SAMPLE NO.	LENGTH								
	b) cont'd					<u> </u>					
•••	and left in the hole			·							
	c) R.A. (radioactivity) of each sample was deter-	,									
	mined using an URTEC Differential Spectrometer										
	d) The hole was probed through the PVC pipe with										
	a combination Camma Ray and Neutron log tool by	·									
	Roke Oil Enterprises Ltd.	•									
	e) Un = uranium geochemical analysis with extrac-										
	tion by concentrated nitric acid										
	brown Sl. C.										·
			•			Ī					
•											
			<u> </u>			<u> </u>		l			
<u></u>		<u>-</u> .									
•	· · · · · · · · · · · · · · · · · · ·		······			<u> </u>	<u> </u>				· ·
						<u> </u>	-	<u> </u>	···-		\Box
	1	I	I I	l	1	ı	1	ı	ı	4 !	i

PROJECT	REFF	BEARING INCLINATION Vertical	HOLE SIZE 5½ inches
PROPERTY	REEF #1 Claim	LOGGED BY R. Sharp	COORDINATES
TARTED	October 1, 1979	ORNIED BY Alta, S. Exploration Drilling	ELEVATION
OMPLETED.	October 1, 1979		FINAL DEPTH. 415 feet: 123.2 meters

COMPLETE					NAL DEPT	H <u>. 4</u>	15 feet	123.	z mere	<u>r.</u>	
DEPTH Feet(meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.			Au ppb				
00 (00)	Collar		,	,			1				
10 (3.0)	Overburden and casing			86							
20 (6.1)	Basalt, black, dense, red-brown rinds			78			T				Г
30 (9.1)	Basalt, black, dense, red-brown rinds			77							<u> </u>
40 (12.2)	Basalt, black, dense, red-brown rinds	_		78				<u> </u>			Г
50 (15,2)	Basalt, black, dense, red-brown rinds, clay along			76					<u> </u>		Γ
	fractures					<u> </u>					
60 (18.2)	Siltstone, dacite tuff	1994		74	0.8		4 5				
	siltstone: grcy, clay rich (55% of sample)										
	dacite tuff: white(45%) of sample										
70 (21.3)	Felsic (dacite) tuff, clay; felsic tuff (70%) red-	1995		78	l		Ī -				
	brown stain on chips; clay: matrix of sample,										
	poor sample return - probably clay seam with rhy-					l	l			<u> </u>	
	olite to dacite horizon, damp.						1				
80 (24.3)	Felsic tuff, siltstone; felsic tuff (rhyolite)	1996		78	1		k 5				Γ
_	- 60% - white with yellow stains, siltstone - 30%,										
-	quartzose, hematitic red to dark brown, fine	,									
	grained granite (?) chips - felsdpathic quartzose			·						-	
	rock, yellowish (10%), mud colour change from										
	brown to yellow										
90 (27.4)	Basalt; black to reddish, weathered, different	1997		75	0.6						
	from upper basalt, contains crystals of clear to										
	green mineral - not olivene, glassy, chips of thy-						<u> </u>	1		<u>"</u>	
	olite tuff (10%) from higher cuttings. Abundant										
	water, mud colour change yellow to yellow-brown.						1	T		` _	

HOLE No. 79R-5

PAGE__2 __ OF__5___

DEPTH Feet(meters)	DESCRIPTION		LENGTH fl(meter)	R.A.	Սո ըրտ	 Au ppb			
100 (30,4)	Basalt; black dense, 10% felsic tuff chips			78					
	(contamination)						•		
110 (33.5)	Basalt; black dense			85					
120 (36.5)	Basalt; fine grained feldspar crystals in chips of			79					
	basalt, mud colour, yellow-brown, 10% rhyolite					 			Ĺ
	tuff chips								
130 (39.5)	Felsic volcaniclastic sandstone and siltstone (65%	1998		78	0,4	< 5			
	fine grained, yellow to red, black basalt chips	ļ.		· 					
	(35%), mud colour change to grey-brown								
140 (42,6)	Felsic volcaniclastic siltstone and fine sand-	1999		84	1			 	-
	stone (75%) grey to brown, soft green amorphous				<u>-</u>	 			
	mineral (clay?) stains and permeates siltstone					<u> </u>			
	chips, basalt chips $\sim 25\%$					 <u> </u>		 	
150 (45.6)	Felsic volcaniclastic-siltstone, basalt, silt-			78					
	stone contains green clay, about 60% of sample,					 ļ <u>.</u>		 	
	basalt chips, 40% - dominant at end of hole					 		 	
160 (48.7)	Basalt, dense black (95%), felsic volcantelastic			79			:	 	
	siltstone (5%)							 	
170 (51.7)	Basalt, dense black (90%), volcaniclastic silt-			78					
	stone and grey midstone (10%)							!	L
180 (54.7)	Basalt; dense black (95%), felsic volcaniclastic			80				 	
	siltstone, quartz cutting (5%)								
190 (57.8)	Basalt; large fracture in bedrock between 180-190'			76				 	
_200 (60.8)	Basalt; dense black, weathered fractures-show			7 7		 		 	
	bleaching along fractures								
210 (63.9)	Basalt, siltstone, basalt dense block, composes	2000			0.8	 K 5			
	basal section of flows, grey clay rich siltstone								
-	to claystone starts at 209'				j	j		j	

HOLE No. 79R-5

PAGE. 3.... OF. 5

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.	Un ppm		Au ppb				
220 (66.9)	Siltstone, clay, basalt, carbonaceous shale silt-	7501		<u>87</u>	2						
	stone and clay 70%, basalt chips 30%, carbonaceous				<u> </u>	l					
	layer $\sim 1^{\circ}$ thick at 211', clay and drill mud										
	(washings) are grey				<u> </u>	<u> </u>	ļ	<u> </u>	ļ <u> </u>	i	
230 (70.0)	Quartz sand and chips/grey siltstone chips,	7502		84	1		< 5		<u> </u>		
	quartz 70%, siltstone 30%, fine grained chips					l	<u>L.,</u>				
	2-3 mm/s							}			
240 (73.0)	Quartz sand, feldspar cuttings, granite chips,	7503		82	0.4		_				
	quartz 70%, feldspar 20%, granite 10%, chip size			•]	[<u> </u>			
	coarsening up to 1.5 cmp										·
250 (76.1)	Quartz sand, granite chips, feldspar chips, jas-	7504		79	0.4		₹5				
	per chips, quartz 55%, granite 25%, feldspar 15%,										
	jasper 2%, 3% contamination of basalt and silt-]		L	
	stone from above units										
260 (79.1)	Quartz sand and gravel, granite, foldspar chips,	7505		78	0.6		_				
	siliceous siltstone and clay, quartz 70%, 15%										
	feldspar, 5% granite, 10% siltstone, minor basalt										
	chips from above, some chert chips from clasts In										
	channel conglomerate, muscovite flakes in cuttings	}				·		<u> </u>			
270 (82.1)	Quartz sand and gravel; clay, coal, quartz 60%,	7506		82	1		₹5				
	feldspar 2%, granite 3%, coal 10%, clay and silt-										
	stone 10%, 5% contamination from above, clay and					 					
	coal seam at 268'							[
280 (85.2)	Claystone; grey mud, no coal chips present	7507		85	2		_				
290 (88.2)	Clay, quartz sand and gravel, coal, granite gravel	7508	L.	85	1		< 5	[
	meta-sediment, quartz 60%, coal 2%, granite and										
	black siliceous meta-sediment gravel 38%, some		·								
								i			_

HOLE No. _______________

PAGE 4 OF 5

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH	R.A.	Un ըրm	Au ppb	<u> </u>			
290 (88.2)	continued.									
	pegmatite gravel in sample cuttings, clay portion									
	of sample washed out as mud, clay-sand contact				[]					
	at 287									
300 (91.3)	Quartz sand and gravel, granito and meta-sediment	7509		86	1					
	gravel, quartz 55%, granite 20%, metasediment 25%		!	· 			_	<u> </u>		
310 (94.3)	Quartz sand and gravel, granite, pegmatite and	7510	<u> </u>	83	0,8	< 5				
	metasediment gravel, coal and claystone, quartz								i	
	60%, granite 20%, metasediment 15%, coal 2%,									
_	claystone 3%							}		
320 (97.3)	Quartz sand and gravel, granite and metasediment	7511		84	0.8					
	coal, clay, quartz 60%, granite 15%, metasediment							<u> </u>		
	20%, coal and clay 5%		<u> </u>					<u> </u>		
330 (100.3)	Quartz sand and gravel, clay, coal, granite and	7512		89	0,8	₹ 5	<u> </u>			
	metasediment, quartz 65%, granite 10%, metasedimen	t						<u> </u>		
	20%, clay and coal 5%, clay and coal from 329-330			<u> </u>						
340 (103.4)	Clay, claystone, coal, quartz sand and pebbles,	7513		.85	0.8					
	clay and claystone 90%, quartz sand and pebbles				<u> </u>		<u> </u>			
	8%, coal 2%, clay colour is grey, claystone may		<u></u>							
	include minor clay-rich siltstone				ll					
350 (106.5)	Clay and claystone, yellow-brown colour	7514		84	1	₹ 5				
360 (109.5)	Clay, quartz sand and pubbles	7515		80	2		<u> </u>	<u>] </u>		
370 (112,5)	Quartz sand and pebbles, granite and metasediment	7516		80	1	< 5	<u> </u>			
	gravel, quartz 50%, granite 30%, metasediment		<u></u>							
	20%, granitic material green coloured and may						<u> </u>			
	reflect epidolization and chloritization (pre-									
	miocene), poor sample return.									

HOLE No. 79R-5

PAGE 5 OF 5

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter)	R.A. cps	Un ppm	Au ppb			
380 (115.6)	Quartz sand and pebbles, metasediment gravel,	7517		79	0.8				
	green granite cuttings, quartz 60%, metasediment	<u> </u>							
	20%, green granite 20%								
390 (118.6)	Cranite cuttings, quartz cutting and pebbles,	7518	<u></u>	86	2	< 5			
	chert chips, green granite 60%, quartz 35%, chert								_ _
	and basalt (contamination?) 5%, may be in base-							<u>i</u>	
	ment granite, minor quartz pebbles-mostly cuttings				<u> </u>				
	no metasediment chips								
400 (121.7)	Granite cutting, quartz cuttings, quartz pebbles		<u> </u>	82			<u> </u>		
	basalt chips, granite 60%, quartz 30%, quartz peb-		<u> </u>		<u> </u>		ļ <u>.</u>	—⊢	<u> </u>
	bles and basalt chips 10% - as contamination,		<u> </u>				<u> </u> -		
	granitic material is green and fine grained	ļ	ļ		├		<u> </u>		
415 (123.2)	Cranite cuttings, green to yellow, fine grained.	ļ	ļ <u>.</u>	87	 		 		
	5% contamination with quartz pebbles and meta-	ļ	ļ		 		ļ .		
	sediment chips and cuttings from above units.	<u> </u>	ļ. <u> </u>		 		<u> </u>		····
415 (123,2)	END OF HOLE	↓			 				
	a) all steel casing left in the hole	ļ			<u> </u>		[
	h) PVC plastic pipe of 2 inch diameter was inser-	ļ			\sqcup		<u> </u>		
	ted and left in the hole.	ļ					Ī		
	c) R.A. (radioactivity) of each sample was deter-				<u> </u>				
	mined with an URTEC Differential Spectrometer,	ļ			ļ				
	model UC-135 averaging 3 separate 10 second count	ļ			 		_		
	periods,	ļ. <u> </u>			 		 -		
	d) The hole was probed with a combination Gamma	 	ļ						-
	Ray and Neutron log tool by Roke Oil Enterprises I	td	ļ						
	e) Un = uranjum geochemical analysis with extrac-	ļ			 		<u> </u>		
	tion by concentrated nitric acid.	1	<u> </u>		ļļ				
	(al) (1)		•						ļ

HOLE No. 79R-6

PAGE 1 OF 5

PROJECT	REEF	BEARING INCLINATION Vertical	HOLE SIZE 51/2 Inches
PROPERTY	REEF #1 Claim	togged by R. Sharp and M.J. Gidluck	COORDINATES
STARTED	October 2, 1979	DRILLED By Alta. Southern Exploration Dril	
COMPLETED	October 4, 1979	DRML METHOD Rotary-Percussion	FINAL DEPTH 425'; 129.3 meters

DEPTH Foot (meters)	DESCRIPTION	SAMPLE NO.	LENGTH It (meter	R.A.) ^{cps}	Un ppm		Au ppb				
00 (00)	Collar										
10 (3.0)	Casing and overburden			78	l						
20 (6.1)	Basalt, dense black		}	71							
30 (9.1)	Başalt, as above			73							
_40 (12.2)	Basalt, dense black			71							
_50 (15.2)	Basalt, dense black		[68			ļ			·	
. 60 (18.2)	Basalt, dense black, brown weathered rinds on			67		ļ 	<u></u>		:		<u>L</u> _
	some chips 5% of chips have grey to light brown										<u> </u>
	'bleached' portions	<u> </u>			<u> </u>	<u> </u>	ļ <u></u>				
70 (21.3)	Basalt, claystone		<u></u>	70							
	basalt, dense black; claystone, brown; clay-		<u> </u>								L
	stone begins at 69'				ļ						<u> </u>
80 (24.3)	Claystone, brown, fine grained, most of sample	<u> </u>		77					<u>.</u>		<u> </u>
	pulverized to a clay rich sand					· <u> </u>	ļ				
90 (27.4)	Claystone, quartz-feldspathic sandstone and silt-	7519		73	1			<u> </u>			
	stone; claystone, brown, fine grained to 89';								•		
	quartzo-feldspathic sandstone 89' to 93' (weathers						<u> </u>				
	white to orange)										<u> </u>
100 (30.4)	Quartzo-feldspathic sandstone, sand, basalt		<u> </u>	72			<u> </u>				
	quartzo-feldspathle sandstone to 93' (as above)										
	brown sand (fine grained) 93' to 94'				<u> </u>					·	<u> </u>
	basalt, dense black 94' to 100'				L						
110 (33.5)	Basalt, sand			74							
	basalt, dense black to weathered brown-orange (55%)						<u> </u>				

HOLE No. 79R-6

PAGE_2___ OF__5___

DEPTH Foet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH	R.A.	Un ppm	Au ppb			
110 (33.5)	continued.		, ,				<u> </u>		
	sand; brown, fine-grained, may be from interflow]						
	sand layer (45%)								
120 (36.5)	Basalt, dense black, minor brown weathered rinds			75					
	agate inclusions (< ½% of basalt chips) contact		: :						
***	with claystone at 120'					j]	
130 (39.5)	Claystone, basalt; brown claystone chips, basalt,			76					
	dense black; contact at 128'								 Г
140 (42.6)	Basalt: dense black, few brown weathered rinds			74					
150 (45.6)	Basalt: as above			68					· ·
160 (48.7)	Basalt: dense black, abundant brown weathered			.68					
	rinds								
170 (51.7)	Basalt: as above			70			<u> </u>	<u> </u>	
180 (54.7)	Basalt: dense black, basalt with brown rinds ends			66					
	at 176°, dense black basalt 176-180°								
190 (57.8)	Basalt, clay-rich siltstone, dense black basalt to	,		73					<u></u>
	184', grey clay-rich siltstone 184'-190';								
	contains very fine clastic fragments of quartz,								
	waterlain. * Hit watertable at 185'.								
200 (60.8)	Quartzo-feldspathic siltstone, grey, 20% clay,	7520		78	0.8	c 5			
	competent. May contain traces of carbonaceous								
	matter				<u> </u>		ļ		
210 (63.9)	Quartzo-feldspathic siltstone (as above), basalt			74			<u> </u>		
<u> </u>	chips black dense and brown weathered rinds,								
	contact near 200'.								
220 (66,9)	Basalt, claystone to siltstone black dense haşalt			76					
	chips (45%) with brown rinds, grey siltstone,								
	chips (45%) with brown rinds, grey siltstone,	-							

HOLE No. 79R-6

PAGE__3__ OF__5___

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH. ft(meter)	R.A.			Au			
220 (66.9)	continued.						* 1			
	clay-rich (55%), thin basalt flow between 208'									
	and 212'.									
230 (70.0)	Siltstone, basalt; basalt is grey and weathered,			84						
	vesicular (15%) siltstone is grey (85%)			<u> </u>						
240 (73.0)	Basalt: grey bleached vesicular plus black,			68				 		
	dense chips, mixture of weathered and fresh basalt				İ			 <u>.</u>		
250 (76.1)	Basalt: as above			71		<u></u>				
260 (79,1)	Basalt: some hard, grey, contaminated flows or			76						
	Intermediate volcanics									· .
270 (82.1)	Basalt: as above, no intermed, volcanics.			74						<u> </u>
280 (85.2)	Basalt: as above			76	<u>'</u>	<u> </u>		 		L.,
290 (88.2)	Basalt: as above			72						
300 (91.3)	Basalt: as above			77				 		L
310 (94.3)	Basalt: similar to above with hard grey inter-			75	<u> </u>					
_	med, volcanics or conteminated with siltstone									
	inclusions				<u> </u>					
315 (95.8)	Basalt: as above, increased grey fragments,	7521			1		-			
	siltstone?; few quartz and granite clasts in									
	lower foot near contact									
320 (97.3)	Channel sediments: white, rounded quartz pebbles	7522		75	1		4 5			
	and sand size fragments approximately 45%, 45%									
	pale green, granitic clasts and fragments about								_	
	40%, peg [†] c., meta-sediments and basalt cave 15%;									
	increased water								!	
330 (100.3)	Quartz gravels: as above, slightly larger grain	7523		81	0.6		-			
	size; less granitic fragments, more meta-sediments							 		
	and meta-volcanics.									1

HOLE No. 79R-6

PAGE__4 OF_5___

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter)	R.A.	Un ppm	Au ppb				
340 (103.4)	Quartz gravels: as above, quartz now 65%	7524		82	1	 < 5	ļ	<u>l</u> .	<u> </u>	<u> </u>
350 (106.5)	Quartz graveis and clay: as above; clay zone @	7525		81	0.8	_		l		L
	349'-350' with coal fragments									
360 (109.5)	Clay zone: grey plasticene type clay with scat-	7526.		81	1	< 5	ļ		<u> </u>	<u></u>
	tered small coal chips; gravels and sand is mostly					<u> </u>		<u> </u>		<u> </u>
	cave; yellow clay @ 359'-360'; poor sample return						Ì			L_
370 (112.5)	Clay and gravel: yellow clay as above with some	7527		82	1					<u>-</u> .
	gravel									
380 (115.6)	Clay and volcaniclastic: yellow-grey clay appears	7528	<u>_</u>	81	2	35				<u> </u>
	to have an ash component; sand grains of quartz				<u> </u>			<u> </u>		Ŀ
	and yellow agate fragments; few rounded pebbles	<u> </u>						<u> </u>		<u> </u>
	of fg. volcaniclastic (pyroclastic?) rock, quartz			ļ		 <u> </u>	<u> </u>	<u> </u>		<u> </u>
	down_to_25%				<u> </u>	<u> </u>	<u> </u>			
390 (118.6)	Agate and quartz gravels; clay: similar to above;	7529		<u>82</u>	1	 <u> -</u>				
	increased agate chips, all angular -35%; 2 clay				ļ	<u> </u>	ļ	<u> </u>	<u>. </u>	
	types, grey and bright pink; the latter probable					 				<u> </u>
	volcanic ash; increased rounded quartz to 35%						ļ			<u> </u>
400 (121.7)	Agate, volcaniclastic sand granodiorite: similar	7530		76	0,8	 160		<u> </u>		<u> </u>
	to above, decreasing clay, agate 50%; pink clay				<u> </u>					oxdot
	and harder fg. volcaniclastic clasts; greenish									L
	granitic chips, about 15%, encountered @ 397';						<u> </u>			<u> </u>
	marked decrease in quartz to 10-15%	ļ			<u> </u>		1	<u> </u>		<u> </u>
410 (124,7)	Granodiorite: greenish granitic chips increased	.7531		79	0.6	 		<u> </u>		
	to 50%; still 15% agate, 15% volcanic and 30%							<u> </u>		<u> </u>
	sediment cave]]	<u> </u>	
420 (127.8)	Granodiorite: as above; granitic chips now 80%	7532		81	0.8	10				
	of sample.									<u> </u>
									}	

HOLE No. 79R-6

PAGE 5 OF 5

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH	R.A.		Au ppb_				
425 (129.3)	Cranodiorite: as above, 95% granitic	7533		73		 				<u> </u>
		<u> </u>			<u> </u>	 				<u> </u>
425 (129.3)	BOTTOM OF HOLE	.								
	a) all casing left in hole					 	. <u> </u>		ļi	
	b) PVC plastic pipe (2 inch diameter) was inser-	ļ						ļ		
	ted to bottom of hole		ļ <u> </u>							
	c) R.A. (radioactivity) of each sample was deter-					 				<u></u>
	mined using an URTEC Differential Spectrometer,	<u> </u>				 				
	model DG-135, and averaging 3 separate 10 second					 				<u> </u>
	count periods,			_		 				· .
	d) The hole was probed with a combination Gamma		<u> </u>			 		<u> </u>		<u> </u>
	Ray and Neutron log tool by Roke Oil Enterprises I	cd.								<u> </u>
	e) Un = uranium geochemical analysis with extrac-									<u></u>
	tion by concentrated nitric acid.			_		 		<u> </u>		
					<u> </u>	 				
			. <u>.</u> .	-						<u> </u>
	freet Sluft			_		 				<u> </u>
			<u> </u>							
	H Hollvek					 		<u> </u>		<u> </u>
								<u> </u>		
								<u> </u>		
									:	
									:	
-]		

HOLE No. _______ OF_____

PROJECT	REEF	BEARING INCUNATION	HOLE SIZE 51/2 Inches
PROPERTY .	REEF #1 Claim	HOGGED BY M.J. Gidluck	COORDINATES
STARTED _	October 5, 1979	DRILLED BY Alta. Southern Expl. Drilling	ELEVATION_
COMPLETED _	October 6, 1979	DRAL METHOD Rotary-Percussion	FINAL DEPTH 325 ft.; 98.8 meters

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter)	R.A. cps	Un ppm						Γ
00 (00)	Collar		· · · · · · · · · · · · · · · · · · ·				† ··· · · · · · · · · · · · · · · · · ·	1	 	†	T
17 (5.2)	Overburden and 6 Inch casing						1				
30 (9.1)	Basalt: numerous weathered chips; fractured and			71					1		\vdash
	weathered basalt flow				-				1	 	\vdash
40 (12.2)	Basalt: fresh, dark green-black, massive basalt	·		72					1	 	
	flows, little or no weathering									<u> </u>	
50 (15.2)	Basalt: as above, soft yellow brown dry clay @			74					<u> </u>		
	45'-50'; probable ash layer, limonitie										Г
58 (18.0)	Interformational sediments: assorted volcani-			73]
	clastic sediments-ashy mudstones, pyroclastics,								<u> </u>		
	abundant small volcanic clasts in sedimentary										
	rocks, sample damp but not wet										
70 (21.3)	Basalt and interformational sediments; sediments			72					ļ		_
	similar to above, yellow limonitic; green and grey							·			
	volcaniclastics; 50% dark green basalt fragments						1		1		
80 (24.3)	Basalt: fresh dark green as above			7 5					·· -·-		<u> </u>
90 (27.4)	Basalt: fractured, limonitic oxidization, possibl	Đ.									\Box
	older flows									1	
100 (30.4)	Basalt: similar to above, less oxidized fractures	;		70							
	minor white carb, or zeolite amydules						"				
110 (33.5)	Basalt: fractured and oxidized surfaces as @ 90'	· ····		74					1		
120 (36.5)	Basalt: calcite in vesicules as @ 100'			73			Ī				
130 (39.5)	Basalt: as above]	71					T		
	· · · · · · · · · · · · · · · · · · ·						·	 	1		

HOLE No. 79R-7

PAGE___2 OF__4

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.	Un ppm	A	u pb	-			
135 (41.0)	Basalt and channel gravels: grey basal, chilled.	7534		79	1	<	5				
	flow margin; quartzose channel gravels start at								- " -		
	133', some grey clay but sample dry						1				
140 (42.5)	Quartz gravels: abundant white, rounded quartz	7535		80	0.8		-]				
	clasts, sand to pebble size about 70%; 10% green										
	granitic clasts; meta volcanics and meta sedi-			}			ĺ				
	ments 20%										
150 (45.6)	Quartz gravels: abundant white quartz as above	7536		77	1	< .	5				
	few pebbles of agate										
160 (48.7)	Quartz gravels: as above	7537		76	ı						·
170 (51.7)	Quartz gravels: as above, few dark grey cherty	7538		.75	0,6	<	5				
	pebbles										
180 (54.7)	Quartz gravels: minor clay; few small fragments	7539		74	0.6						
	of black coal										
190 (57.8)	Quartz gravels and clay: similar to above but	7540		76	0.8	₹.	5				
	more clay @ 188' to 190'; small fragments of coal;										<u> </u>
	quartz 65%; remainder is chert and meta sediments										
	and volcanic rocks										
200 (60.8)	Clay-coal zone: f.g. grey clay horizon with chips	7541		87	2		[
i	of coal; dry-still above water table					1					
210 (63.9)	Clay and gravels: clay zone as above them into	7542		81	0.8	<	<u> </u>	·			
	quartz gravels; no visible coal.						[
220 (66.9)	Clay and gravels: as above, grey plasticky clay;	7543		83	8.0	-	-			:	
	damp; abundant black coal chips				<u> </u> [
230 (70.0)	Clay and gravels; as above, clay sticky and	7544		78	0.8	<:					
	samples contaminated; few basalt fragments; some										
	coal.										·

HOLE No. 79R-7

PAGE 3 OF 4

DEPTH	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	R.A.	Un PPM	}	Au ppb				
240 (73.0)	Clay and gravel: as above, contaminated sample;	7545		78	0.8		-				
	sticky clay.	<u> </u>									
250 (76.1)	Clay and gravel: as above.	7546		75	0.6		< 5				
260 (79.1)	Clay and gravel: as above, becoming wetter;	7547		84	1					.	
	abundant small fragments coal; sample contaminate	4									
-	from above caving; quartz still 65%.										
270 (82.1)	Wet clay and gravels: as above, sample wetter	7548		74	0.8		(5				
	but not flowing water; gravels are finer grained;	_									
	quartz 70%.						•	•			
280 (85.2)	Quartz gravels: as above, quartz 70%	7549		75	1	1	_			<u> </u>	
290 (88.2)	Quartz gravels: as above, small fragments coal;	7550		78	1		4 5				
	10 to 15% small green granitic fragments;	_						·			
	abundant sand size quartz.	_									
300 (91.3)	Quartz gravels and granite?: similar above	7551		80	0.8		_		•		
	increased basalt cave; 15% greenish granitic									ĺ	
	fragments - probable basement contact										
310 (94.3)	Granite and quartz sands and gravels: fine	7552		79	2		<u><5</u>				
	grained sand size granitic fragments increased to										<u> </u>
	40% - also includes feldspar grains; basement	<u> </u>									<u> </u>
	rock; quartz down to 40%									i	
320 (97.3)	Cranite: increased granite and feldspar frag-	7553		90	4						
	ments to 70%; numerous small pyrite grains in										
	granite chips approximately 1%; decreased cave										
	material										L_
325 (98.8)	Granite: as above; granite-feldspar now 85% of	7554		86	4		<5				
	sample										
325 (98.8)	BOTTOM OF HOLE										

HOLE No. 79R-7

PAGE__4__ OF__4__

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH	K.A.	Un ppm					
	a) steel casing left in hole							<u> </u>	·	
	b) PVC plastic pipe of 2 inch diameter inserted								-	
	to 325' and left in hole					 ·- ······				
	c) R.A. (radioactivity) of each sample was deter-	l				 1	1			
	mined using an URTEC Differential Spectrometer,					 				
	model UG-135 and averaging 3 separate 10 second									
	count periods			·						
	d) The hole was probed with a combination Gamma									
	Ray and Neutron log tool by Roke Oil Enterprises]						-		
	Ltd.									·
	e) Un = uranium geochemical analysis with	<u> </u>								
	extraction by concentrated mitric acid						<u> </u>			
		<u></u>				 				
	~ / 4/ //]	
	Midlerck				ļ	 				<u> </u>
	/									
					<u> </u>					<u></u>
										
			· .							
· · · · · · · · · · · · · · · · · · ·						 				<u> </u>
	· · · · · · · · · · · · · · · · · · ·					 				
						 				<u> </u>
]		

HOLE No.	79R-8
nace 1	05 3

₽ROJECT.	REEF	BEARING INCLINATION Vertical	HOLE SIZE 51s Inch
PROPERTY		togged by M.J. Gidluck	COORDINATES
STARTED	Oct. 5, 1979	ORKIED By Alberta Southern Exploration	ELEVATION
COMPLETED.	Oct. 5, 1979	ORIL METHOD Rotary Percussion / Drilling	FINAL OFFTH 345 fr.; 104.9 meters

DEPTH ft. meters	DESCRIPTION	SAMPLE NO.	LENGTH	RA cps.	Սո թթա.		Au ppb				
00 (00)	Collar										I
19 (4.8)	Overburden and 6 inch casing				<u>.</u>						
28 (8.6)	Water Table					i 	<u> </u>				
30 (9.1)	Weathered Basalt: fractured and oxidized			81			}				
40 (12.2)	Basalt: as above			82		•		<u> </u>			
50 (15.2)	Basalt: fresh, dark green mass, flows; no weatheri	ng;		84			<u> </u>	<u></u>			
	small white quartz clots filling cavities.										Γ
60 (18.2)	Basalt: as above, few yellow weathered fragments			.79							\prod
70 (21.3)	Basalt; as above			75							
80 (24.3)	Chilled Basalt and Clay: upper 2 ft. is soft	7555		77	0.8		_				T
	yellow clay then into hard grey volcanics,										1
	vesicular flows; soft claystone fragments and										I
-	Interformational sediments					<u> </u>					
90 (27.4)	Interformational Sediments and Basalt: as above,	7556		78	1		< 5				L
	light colored grey-green, fragments volcani-										
	clastic fragments										
100 (30.4)	Basalt: fresh dark green as above			79							
110 (33.5)	Rasalt: as above; small quartz and zeolite cavity fillings			75							-
120 (36.5)	Basalt: as above			78							1
130 (39.5)	Basalt: as above, few interformational sediments			76							\uparrow
140 (42.5)	Basalt: as above			77							\top
150 (45.6)	Basalt: as above with fragments grey chilled margi	π		74			ļ				1
									ļ	<u> </u>	+

HOLE No. 79R-8

PAGE___2 OF__3

DEPTH rest(meters)	DESCRIPTION	SAMPLE NO.	LENGTH It (meter	R.A.	Un ppm	Au ppb		<u></u>		
160 (48.7)	Basalt: increased grey chilled flow margins			78	1					
170 (51.7)	Channel gravels: abundant quartz clasts about	7557		77	2	 -				
	60% of sand to pebble size; granitic, peg'c. and								<u> </u>	
	meta-sediments 30%; 10% cave from above; increased									
	water flow									
180 (54.7)	Quartz gravels: as above, abundant water flow;	7558		74	0.4	4 5				
	increased quartz pebble size and content to 80%						•			
190 (57.8)	Quartz gravels: as above	7559		90	0.4	1.				
200 (60.8)	Quartz gravels: as above, quartz clasts 75%	7560		74	0.4	 く 5				
210 (63.9)	Quartz gravels: as above; small black chips of	7561		77	0.6	 				<u> </u>
	_coal					 	<u></u>			<u> </u>
220 (66.9)	Quartz gravels: as above, great volume of water	7562		78	0.6	 < 5				
	from hole; granitic fragments 5%						<u> </u>			Ш.
230 (70.0)	Clay and gravels: high water flow washing out	7563		78	0.6	_				
	most clay; few very small chips coal				<u> </u>	 				
240 (73.0)	Clay and gravels: decreasing clay with depth;	7564		79	0.2	 < 5				$oxed{oxed}$
	abundant quartz pebbles and sand grain				ł <u>.</u> i					
250 (76.1)	Quartz gravels: as above, abundant water flow	7565		75	0.2	 				
	about 20 gallons per minute; quartz 65%; other									
	is meta-sediments; meta-volcanics, peg'c.									
260 (79.1)	Quartz gravels and coal: as above, numerous	7566		76	0.4	 < 5				
	fragments of coal									
270 (82.1)	Quartz gravels and clay: as above with minor	7567		78	0.4	•				
	fine clay									
280 (85.2)	Quartz gravels and clay: as above, some clay;	7568		76	1	 ∢ 5				
	abundant large fragments of black coal									
290 (88.2)	Quartz gravels, sand and clay: finer fractures	7569		75	0.2	,				
	of above, few small coal fragments; quartz 65%									

HOLE No. 79R-8

PAGE_3 OF_3

DERTIL	DESCRIPTION!	SAMPLE		R.A.	1100	1			<u>. </u>	<u> </u>	_
DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter	к.д.) срв			Au ppb				
300 (91.3)	Quartz gravels: as above	7570		80	0.4		د 5				
310 (94.3)	Quartz gravels; as above, numerous small coal	7571		81	0.4]					
	fragments; quartz 65%, no granite										
320 (97.3)	Quartz gravels: as above	.7572		75	0.4		10				
330 (100.4)	Granite: contact @ 322*; sample is 80% small	7573		75	0.6		_				<u> </u>
	granitic chips; 10% quartz and 10% other				L	1 [L	<u> </u>	l	
340 (103.4)	Granite: as above 95% granite and feldspar sand			76							
	size chips; few minute mafic specks in each										
	granitic chip			•							
345 (104.9)	Granite: as above, chips larger										
345 (104.9)	BOTTOM OF HOLE										
	a) steel casing left in hole					<u> </u>					
	b) PVC plastic pipe of 2 inch diameter inserted										
	to 345° and left down hole										
	c) R.A. (radioactivity) one (1) of each sample										<u> </u>
	was determined using an URTEC Differential Spec-	· 							<u>.</u>		L
	trometer, model UG-135 and averaging 3 separate										
	10 second count periods					\perp					<u> </u>
	d) The hole was probed with a combination Camma					<u> </u>					
	Ray and Neutron log tool by Roke Oil Enterprises										L
	Ltd.					<u> </u>					_
	e) Un - uranium geochemical analysis with extrac-		·								
	tion by concentrated nitric acid							<u> </u>			<u> </u>
	H Sidler (c					$oxed{oxed}$		<u>-</u> .			
		ļ					<u> </u>				·
ļ							i				

HOLE No. 79R-9
PAGE 1 OF 2

PROJECT	REEF	BEARING INCLINATION Vertical	HOLE Size 5% inch diameter
PROPERTY .	REEF #3 Claim	LOGGED BY M.I. Gidluck	COORDINATES
STARTED _	Oct. 6, 1979	DRILLED BY Alberta Southern Exploration	ELEVATION
COMPLETED_	Oct. 6, 1979	DRML METHOD Rotary Percussion / Drilling	FINAL DEPTH 152 ft.: 46.3 meters

DE	PTH meters	DESCRIPTION	SAMPLE NO.	LENGTH	RA cps.						<u> </u>
00	(00)	Collar			-			T			
20	(6.1)	Overburden and Casing - 6 inch diameter, steel			74			1			
30	(9.1)	Basalt: massive dark green fresh basalt, some			73		Ī				
		fracturing									
40	(12.2)	Basalt: as above in upper part of sample then			75			l	}		
		into overburden									
. 50	(15.2)	Overburden: 65% basalt fragments, but also			80	<u>. </u>					
		angular to subrounded quartz and granite chips.								<u> </u>	$oxed{oxed}$
		some weathered yellow; considerable amount of							<u> </u>		$oxed{oxed}$
		fine soil fraction.									$oxed{oxed}$
<u></u>	(18.2)	Overburden: as above; hole caving, blocky and jamming drillrods			76	_					-
70	(21.3)	Overburden: as above			76						
80	(24.3)	Overburden: as above			75						
90	(27.4)	Overburden and Basalt: some red oxidized basalt			78						
		fragments; highly fractured; overburden of mixed]				
		composition								L	
100	(30.4)	Basalt: fresh dark green-black mass. basalt, few			75						
	·	fractures									$oxed{oxed}$
110	(33.5)	Basalt and Overburden Boulders: 70% of sample is			76		1	<u> </u>			<u>L</u> .
		basalt, probably large basalt boulders; remainder					<u> </u>	1		<u> </u>	ļ
		of sample is granite, sediments and quartz.						<u> </u>			L
120_	(36.5)	Overburden and Basalt: as above	_		75		1		<u> </u>		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
										<u> </u>	L
					į				į	Į	

PAGE 2 OF...2

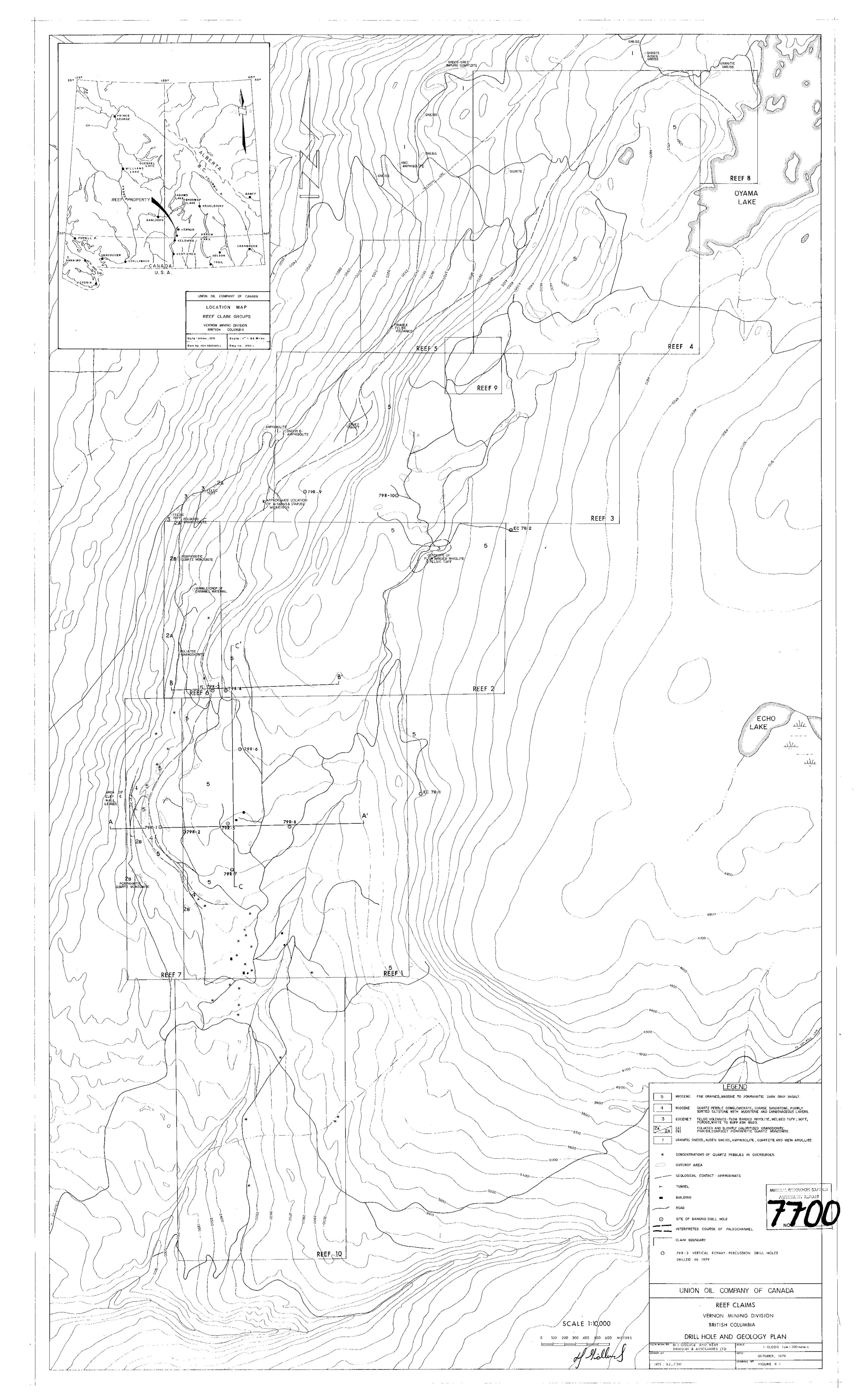
DEPTH	DESCRIPTION	SAMPLE NO.	LENGTH	RA cps.	UN ppm	Au ppb				
130 (39.5) Basalt and Overburden? similar to above, increased	1		75				<u></u>		
	basalt chips and volcaniclastics; some fragments					 <u> </u>	l			
130 (39.5	appear weathered; hole still caving and jamming.) Water Table									
140 (42.5				68						
· · · · · · · · · · · · · · · · · · ·	of sample; 90% is volcanic, mainly basalt, chilled									
	basalt and volcaniclastic fragments; sample highly					 				
	contaminated by caving								-	_
152 (46.3) Basalt and Overburden?: as above, majority of	7574		74	0.6	10				
	fragments volcanic but few granitic chips and grey					·				·
	siltstone; periodic loss of sample return; hole									
	caving badly					 <u> </u>		<u> </u>		
152 (46.3) HOLE ABANDONNED									
É) Steel casing left in hole									
l) RA (radioactivity) of each sample was determined using an URTEC Differential Spectrometer, model									-
	UG-135 and averaging 3 separate 10 second count periods.									
() PVC plastic pipe was not inserted in this hole nor									
	was it probed.					 				
) U = uranium geochemical analysis with extraction									
	by concentrated mitric acid.									
	H. Hieler (C					 				
								1		
	·					 				

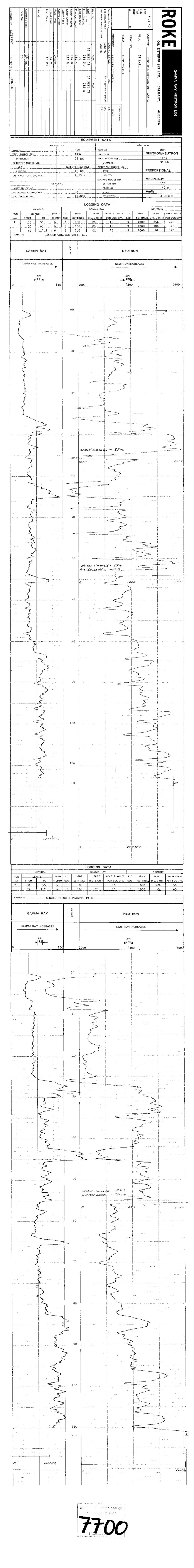
HOLE No. 79R-10 PAGE 1 OF 3

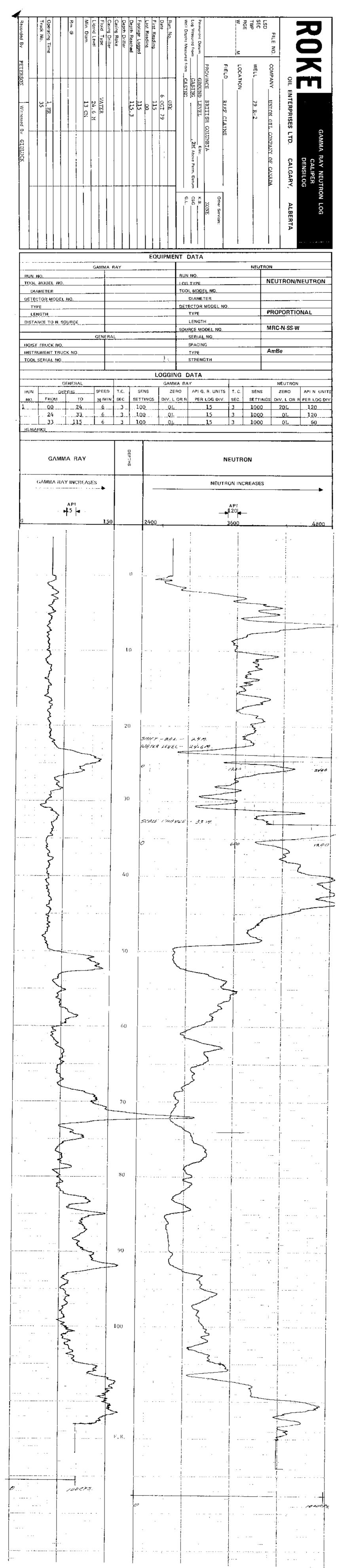
PROJECT	REEF	BEARING INCLINATION Vertical	HOLE SIZE 51/2 inch diameter
PROPERTY	REEF #3 Claim	LOGGED BY M.J. Gidluck	COORDINATES
STARTED	October 7, 1979	DRILLED BY Alberta Southern Exploration	ELEVATION
COMPLETED	October 7, 1979	DRILL METHOD Rotary Percussion	FINAL DEFTH 325 ft.; 95.8 meters

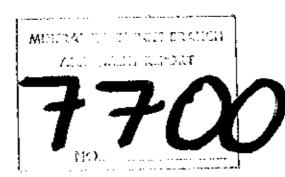
DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft(meter)	R.A. cps	Մո PPm		Au ppb		
00 (00)	Collar								
6 (1.8)	Overburden and casing; no shoe								
10 (3)	Basalt			80		<u> </u>			
20 (6.1)	Basalt: massive dark green basalt	<u> </u>		75				 	
30 (9.1)	Basalt: as above minor clay at bottom			81					
40 (12.2)	Basalt and interformational sediments: damp sam-	7575		76	0.6		_		
	ple, some red-brown clay; mainly sediments and								
	volcanics-partially oxidized								
50 (15.2)	Basalt and interformational sediments: as above	7576		80	0.8		c 5		
60 (18.2)	Interformational sediments and clay and basalt:	7577		79	0.8		-		
	most of basalt is lighter coloured, chilled								
70 (21.3)	Clay and interformational sediments; grey sticky	7578		83	1		₹ 5.		
	clay; volcanic sediments and grey chilled basalt								
	fragments; increased water but not flowing								
80 (24.3)	Clay and interformational sediments			78					
90 (27.4)	Basalt and clay: mainly hard green basalt; with			81					
	few chips of blue-green soft soapy clay mineral;								
	small water flow.				:		. <u>.</u>		
100 (30.4)	Basalt; as above with few chips of the "soapstone"			81					
110 (33.5)	Basalt: as above, traces "soapstone"			75					
120 (36.5)	Basalt: as above			81					
130 (39.5)	Basalt: as above			77					
140 (42.5)	Basalt: as above			76					
150 (45.6)	Basalt: as above			76					

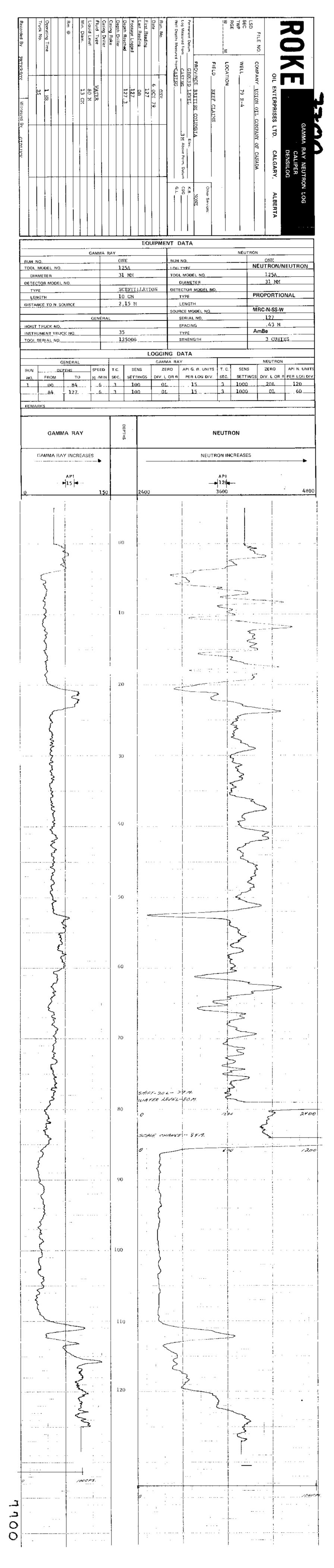
HOLE No. 79R-10

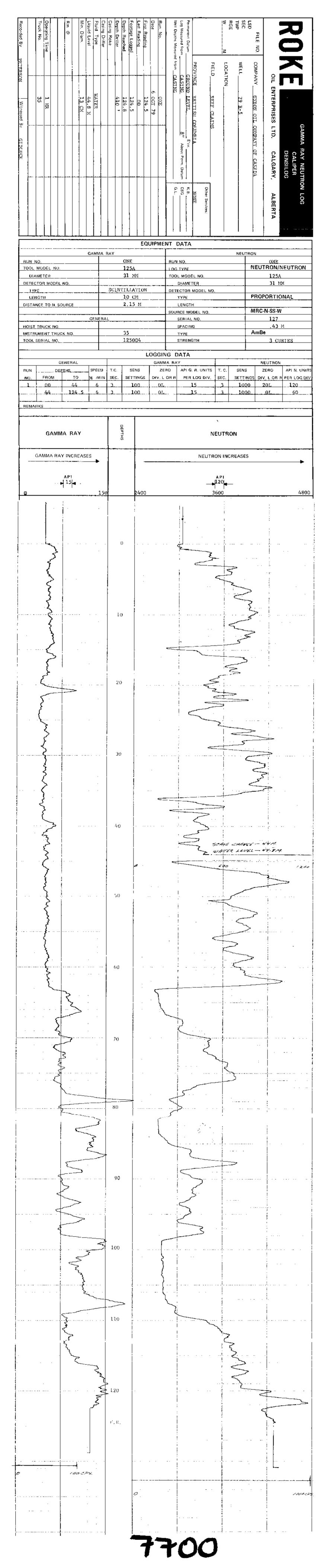

PAGE___2 OF__3

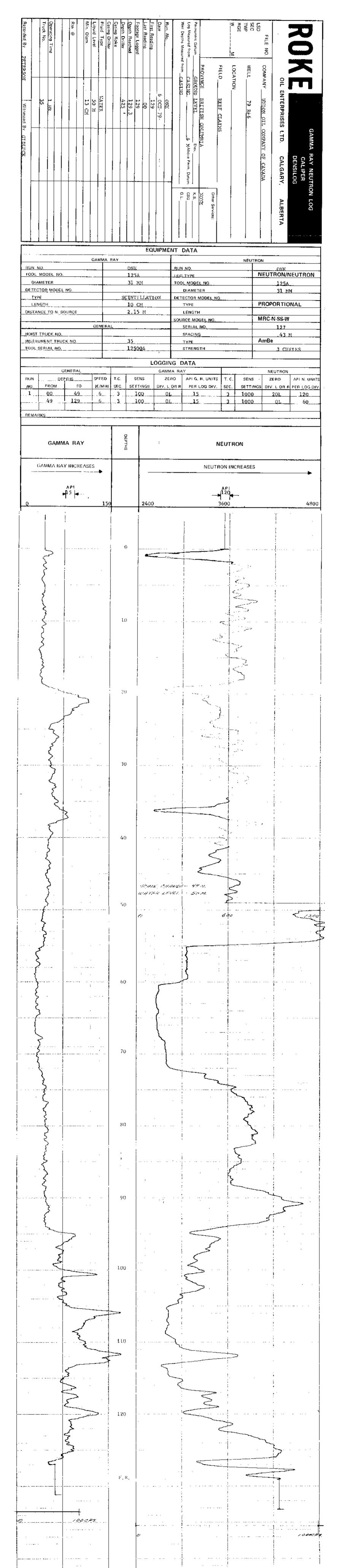

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGTH ft (meter	R.A.	Մո թթա		Au ppb			
160 (48.7)	Basalt: as above; massive dark green to black	_		80				 		
	when wet; few small chips of the blue-green soap-									
	stone; drill progress very slow perhaps due to									
	the soft soapy rock cushioning the percussion									
	hammer	<u> </u>			:			 <u> </u>		
170 (51.7)	Basalt: as above			80						
180 (54.7)	Basalt: as above		<u> </u>	84	<u>-</u>			 <u> </u>		
190 (57.8)	Basalt: as above			86						
200 (60.8)	Basalt: as above			80				 <u>-</u>		
210 (63.9)	Basalt: as above			75						
220 (66.9)	Basalt: as above; few lighter coloured chips			83				 ļ. <u>-</u>		
	with vesicular texture indicates flow margins;							 		
	increasing blue-green "soapstone"							<u> </u>	<u> </u>	
230 (70.0)	Basalt: as above, some larger soapy fragments			91	!					
240 (73.0)	Basalt: as above			81				 		
250 (76.1)	Basalt: as above; oxidized surfaces on basalt			80				 <u>.</u> .		
	fragments Indicate outer flow margins and auto-							 <u></u>	l	L
	brecciated flow edges; few large angular quartz							 <u></u>		
	fragments									
260 (79.1)	Basalt: as above		. :	76		:		 ļ. <u></u>		<u> </u>
270 (82.1)	Basalt: as above; still with oxidized and soapy			7 7						
	clay flow margins									
280 (85.2)	Basalt: as above; no oxidized basalt and only			76				<u> </u>		
	a few soapy clay fragments									
290 (88,2)	Basalt: as above; increased soapy claystone			71						
300 (91.3)	Basalt and claystone: as above with abundant	757 9		74	0.4			 		
	green soapy claystone probably chlor'c talcose,									
	clay minerals, up to 20%									

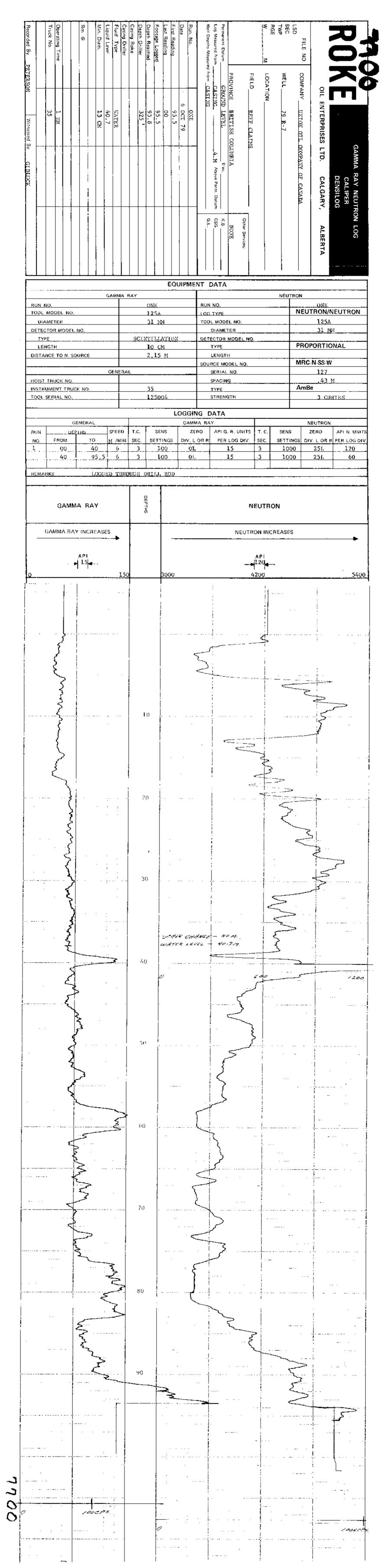

HOLE No....79R-10

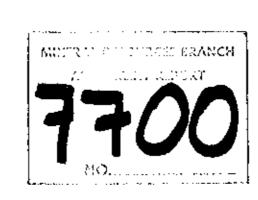

PAGE____3 OF___3

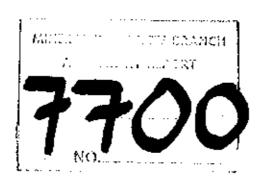

DEPTH Feet (meters)	DESCRIPTION	SAMPLE NO.	LENGIH It (meter	R.A.)cps	Սո բբա		Au ppb			
310 (94.3)	Basalt and claystone: as above with dark green	7580		73	0.6		∢ 5			
	claystone upto 40% of sample; dark grey basalt							<u> </u>		
	rapidly chilled					<u> </u>				
325 (95.8)	Basalt: similar to above, decreased claystone	7581		73	0.4					
	fragments									 <u> </u>
325 (95.8)	BOTTOM OF HOLE									<u> </u>
	a) steel casing left in hole									
	b) PVC plastic pipe of 2 inch diameter inserted							<u> </u>		
	and left down hole							<u> </u>		
	c) R.A. (radioactivity) of each sample was deter-									-
	mined using an URTEC Differential Spectrometer,					ļ		ļ. <u>.</u> .		<u>. </u>
	model UG-135 and averaging 3 separate 10 second					<u> </u>		<u> </u>		
	count periods									 <u> </u>
	d) The hole was probed with a combination Gamma							<u> </u>		 L
	Ray and Neutron log tool by Roke Oil Enterprises	Ltd.				<u> </u>	<u> </u>	<u> </u>		 <u> </u>
	e)Un = uranium geochemical analysis with extrac-					ļ <u>.</u> .	<u> </u>	<u> </u>		<u> </u>
	tion by concentrated nitric acid.				<u> </u>	ļ		ļ		 ļ
					<u> </u>					
					<u> </u>		ļ <u></u>	ļ		
	Hidlacle							<u> </u>		
	/					.		<u> </u>		 <u> </u>
					<u> </u>					<u> </u>
	· · · · · · · · · · · · · · · · · · ·									
_						ļ	<u> </u>	<u> </u>		
						ļ		<u> </u>		 <u> </u>
					<u> </u>			<u> </u>		 _
										-
		1				}	•	<u> </u>		











Run. No. ONE	GAMMA RAY NEUTRON LOG CALIPER CALIPER DENSILOG OIL ENTERPRISES LTD. CALGARY, ALBERTA SEC TWP RGE WM FIELD REEF CLAIMS PROVINCE BRITISH COLUMBYA Log Measured from GROUND LEVEL Elav. None Permanent Datum GROUND LEVEL SINCE REC GROUND LEVEL SINCE REC GROUND LEVEL SINCE FIELD REEF CLAIMS Other Services: SEC SEC OTHER OTHER SERVICES: SEC SEC TWP REEF CLAIMS OTHER SERVICES: SEC SEC OTHER SERVICES: SEC SEC TWP REEF CLAIMS OTHER SERVICES: SEC SEC SEC SEC SEC SEC SEC
TOOL MODEL NO. 125A 31 MN	TOOL MODEL NO. DIAMETER DETECTOR MODEL NO. TYPE PROPORTIONAL LENGTH SOURCE MODEL NO. SERIAL NO. SPACING NEUTRON/NEUTRON 125A 31 MM PROPORTIONAL MRC-N-SS-W 127 43 M
GENERAL GAMM HUN DELTHS SPEED T.C. SENS ZEE	OR II PER LOG DIV. SEC. SETTINGS DIV. L OR R PER LOG DIV. 120
GAMMA RAY	NEUTRON
GAMMA RAY INCHEASES	NEUTRON INCREASES API 1201
0 150 2400	3600 4800
10 Scale Comp. 20 20	18.5 m S1200
30	
50	
70	
80	
100	
700CP5.	1000048

Operating Time 1 HR Truck No. 35 Recorded By PETERSON Witnessed By GIDLUCK	Casing Driller Fluid Type KATER Liquid Level 56,6 M Min, Diam. 13 CM Am @	. X &	Run. No. ONE ~ Date 7 OCT 79 — First Reading 98 — Last Reading 00 —	Other Services: NCE BRITISH_COLUMBIA ROUND LEVEL NONE ASING Above Perm. Ostum CSG G.L G.L Other Services: NONE NONE NONE ASING Other Services:	SEC WELL 79 R-10 RGE LOCATION OIL COMPANY OF CANADA TWP M LOCATION SEER CX ATMS	GAMMA RA
RUN NO. TOOL MODEL NO. DIAMETER DETECTOR MODEL N TYPE LENGTH DISTANCE TO N. SOU HOIST TRUCK NO. INSTHUMENT TRUCK TOOL SERIAL NO. GEOREM 1 00 56. BEMARKS	GENERAL NO.	ONE 125A 31 MM SCINTII 10 CM 2.15 35 12500 T.C. SENS SEC. SETTIM 3 100 3 100	LATION LOGGIN GAMM S ZEE NGS DIV. I.	RUN NO. LOG TYPE FOOL MODEL NO. DIAMETER DETECTOR MODEL NO. TYPE LENGTH SOURCE MODEL NO. SPACING TYPE STRENGTH A RAY A RAY OR A PER LOG DIV. 15	PR MF	ONE UTRON/NEUTRON 125A 31 MM OPORTIONAL IC-N-SS-W 127 .43 M 1Be 3 CURIES NEUTRON ZERO API N UNITS DIV. L OR R PER LOG DIV. 201. 120 OT. 60
		DEPTHS	2400		AP1 12 3600	4800
The state of the s		20				
		4		VEL SECTI		1200
		70				
		90				
						PARICE

