1979 GEOLOGICAL, GEOCHEMICAL and GEOPHYSICAL REPORT on the M.U.T. (1-6) Group of Mineral Claims situated in the NELSON MINING DIVISION N.T.S. 82F/3

49⁰ 05' North Latitude; 117⁰ 13' West Longitude

March 31, 1980

bу

M. Bradley (geologist, BP Minerals) S. Hoffman (geochemist, BP Minerals)

MINERAL RESOURCES BRANCH ASS NO

TABLE OF CONTENTS

		Page
SUMMARY	and CONCLUSIONS	1.
INTRODUC	TION	3.
i)	Economic Interest, Objective and Approach	3.
ii)	Location and Access.	5.
iii)	Claim's Ownership, Claims Status, Application of Assessment Work.	5.
iv)	History	1.
v)	Topography, Climate and Vegetation	9.
SUMMARY	of WORK - 1979	10.
i)	Physical Work	10.
ii)	Geological Mapping	12.
iii)	Geochemical Surveys	17.
į iv)	Geophysical Surveys	18.
GEOLOGIC	AL REPORT	
i)	Regional Geology	20.
ii)	General Geology of the M.U.T. Claims	23.
iii)	Description of Units	26.
	A. Palaeozoic Formations	
	a. Cambrian Laib Formation b. Ordovician Active Formation	26. 30.
	B. Intrusive Rocks	
	a. Nelson Granitic Rocks b. Aplite and Felsite Dykes c. Lamprophyre Dykes and Sills	39. 41. 42.
	C. Structural Geology	43.
iv)	Economic Mineralization	50.
v)	Alteration	55.
vi)	Discussion	58.
vii)	Recommendations	62.

Page

5.	GEOCHEM	ICAL REPORT (Dr. S.J. Hoffman)	65.
	i)	Sample preparation and Analytical Procedure	66.
	ii)	Description of Trace Element Anomalies M.U.T. Claims 1 and 2	67.
	iii)	Description of Trace Element Anomalies M.U.T. Claims 3,4,5,6	72.
	iv)	Discussion of Results	77.
	· v)	Recommendations	82.
	vi)	Summary	84.
6.	GEOPHYS	ICAL REPORT	86.
	i)	Instrumentation Specifications	86.
	ii)	Survey Specifications and Methodology	87.
	iii)	Geophysical Theory	89.
	iv)	Interpretation	92.
		a) Ground Magnetometer and E.M16 Data	92.
		b) Radiometric Data	94.
7.	S <u>ummary</u>	CONCLUSIONS	96.
8.	RECOMME	NDATIONS	99.

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1.	M.U.T. Project Location Map	4
2.	M.U.T. Claims Location Map	6
3.	M.U.T. Claims, Topography and Grid (1:10,000)	in pocket
4.	Regional Geology - M.U.T. Claims	13 11
4A	An Interpretation of the Structural Evolution of the Palaeozoic Belt Rocks.	of
5.	Geology of Trenched Areas - M.U.T. Claims (1:1,000)	32
6.	Geological Cross Section A-A' (1:10,000)	47
7.	Geological Cross Section B-C-D-D' (1:10,000)	49
8.	Geological - Geochemical Cross Section E-E' (1:10,000)	in pocket
9.	Geology of M.U.T. Claims 3,4,5,6, (1:5,000)	в 1
10.	Soil and Talus Sample Location Map (1:10,000)	B 11 .
10A	Copper in Soils and Talus Fines (1:10,000)	87 88
. В	Molybdenum in """""	11 11
C	Tungsten in """""	11 II
D	Fluorine in """ ""	17 39
Ε	Silver in """""	IL D
F	Lead in """ "	H H
G	Zinc in """""	N2 N2
н	pH in """ "	13 II
11.	Rock Chip Sample Location Map	11 H
11A	Copper in Rock Chip Samples (1:10,000)	11 LI
В	Molybdenum in Rock Chip Samples (1:10,000)	11 H
C	Tungsten in """"	87 88
D	Fluorine in """""	N 11

FIGURE NO.	TITLE	PAGE	<u>NO</u> .	
11.E	Silver in Rock Chip Samples (1:10,000)	in po	cket	
F	Lead in """	н	n	
G	Zinc in """	11	ti	
12.	Ag-Pb-Zn Geochemical Interpretation Map (1:25,000)	68		
13.	Cu-Mo-W-F Geochemical Interpretation Map (1:25,000)	70		
14.	Ground Magnetic Data (1:5,000)	in po	cket	
14.A	Aeromagnetic Data - Regional Geology Composite (1:48,000)	н	ti	
15.	Ground E.M16 Data (1:5,000)	н	n	
16.	Ground Magnetic and E.M16 Interpretation Map (1:10,000)	п	1	
17.	Ground Radiometric Data (1:10,000)	11	11	

LIST OF TABLES

TABLE	1.	Orientation Geochemistry on the M.U.T. Claims	13
	2.	Analytical Results A-77-1 Diamond Drill Hole.	.14
	3.	Representative Rock Samples for Density Determinations.	16

- 2 -

LIST OF APPENDICES

Page No.

APPENDIX	1.	References.	101
	2.	Statement of Certification.	103
	3.	Statement of Costs.	107
	4.	Trace Element Data for Soil, Talus Fine and Stream Sediment Samples.	120
	5.	Trace Element Data for Rock Chip Samples.	143
	6.	Lognormal Distribution of Trace Element Content of Soil and Talus Samples.	148
	7.	Lognormal Distribution of Trace Element Content of Stream Sediments.	157
	8.	Maps.	in pockets

1. SUMMARY AND CONCLUSIONS

During the period from May 8 to July 19, 1979, 4 men conducted geological mapping, soil sampling, radiometric, ground magnetometer and E.M.-16 surveys, on 54 km of established grid, over M.U.T. claims 1 to 6.

Analysis of geological, geochemical and geophysical data included in this report, has led to the following conclusions:-

1. The presence of an intrusion at depth beneath M.U.T. Hill, in the area north and west of the 1978 drill camp, is evidenced by: a large, annular geochemical zonation pattern, by a coincident magnetic-radiometric high and by a central zone of erratic and variable hydrothermal alteration, polymetallic vein mineralization, tungsten skarns and iron enrichment.

2. Secondary structures in the argillites, which strike northeasterly and dip southeastward at angles greater than 55⁰, provided conduits for ascending hydrothermal solutions and may ultimately have controlled emplacement of the buried intrusion.

3. Evidence is not conclusive as to the type of intrusion present; whether or not, for example; it is a porphyry molybdenum system separate to the Lost Creek stock, or an extension of the stock south and west beneath M.U.T. Hill. The character of intrusion and mineralization (if any) beneath aplite drilled in holes 78-2 and 77-1, is of interest in this regard and a drill hole is recommended to redrill the aplite to a maximum depth of 250m.

4. The remarkably high values in zinc-silver and displaced leadfluorine geochemical anomalies on M.U.T. claims 5 and 6, suggest the possibility of stratabound, replacement lead-zinc-silver deposits. The linear nature of the anomalies suggests structural rather than strictly lithological control. In this regard, commonly recessive, massive sphalerite veins <u>are</u> found well above the anomalous areas. Such veins were not noticed during mapping of the anomaly zones. Intensive prospecting, trenching, continuous chip sampling of bedrock and a drill hole near 491E, 500.5N, are recommended to locate a local source for the various geochemical anomalies.

5. The study has downgraded the prospect of economic skarn tungsten deposits in the bulk of the non calcareous argillites. The skarn tungsten target may exist in structural traps within the lower calcareous units, contacting an intrusion beneath M.U.T. Hill. The abundance of carbon and sand in the calcareous rocks is thought to hamper formation of economic scheelite deposits.

2. INTRODUCTION

i) ECONOMIC INTEREST, OBJECTIVE AND APPROACH

The BP work program in 1979 was designed to establish surface evidence of a buried "porphyry" molybdenum system, which was suspected to underly the M.U.T. 5 and 6 claims. The presence of such a system was suggested by:

1. The discovery of an aplitic intrusion, intersected in diamond drill holes 77-1 and 78-2, which carries fine grained molybdenite mineralization and crosscutting quartz stringers with secondary biotite and sericite alteration.

 Crosscutting quartz veins in drill core selected from argillite and limestone units above the intrusion which contain anomalous trace element values of 300 ppm Mo, 500 ppm Cu, 2.65% Zn, 4.1 ppm Ag, 3,250 ppm Mn, 2,280 ppm Bi, 5,880 ppm F, 80 ppm Sn and 500 ppm W.

3. The presence of nearby lead-zinc-silver and molybdenum-tungsten producers and prospects.

4. The local presence of biotite hornfels, wollastonite quartzactinolite and garnet-pyroxene skarn zones, indicating, hydrothermal alteration, as mapped by Poloni and Ramalingaswamy.

The exploration approach on the M.U.T. claims was to geologically map and geochemically sample the claims area. Intrusive features such as dykes, veins and hornfelsing, together with porphyry pathfinders elements would be used to define a central mineralized zone for drill testing.

A target size for the mineralizer stock, using the Trout Lake example, was thought to be on the order of 125 m x 300 m, grading 0.3% to 0.5% molybdenum. A grid with line spacing of 150 m and a sample spacing of 50 m was deemed adequate to delineate such a "porphyry" centre, if present, on the M.U.T. claims.

ii) LOCATION AND ACCESS (See Figure 1 and 2)

The M.U.T. claims are located in southeastern B.C. in the Nelson Mining Division (N.T.S. 82F/3 at 49⁰ 05' North Latitude and 117⁰ 12' West Longitude). The claims lie north and south of the Lost Creek Valley road, approximately 38.4 air kilometres east of Trail and 14 air kilometres east-southeast of Salmo, B.C.

The drill camp on "M.U.T. Hill", between Wilson Creek and Lost Creek, and much of M.U.T. claims 5 and 6 are accessible by a good 4 wheel drive road, which runs 6.5 kilometres north from Highway 3, at a point 2.2 kilmetres east of Highway 6 (Salmo Nelway).

M.U.T. claims 1 and 2 are accessible by a poor quality 4 wheel drive road, which follows the 1,250 metre elevation contour, on the northside of Lost Creek eastward from the Jersey Mine. Access to Nevada Mountain is by helicopter from Trail; 40 air kilometres to the west, or Castlegar; 42 kilometres to the northwest.

iii) CLAIMS OWNERSHIP, STATUS AND APPLICATION OF ASSESSMENT WORK (See Figure 2)

The M.U.T. claims are owned by Mr. John M. Mirko and Mr. Ian G Sutherland and held by Benson Mines Ltd., under an option

agreement. An option agreement for further exploration between Benson Mines Ltd. and BP Minerals Limited was finalized on June 5, 1979.

The M.U.T. mineral claims comprise 3 groups as follows:-

Group	<u>Claims</u>	<u>Units</u>	Record No.	Anniversary
M.U.T. Group A	M.U.T. 1	10	371 (11)	Nov. 30/80
	M.U.T. 4	16	374 (11)	Nov. 30/80
M.U.T. Group B	M.U.T. 2	10	372 (11)	Nov. 30/79
	M.U.T. 3	16	373 (11)	Nov. 30/79
M.U.T. Group C	M.U.T. 5	16	377 (12)	Dec. 7/80
	M.U.T. 6	16	378 (12)	Dec. 7/80

1979 assessment work credits are applied as follows:-

Group	<u>Claims</u>	Units	Credits Applied	New Expiry Date
M.U.T. A	M.U.T. 1	10	4 years	Nov. 30/84
	M.U.T. 4	16	4 "	Nov. 30/84
M.U.T. B	M.U.T. 2	10	3 years	Nov. 30/82
	M.U.T. 3	16	3 "	Nov. 30/82
M.U.T. C	M.U.T. 5	16	5 years	Dec. 7/85
	M.U.T. 6	16	5 "	Dec. 7/85

iv) HISTORY (See Figure 14 A).

The M.U.T. claims were staked in November and December of 1976 by J. Mirko and I. Sutherland to secure ground adjacent to the Molly and Jumbo claims, suspected to contain economic concentrations of molybdenum and tungsten.

The general area has been extensively prospected since 1895, when the Southern Belle group (including the United Verde claims) were staked over silver-lead-zinc-gold mineralized quartz veins, south of Wilson Creek. Replacement lead-zinc-pyrite deposits in carbonate rocks were mined at the H.B., Jersey, Reeves-McDonald, and Hunter V properties from 1902 until 1957. Skarn tungsten deposits were mined at the Emerald, Feeney and Dodger properties during the 1950's. The Molly Mine, owned by Cominco, was operated from 1914-1917 and produced 25,000 pounds of molybdenite concentrate. Tungsten as scheelite, in association with molybdenite, was discovered in 1952 by J. Gallo. Trenching was initiated over a wide area of the Molly claims and on what is now the M.U.T. claims.

In 1977, Westwind Mines; under option agreement with Mirko and Sutherland, conducted geological mapping, selective sampling of showings, grid establishment, road repair and 156.5 metres of AQ diameter diamond drilling in hole 77-1. Supervision and reporting on the 1977 project was by J. Montgomery, P.Eng., and G. Von Rosen, P.Eng. An Assessment Report (#6667) by V.M. Ramalingaswamy indicates an aplitic intrusion was intersected in hole 77-1 from 149.5m - 156.5 m. The target for the drilling was skarn tungsten- molybdenite mineralization at an hypothesized granite-limestone band contact.

In 1978, Benson Mines Ltd., drilled 454 metres of AQ core in diamond drill holes 78-1, 78-2, 78-3. Hole 78-1 penetrated 116.7m of argillite and minor limy argillite before termination in broken ground. Hole 78-2, inclined 70⁰ bearing northwest, cored 226.52 m

of argillite to intersect aplite and terminated at 236.28 m in siliceous aplite. Hole 78-3 was collared 5 m south of the M.U.T. Adit on Lost Creek, and drilled at 90° for a total of 101.8 metres. The hole intersected granite and interbedded argillite, siliceous sediments, skarn and argillite. Narrow intersections of skarn assayed from .18% to 1.6% Wo₃ with accessory Mo S₂ from 0.02% to 0.30%. Additional mapping, road and drill site construction and sampling of the M.U.T. Adit, United Verde and 1% showing were also completed in this summer.

In 1978 Cominco completed a substantial diamond drilling program in the limestone - Lost Creek granite contact area of the Molly claims. The extent and results of this program are not known to the author.

This report covers the 1979 exploration program on the M.U.T. claims, conducted by BP Minerals Limited.

v) TOPOGRAPHY, CLIMATE AND VEGETATION

The M.U.T. claims lie within the Cassiar-Columbia Physiographic Region; in the Selkirk Mountain system, at the southern end of the Nelson (Quartzite) Range.

Local elevations range from 762 m in Lost Creek to 1,884 m on Nevada Mountain. The claims lie between two heights of land; M.U.T. 1 and 2 are on the southern slope of Nevada Mountain and M.U.T. 3-6 are on the northwestern slopes of Lost Mountain. The northwestern slopes of "M.U.T. Hill" and the valley of Wilson Creek are rugged and steep. The area of M.U.T. 3 and 4 has generally recessive topography

rising moderately southeastward to Lost Mountain.

The local climate is cool temperate with a mean annual precipation of from 100-125 cm. The period of greatest precipation is during midwinter with very minor precipation during midsummer. The mean annual snowfall on "M.U.T. Hill" (elevation 1,521 metres a.s.l.) would be approximately 1.8 metres. At the end of spring run off in late April to mid May, the only assured water supply on the M.U.T. claims is Lost Creek and North and South Tributary of Wilson Creek. A small creek at 490^E, on the main access road to "M.U.T. Hill", provided a low volume water source until mid July.

Vegetation cover includes subalpine Engelman Spruce, subalpine Fir and some Interior Western Hemlock. Forest fires have destroyed much of the timber, particularly in Wilson Creek Valley, where a succession forest of perennials and tamarack now grows. The entire area from line 512^E to 518^E is choked with a dense growth of alder and scrub spruce. M.U.T. Hill from line 498.5^E to 494^E supports little tree growth and is carpeted by coarse grasses.

3. SUMMARY OF WORK - 1979

During the period of May 8 to July 19, 1979, 4 men - 2 geologists and 2 assistants, conducted geological mapping, geochemical sampling, geophysical surveys, camp construction, grid preparation and rock chip sampling on the M.U.T. claims 3-6. An additional two days of helicopter assisted mapping and sampling was completed on M.U.T. 1 and 2. This report summarizes the extent, scope and results of the summer's field work.

i) PHYSICAL WORK

a) Bulldozer: A Komatzue bulldozer was contracted from Pinetree Logging

Co. Ltd., of Salmo, B.C., in early May to clear snow from the "M.U.T. Hill" access road and drill camp. The snow averaged 0.6 metres on the road along line 492.5^E and approximately 1.2 metres deep at camp.

b) Grid Preparation: (See Figure 3)

Amex Exploration Services of Kamloops, B.C., was contracted to provide 43.4 line km of compass, slope-chained grid, on M.U.T. claims 3-6. The contract rate for this work was \$313.66/line km. Transit survey of east-west oriented, 3.3 km long baseline (line 500^N), was subcontracted by R. Strothers and Associates (B.C. L.S.) of Kamloops, B.C. The survey was initiated at ON OE on the Benson Grid and tied into elevation point 4,989' (1,521 m), on M.U.T. Hill. Elevations were carried for all hubs on the baseline. The survey required 2 surveyors, working 5 days, to complete.

The BP grid was designed to run true north-south with an east-west trending cut tie line, at 480^{N} in the south of the claims area. Tie-in of the northern lines was by compass topofil lines running east-west. Most cut lines and topo-fil extensions to the tie line 480^{N} suffered deviations due to dense bush and steep topograph. The lines were compassed off the baseline at intervals of 150 m except from 503^{E} to 518^{E} where line spacing is 300 m and 600 m due to cost considerations in cutting very dense bush. The station interval on all lines is 50 m, marked by flourescent flagging and black felt pen on plastic tie-vac tags, tied to tree branches.

ii) GEOLOGICAL MAPPING

Two geologists (Mike Bradley and Bill Clark) spent approximately 6 weeks mapping the M.U.T. claims. Outcrop mapping was conducted on the BP control grid, the Benson Mines northeast-southwest trending baseline and along the M.U.T. - Molly Claims access road. An examination of the Jumbo, United Verde and M.U.T. Adit spoil heaps and of the M.U.T. trenches was completed in the course of routine mapping.

Field information was transferred to the slope corrected grid, superimposed on a topographic base map, at a scale of 1:5,000. The topographic base was reconstructed from a controlled contour map; "Salmo - Sheep Creek" Sheet 82F/3b S1/2, Special Project number E.P.9 (at an original scale of (1:12,000) contour interval of 50 feet (15.24 m)) available from the Surveys and Mapping Branch in Victoria.

A preliminary examination and "grab" sampling of crosscutting vein material from diamond drill holes 77-1, 78-1 and 78-2 was made to check for anomalous concentrations of elements known to be pathfinders in molybdenum porphyry systems. The results are summarized in Table 1 and 2, and indicate the presence of highly anomalous concentrations of Mo, Zn, Ag, Bi, F and W. Silicified and hornfelsed argillite and skarned limestone-limy argillite bands occur throughout hole 77-1. Pyrrhotite, pyrite, sphalerite, molybdenite and scheelite are noted in quartz (<u>+</u> calcite) veins and fractures, in the lower 60 metres of hole 77-1. Crosscutting quartz veinlets with narrow sericite selvedges containing minor disseminated fine-grained molybdenite, were noted in fine-grained granite and aplite in holes 77-1 and 78-2.

During a one day cursory examination of the property by the author and J. Mirko, several rock types were collected for thin

TABLE 1 ORIENTATION GEOCHEMISTRY ON THE MUT CLAIMS - PROJECT 517

SAMPLE #	HOLE #	FOOTAGE	MO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	AU PPB	W PPM	•	SN PPM	F PPM	ROCK TYPE
120006 07 08 09 10 11 12 13 14	78-2 78-2 78-2 78-2 78-2 78-2 78-2 78-1 78-1 78-1	753' 761' 763.5' 744' 779' 751' 297' 298-298.4' 363' 374'	19 75 24 125 60 55 7 6 55	5 2 33 2 11 2 51 16 57	8 10 15 67 40 8 53	226 6 205 12 11 33 36 24 2350 65	1.4 0.5 0.5 0.4 0.2 0.7 1.3 0.8 1.1	20 30 20 10 20 10 nd 10 40	10 40 80 40 80 10 nd 20 5			1230 270 1520 220 335 700 330 105 560 630	Ser. contact gr. & arg.; mo + py Mo on Fr. in granite Sericitized granite To., Mo, Py Mo in veins in Sil. arg. or granite Granite Altered granite with MoS ₂ Dead arg. Arg. cut by quartz vein In Arg. fault zone; vein sulphide
	70 1	0751	100	•		000		τυ _.					(shear zone?)
16	/8-1	3/5'	TÔO	8	5	810	1.9	10	30			770	HornFelsed Arg. cut by qtz. calcite vei carrving sulphide
17	77-1	194'	20	80	65 _.	1120	0.8	nd	80			. 270	Arg. with small qtz. veins (with minor
18 19 20	77-1 77-1 77-1	2945' 175' 484.5'	29 20 45	57 388 71	15 20 13	356 1800 126	1.0 1.2 0.8	nd nd nd	40 30 30	· ·	· · ·	18000 1200 1150	Hornfels and skarn with minor diss po Arg. with 2 cm qtz-po+ minor cpy vein Hornfels and cherty skarn 1cm qtz.
21	77-1	248'	18	20 :	[.] 20	161	2.5	nd	30	•		860	bx. Arg. Frag. with py(fault) healed wi
. 22	77-1	211'	21	106	15	520	1.0	10	100	•		1150	qtz. veins silicified Arg. with diss po and .3 cm
23	77-1	509	. 50	6	10	21	0.2	10	30			400	qtz-py(po, cpy?)vein cherty aplite? 1 cm qtz & minor Mo vein with 2 cm sericite any
24 25	77-1 77-1	508' 506'	600 70	3 6	10 13	6 31	0.1 0.3	nd nd	30 30			250 570	f.g. granite?porph?;.5cmqtz-po-Mo vein Fine grained granite? aplite; qtz veins
26 27	77-1 77-1	323' 164'	28 17	126 85	18 5	670 2450	1.0 0.7	nd 20	40 600	•		2000 13500	Arg. with 2cm po rich vein in skarn zon Silicified hornfels-cherty sed. cut by
28	UV 78	B E. Ext.	2	2	30	210	0.8	nd	nd	÷		600	Qtz. vein in skarn, feld, py, biot, dar
29	77-1	Open pit	19	87	15	1560	1.2	70	nd			11000	Hornfelsed cherty gray sed with diss py
30 31 32 33	Felte Qtz. qtz.	ed ser? 4 cm. vein 5 cm.	13 10 4 11	70 26 5 100	25 5 8 40	156 62 15 670	- 1.0 0.3 0.2 1.9	10 120 10 170	nd 5 40 500	•		5900 9200 380 8500	sph vein Talc? material, veins, boxwork Feld.(ser)vein-vug; limonite, Mo? weathered medium grainte granite~2% Bi Kaol, alt. Feld on sides, boxwork, vug.

TABLE 2

Analytical Results -A-77-1 Diamond Drill Hole (PPM) - M.U.T. CLAIMS

_	77-1	Mo	Cu	РЪ	Zn	Ag	Mn	. Bi	F	Sn	, IS
	5	30	14	11	110	1.0	630	16	5880	5	5
	5 5	15	26	11	1120	1.0	180	ND	920	10	500
-	3.5	14	830	10	5000	2.2	310	112	3440	5	60
100' (30,49 m	55	38	130	8	4500	1.0	720	116	5200	10 ·	70
	4345	42	86	. 9	162	1.0	420	20	1930	10	50
•	55	6	63	12	350	2.0	520	692	4240	10	···10
200' (61 m		28	42	12	310	1.1	350	16	5000	25	60
	5	5.	7	6	163	0.4	100	20	330	10	50
	55	300	500	13	20 500	4.1	3250	2280	2400	10	NÐ
•••	55	34	33	13	1800	1.4	470	96	1100	5	5
300'		21	60	14	880	1.5	550	-44	4640.	5	50
(91.5 m		3	8	8	105	0.3	200	4	350	5	50
•		18	126	8	26500	1.0	260	4	1490	70	40
1001		21	54	9	460	0.8	90	ND	1480	5	80
400 (122 m)		25	4	7	29	0.2	450	ND	100	80	60
зхаян .			.		1						
	s ///	• *	•		• •	· .	•	•			

500' (152 m)

SSS Black Argillite
LLL Black Limestone, Limy Argillite
++ Aplite

sectioning and density determination. The densities were desired to indicate if enough contrast existed between alterd and unaltered sediments and the Lost Creek stock to warrant a gravity survey in search of a gravity low "porphyry" or gravity high ore zones. The denisty results are presented in Table 3. The density contrast between sediments and granite was thought to be too low and the topographic relief too steep, to justify a gravity survey.

Outcrop exposure south of line 500^N would average approximately 5% and southeast of Black Bluff Fault, perhaps 2%. North of line 500^N outcrop exposure would average 20%-30% in rather steep topography. This area has been mapped mainly along lines, as dense bush, steep terrain, friable rock and in some cases wet moss on outcrop hampers progress in an northeast-southwest direction.

The main objective of mapping was to discover surface manifestations of subsurface intrusive activity, which signs, together with geophysical and geochemical input would target a "central" zone for later drilling. Such features as alteration type and intensity, rock type and facies changes, economic minerals and showings, veins, dykes, breccias, lime content and structure were routinely noted. A determined effort <u>was not</u> made in the field, to delineate the inherent structure and stratigraphy of the local sedimentary formations. The local structure is very complex and there are very few continuous and easily recognizable marker horizons exposed in the column. Continuity and section traverses down rdiges and creek cuts were made in the area of line 495.5^E and east of line 500^E 514^N. 180 rock chip samples of background units, vein material and economic mineralization features such as skarns and showings were

TABLE 3

Representative Rock Samples

from the M.U.T. Property

For Density Determinations

Sample #	Bulk <u>Density</u>	Description
2	2.63	Aplite almost aphanitic with 2.5 cm qtz veins 509' 77-1
: 3	2.60	fine grained granite less than 1% mafics 455' 77-1
14	2.60	fine grained granite with strange thin large oriented biotite crystals 763.5' 78-2
10	2.58	medium to coarse grained granite $\sim 10\%$ biotite weathered
8	2.60	medium to coarse grained granite alt. plag-∻ ser. + qtz. + kaol? 761' 78-2
7	2.58	medium grained granite weathered
1	2.74	argillite with minor po and qtz veins 195' 77-1
4	2.73	hornfels & cherty skarn 450' 77-1
9	2.59	hornfels weathered (limonite)
5	2.60	cherty silicified hornfels? with minor qtz veins 490.3' 77-1
11	2.88	silicified limestone 2/3 of surface weathered
. 12	2.55	siliceous limestone weathered carbonate leached out
13	2.80	bedded siliceous limey skarn
15	2.79	silicified limestone
6	3.26	garnet - px - qtz skarn + po?

made to complement the geochemical survey.

A report on the geology of the M.U.T. claims follows in Section 4.

iii) GEOCHEMICAL SURVEYS:

Two men collected approximately 1,175 soil/talus samples and 36 stream sediments during the period May 15 to July 15, 1979. The soil samples were collected every 50 m on 51.4 km of cut and topofil grid lines spaced 150-600 m apart and oriented north-south. Most samples were collected from the BF horizon at a depth of 6-12 cm.

The samples were analyzed by Rossbacher Laboratory Ltd., of 2225 S. Springer Avenue, Burnaby, B.C., by geochemical analysis, using a total (perchloric acid) extraction. The following detection limits apply to the elements analysed:

Copper	1 ppm	*Silver	0.2 ppm	
Molybdenum	1"	Tungsten	2 "	
Zinc	1 "	Fluorine	10 "	
*Lead	2 "	*Background	correction	applied.

Soils were routinely analyzed for pH to determine areas of excessive acidity or alkalinity which would affect the relative mobility of pathfinder elements. The field and analytical data were keypunched, then arithmetic and logarithmic histograms plotted to determine normal or lognormal-like distributions. The data listings for M.U.T. claims 1-6 are presented in Appendices 4 and 5. Logarithmic histograms (giving lognormal-like distributions), for data on M.U.T. claims 3-6, are presented, by element, in Appendices 6 and 7. Symbol plots were prepared for 1,230 samples (being all the soil/talus fines data from M.U.T. claims 1-6) for each element, using a statistical approach. These computer-generated plots were printed on a geology-topography base and are presented in Appendix 8, Figures 10 to 10H. Each symbol corresponds to a concentration interval in ppm, arbitrarily chosen about intervals generated using; the lognormal mean, mean ± 1 standard deviation, mean ± 2 standard deviations, twice the mean plus 2 standard deviations (2 (M+2STD)). Values in ppm are indicated beside highly anomalous samples.

Isoanomaly interpretation maps, indicating moderately and highly anomalous zones for each element, were prepared by the geochemist from the raw symbol plots, before printing with the geology. The interpretation maps with geological input are presented in Figures 12 and 13.

Geological cross section E-E'(line 495.5^E) includes concentration graphs for all soil and rock chip samples on the section line. The graph was prepared to emphasize the apparent lithological control of certain geochemical anomalies.

A geochemical report is presented in Section 5.

iv) GEOPHYSICAL SURVEYS:

Two men conducted ground magnetometer and E.M.-16 surveys on 53 km of cut and topofil grid, on M.U.T. claims 3-6, during June and July, 1979. A routine ground radiometric survey was completed

during geochemical sampling of the grid. The survey was designed to detect radiometric contrast reflecting changes in unit, facies or alteration (e.g., potassium) type. The instrument used was a Rand type 1597A Gamma Scintillometer, giving total count readout. This unit is <u>unable</u> to distinguish between potassium, uranium or thorium sources.

The V.L.F. E.M.-16 unit was rented from Geonics Limited of Mississauga, Ontario. The purpose of the survey was to detect structure, relatively shallow conductors - due to graphite or metallic ore and unit or alteration changes - indicated by areas of contrasting conductivity.

The ground magnetic survey employed a McPhar Flux-gate Magnetometer - Model M700, (rented from Phoenix Geophysics of Vancouver) which has a sensitivity of <u>+</u> 10 gammas. Purpose of the survey was to locate areas of contrasting magnetics, indicating variations of content of primary or secondary magnetic minerals (magnetite, pyrrhotite). Large scale lithological changes, structures and magnetic skarns are detectable with this method.

A geophysical report summarizing instrumentation, theory, methodology and interpretation is found in Section 6.

4. GEOLOGICAL REPORT

i) <u>REGIONAL GEOLOGY</u>: (See Figures 4, 4A, 14A)

The geology of the Salmo area has been studied by Little, H.W. (1950 and 1960) and Walker, J.F. (1934) of the Geological Survey of Canada and in greater detail by Fyles, J.T. and Hewlett, C.G. (1959) of the British Columbia Department of Mines.

The area lies near the southern end of the Kootenay arc a curvilinear structural belt of upper Proterozoic to lower Palaeozoic,miogeosynclinal metasediments. Regional metamorphic grade in the Salmo area is characterized by chlorite and biotite zone assemblages.

The Palaeozoic formations are separated by 2 south and eastward dipping regional thrust faults, into 3 northeast and north trending belts:

- The westernmost Mine Belt is mainly comprised of rocks of the early Cambrian Laib Formation, including a 30 metre thick limestone bed - the Reeves Member (Badshot Formation), which hosts the major lead-zinc deposits of the belt.
- 2) The central <u>Black Argillite Belt</u> is separated from the Mine Belt by the Argillite (thrust) fault. The Argillite Belt contains black argillite, limy and arenaceous black argillite, minor quartzite and black limestone beds of the Ordovician Active Formation.

3) The <u>Eastern Belt</u> is separated from the Argillite Belt by the Black Bluff Thrust Fault. Phyllite, carbonate and quartzite members of the Cambrian Laib Formation comprise the Eastern Belt.

The belts are irregularly intruded by north-northeast and east-west trending granitic stocks and plugs,of probable early Cretaceous age and post-contemporaneous aplite and felsite dykes. The intrusions are cut by biotite rich, lamprophyre dykes.

Structure in rocks forming the Kootenay arc is very complex. While little work has been done on the Active Formation, its structural style is thought to be similar to the better known Mine and Eastern Belts.

The oldest structures - called "primary" by Fyles, consist of overturned and isoclinal folds. These were folded into "secondary" structures late in the primary deformation period. Bedding and thrust faults which are common throughout the arc, originated in this period and were active during secondary folding.

Regional thrust faults and primary fold axes follow the regional trend of the Kootenay arc. Primary fold axes plunge at shallow angles to the south and southwest and axial planes dip eastward and southward.

The M.U.T. claims are located just north of a major flexure in the Kootenay arc where the regional trend changes from northerly to northeasterly, then to eastward.

A generalized interpretation of the structural evolution of the Palaeozoic Belts is presented in Figure 4A. This cartoon indicates the mode of formation of the Argillite and Black Bluff thrust faults, as major zones of slippage between formations of contrasting competence and ductility. Dolomitized zones in Unit 5 -Reeves limestone, subadjacent to the Argillite Fault, host replacement lead-zinc mineralization. Dolomitization preceeded emplacement of granite stocks but sulphide ore may well be related to the intrusions.

ii) GENERAL GEOLOGY OF THE M.U.T. CLAIMS:

The M.U.T. claims are underlain by Palaeozoic sedimentary rocks ascribed by Fyles and Hewlett, to the "Black Argillite" and "Eastern" Belts of rocks, in the Salmo area. The Black Argillite Belt is comprised of carbonaceous argillites with relatively thin interbeds of carbonaceous limestone, lime-bearing and arenaceous argillite and quartzite, of the Ordovician Active Formation. The Active Formation underlies much of M.U.T. claims 5 and 6 and the northwestern half of M.U.T. claims 1 to 4.

The Black Bluff Thrust Fault, which trends northeastward across the southern portions of M.U.T. claims 3-6, brings rocks of the Eastern Belt in contact with limy argillite of the Active Formation. The Eastern Belt is comprised of the Laib Formation, including upper Laib phyllite and underlying, Emerald member phyllitic argillite, Reeves limestone, Truman phyllite and Reno quartzite. The Eastern Belt rocks outcrop on M.U.T. claims 3-5, southeast of Black Bluff Fault and do not appear to have economic potential.

<u>STAGE 1</u>: Deposition of Active Formation (Unit 9 - black clastics) in Cambrian syncline.

Idealized Cross Section looking N.N.E. from the M.U.T. claims.

STAGE 2:

Primary Deformation development of isoclinal and overturned folds, Argillite and Black Bluff thrust faults.

STAGE 3:

STAGE 4:

Development of Iron Mountain overturned anticline, "secondary" folds, axial plane and transverse faults.

Granitization(?) and emplacement of lower Cretaceous plutons in fold structures with fault control then glaciation to present erosion surface.

Figure 4A: An interpretation of the structural evolution of the Palaeozoic Belts in the Lost Creek Area.

The structure of the Active and upper Laib formations is very complex. In the Active formation, <u>north and west</u> of M.U.T. Hill, "primary" isoclinal and drag folds strike 0° to 20° azimuth and plunge 5° to 15° to the southwest. Bedding generally strikes northeast and dips 40° to 70° to the southeast. Primary folds south of M.U.T. Hill trend northeast and plunge 5° southwest. An interpretation of the structure of the Palaeozoic Belt rocks is indicated in Figure 4A. The stratigraphy of the Active formation is best exposed in the northwest slope of M.U.T. Hill and is thought to comprise:

The Active formation is intruded along a northeasterly zone, which cuts across M.U.T. claims 1 and 2 and terminates along an irregular southeast trending contact zone within the area of the Molly claims. Aplite intersected in diamond drill holes 77-1 and 78-2 indicates that an apophyses or "plug" of this intrusions exists under M.U.T. Hill.

At the Molly Mine (in the northern area of M.U.T. claim 4) and on the Jumbo claims (within M.U.T. 1 and 2) molybdenite mineralization occurs in a sheeted zone of fine-grained granite, beneath a thin contact aureole of aplite and hornfels. Tungsten as scheelite, with lesser amounts of fine-grained molybdenite and powellite occurs in garnet-

diopside skarn, within limestone on the Molly claims and in siliceous limy quartzite at the M.U.T. adit. Scheelite is also found in quartz stockwork, in a skarn zone northwest of D.D.H. 77-1 and in small, linear actionlite-wollastonite skarn zones replacing limy argillite, with related biotite hornfels, as at the "1% Wo_3 " showing. The skarns range from 1 cm to 1 metre width and generally contain very low grade tungsten. Massive sphalerite in quartz veins ocurrs in trench 3 and 4 and downhole in diamond drill hole 77-1. Massive argentiferous galena with lesser zinc, tungsten and gold values, is found in quartz veins in limy argillite, in the United Verde Adits.

The aplitic intrusion intersected by D.D.H. 77-1 and 78-2 is indicated at surface, in the area north and west of the M.U.T. Hill camp, by: erratic zones of intense biotite hornfels, scheelite bearing skarns and silicification, by a general incrase in iron oxides on fractures and by occassional outcrop containing semi-massive sphalerite and pyrrhotite fracture-fill veinlets, in hornfels.

iii) DESCRIPTION OF UNITS: (See Figures 7,8,9)

A) Palaeozoic Formations:

a) <u>Cambrian Laib Formation</u>: Units comprising the Laib Formation are exposed in sparse outcrop, in an area southeast of the Black Bluff Fault, on M.U.T. claims 3-5. Stratigraphic divisions are those employed by Fyles and Hewlett, 1959 and by Little, 1960.

a.i) <u>Upper Laib Formation</u>: The upper Laib Formation is an as yet undivided mixture of phyllite, muscovite-talc schist, phyllitic argillite, black argillite, limy argillite and grey limestone.

The predominant rock type in the formation is grey-silvery phyllite (Unit Cp), which is found throughout the area between the Black Bluff Fault and the Reeves limestone member. In a 100 metre wide zone at, and adjacent to the Black Bluff Fault, Unit Cp consists of complexly contorted muscovite-talc schist. Foliation orientations in this zone strike north to northeast and dip sub vertically to the west. Elsewhere, the unit is strongly foliated and folded with a common strike to the northeast and dips greater than 70° to the northwest and southeast. The unit is commonly fine-grained, light grey in colour, with muscovite plates on a rather crenulated foliation.

Unit CAp-grey to red phyllitic argillite is recognizably derived from argillite and occassionally preserves a relict bedding cleavage. The unit is commonly fine-grained and weakly to moderately foliated, with muscovite on partings. Red phyllitic argillite is texturally and compositionally similar to grey phyllite, with the exception of a reddish tint due to diffuse and mottling iron oxide staining. Limy argillite - CApl, is very friable, medium grey in colour and has a carbonate content of perhaps 10%. The distribution of this unit is confined to the northeastern half of the upper Laib Formation.

Black argillite - CA and limy black argillite-CAl are found in scattered outcrop on lines 498.5E and 500E at approximately 486N. The units are very friable and highly fractured, with occassional good visible bedding which strikes northeast and dips approximately 80° to the southeast. These units are not disimilar to limy argillite beds in the Active Formation, with the exception of CAl at 486N on line 580E, which contains solution breccia healed with creamy-

coloured calcite. An outcrop of CA at 485N on line 500E contains approximately 1% banded (bedded?) pyrite. These relatively undeformed units are tentatively assigned to the upper Laib due to their position east of Black Bluff Fault; however, they may represent an erosional remnant of Active Formation lithology.

Unit CL - grey limestone was noted in outcrop on line 518E from 488.5 to 490.5N and on line 506E from 480.8N to 481.7N and is interpreted to form an irregular band, trending northeast between these lines. This interpretation is somewhat supported by areas of limestone subcrop and float located on trend, on lines 509E and 512E. The bed is light to dark grey in colour and well fractured and healed with calcite and quartz. Minor actinolite skarns were noted near contact with subcrop of moderately hornfelsed argillite on line 518E. The beds contain poorly preserved isoclinal folds, have an apparent width of 50m and generally strike northeast, dipping 60-85⁰ southeast.

The general structure of the upper Laib records complex isoclinal folding, with numerous axial plane and bedding thrust faults. Internal structure of the upper Laib is obscured by intense and variable foliation and by poor outcrop exposure.

a.ii) <u>Lower Laib Formation</u>: Rocks of the lower Laib Formation occur in the extreme southeastern portion of M.U.T. claim 3. The lower Laib contains 3 member divisions, of which 2 are exposed in the claims area.

Reeves limestone (Unit RL) is found in a 40 metre wide bed on line 518E at 485N and on tie-line 480N at 513E. The limestone is medium grey in colour, weakly recrystallized, very competent, rounded in outcrop and contains less than 5% detrital quartz. The unit has been folded but these structures are only indicated by fractures healed by quartz and calcite. The bed apparently strikes northeast to north-northeast and dips 45° to 55° to the southeast. A weak foliation is noted, oriented $95^{\circ}/80^{\circ}N$. This unit is similar to that exposed at the Jersey Mine but locally lacks the dolomitization, fracturing and close proximity to intrusions of the Mine belt. Contacts of the Reeves member with the upper Laib and underlying Truman member are not exposed but elsewhere in the belt are found to be conformable.

The Truman member, exposed on line 518E at 484N, comprises an 80m thick bed of strongly foliated and banded phyllitic argillite. The argillite cleaves in very thin micaceous plates and varies in colour from light gret to red-brown due to iron oxide content on foliation and fracture planes. Thin bands of very light grey, cryptocrystalline quartzite are evident in the upper 30 metres of this formation. Bedding (?) foliation commonly strikes northeast and dips 80[°] southeast. The unit is cut by numerous 0.6 to 1 metre wide "bull" - quartz veins containing minor limonite which apparently follow the main foliation. A single 1 metre wide biotite lamprophyre dyke was noted near the base of the unit, oriented on 30[°]/80[°]N.W.

Truman member phyllite conformably overlies Reno Formation quartzite on the brow of Lost Mountain Ridge. The Truman member is taken as the basal unit of the Laib Formation.

The upper 10 metres of the Reno formation locally consists of rather massive to weakly foliated grey quartzite, underlain by light red-brown-grey mottled, micaceous and variably limy quartzite. Foliation in micaceous quartzite strikes $20^{\circ}-40^{\circ}$ and dips $60-80^{\circ}$ southeast. Several 0.1-0.6 metre wide bull-quartz veins are noted on orientations of $30^{\circ}/80^{\circ}$ S.E. and $160^{\circ}/45^{\circ}$ N.E.

A bed of black, fine grained quartzite lies approximately 20 metres east of line 518E, at approximately 481N. This bed conttains approximately 20% fine to medium grained, semimassive magnetite. The host rock appears to be a silicified limy quartzite and the occurrence is marked as magnetite skarn on Figure 9. The skarn is exposed for approximately 50 metres in discontinuous rubble and outcrop. The band appears to be approximately 8 metres wide.

b) <u>Ordovician Active Formation</u>: The Active formation, local to the M.U.T. claims, has a minimum apparent thickness in excess of 680m. Neither the top nor the base of the formation is exposed in the claims area. The extent of thickening and repetition due to extensive folding and thrust faulting could not be established, due to poor stratigraphic control. Sediments of the Active formation were probably deposited in an offshore basin in the miogeosyncline, during late Cambrian to Ordovician time. Periods of uplift and subsidence are suggested by carbonate-argillite facies transitions and lithological changes from guartzite to argillite.

Complex folding is evident in the argillites in the northwest slope of M.U.T. Hill above the limy quartzite unit. Poorly preserved
accordian folds and drag folds were noted at several locations. Recumbrant folds, inclined to the northwest, are evident along the axis of M.U.T. Hill. The "primary" folds strike 0° to 20° and plunge 5° to 15° south. Secondary folds are seen along M.U.T. Hill and south towards Wilson Creek. In these areas, axial planes strike 30° to 45° and plunge 5° southwest. The general strike of bedding is north-northeast to northeast dipping 40° - 60° southeast.

The general stratigraphy of the Active formation is presented in cartoon in section 4.ii. A description of lithologies follows.

<u>Argillite</u> (Unit A and subdivisions): The predominant lithology in the Active formation is black argillite. The unit is typically very carbonaceous and generally well fractured, folded and somewhat friable. Argillite is commonly fine grained except fine to medium grained in narrow arenaceous bands, near the top of M.U.T. Hill. The unit contains less than 1% bedded pyrite and has no inherent magnetism.

Diamond drill holes 52-10, 11, 12 in the south of M.U.T. claim 6, were drilled by Kontiki Lead and Zinc Mines Limited during local exploration for lead and zinc deposits. The holes were vertically declined from a collar elevation of approxmately 915m. They cored in excess of 335m, in Active formation black argillite and limy black argillite. The top of M.U.T. Hill has an elevation of 1540m and the bottom of the Kontiki drill holes, an elevation of 580m. Assuming an average bedding dip of 45⁰ and <u>no</u> significant faulting and folding repetition of beds (probably repetition does occur) the formation has a minimum apparent thickness of 679m.

This figure compares with a maximum apparent thickness of 1402m, to the north in the valley of Active Creek and a minimum apparent thickness of 457m, in the valley of Porcupine Creek.

The internal structure of the argillites is complex. Bedding is frequently obscured by slaty cleavage and by folding. Facies transitions from argillite to limy argillite to limestone are commonly abrupt. In zones of silicification and hornfelsing the argillite is notably more competent and forms rather "blocky" talus. Narrow bands of tremolite-actinolite skarning of limy partings in the argillite are often very friable.

A roughly concentric area centred at line 495.5E, 501N, with a radius of 500m, contains markedly greater amounts of iron oxides on fractures and cleavage. This area encompasses numerous small zones of hornfelsed and silicified argillite. Also occurring in the area, are erratic concentrations of a green flourescing, white coloured, compact and massive mineral infilling fractures, which is tentatively identified as chabazite - member of the zeolite family.

The argillite has been divided into several units on the basis of alteration, textural and lithological differences. Brief

descriptions of these units follow:

Limy Argillite (A1): The limy argillite member is exposed in irregular northeast trending bands in the northwest slope of M.U.T. Hill, high on the southeastern slopeof M.U.T. Hill and along the Black Bluff Fault. The unit is everywhere highly fractured and very friable. It is defined on the basis of a carbonate content in the range from 1 to 10%. Limy argillite commonly contains more carbonaceous material than argillite but rather less than black limestone. The unit is in gradational contact with limestone and argillite along Lost Creek; however, on M.U.T. Hill contacts with argillite and hornfelsed argillite are rather sharp. Narrow, subcontinuous bands of limy argillite from 1cm to 1 metre in width, located along the axis of M.U.T. Hill, have been altered to actinolite-tremolite skarns carrying minor visible scheelite.

<u>Black Limestone</u> (L): The black limestone member has the same general distribution as limy argillite, with which it is commonly interbedded. On the southside of Lost Creek it has a true (?) thickness of some 30m. The unit varies in colour from dark grey to black and is distinguished from limy argillite by an estimated carbonate content in excess of 15%. Black limestone is rather recessive weathering and quite friable in outcrop. The unit contains visibly more carbonaceous trash than argillite or limy argillite and no sulphides. The internal structure of the unit is poorly preserved and it is not known to what degree it has been deformed by folding. Along Lost Creek the unit is seen to gradually "shale out" towards the northeast. In float south of D.D.H. 78-1 and in outcrop on Nevada Mountain and on the Molly Mine

road, 1250m northeast of D.D.H. 78-1, black and grey limestone show recrystallization to white marble. In the Molly Mine area, limestone and marble are further altered to wollastonite, tremolite and garnetdiopside skarns, containing scheelite.

Quartzite, Siliceous Argillite, Quartz-Pyroxene Hornfels:(Q, Q₁, Q₁)

Rocks of this division - "Q", were identified in the field as quartzite, aplite (?), limy quartzite, pseudoquartzite and siliceous hornfels on the basis of colour, texture, hardness and stratigraphic considerations. On re-examination in thin section many rocks which superficially resembled quartzite turned out to be guartz-pyroxene hornfels. These hornfelsed "pseudo-quartzites" were probably lime cemented siltstones in their original state, with variable clay, feldspar and carbon content. In thin section the hornfels are a fine to very fine-grained mixture of 45-65% guartz (in grains and amorphous matrix), 5-15% clinopyroxene (mainly diopside), feldspar 10-20%, calcite 5-19%, chlorite 5%, tremolite-actinolite 5-15% with accessory sphene, garnet and pyrite. Diopside commonly occurs as porphyroblasts, partly oriented to define a thin foliation. Bedding is sometimes suggested by tremolite deficient laminae cut by foliation at a small angle. A strong penetrative foliation is often defined by lenticular folia of quartz and feldspar mosaic, oriented ragged prisms of tremolite-actinolite and dimensionally oriented quartz grains sandwiched between the amphiboles. The typical white to light grey colouration indicates the preponderance of quartz, feldspar and diopside. Samples with light grey to black colouration contained inclusions of tremolite-actinolite and quartz mosaic, in diopside porphyroblasts.

True quartzite - " Q_1 ", is found in sharply conformable contact with argillite at line 500E, 503.5N and 10m east of the "0.34% Wo₃" showing on the M.U.T. access road. The beds are 4m and 0.6m thick respectively, well bedded and pure white in colour.

Unit $Q_{\rm I}$, resembling silicated limy quartzite or siliceous limestone, is found in several locations: along the south banks of Lost Creek, along the M.U.T. Hill axis, in the south of the Molly claims and on line 495.5E at 502.5N. The unit is resistant to weathering and breaks into jointed blocks, approximately 0.3m in diameter. The unit is well bedded and contains numerous 1cm interbeds of porous, vuggy limestone, sandy limestone and minor argillite. Beds have a distinctive grey and white banding. The white bands contain quartz veins up to 5mm thick following bedding lineations and are strongly silicified. The grey bands are a weakly silicified, moderately hornsfelsed mixture of siltstone and carbonate. The original rock type appears to have been a siltstone with thin rhythimic interbeds of limestone. In thin section the rock is a finely foliated mixture of quartz 60-70%, diopside 15%, plagioclase 5%, carbonate 5%, garnet 5%, with accessory sphene, zoisite and muscovite. At the M.U.T. adit near contact with fine-grained granite the unit is altered to garnet-pyroxene skarn.

In the area west of Black Bluff Fault, along the Northern Tributary of Wilson Creek, well bedded and banded rocks described in the field as interbedded argillite, siliceous-argillite and grey white quartzite, in thin section are revealed to be quartz-pyroxenen hornfels.

The hornfels is a fine-grained mixture of 60-80% quartz, 10 to 20% diopside, 1-5% calcite, 1-5% (?) amphibole (actinolite-tremolite) with accessory chlorite, sphene and garnet. This unit is substantially deformed in the area north of Wilson Creek, where the strike of beds changes from north-northwest to east-northeast.

Units designated AH - moderately to strongly hornfelsed argillite and AL - weakly hornfelsed argillite are found on M.U.T. Hill and in contact areas with granite. The hornfelsed rocks are commonly not lime bearing. They are light black in colour and distinguished from unaltered argillite in the field by somewhat finer grain, hardness and "clunk" (slight ringing sound when struck). In thin section rocks are a very fine grained, equigranular mixture of 85% quartz and orthoclase, 5-10% biotite, 0-5% graphite, with accessory andalusite and calcite. Rocks of this unit are mainly of the pyroxene hornfels facies, indicating contact metamorphism. At the 1% showing, hornfels are more likely to be of amphibolite facies due to the presence of muscovite.

Units designated Sk for skarns were noted throughout the area but are most conspicuous in contact areas of the Lost Creek stock. True skarns - "Skg", derived from relatively pure marbles and limestones in contact with plutonic rocks, are noted mainly on the Molly claims, where the mineral assemblage is medium to coarse grained calcite-wollastonite-diopside-grossular garnet. In this area, small pockets of high grade scheelite are noted in pure wollastonite skarn and in garnet-diopside skarns, within 8 metres of the granite contact. Skarns designated Ska - actinolite-wollastonite \pm schellite, are found in \pm 1cm interbeds with weakly to strongly hornfelsed argillite. These skarns could be assigned to upper amphibolite, transitional to calcsilicate hornfels metamorphic facies. The altered areas contain crowded blades of actinolite and/or tremolite with lesser biotite, quartz, epidote, wollastonite and calcite. A few small wollastonite-diopside \pm garnet subcrops between D.D.H. 78-2 and the Molly claims are included in the Ska unit but are of calc-silicate hornfels grade metamorphism.

Unit Sks - calc-silicate hornfels is found in contact areas of the Lost Crrek stock, along the western and eastern contact areas of the Wilson Creek pyroxenen-hornfels zone and in a few scattered outcrop elsewhere in the Active formation. At the M.U.T. adit, the granite contact area with limy siltstone and limestone is altered to bands of diopside-garnet-pyrrhotite skarn (calc-silicate hornfels) with accessory k-feldspar, tremolite, scheelite amd molybdenite. Between these skarn bands and grading into pyroxene hornfels (QL) further west, are bands of grey-white wollastonite-tremolite <u>+</u> diopside which contain trace amounts of scheelite. A similar situation is implied for the Jumbo claims area from an examination of hornfels material in adit dump piles.

Unit As - shaly textured argillite is found along the M.U.T. claims access road near line 491E at 488N. The uint is black in colour and thinly bedded with less than 1% disseminated pyrite. To the west is an area of limy shale - Als, containing upto 10% disseminated carbonate. The unit is gradational to north and south, into unit Asp slaty textured argillite. Unit Asp is dark grey to black in colour and

contains a single crenulate cleavage which commonly obliterates relict bedding. Pyrite porphyrblastic cubes, up to 2mm diameter, are found along cleavage planes but are heavily leached in most outcrop. Cleavage planes have a slight sheen due to the presence of fine-grained muscovite.

Unit Asp is found in north and northeast trending zones on M.U.T. Hill and to the west along line 491E. Slaty argillite, located along the axis of M.U.T. Hill is weakly hornfelsed throughout and is markedly iron stained in numerous irregularly shaped zones. The unit contains several northeast trending, subcontinuous skarn-amphibolite bands (Ska) from 1cm to 50cm wide and irregular zones of pyroxene hornfels (AH). In areas of higher grade thermal metamorphism, it is common to see an increase in fracturing and iron staining and the occurrence of fracture fill chabazite (?), autunite (?). Bull quartz veins, from 3cm to 60cm wide, carrying trace amounts of disseminated pyrite, are common on cleavage in the unit.

Unit Ap - phyllitic argillite was noted on line 485E near 485N and in a few outcrop along Black Bluff Fault. The unit is light orangebrown to silvery grey in colour, fine-grained and very recessive weathering. A prominent crenulated schistocity is present which strikes $20^{\circ}-45^{\circ}$ east and dips 50° south.

B) Intrusive Rocks:

a) <u>Nelson Granitic Rocks</u>: The Active formation is intruded along a northeasterly trend by the Lost Creek stock. The stock has an irregular shape in plan, being crudely elliptical along an east-west to northwest axis but trending rather more northeasterly in the Black

Argillite Belt. The stock crosscuts folded beds in both the Eastern and Black Argillite Belt but does not appear to have deformed the preexisting regional structures. The intrusion is satellite to the Nelson Batholith, 26km to the northwest, of lower Cretaceous age.

The Lost Creek stock has been examined on the Jumbo claims, at the M.U.T. Adit, along Lost Creek and at the Molly Mine. In the core area along Lost Creek and in the main creek east of the Molly Claims, the stock has the composition of a granite. It is composed of 30% quartz, 5% microcline. 10% albite, 5% biotite with accessory garnet and sericite. Granite is massive, well jointed, light grey to pink in colourand rather recessive weathering. Outcrop is frequently exfoliated and in recessive areas the granite has weathered to grus.

In contact areas of the M.U.T., Jumbo and Molly claims the stock has rather variable appearance and composition, probably related to chemical zoning. Over a space of perhaps 20 m approaching sediment contacts, the granite becomes progressively finer grained, leucocratic, and erratically quartz and plagioclase (attrite) rich. In the contact zone of the granite, overall composition though variable, would approximate that of quartz monzonite. Here biotite is altered to chlorite and muscovite and plagioclase is partially altered to sericite. On the Molly claims, one area of granite is completely sericitized.

The contact zone of the granite with Active formation sediments is of interest because of small,localized,metasomatic molybdenite scheelite deposits, such as at the Jumbo and Molly claims. The medium grained, transitional phase (granite to quartz monzonite) is well

represented only near the Molly Mine where it grades west into fine grained quartz monzonite and granite and east into coarse grained granite.

The medium grained phase is very well jointed, blocky weather-

The fine grained phase is essentially an aplite which forms a highly siliceous cap rock, some 2 metres thick, at the roof of the granite intrusion. Aplite and pegmatite dykes up to 1 metre in width cut the fine and fine-medium grained phases of granite.

At the Jumbo claims the medium grained phase is not represented and fine-grained contact phase is present, but poorly exposed. Locally, the coarse grained stock is a light pink quartz monzonite becoming light grey to white in the contact area. Contact rocks have generally variable textures and are cut by aplite, felsite and pegmatite dykes. Fine-grained granite to aplitic dykes are common cutting argillite hornfels on the top and western flank of the ridge running south from Nevada Mountain.

b) <u>Aplite and Felsite Dykes</u>: Aplite and felsite dykes have a wide distribution in the region. They are typically very fine-grained to aphanitic, white to light grey weathering, resembling chert or, in some outcrop, quartzite. They are composed of quartz, plus sodic and potash feldspar. The intrusive masses commonly strike subparallel with foliations in the host rocks but dips are generally subvertical. The aphitic dykes and sills are most common in the Active formation east of Jersey and H.B. Mines.

Aplite is found on the M.U.T. claims as dykes up to 1 metre wide in and subadjacent to contact areas of the Lost Crrek stock. It is also found as a discontinuous and poorly preserved "chill zone" to the stock, at the Molly Mine and in the Jumbo adits. Fine-grained granite to aplite outcrop occurs near diamond drill hole 78-3 and as dykes in calc-silicate rock to the west. Thin sections of samples from the Molly Mine and hole 78-3 area indicate aplite is composed of 15-20% quartz, 78-80% potash feldspar and 5% plagioclase with 1% biotite (altered to muscovite) and accessory garnet.

Aplite intersected in diamond drill holes 77-1 and 78-2 is white to light grey in colour, altered and cut by two stages of veining. The first stage quartz veins contain potash feldspar and secondary biotite. The later veins are norrow quartz-pyrite veins with sericite alteration selvedges, which contain minor fine-grained molybdenite. In thin section the rock is composed of quartz 50%, 30% potash feldspar, 18% plagioclase and 1% sericite with accessory carbonate and garnet. Feldspars are weakly altered to sericite. Some micrographic and exsolution textures were noted indicating hornfelsed material. The quartz veins contained quartz 60%, garnet 30-35%, sulphides 5% and accessory muscovite, carbonate, apatite and biotite. The bulk of argillite overlying aplite in hole 77-1 is strongly hornfelsed.

c) Lamprophyre Dykes and Sills: Lamprophyre dykes and sills are common throughout the Salmo area and cut all other intrusive rocks. Lamprophyre dykes and sills are noted in scattered outcrop over a wide area of M.U.T. claims 3-6. They are commonly very recessive and are indicated by a fine rubble of biotite. In a thin section of a sample dyke cutting quartzite near 481.5N on line 518E, the lamprphyre

is seen to comprise 15% biotite as large phenocrysts and are fine-grained ground mass, 35% plagioclase, 25% chlorite (after biotite) and 25% carbonate. No sulphides were noted in the lamprophyres.

C) <u>Structural Geology</u>: (all orientations given in azimuth e.g. strike of $20^{\circ} = N \ 20^{\circ} E$)

The internal structure of the Active formation is poorly represented and apparently complex. The bulk of the argillite is rather monotonous and marker horizons are rare and discontinuous. The calcareous units Al and L, exposed in beds south of Lost Creek and in a band of discontinuous outcrop along the western margin of Black Bluff Fault may be segments of the same horizon. Exposure is too poor in the Black Bluff Fault area to develop strtigraphic relationships and bed thickness.

A difficulty in studying the argillites is that they often are thinly banded and break along cleavage planes parallel to bands. In most outcrop it is not possible to establish if banding is original bedding or secondary cleavage. Certainly, in the metamorphosed rocks of pyroxene hornfels AH and Q, many bands are secondary features. Most of the observed structure discussed below was detailed in small scale folds in argillite and limy argillite.

Open isoclinal folds with a wave length of 9 m were recognized on M.U.T. Hill at 498E on line 500N. The folds are upright, strike $0 - 20^{\circ}$ and plunge 5° south. Accordian folds are poorly exposed in a trench at 500N, 500E and on line 492.5E at 502.5N. These folds strike 45° and plunge 5-10° southwest. In the line 502.5N area the axial planes are inclined 45-50° northwest.

Recumbant folds with a wave length from 1 to 5 m were found at 503E, 501N; 500N, 499.5E and at 500.8N, 500E; outlined in limy argillite beds.

Drag folds are outlined by quartz veins in black limestone and limy argillite in scattered outcrop near the United Verde adits. They strike azimuth 60⁰ and are inclined 40⁰ north.

Altitudes were recorded on lineations thought to represent bedding and others representing secondary structures, over the whole of the claims area. Bedding in the argillites underlying M.U.T. claims 1 & 2 commonly strike 0 to 10° and dips at a variety of attitudes reflecting somewhat contorted, tight isoclinal folds. The fold axes strike 5⁰ to 15°. They plunge 5° southwest of Nevada Mountain and 14° northnortheast, just north of Nevada Mountain. On M.U.T. claim 3-5, bedding commonly strikes 15-20⁰ in the Lost Creek area limy argillites but moving south toward M.U.T. Hill bedding is most common at 35° to 45°. Bedding dips are most common at 40° to 55° southeast. An area between 492E and 501E at approximately 497N returned bedding orientations striking due east with highly variable dip angles. Altitudes of beds on the western margin of pyroxene hornfels "Q" above the Northern Tributary of Wilson Creek strike 170° and dip 60° , variably east and west. Bedding altitudes in the area of Black Bluff Fault commonly subparellel the fault trend, which varies from east-northeast to north-northeast to northeast.

Cleavage in the slaty, shaly and phyllitic textured argillites of the Active formation is variable from area to area but commonly deviates from bedding strikes by not more than 10⁰. In the area south of the base line, cleavage dip is substantially shallower or steeper than

bedding dip.

The Black Bluff Fault crosses the southern area of the M.U.T. 3 to 6 in a general northeasternly direction. The fault zone is marked by a recessive area bounded by highly fractured quartz veined and occasionally sulphide bearing limy argillite, limestone and argillite to the northwest and by muscovite-talc-schist and phyllite of the upper Laib formation, to the southeast. Altitudes of bedding in argillites and foliation in the schists suggest the fault dips 70° - 85° to the south and east.

Structure in the upper Laib is exposed in a very few outcrop scattered over a large area. Bedding orientations taken in limy beds indicate that at least part of the unit strikes 35° and dips 80° southeast. The phyllites are very contorted in small scale but cleavage commonly strikes 25° to 35° and dips 70° - 85° northwest and southeast.

Structure of the lower Laib-Reno formation is dominated by the Western Sheep Creek anticline, the core of which is centred on Lost Mountain. The anticline is slightly inclined to the northwest in the Lost Mountain area. Recumbant folds with a strike of 30° , inclined 70° northwest, were noted in the Reeves and Truman members and in a single outcrop of limy quartzite in the Reno formation. The beds apparently strike 35° and dip subvertically southeast in the core area. To the west in the Reeves member of the Laib formation the beds strike 35° and dip 55° southeast. Cleavage and foliation in the Laib and Reno formations

commonly subparallels bedding strike and dip over most of the M.U.T. claims. Orientations are most common striking 20⁰ and 35⁰, dipping steeply northwest and southeast.

Cross sections A-A', BCD-D' and E-E' present geology exposed at surface along certain topographic sections lines. Section A-A' trends northeastward along the M.U.T. Hill axis (See Fig. 6). It shows the contact between the Lost Creek stock and argillites in the northeast and the intersection of granite in diamond drill holes 78-2 and 77-1. An hypothesized granite-argillite contact is indicated beneath M.U.T. Hill, following the general axial trend of overturned isoclinal folds. Little of the internal structure of the argillites is shown. as beds are generally dipping toward the southeast, at the observer. In Figure 7, folded section line B-C-D-D' is shown connecting diamond drill holes 78-3, 77-1 and 78-2, where information on subsurface lithology is available in the Active formation, with geology of the Eastern Belt. The complex internal structure in Section B-C is sketched to show the predominance of overturned accordian folds and bedding which strikes 30° and dips $40-50^{\circ}$ southeast. The ultimate structural detail is very complex and is not known to the author. Section C-D is drawn looking north-northeast along azimuth 21⁰. The depth to granite in drill holes 66-1 and 78-2 is shown and the areas of hornfelsing in each hole. The structure in the argillites on this section is dominated by recumbant folds striking 25° , plunging 5° southwest and inclined 40⁰ northwest. The granite may be a cupola following the fold orientations or a sill following bedding or bedding cleavage. Section line D-D' shows the distribution of lithologies either side of Black Bluff Fault. Again, structure in the argillites is hazy; however, attitudes

in outcrop off-section suggests a series of contorted isoclinal folds trending northeast. Bedding and cleavage in argillites near the Black Bluff Fault dip subvertically to the southeast. Structure in the upper Laib is not known but is thought to be dominated by cleavage and foliation. A few accordian folds preserved in limy members of this formation suggest that thrusting has occurred in the unit. The cross section shows accordian folding as the dominate structure with relative movement occurring between rocks of differing ductility. Bedding and recumbant folds are indicated by sketch lines, in the Reeves and Truman members and in Reno Quartzite.

The author's conjecture on the evoloution of Palaeozoic formations in the Salmo area is presented in Figure 4A. The Active formation is thought to have been deposited in an offshore basin of the miogeosyncline during late Cambrian to Ordovician time. Collision of the Pacific and North American plates produced compression forces which folded the Cambro-Ordovician succession. Thrusting occurred on the eastern and western margins of the basin between relatively ductile. rocks of the lower Active formation and upper Laib formation. Bedding faults were lubricated by fluids produced by dewatering of the formation, during compaction and compression. Active formation argillite was deformed into primary folds striking approximately 10⁰. The argillite on the margins of the syncline was thrust east and west out of the basin. With continued compression, the Iron Mountain Anticline was overturned to the west and thrusting occurred above the Reeves member on the eastern limb of the anticline. This western bedding fault is known as the Argillite Thrust Fault.

During this period, possibly due to rotation of the Pacific plate, the southern end of the Kootenay arc was further compressed and

warped to an east-west trend. This period of deformation superimposed secondary, northeast trending overturned and accordian folds on the primary fold pattern. The secondary deformation is best preserved on M.U.T. Hill. In the secondary phases of deformation, axial plane and transverse (east-west to southeast-northwest trending) faulting occurred in the Active formation. Stocks and plutons satellite to the Nelson Batholith were emplaced in existing structures during lower Cretaceous time. In the M.U.T. area, emplacement of the Lost Creek stock was controlled by transverse faults in the Eastern Belt and by fold structure and axial faults in the Black Argillite Belt.

iv) ECONOMIC MINERALIZATION:

Molybdenum-tungsten occurrences, of varying economic significance, are located over a wide area of the M.U.T. claims. Historic showings with underground workings are known at the Jumbo claims on Nevada Mountain, at the M.U.T. adit located just south of Lost Creek, at the Molly Mine on M.U.T. Hill southeast of M.U.T. adit and at the United Verde claims south of the south triburary of Wilson Creek. These showings are described by Fyles (1959), Vokes (1960), Poloni (1978) and Ramalingaswamy (1978). They were examined in the course of mapping.

The two principal modes of occurrence of tungsten-molybdenum mineralization are as disseminations of scheelite and molybdenite in quartz veins occurring in hornfels and in skarns and calc-silicate rocks. The vein showings are invariably polymetallic - containing minor argentiferous galena, sphalerite, chalcopyrite, pyrite or pyrrhotite. The occurrences can be ranked by the relative concentrations of molybdenum and tungsten as follows (all assays reported by Poloni):

- 1. W>> Mo:
 - a. <u>High Temperature Skarns</u>: Southeast of the Molly Mine, garnet-diopside skarns in marble subadjacent to the granite contact, commonly contain 0.5% WO₃ as fine-grained disseminated scheelite in 2-3m diameter zones. Occasional skarns contain up to 2% WO. Skarns adjacent to the granite contact contain rather less scheelite and some pyrite, pyrrhotite, chalcopyrite, molybdenite and trace sphalerite.
 - b. Lower Temperature Hornfels:
 - <u>1% Showing</u>: Quartz stringer on bedding in argillite hornfels contains trace quantities to 0.5% WO₃ as scheelite over 1m widths. Vein also contains visible pyrrhotite-pyrite.
 - ii. <u>New Showing</u>: Pyroxene hornfels zone contains 0.04 to
 0.34% WO₃ as disseminated scheelite and 0.09% to 0.72%
 Zn as disseminated and fracture fill sphalerite.
 - iii. <u>Pyroxene Hornfels in Trench 4</u> (see Figure 5): Disseminated fine to medium-grained scheelite in weakly developed quartz stockwork contains up to 0.28% WO₃, in 1m channel samples (BP 1979). Associated polymetallic quartz veins contain semimassive sphalerite, chalcopyrite and minor galena.
 - c. Low Temperature Polymetallic Veins: Large quartz veins, in the lower adit on the United Verde claims, contain semimassive, argentiferous galena with lesser sphalerite and molybdenite.

Scheelite occurs as large disseminated grains. Molybdenite occurs as medium to fine-grained rosettes. The veins returned values of from 0.06 to $1.9\% WO_3$ and 0.002 to 0.007% MoS₂. A single grab sample from a separate vein contained trace Mo, 0.12% Cu, 0.36% Pb, 2.3% Zn, 20 oz/ton Ag, 0.06% Sn, 0.14% W, 0.037% F and 0.03 oz/ton Au.

2. W≥ Mo:

- a. <u>High Temperature Calc-Silicate Hornfels and Skarn:</u>
- M.U.T. Adit: Interbands of garnet-diopside pyrrhotite skarn and calc-silicate hornfels subadjacent to a granite contact. The skarns contain disseminated, fine to medium-grained scheelite, powellite and molybdenite. Values obtained from channel smaples across the bands assayed from 0.18 to 0.68% WO₃ and less than 0.028% MoS₂.
- ii. <u>Jumbo Adits</u>: Garnet-diopside skarns adjacent and subadjacent to the granite contact contain up to 0.5% WO₃ as scheelite, minor powellite and 0.03% MoS₂, with associated pyrite. Large quartz veins in and adjacent to the skarns contain disseminated and massive pyrite and lesser disseminated galena, sphalerite and molybdenite.
- iii. <u>Diamond Drill Hole 78-3</u>: The hole was drilled subadjacent to the granite contact due south of the M.U.T. Adit. Drilling intersected 26.2m of calc-silicate hornfels averaging 0.035% MoS₂ and 0.18% WO₃ including a 3.4m section grading 0.163% MoS₂ and 0.378% WO₃. The mineralized sections in "skarny" horizons of argillite and limy argillite contained disseminated fine-grained scheelite, powellite and molybdenite

PLATE 11 Molly mine, Salmo, British Columbia. From tape and compass survey, 1958.

From Vokes, F.M; Molybdenum Deposits of Canada, G.S.C. Econ. Bull 20, 1963, p.292. with disseminated pyrite and lesser pyrrhotite.

3. Mo>> W:

At the Molly Mine, a strongly sheeted zone of fine-grained granite, lying just below a 2 metre capping of aplite in contact with argillite hornfels, carries disseminated molybdenite and pyrrhotite. The aplite is irregular in thickness and contains a few disseminated, fine grains of molybdenite and numerous guartz stringers containing trace amounts of very fine-grained, molybdenite. The main zone of ore was examined in a trench above the winze. The sheeted granite is fine-grained, iron stained and rather miarolitic. It is cut by a few 0.6m wide, barren pegmatite dykes and 1cm wide guartz veins. The ore zone lies directly beneath the aplite-hornfels chill zone. Molybdenite occurs as fine-grained rosettes and massive clots along intersecting joint planes and as disseminations between the joints. The ore body forms a steeply plunging zone some 2 to 2.5m thick of crosscutting joint planes with sheeting. The high grade ore occurred where the granite contact dipped at shallow angles, as if near the top of the intrusion. The principal sulphides are molybdenite and pyrrhotite with minor chalcopyrite and pyrite.

It is noted that the main gangue sulphide in showings on the Jumbo claims, is pyrite which occurs with ore and as massive clots in quartz veins separate from the skarns. On the M.U.T. claims the principal sulphide in surface showings is pyrrhotite; however, in diamond drill holes 77-1, 78-2 and 78-3, at depth pyrite is more common than pyrrhotite.

Numerous 1cm to 30cm actinolite-tremolite <u>+</u> pyrrhotite <u>+</u> sphalerite skarns are found replacing thin limy beds and partings in the argillite on M.U.T. Hill. Quartz veins in skarn bands with narrow silicified envelopes are noted in outcrop in Trench 1 and 2 (see Figure 5), following bedding and fold axies. The quartz veins carry minor finegrained, disseminated pyrrhotite, pyrite and trace finegrained scheelite. Scattered small outcrop of silicified argillite, as near Trench 1 (sample 47-60), on the northwest slope of M.U.T. Hill, contain approximately 3% fine-grained pyrrhotite and trace scheelite.

Mapping and prospecting, in the areas of known showings on the M.U.T. claims, failed to locate additional mineralized zones. Minor molybdenite was noted in quartz veins and disseminated in sericite altered, fine-grained granite, in contact with argillite hornfels, on line 497E at 513.5N. A talus block of granite containing MoS₂, was found below unmineralized, exfoliating granite outcrops at 498.5E, 514N. The block contained perhaps 5% disseminated, medium-grained molybdenite in a hematite stained, biotite rich matrix. The source of this singular, mineralized block, is not locally exposed and is thought to be large in extent.

v) ALTERATION:

Regional metamorphism, due to tight folding and shearing of the Palaeozoic sediments, is everywhere low grade. On the M.U.T. claims,

thermal metamorphism related to the Lost Creek stock is superimposed on chlorite zone assemblages due to regional metamorphism. Thermally metamorphism rocks of the Active formation include: i) garnet- diopside <u>+</u> pyrrhotite <u>+</u> pyrite <u>+</u> base metal skarns and calc-silicate hornfels in contact areas of the Lost Creek stock; ii) calc-silicate and quartz-pyroxene hornfels <u>+</u> scheelite - subadjacent to granite contacts; iii) pyroxene and biotite hornfels and silicified zones - commonly in non calcareous rocks in contact with and peripheral to, intrusions of the Lost Creek stock; iv) lower temperature actinolite-tremolitelimonite "skarns" peripheral to the Lost Creek stock.

These rocks are described in greater detail in sections 4 (iii) A and B and 4 (iv).

Alteration in the granite includes intense sericitization in a few areas on the Molly claims, subadjacent to contacts with the Active formation. An increase in orthoclase feldspar and quartz in certain areas of the granite contact, may reflect the chemical influence of sedimentary units during metasomatism. Biotite and muscovite are absent in the intrusion in the contact area. An increase in sulphides and iron oxides is noted in the contact rocks.

Quartz-pyrite veins with silica-sericite alteration selvedges are erratically distributed but not uncommon in both the aplite chill zone and adjacent fine to medium-grained granite. In diamond drill hole 77-1, fracture k-spar and secondary biotite veinlets are cut by later quartz-sericite pyrite veinlets.

A concentric zone centered at 495.5E, 501N having a radius of + 500m, contains generally more fractured rock and markedly greater amounts of limonite on fractures and cleavage, than elsewhere in the argillites. This area encompasses small, erratically distributed zones of silicated and hornfels argillite and limy argillite. In the areas of alteration are found smaller zones containing considerable amounts of a compact, massive, rather soft, white mineral which fluoresces bright-green under short-wave radiation and very faint, pale yellow-green under long-wave radiation. The mineral is tentatively identified as chabazite. Much gypsum was noted on bedding in the area of Trench 1 (Figure 5).

The shear zone in Trench 5, the zone of intense hornfels in Trench 4, the skarn band in Trench 3 and the shear zone in hornfels near camp all trend northeast, following secondary structures. These structures are healed with quartz veins which contain pyrrhotite, sphalerite, pyrite and in Trench 4 much scheelite.

Quartz veins and skarns in Trenches 1 and 2 follow north to north-northeast trending folds which are thought to be "primary" structures.

Alteration and sulphide mineralization in the concentric zone (above) are thought to originate in the intrusion intersected by diamond drill holes 77-1 and 78-2. Mineralized fluids circulated through and were emplaced in secondary structures.

The zone of quartz-pyroxene hornfels, which outcrops along the North Triburary of Wilson Creek may have been altered by the intrusion intersected in diamond drill holes 77-1 and 78-3, or by

a separate fault controlled heat source, related directly to the main stock.

The Laib and Reno formations are thermally altered near the Black Bluff Fault along line 500E and to the east along line 518E. The rocks in these areas are apparently altered to calc-silicate hornfels and pyroxene hornfels - observed in subcrop and a few recessive outcrop. A magnetite skarn, east of line 518E, 501.5N is visible in a north northeast trending band of talus. No sulphides were noted in the altered zones.

vi) DISCUSSION:

The 1980 geological mapping program was directed towards establishing geological evidence at surface, for a buried "porphry" molybdenum system. There is <u>no</u> direct evidence, such as; dykes, intrusion breccias, hornfels aureole, sizeable areas of silicic, sericitic or potassic alteration, pyrite halos, quartz stockworks, concentric fracture or vein systems, available in the rocks. Indeed, no disseminated or fracture-fill molybdenite was located outside the contact areas of the Lost Creek stock.

There <u>is</u>, however, direct and indirect evidence for an intrusion buried beneath M.U.T. Hill. Direct evidence includes: a) an aplitic intrusion intersected at the bottom of diamond drill holes 77-1 and 78-3 and a subsurface hornfels contact aureol which extends to surface in hole 77-1; b) quartz-sericite-pyrite veinlets carrying minor fine-grained molybdenite, crosscutting fracture-fill k-spar and secondary biotite veinlets, in aplite at the bottom of hole 77-1.

Indirect evidence includes a subconcentric zone centred west of M.U.T. Hill camp which contains: a) a few, discontinuous quartz-pyroxene hornfels and biotite hornfels bands and numerous narrow actinolitetremolite-quartz-pyrrhotite "skarn" bands, with associated erratically high grade but commonly subeconomic scheelite occurrences, b) a few quartz-pyrrhotitesphalerite veins, in and adjacent to hornfels zones, c) a small, weakly developed quartz stockwork zone containing significant amounts of mediumgrained scheelite and associated poly-metallic quartz veins, d) generally higher concentration of fractures and barren quartz veins, e) higher concentration of limonite on fractures and cleavage, also of leached but occasionally visible pyrrhotite-pyrite veinlets.

The hornfels zone in hole 78-2 is narrow and local to the aplite contact; whereas, in hole 77-1, the hornfels zone is subcontinuous to the surface. Thus, heat flow and hydrothermal fluids from the intrusion apparently ascended along structures inclined to the north or northwest rather than to the southeast. The evidence from trenches and road cuts over known mineralized showings, indicates that the thermally altered zones and poly-metallic veins commonly follow bedding planes, fold axies and shear structures, which strike northeastward and dip southeastward at all angles greater than 55⁰.

The Lost Creek stock in the M.U.T. claims area changes from a northwestward to a north-northeastward trend of emplacement. The suggestion is that the margin of the stock has been intruded along primary fold axies on M.U.T. claims 1 and 2 and to a lesser extent on M.U.T. claims 3 and 4.

The trend of Lost Mountain ridge axis is to the northwest. The trend of M.U.T. Hill is northeast; that is, subparallel to "secondary"

structures and to the Black Bluff Fault. This suggests that the emplacement of Lost Creek stock on M.U.T. claims 4, 5 and 6 was controlled by "secondary", northeast trending structures. Following this line of reasoning it is probable that the intrusion intersected by drill holes 77-1 and 78-2 is connected, beneath M.U.T. Hill, with the Lost Creek stock exposed to the north and northeast.

The aplite intersected by drilling in holes 77-1 and 78-2 is thought to be a siliceous "chill" zone at the top of a granitequartz monzonite cupola. Assuming the situation is similar to that exposed on the Molly claims, molybdenite ore - if present, would lie beneath the aplite in a jointed, exfoliation zone, in fine-medium grained granite. If the "chill" zone acted as a cap rock to mineralized solutions, such an ore body would probably not be detected by molybdenum geochemistry at surface. Molybdenum remains mobile in alkaline conditions and is unlikely to be deposited in areas of intruded calcareous rocks. On the Molly claims, the best MoS_2 ore is found where granite intrudes non calcareous rocks. The upper elevations of M.U.T. Hill contain only minor interbeds of calcareous rocks, thus the environment is favourable for deposition of MoS_2 .

Higher grade tungsten occurrences are found in thin beds of relarively pure limestones and marbles at and subadjacent to the granite contact. Calc-silicate hornfels found both in M.U.T. adit and diamond drill hole 78-3, (in the immediate contact area of the granite) contains promising tungsten-molybdenum grades. An examination of outcrop and soil geochemistry in calcareous units to the southwest indicates that the lateral extent of the mineralized zone is limited. The best tungsten grades therefore are probably to be found in folded

calcareous rocks immediately adjacent to the granite contact.

With the exception of marbles developed on the Molly claims and on Nevada Mountain, which do not appear to achieve a true thickness greater than 4m, no significant thickness of "pure limestone" is found at upper elevations on the M.U.T. claims. The carbonaceous limestone, limy argillite and hornfelsed limy argillite beds along Lost Creek do not appear to be mineralized southwest of the M.U.T. Adit. These units may be tungsten mineralized in contact with granite beneath M.U.T. Hill but there is no direct evidence for this scenario. The presence of substantial amounts of carbon as graphite, etc. in the limy units would tend to mitigate against formation of economic skarn deposits.

Scheelite in skarns and hornfels at the 1% showing, New Showing and Trench 4 showing appear to follow a northeasterly trend, parallel to "secondary" structures. The true thickness and continuity of these showings is not available due to overburden. Where exposed, grade estimates for tungsten are commonly low with small erratic areas grading up to 0.34% WO₃. Calcareous beds are commonly less than 1 metre thick at higher elevations and known showings in hornfels zones are narrow,(although potentially continuous on strike) with erratic but commonly low tungsten grades. There is therefore, little possibility of an economic skarn tungsten deposit(s) at higher elevations on the M.U.T. claims.

The existence of a stratiform, replacement lead-zinc-silver deposit on the claims has not been negated. Extensive chip sampling on

unaltered - unmineralized units and of altered, veined, skarned and mineralized outcrop indicates a widely varying metal content for all sample groups. For example, the zinc content of unaltered black argillite ranges from some tens of ppm to 500 ppm and similarly for other elements for most rock types. Despite the erratic results there is a definite suggestion that some quartz veins, skarned and hornfelsed rocks are enriched in zinc fluorine, copper and perhaps silver. All outcrop containing bedded or disseminated pyrite were chip sampled but none returned anomalous results.

Soil geochemistry shows remarkable concentrations of zinc and silver in an area of enhanced copper-molybdenum values on the northwestern slope of M.U.T. Hill and of lead and fluorine on the southeastern flank. The anomalies on the northwestern slope lie above the calcareous horizons Al, L, Ql - almost entirely in the argillites. The northeasterly trend of the anomalous zones strongly suggests structural control. Secondary structures are suggested to have controlled emplacement of granite beneath M.U.T. Hill. Hydrothermal fluids circulating in these structures may well have replaced certain beds but reactive calcareous beds are thin and discontinuous in the argillites. It is thought more likely that metalliferous solutions ascending northeastward trending structures from a granite source, deposited poly-metallic sulphides in fractures and veins. These veins and skarned structures are recessive and are exposed mainly in trenches. They could well have been passed over during field mapping.

vii) RECOMMENDATIONS:

a) Intensive prospecting is recommended in areas of the zinc-silver

(molybdenum-copper) soil anomalies and of the lead-fluorine soil anomalies. The target is a strata related, replacement zinc-silver deposit. Specifically, continuous chip sampling of outcrop over 3m intervals should be completed on lines 491E and 492.5E north of the 500N baseline and on line 501.5E and 503E, south of the baseline. Trenching is recommended trending northwest, across structure, at 500.5N on line 491E in the zinc-silver anomaly and trending southeast across the lead fluorine anomaly, starting near line 503E, 500N.

The purpose of the prospecting, trenching and sampling is to define the source for anomalous zinc-silver and lead-fluorine geochemistry. In the event that trenching and continuous sampling is not possible in these areas or if the source is located in outcrop and has economic potential, further drill testing is recommended. A hole is recommended near line 491E, 500.5N inclined 70⁰ northwest. This area is easily accessed from the existing property road.

b) An essentially blind molybdenite ore zone is suspected to underlie aplitic cap rock beneath M.U.T. Hill. The ore may be "porphyry" type, in which case aplite would represent the barren siliceous cap rock common to this deposit type. More likely the suspected mineralization is similar to that on the Molly claims. It would lie just beneath the aplitic cap rock in a sheeted zone, containing disseminated and fracture-fill MoS₂ and pyrrhotite. Assuming such a mineralized zone exists, it may well persist over large areas of the granite roof between M.U.T. Hill and the Molly Mine.

To test for the presence of such a target a diamond drill hole could be drilled on the road mid-way between existing holes 77-1 and 78-3. The hole would be drilled to a maximum depth of 250m, inclined 75⁰ to the northwest, to perforate the aplite intrusion.

5. GEOCHEMICAL REPORT

by

Dr. S.J. Hoffman

5.i) SAMPLE PREPARATION AND ANALYTICAL PROCEDURE:

ANALYTICAL METHODS CURRENTLY IN USE AT ROSSBACHER LABORATORY LTD.

A. SAMPLE PREPARATION.

÷,

	1. Ceochem. Soil and Sil	t: Samples are dried, and sifted to minus 100 Mesh, through stainless steel, or nylon screens.
	2. Geochem. Rock	: Samples are dried, crushed to minus $\frac{1}{4}$ inch, split, and pulverized to minus 100 mesh.
в.	METHOD OF ANALYSIS.	•
	l. Multi element. (Mo,)	Cu, Ni, Co, Mn, Fe, Ag, Zn, Fb.): 0.5 Gram sample is digested for four hours with a 15:85 mixture of Nitric-Ferchloric acid. The resulting extract is analyzed by Atomic Absorption spectroscopy, using Background Correction where appropriate.
	2. Tungsten:	1.0 Gram sample is sintered with a carbonate flux, and dissolved. The resulting extract is analyzed colorimetrically, after reduction with Stannous Chloride, by use of Potassium Thiocyanate.
	3. Tin:	0.5 Gram sample is sublimated by fusion with Ammonium Iodide, and dissolved. The resulting solution is analyzed colorimetrically by use of Gallein.
	4. Fluorine:	0.5 Gram sample is fused with a Carbonate Flux, and dis- solved. The resulting solution is analyzed for Fluorine by use of an Ion Selective Electrode.
	5. Gold:	10.0 Gram sample is dissolved in Aqua Regia. The resulting solution is subjected to a Methylisobutyl Ketone extraction, which extract is analyzed for Gold using Atomic Absorption Spectroscopy.
	6. pH:	An aqueous suspension of soil, or silt is prepared, and its pH is measured by use of a pH meter.

`; _

ii) DESCRIPTION OF TRACE ELEMENT ANOMALIES ON M.U.T. CLAIMS 1 AND 2

a) Copper

Copper backgrounds on M.U.T. 1 and 2 are higher than on M.U.T. 3-5. The fluorine-rich zones are copper anomalies, but the copper-rich zone extends to the western limit of sampling and a major anomaly lying along L10E is 1.4 km long. The eastern portion of the claims is relatively deficient in copper, particularly in areas underlain by the Lost Creek stock but also in several regions underlain by black argillite bedrock.

b) Molybdenum

Three major molybdenum anomalies can be defined, all associated with black argillite outcrop. The molybdenum anomalies are found at the margins of the fluorine-rich zones, but in areas of tungsten enrichment, in the northeast, and in the west. The third molybdenum anomaly coincides with the northwestern portion of the major copper anomaly.

c) Tungsten

The tungsten distribution defines a broad 0.5. km wide zone of erratically tungsten-rich soils which trend northeastward, parallel to the contact of the Lost Creek stock. Tungsten values range up to 185 ppm; however, only two anomalous zones are reflected by contiguous anomalous samples. These are found in areas underlain by the black argillite within the fluorine anomalies.

1. .

d) Fluorine

Two large fluorine anomalies can be defined, to the north and west of trenches into minor molybdenite/scheelite mineralized skarn zones. The skarns themselves are not associated with fluorine-rich soils, but this may be a reflection of limited soil sampling in proximity to the prospects. The fluorine anomalies are more homogenous than those on M.U.T. 3-5 and are well defined relative to background. Black argillite in the northwest and quartz monzonite of the Lost Creek stock are relatively poor in fluorine. Anomalies are open to the north and west.

e) Lead

The lead background levels in soils are higher than on M.U.T. 3-5. At least four major anomalous zones can be defined. The largest zone centers on the northern portion of the molybdenite/ scheelite trenches, along the granite - black argillite contact. The second prominent lead anomaly is found at the center of the main copper-rich zone along L10E. A third lead-rich zone is found in association with both intrusive and black argillite rock types at the southern end of the trenches. This anomaly apparently trends east-west, but is open to the southeast. The fourth anomaly coincides with the northern limit of the northern fluorine anomaly.

f) Zinc

Enhanced zinc levels characterize the western half of the survey area, associated with the black argillite. Zinc values are also relatively high, with numerous values exceeding 2,000 ppm.

Zones of highest concentrations coincide with molybdenum, tungsten, copper and fluorine in the central-west anomaly, and with copper, and molybdenum in the central-northwest. Portions of both anomalies are also lead-rich. Anomalous zones are open to the west and north. A prominent anomaly cannot be defined on the eastern portion of the grid, or coincident with molybdenite/scheelite skarns.

iii) DESCRIPTION OF TRACE ELEMENT ANOMALIES ON M.U.T. CLAIMS 3,4,5,6.

a) <u>Coppe</u>r

Highest copper values are found in the northwest, associated with units of black argillite, limy black argillite, and black limestone. The northeastern limit of the copper-rich zone is marked by the intrusion of the Lost Creek stock which is notably copperdeficient.

A second zone of enhanced copper values trending in a parallel direction is found about 700 metres south. Anomalous values define three zones within the black argillite. The zones are distinct and not suggestive of lithological control. Anomaly contrast is weak.

Soils collected southeast of Black Bluff Fault are notably poor in copper and anomalous conditions cannot be outlined. The Lost Creek stock and its associated Molly Mine and other showings are not reflected by elevated copper levels.

b) Molybdenum

Two trends can be inferred from the distribution of anomalous (>7 ppm) or above average (> 5 ppm) molybdenum contents. Three major zones oriented in a northeastward direction probably reflect underlying lithologies of argillite or black argillite. Molybdenum accumulation to 40 ppm levels characterizes the black argillites in the north whereas lower values in the 10 to 20 ppm are seen in the two southernmost zones. The latter two zones are not associated with enhanced values of other elements, except lead in the west. The center, northeastern and southwestern flanks of the tungsten anomaly are molybdenum-rich. A prominent molybdenum linear trending in a north northeastward direction can also be interpreted from the data, suggesting the possibility of a structural component to the anomaly genesis. Adits to the west of the northern end of the molybdenum anomaly and the United Verde adit in the south mark the limits of the molybdenum-rich zone.

c) Tungsten

Enhanced tungsten values (>17 ppm) define a zone 200 to 300 metres in diameter and about 2 km long trending in a northnortheastward direction, across the axes of the ridge. Contrast with background is relatively sharp and in view of the discordant relationship of the anomaly to the lithology, the anomaly would appear to have genesis consistent with structural control. The northern portion of the tungsten-rich zone trends in the same direction as the underlying bedrock units and may have a lithological component. The position of the tungsten anomaly correlates in part with the relatively numerous, albeit very minor, skarn zones in the northeast.

Tungsten values are enhanced in proximity to the Molly Mine and United Verde adit. The Lost Creek intrusion and black argillites southeast of Black Bluff Fault are tungsten-poor. The prominent copper/fluorine anomaly at the northern end of the property is tungsten-poor.

d) <u>Fluorine</u>

The M.U.T. claims can be divided into two parts on the basis of the soil fluorine distribution: Most high values (> 860 ppm) are

found on the northwestern two thirds of the claims. About a dozen anomalies are defined along northeastward trending zones which are approximately parallel to the regional strike of the underlying geology. Lithological control can be attributed to causing anomalous conditions on the northwesternmost portion of the property where a strong anomaly is found in association with black limestone bedrock.

On a larger scale, fluorine anomalies appear to define an elongated annular zone centered on 493E/497N to 498E/503N. Fluorinerich zones are found on both sides of the axes of the hilltop ridge. Maximum dimensions are 2 km along strike and 1.5 km across strike of the argillites.

The southeastern area of the property is notably low in fluorine, In part this might be due to more extensive deposits of glacial overburden. However, areas having many outcrop exposures over portions of the region are not associated with fluorine-rich soils.

e) Silver

The silver distribution exhibits one major anomaly in the northwest which is over 350 m wide. Possible continuation of the zone can be seen in results along the westernmost grid line. The silver-rich zone coincides with the high contrast molybdenum anomaly on a portion of the large copper anomaly. Some coincidence is also evident with fluorine. The silver anomaly trends parallel to the regional geology and appears lithologically controlled.

f) Lead

Anomalous lead values define one major and three minor zones. Distribution of these zones is distinctly different from those of other elements. The largest anomaly, 200 m wide and 1.4 km long, is elongated in a northeast direction parallel to the regional geological strike. Lead levels and contrast within the anomaly are both suggestive of lithological control. Lead values reach a maximum 140 ppm near the center of the zone, conincident with a fluorine/copper anomaly.

A major lead anomaly is found in proximity of the United Verde adit. In part, contamination from old workings may be a factor. A second major anomaly is found at the north end of the baseline, along the contact of the Lost Creek pluton and black argillites. No source for the lead is known. The third anomaly is found in the extreme west, and has a lower contrast than the other anomalies. No lead source is recognized within the black argillites of the region. Several one or two point anomalies are outlined elsewhere, including south of the Black Bluff Fault. These locally enhanced lead values may be due to minor occurrences of galena in veinlets.

g) <u>Zinc</u>

The zinc distribution defines three major geochemical belts. Values south of Black Bluff Fault are typically less than 200 ppm. Values increase to the 275 to 1,000 ppm range in a wedged shaped zone beginning north of the United Verde adit and continuing to the Molly Mine. Isolated, relatively small anomalies can be identified within this region, particularly in proximity to the United Verde claims.

The most striking feature of the zinc distribution is the large zone of plus 1,000 ppm zinc values. The zone is over 3 km long, terminated by the Lost Creek granite in the northeast, and is open to the west. Average anomaly width is 1 km. The zone trends across the regional strike of the lithologies, suggesting structural control. Within the zone, numerous samples grade in excess of 2,000 ppm zinc. The maximum zinc content is 5,900 ppm.

An outstanding feature of the zinc distribution is the fact that the center of the anomaly is found in an area where other base metals are not enhanced to anomalous levels. The southeastern margin terminates along the tungsten/molybdenum linear. The northern margin coincides with the northernmost molybdenum anomaly and is not found in association with black limestone or black limy argillite. In view of the fact the zinc anomaly crosscuts topography and lithology, a structural origin is suspected. Moreover, bedrock chip samples analyzed thus far are not zinc-rich, indicating either that the source of the zinc has not been sampled or that possible zinc sulphides along fractures have not been recognized.

iv) <u>DESCRIPTION OF RESULTS</u>

Soils on the M.U.T. claims have formed as a consequence of the residual weathering of local bedrock units. Because of the predominence of steep slopes, significant downslope dispersion of metal-rich overburden is likely over restricted areas. Glacial deposits are absent except to the southeast, near the Black Bluff fault.

Soil anomalies are interpreted to be direct indicators of underlying metal-rich units, perhaps displaced downslope of their source by talus fan formation and solifluction. Residual weathering has probably promoted the extensive leaching of surficial deposits and absolute metal concentrations in soils are expected to be reduced somewhat from their original concentrations in bedrock prior to weathering. Consequently, absolute metal levels in soils are not directly comparable to metal contents of primary halos reported in the literature for porphyry molybdenum deposits. Nevertheless, the soil values represent indicators of what might lie beneath in unweathered rock. Enrichment factors in the latter environment will not become available until a drill program is concluded and data are collected.

Patterns of zoning of geochemical distributions are evident both in the Molly Mine - United Verde area (M.U.T. 3-5) and on Nevada Mountain (M.U.T. 1-2). The zonations on M.U.T. 3-5 probably have some degree of lithological control which results in the elongation of anomalies along a northeastward trend. However, geochemical anomalies are not only restricted to specific lithological units and many metal-rich zones terminate either

in the northeast or the southwest, despite continuation of the regional strata. On Nevada Mountain, metal levels are enhanced primarily in association with black argillite bedrock and not with the Lost Creek stock. In both areas, the Lost Creek stock is typically metal deficient relative to the country rocks. Metal enrichments and zonations in the latter units are not obviously related to the intrusion of the now exposed portion of the stock.

Distribution of fluorine and copper on the M.U.T. 3-5 claims can be interpreted to have a roughly elongated annular shape. Fluorine accumulation is stronger in the south, whereas by contrast copper enrichment is stronger in the north. Zones are not completely continuous, but this is to be expected in areas known to be underlain by highly foliated rocks, which act as heterogeneous units to hydrothermal solutions. In order to form strong geochemical anomalies across regional lithological strikes, intense fracturing is required. The fracturing probably will not be uniform because of inherent differences in rock strengths of individual units: hence a series of discontinuous geochemical anomalies. Nevertheless, on M.U.T. 3-5 the annular copper/fluorine anomaly is relatively strong and relatively large (1.5 km x 2.0 km). Anomalous fluorine levels are in the order of 800 to 1500 ppm in the soils. An outer discontinuous halo of isolated Pb-rich soils is found outside of the copper/fluorine zone and constitutes the most distal of the metal However, lead anomalies may be only lithologically controlled. zones.

Tungsten forms a prominent linear anomalous zone cutting regional lithological strike and topographic grain across the south-central portion of the copper/fluorine anomaly. The zone is marked by numerous minor

skarn zones in the north and is probably reflecting a structural control. Molybdenum enrichment coincides with the tungsten trend, but has a distribution characterized by a series of anomalies rather than a continuous metal-rich zone as was the case for tungsten. The strongest molybdenum anomaly is displaced from the tungsten linear and is associated with silver enrichment. Values are in the 20-40 ppm range. Some lithological control is inferred from the elongated shape of some of the molybdenum-silverrich areas, possibly reflecting deposition of metals introduced along structures but dispersed along bedding planes. The molybdenum anomaly also displays a partial annular shape absent only in the west, and lies within the copper/fluorine zone. Molybdenum enrichment, however, is in the 5 to 7 ppm range and is the weakest of the metal anomalies.

The most outstanding distribution of the geochemical survey is featured by zinc where metal levels are exceptionally high, many samples exceeding 2000 ppm. Zinc enhancement characterizes the center of the fluorine/copper anomaly, overlapping it somewhat. Enrichment of other elements over the center of the zinc anomaly is notably lacking, a feature to be expected if the zinc anomalies were reflecting high backgrounds in black argillite units. The zinc anomaly is confined within relatively sharp boundaries which cut across the regional strike, parallel to the trend of the tungsten/molybdenum zone, which marks its southern boundary, but displaced to the northwest. Structural control of the anomaly is indicated, particularly in view of the absence of zincrich rock chips of any of the rock types sampled.

The Nevada Mountain study is more limited in scope, and anomalous conditions are not completely defined. Nevertheless, zonation of the trace element distribution is again evident, primarily within areas underlain

by black argillite lying to the west of the Lost Creek Stock. Zonation patterns are slightly different from those described on M.U.T.3-5. Two prominent fluorine anomalies are associated with minor tungsten anomalies and zones of copper enrichment. Copper background levels generally are higher than M.U.T. 3-5 and the center of the copper anomaly is open to the west and north of the fluorine zone. Tungsten enhancement is not as prominent as that described on M.U.T. 3-5.

Molybdenum anomalies are also not fully outlined. They surround fluorine-rich zones. In places they coincide with zinc and/or lead anomalies, but not in a systematic fashion. Lead-rich areas are more numerous than on M.U.T. 3-5 with the largest anomaly associated with the quartz monzonite intrusion. Prominent lead anomalies are also found associated with black argillite bedrock. Zinc values are still very high on this portion of the claims, reaching 2000 ppm levels in places, though anomalies are not as large as those of M.U.T. 3-5.

The geochemical patterns in soils on the M.U.T. claims are strongly suggestive of hydrothermal remobilization caused by an intrusion at depth. The zonation pattern is characterized by a fluorine/copper coincident metal-rich zone, in turn followed by a molybdenum and finally a zinc-rich zone. The distribution of molybdenum and tungsten are also suggestive of structural control which may have resulted in the telescoping of the metal from depth onto other metal halos, such as the copper, fluorine and zinc.

The zinc enrichment is the strongest of any element with levels in the residual soils comparable to what is observed in bedrock at Climax and Henderson. The zinc levels are so high that the possibility of a

zinc/lead/silver strata related deposit might be investigated if the zinc anomaly is not due to a molybdenum system. Topographically below the zinc halo is one for molybdenum. Highest molybdenum values are found in the north and are coincident with a prominent silver anomaly. Molybdenum levels are relatively low at the 10-40 ppm level, except in adit dumps where values can exceed 500 ppm. Molybdenum concentrations encountered by Benson Mines in drill holes, over narrow intervals can exceed 1500 ppm molybdenum.

Below the molybdenum halo is a zone of copper und fluorine enrichment. Possibly the two coincident halos lie along axes having different vertical slopes: the fluorine is enhanced in the south and copper enhanced in the north. Lead may form an outer halo still, although its erratic nature may be indicating minor galena veins, skarns or possible lithological control.

The preceeding description deals only with geochemical parameters. The geological map is not enlightening on the above trends. Intrusive rocks, even dikes, are unknown. Rock alteration of the type associated with a porphyry molybdenum has not been noted. The absence of standard alteration sequence might be due to the introduction of the hydrothermal solutions on a heterogeneous suite of metamorphosed sedimentary rocks rather than on granitic intrusive units. A followup program to search for explanations to the geochemical anomalies, and at the same time reexamined outcrops in anomalous areas for features such as silicification and fracturing, should be mounted to prospect and explain the anomalies. Trenching may be required to expose enough bedrock for this evaluation.

Distributions on Nevada Mountain are interesting, but insufficient sampling has been undertaken in order to appreciate the zoning patterns.

A major effort is required in this area to acquire the basic survey information. Geological prospecting along presently available lines may guide work by explaining existing zinc, fluorine, lead and other metal anomalies.

v) RECOMMENDATIONS

(1) Two additional soil traverses are required in the west, spaced at 150 metre line intervals, to run the length of the existing grid. Samples from the top of the "B" soil horizon are to be collected at a 100 metre spacing.

(2) Existing anomalies are to be ground checked by geological prospecting techniques. The source of the zinc is of particular concern. Available outcrops should be chip sampled and geologically mapped and lithotequed. The current interpretation for the zinc anomaly is that it is structurally (i.e. fracture) controlled. This should be verified by field examination.

(3) Similar prospecting techniques could be applied to the tungsten anomaly, although low levels of the element in soils (to 50 ppm) might make the undertaking difficult. Examination of the copper, molybdenum, lead and fluorine anomalies are also recommended, although the prospects for finding readily visible evidence in the field is not thought good. Collection of rock samples for thin section study is suggested.

(4) The overall geochemical zoning picture on the M.U.T. 3-5 claims suggests the possibility of a buried porphyry molybdenum system underlying the center of the property. Geological features to be expected under these conditions include the presence of a siliceous core (perhaps reflected by prominent skarns as the quartz in solution reacts with the limestone,

perhaps near the copper-radiometric anomaly). Radial fracturing is also to be expected to explain the annular anomalies. Both these features should be ground checked. The existence of intrusive dikes, which is also to be expected, was not recorded during the initial property evaluation.

(5) Poor outcrop exposure suggests that the questions posed by recommendations (2) to (4) will not be answered fully without trenching. The trenches should be oriented to crosscut the copper/fluorine and tungsten and zinc anomalies at at least two or three positions, along north-south lines.

(6) Two or three orientation SP lines should be run in proximity to proposed trenches to determine if significant sulphides are present within 50 metres of surface. A positive response would promote the recommendation for a full IP survey.

(7) Studies on Nevada Mountain require continued grid soil sampling at a 100 metre interval along lines no further apart than 150 metres. Prospecting near anomalies along existing lines may help further mapping by highlighting mineral controls causing already defined anomalies.

(8) The silver soil anomaly exhibits great continuity and size. Its source in bedrock is unknown. If leaching during formation of the residual soils is a significant factor, silver values, perhaps of ore grade, might be locatable in underlying bedrock. A continuous channel chip sampling program at 3 metre intervals across areas of good bedrock exposure is recommended to test the silver anomaly.

(9) A diamond drill hole can be positioned to test coincident geochemical anomaly halos along the proposed trend of the heat source for the

metal halos. The target zone is large, and drill site position can be determined by logistical as well as geochemical features.

vi) SUMMARY

A grid soil sampling program was completed as part of the evaluation of the molybdenum potential of the M.U.T. claims. Significant geochemical anomalies were defined on the basis of that work, the more outstanding of which were for zinc and silver. The preponderance of residual overburden in the area of interest suggests that the soil anomalies are direct reflections of metal-rich zones in bedrock. The amount of concentration or depletion of metal levels in soils, however, relative to bedrock is unknown at this time.

The zinc anomaly appears central to an annular distribution of enhanced fluorine, copper and perhaps molybdenum and lead concentrations. The zonation patterns suggest a degree of complexity which is not evident in the geological map but is reflected in the magnetic and VLF-EM data. Components of the molybdenum distribution and tungsten anomaly appear controlled by a fault which bounds the other geochemical anomalies in the southeast. Highest levels of molybdenum, silver and copper coincide with a total count radiometric anomaly within the zone of complexity.

Trace element distributions in soils are suggestive of a redistribution of metals in bedrock caused by a heat source at depth. Although evidence for explosive activity initiated by this heat source and normally associated with porphyry molybdenum deposits has not been documented, extensive soil development may be an important factor concealing such evidence. The geochemical anomalies are very large, in excess of 1 km in diameter, and suggest the potential target is also large. Therefore one deep diamond drill hole is recommended to test the anomalous conditions. It is expected that the cause of the metal zonation patterns will become apparent approaching the source at depth. Further work is contingent of results of the first hole.

6. GEOPHYSICAL REPORT (See Figures 14-17)

i) INSTRUMENT SPECIFICATIONS:

a) <u>Magnetometer</u>: The magnetometer used to complete the M.U.T. claims 3-6 survey, was a direct reading, McPhar M700, flux-gate magnetometer, serial number 6931. This instrument measures variations in the vertical component of the earth's magnetic field to a resolution of \pm 10 gammas, on the most sensitive scale. The magnetometer has a graduated meter-dial readout with a 5 scale selection from 100 to 100,000 gammas. Levelling of the unit is by a "bulls-eye" bubble located below the readout meter. The McPhar 700 weighs approximately 5 kg and has dimensions of 22 x 10 x 26 cm. The instrument was rented from Phoenix Geophysics, 885 Dunsmuir Street, Vancouver, B.C.

b) <u>V.L.F. E.M.-16 Unit</u>: The receiver unit in the E.M.-16 method measures the "in phase" and "quad phase" (out phase) components of vertical magnetic field, as a percentage of horizontal primary field. The instument has a sensitivity of \pm 150% on the in phase and \pm 40% on the quad phase readout, to a resolution of \pm 1%. Operational frequency is in the 15-25 kHz V.L.F. radio band and station selection is accomplished with plug in crystals. Signal output is an audible tone and in phase - quad phase components are determined by selective nullings of the tone. The in phase readout is from a mechanical inclinometer while quad phase is read from a graduated dial. The unit has a weight of 1.6 kg and dimensions of 42 x 14 x 9 cm.

The E.M.-16 unit is manufactured and leased by Geonics Limited, 1745 Meyerside Drive, Unit 8, Mississauga, Ontario, Canada, L5T 1C5.

c) <u>Gamma Scintillation Ratemeter</u>: The ratemeter employed in the survey was a Rand-Type 1597A, serial number 645 manufactured by Elliot Process Instruments Ltd. The instrument measures total incident gamma radiation

by means of scintillation detector. A meter-dial provides direct readout, with a sensitivity of 3,000 uR/Hr (micro Roentgens per hour) and a resolution of ± 2 uR/Hr on the most sensitive scale. Three scales of sensitivity are provided - 30, 300 and 3,000 uR/Hr. An attached speaker provides audio monitoring of scintillation rates. The unit weighs 2 kg and has dimensions of 5.5 x 22 x 14 cm.

ii) SURVEY SPECIFICATIONS & METHODOLOGY:

The ground magnetometer, E.M.-16 and radiometric surveys were carried out on 53 km of compass-chain, slope-corrected grid lines, on M.U.T. claims 3-6. The grid comprises 43.4 km of cut line and 9.6 km of topofil line. The lines trend due north-south and are spaced 150 m apart from line 485^{E} to 503^{E} then every 300 m to 512E and 600 m to 518^{E} . The station interval on all lines, including transited base line 500^{N} and tie line 480^{N} , is 50 m.

a) <u>Ground Magnetometer Survey</u>: A base station was established near 500^{N} 500^{E} on the grid. After a brief orientation survey, the base was assigned an arbitrary value of 0 gammas. The instrument was "rezeroed" each day at the base station before beginning traverses. Survey traverses were conducted in loop configurations and check readings were made at previously established, temporary base stations at approximately 3 hour intervals. Corrections for diurnal variations of the earth's magnetic field were made to the data knowing the check readings on tying-in temporary base stations. Diurnal variations were found to be on the order of 0-5 gammas each 3 hour interval.

Measurements were made at each station with the operator and magnetometer facing north and the instrument levelled.

i

b) <u>E.M.-16 Survey</u>: The receiver was tuned to the V.L.F. transmitter located in Seattle, Washington - station NLK at 121° 55' West Longitude, 48° 12' North Latitude which broadcasts at 18.6 k Hz with radiated power of 300 kilowatts. All lines were surveyed using this station <u>except</u> lines 498.5^E and 500^E from 480° to 514° , which were tuned to Cutler, Maine-Station NAA at 67° 17' West Longitude and 44° 39' North Latitude, broadcasting at 17.8 kHz with a radiated power of 1,000 kilo watts. The choice of Seattle as the transmitter station was dictated by the local strike of geological structure, which subparallels the direction to the transmitter from the M.U.T. claims. The object of this exercise is to have the magnetic field <u>from</u> the station, (at right angles <u>to</u> the direction of the station) at approximately right angles to the main strike of the ore bodies or geological structure of the survey area.

All readings were made with the <u>operator facing north</u> along the north-south survey lines. To take a reading at each survey station, the operator first assured that the receiver was tuned to station NLK, faced north on the lines and adjusted the volume control for comfortable listening. To take the in-phase readings, the instrument was swung back and forth in the vertical plane to a position of minimum sound intensity At this position, the quadrature dial was adjusted to further minimize or "null" the sound. When minimum signal strength was achieved <u>on both</u> adjustments, the inclinometer (in phase) and quadrature (out of phase) readings were recorded.

The instrument is calibrated so that, when approaching the conductor, the inclinometer angles are positive, in the in-phase component.

c) <u>Gamma Scintillation Ratemeter</u>: The scintillometer survey was conducted by assistants during routine geochemical sampling. After a soil sample hole of 12 to 24 cms depth had been excavated the ratemeter was held level at the top of the sample hole and an average reading recorded. An erratic background count of 10 u R/Hr variable to 14 u R/Hr was recorded on the southern portion of the claims area. The erratic motion of the meter needle was noted and a "mean" value arbitrarily selected for the station reading.

iii) GEOPHYSICAL THEORY:

a) <u>Magnetometer Survey</u>: The magnetism of all rocks is controlled by their content of ferromagnetic materials; that is, substances possessing a relatively high susceptibility and capable of acquiring permanent magnetization. Intrusions often have associated hydrothermal alteration zones in which ferromagnetic minerals, predominantly magnitite, may be redistributed in such a way that the altered zone is characterized by a distinctive magnetic signature. Variations in magnetic contrast may also be due to changes in lithology, topographic thinning or thickening of homogeneous lithology, changes in basement lithologies, magnetic skarns, structure, ore, etc. Highly sheared or fractured zones (faults) generally have a high porosity for groundwater movement, resulting in leaching of ferromagnetic minerals and therefore, a "low" generally linear, magnetic signature.

b) <u>E.M.-16 Survey</u>: The V.L.F. E.M.-16 is a <u>passive</u> method of measuring secondary fields generated by conducting bodies in the ground, when subjected to a primary electromagnetic (E.M.) signal. In the E.M.-16 system, the primary E.M. signal is generated by powerful military transmitters (shore to submarine), broadcasting in the 15 to 25 kHz radio band, from fixed locations on the earth.

The E.M.-16 field unit is a receiver which picks up the vertical magnetic component of the transmitted E.M. signal. The magnetic signal component carries the bulk of signal energy beneath the ground surface and is distorted by attenuation (weakening of signal strength = $\checkmark = .29\sqrt{\sigma}$ nepers/metre) and phase shift ($\phi = -.29\sqrt{\sigma}$ radians/metre). The conductivity of a rock medium is equal to 10^{-3} mho/metre in relatively nonconductive rock. Attenuation cannot be overcome and is a limiting factor in the use of the V.L.F. method in conductive country rock or overburden. Secondary fields, generated by buried conductors are further attenuated in their vertical passage to the receiver.

Transmitter stations have vertical antennae, thus antennae current is vertical, creating a concentric, horizontal magnetic field around them. This field travelling through the ground, will encounter conductive areas which generate and radiate secondary fields.

A vertically and a horizontally oriented receiver coil are built into the E.M.-16 receiver. Signal input from the vertical (signal) coil is minimized by tilting the instrument; the angle of tilt is calibrated in percentage. Remaining signal from the vertical coil is balanced by a measured percentage of signal from the horizontal (reference) coil (after a 90° phase shift) which is parallel to the primary field.

Where secondary signals are small compared to the primary horizontal field, the angle of tilt of the instrument is an accurate measurement of the vertical real-component. The compensating 90⁰ shifted signal from the horizontal coil, is a measure of the quadrature vertical signal.

A more complete explanation of E.M. theory is outlined in the following reference paper: Patterson, N.R. and Ronka, V.; 1971: Five Years of Surveying with the V.L.F. E.M. Method; Geoexplanation, v.9, pp. 7-26. a)

DISCUSSION OF RESULTS

The ground regnetic intensity trends and E7-16 indicated conductors have been presented on a composite interpretation map.

The magnetic data located a series of small. pronounced dipole magnetic highs which appear to form a "C" shaped anomaly around an area of low magnetic intensities in the southeastern area of the survey grid. The sharp dipole anomalies would suggest the presence of purrhotite mineralization. The 21-16 inchase and quadrature profiles were carefully studied and the resulting conductor trends drawn on the interpretation map. The EM-16 is sensitive to small changes in conductivity. Thus, only the variations considered significant were plotted. The intensity of the EM-16 data would suggest a sedimentary environment bearing graphite. The conductors show definite trends which likely reflect the structure of the lithology. Both the magnetic and electromagnetic data success a large fold structure. The magnetic data is only of moderate intensity and is not suggestive of a sharn environment. (The exception is the very strong response in the extreme southeast corner of the grid.) Thus, the weak magnetic patterns likely reflect chemical changes in the ferrous minerals during compression and folding. This would suggest that this zone, even though it may appear similar superficially, may be chemically different.

The C?-16 conductors are of varying intensities and would appear to relate to near surface features. Thus, these trends can readily be evaluated by correlation with any geochemical data.

Glen E. White

GEOPHYSICAL CONSULTING & SERVICES LTD.

Respectfully submitted, P. Eng. Glen Consi sici st

2

b) <u>Radiometric Survey Data</u>: (See Figure 17) Radiometric survey data ranged from a low of 8 uR/Hr to a high of 45 uR/Hr over the whole of the M.U.T. claims area. Check readings over unaltered argillite and phyllite <u>bedrock</u> indicate erratic values in the order of 12-17 uR/Hr. Low but variable readings over much of the area southeast of M.U.T. Hill are probably indicating significant overburden cover.

Outcrop of medium-grained granite on the M.U.T., Molly and Jumbo claims indicate erratic high readings from 25 to 35 uR/Hr. In certain contact skarns and adjacent fine-grained granite outcrop, readings up to 75 uR/Hr were obtained. These higher values probably reflect higher concentrations of potassium (40 K-potassium isotope) in the contact zones.

Using the above objective data to evaluate the radiometric survey, some conclusions can be drawn from the data base:-

1) The zones of markedly higher radiometric values on the northwest slope of M.U.T. Hill, on the Jumbo claims and Molly claims in part reflect a relative paucity of mantling overburden and the effect of instrument levelling error which tend to produce somewhat higher readings over steep terrain.

2) Readings are substantially higher in close proximity to known outcrop of granite intrusion.

3) The main zone of high readings on the northwest slope of M.U.T. Hill, centred on line 495.5^E, 495.5^N and on the M.U.T. 1 and 2 and Molly claims occurs in areas of altered and unaltered argillite, quartzite and limy argillite. The higher readings apparently reflect relative proximity to an underlying granitic body and most definitely, areas of potassic alteration, where exposed in narrow skarn zones.

4) The erratic high readings in the order of 20-25 uR/Hr, in the southern half of M.U.T. claims 5 and 6, <u>may</u> reflect narrow zones of potassic alteration such as those exposed at the 1% Wo₃ showing.

5) Assuming that anomalous radiometric values are caused by radioactive minerals such as ⁴⁰K originating in the granite, then there is a strong suggestion that the Lost Creek stock or a satellite plug, underlies the area of M.U.T. Hill. The intrusion intersected in diamond drill holes 77-1 and 78-2 therefore may well connect with granite at the M.U.T. Adit and Molly Mine.

7. SUMMARY CONCLUSIONS:

The 1979 program of geological mapping, geochemical sampling and geophysical survey has produced additional evidence of an intrusion buried beneath M.U.T. Hill. A major, new area of interest is indicated west and north of the 1978 drill camp.

The area of geological interest is centered near line 495.5E, 501N. It is sub-concentric in shape, with a radius of 500 to 600 m and includes a few northeastward trending, quartz-pyroxene, biotite and calc-silicate hornfels zones. Three of the hornfels zones contain small, "high grade" scheelite occurrences, with associated polymetallic quartz veins. The area contains numerous narrow quartzactinolite-tremolite \pm scheelite skarn bands, a visibly higher density of fracturing and prominent limonite and jarosite on fractures, cleavage and shears. Thermal alteration and associated mineral occurrences follow northeast striking "secondary" structures which dip at angles greater 55⁰ to the southeast.

The area encompasses much of a radiometric anomaly which trends northeastward from line 488E, 500N, into the granite on Lost Creek. It is also near the center of a "C" shaped, ground magnetic high which overlies the northwestern brow of M.U.T. Hill.

Perpheral to this area but overlapping on the west and northwest boundary is a large annular shaped zone, containing soils markedly enriched in zinc, flourine, copper and less obviously molybdenum and lead (see Figures 12 and 13). Anomalous zinc values delineate the center of the geochemical zonation pattern. The highest levels of molybdenum, silver and copper coincide with a total count radiometric anomaly in the area of complexity. The radiometric anomaly is thought to reflect secondary potassium in the rocks, introduced by hydrothermal solutions. The distribution of trace elements in soils suggests redistribution of metals in bedrock due to a heat source at depth. A strong linear component in the anomaly shape is due to known structural control.

The zinc and silver geochemistry returned values so high that they suggest the possibility of a stratabound or replacement leadzinc-silver deposit in the anomaly area. Further work is recommended to define the source of the anomalies.

The evidence seems well established that a heat pump lies at depth beneath M.U.T. Hill. The question remains whether the heat pump is a separate, productive molybdenum porphyry system, or a continuation of the Lost Creek stock under M.U.T. Hill. The lack of geological signatures of porphyry molybdenum mineralization, such as; multiple intrusions, dyking, breccias, porphyry alteration and quartz-MoS₂ mineralization should be telling here. The author presents a case, built on indirect evidence, for the latter scenario and suggests that Molly Mine - type mineralization may underlie aplitic cap rock intersected in drill holes 77-1 and 78-3. Drilling beneath the aplite is suggested to indicate if the intrusion is: a) merely a local dyke, b) the top of a cupola to the Lost Creek stock, c) the barren siliceous core cap of a "porphyry" molybdenum system or d) barren cap rock concealing Molly Mine type mineralization.

The author concludes that skarn tungsten is not an economic target in the bulk of the argillites on the M.U.T. claims. The target may occur in the calcareous units along Lost Creek where they form structural traps, in contact with the intrusion beneath M.U.T. Hill.

8. RECOMMENDATIONS:

a) Geological prospecting including continuous chip sampling of outcrop over 3m interbeds is recommeded for prominent geochemical anomalies. The source of zinc and silver anomalies is of particular interest as they may target stratabound lead-zincsilver mineralization. Trenching is recommended in the area of 491E, 501N to explore zinc-silver-copper-fluorine anomalies and along line 501.5E south of the baseline, to open up an area of lead-fluorine enhanced soils.

b) Geological prospecting of narrow, linear magnetic highs,
 in areas with geochemical support, is recommended to assess
 potential pyrrhotite (magnetite) skarn mineralization.

c) Addition geochemical sampling is recommended for Nevada Mountain. Sampling should continue at an interval of 100m on lines spaced 150m apart. Further geological mapping is needed and prospecting of known anomalies is recommended to define mineralizing controls. Ground magnetometer and radiometric surveys should be continued. The target here would be stratabound, replacement lead-zinc-silver mineralization.

d) Two additional soil traverses are required on lines 482E and 483.5E from 480N to 506N at a spacing 100m, to ensure that the geochemical anomalis closed to the west.

e) Four lines of orientation SP should be run in the areas of proposed trenching to determine if significant sulphides are present within 50 metres of the surface. Contingent on positive results in this survey, and of prospecting and trenching, an I.P survey would be recommended.

f) A 250m drill hole is recommended in the area of 491E, 501N to test coincident geochemical anomaly halos. The hole is contingent on results of prospecting and trenching of the anomaly. The site is close to the existing property access road.

g) A drill hole is recommended between existing drill holes 77-1 and 78-3 at approximately 500E, 501N inclined 75⁰ northwest. The hole is sited to redrill the aplite intersected in previous drilling, to investigate the nature of the underlying intrusion and molybdenite mineralization - if any. This hole is drilled on the basis of geological indications of possible porphyry or Molly Mine type mineralization and has no geochemical support at surface. The site has an advantage of easy access and nearby accommodation in the 1978 drill camp.

APPENDIX 1

References

÷

REFERENCES

1. Fyles, J.T. and Hewlett; C.G. 1959.

"Stratigraphy and Structure of the Salmo - Lead Zinc Area", British Columbia Department of Mines, Bulletin No. 41.

2. Little, H.W.; 1950.

"Salmo Map Area , British Columbia", Geological Survey of Canada, Economic Geology Series No. 17.

3. Little, H.W.; 1959.

"Tungsten Deposits of Canada", Geological Survey of Canada, Economic Geology Series No. 17.

4. Poloni, J.R.; 1978

"Summary Report on the Exploration Activities, 1978, M.U.T. (1-16) Group of Minerals Claims" for Benson Mines Ltd.

5. Ramalingaswamy, V.M.; 1978

"Report on Geological Physical and Drilling Work, M.U.T. Claims Group, Salmo, B.C.".

6. Vokes, F.M.; 1963.

"Molybdenum Deposits of Canada", Geological Survey of Canada, Economic Geology Report No. 20.

APPENDIX 2

Statement of Certification

STATEMENT OF QUALIFICATIONS

I, Michael D. Bradley of #1007-1111 West Hastings Street, in Vancouver, in the Province of British Columbia, Do Hereby State:

- That I am a graduate of the University of British Columbia, Vancouver,
 B.C., where I obtained a B.Sc. degree in Physics-Geology in 1973.
- 2. That I obtained an M.Sc. degree in 1975 from Scripps Institute of Oceanography, La Jolla, California.
- 3. That I am a member in good standing of The Canadian Institute of Mining and Metallurgy and the Prospectors and Developers Association.
- 4. That I have been active in mineral exploration since 1968.
- 5. That I have practiced my profession continuously as a staff geologist for BP Minerals Limited, since 1975

Michael D./Bradley BP Geologist

August 28, 1979 Vancouver, B.C.

List of Qualifications - S.J. Hoffman

BSc 1969 - McGill University (Hons Geology and Chemistry)
MSc 1972 - The University of British Columbia (Geochemistry)
PhD 1976 - The University of British Columbia (Geochemistry)

List of Publications

1. Hoffman, S.J., 1972

Geochemical dispersion in bedrock and glacial overburden around a copper property in south central British Columbia. MSc thesis, unpublished, U.B.C., 209 pp.

2. Hoffman, S.J. and Fletcher, W.K., 1972

Distribution of copper at the Dansey-Rayfield River property, south central British Columbia. J. Geoch. Expl. 1, 163-180.

3. Hoffman, S.J. and Waskett-Myers, M.J., 1974

Determination of molybdenum in soils and sediments with a modified zinc dithiol procedure. J. Geoch. Expl. 3, 61-66.

4. Hoffman, S.J., 1974

Pebble Cards - A record of the coarse fraction of stream sediments for geochemical exploration. J. Geoch. Expl. 3, 387-388.

5. Hoffman, S.J. and Fletcher, W.K., 1976

Reconnaissance lake sediment geochemistry over the Nechako Plateau, B.C. In press, J. Geoch. Expl.

6. Hoffman, S.J., 1977

Talus fine sampling as a regional geochemical exploration technique in mountainous regions. J. Geoch. Expl. 1, 349-360.

 Hoffman, S.J., Arnold, P.M. and Zink, E.W., 1976 Rapid field determination of copper by anodic stripping voltammetry (ASV). In press, Encyclopedia of Earth Sciences $\cdot 105.$
8. Hoffman, S.J., 1976

Lake sediment geochemistry. In press, Encyclopedia of Earth Sciences.

9. Hoffman, S.J. and Fletcher, W.K., 1976

Detailed lake sediment sampling of anomalous lakes on the Nechako Plateau, central British Columbia -Comparison of trace metal distributions in Capoose and Fish Lakes. In preparation.

10. Hoffman, S.J. and Fletcher, W.K., 1976

Sequential extraction of copper, zinc, iron, manganese and molybdenum from lake sediments. In preparation.

APPENDIX 3

Statement of Costs

APPORTIONED COSTS TO MUT CLAIMS 1 & 4 (GROUP A)

1)	LAB	OUR COSTS:		<u>Total Cost</u>	Apportioned C	ost
	Μ.	Bradley (Proj. Geol.)	May 1-12,14-16,22-31; June 1-30; July 1-13, 15-19 = 73 days @ \$110/day	\$ 8,030.00		·
	₩.	Clark (Geol.):	May 1-31; June 1-30; July 1-19 = 80 davs @ \$95/dav	7,600,00		
	Α.	Fyfe (Asst.):	May $9-14,25,26$ = 8 days @ $60/day$	480.00	•	
	J.	Gravel (Asst.):	May 12-26; Sept. 12,13 = $1/$ days @ $125/$ day	1,343.00		
	э. N	Humphrey (Geol):	$m_{av} = 3 \text{ days } \# \# \# 357 \text{ day}$ $m_{av} = 4 \text{ days } \# \# 357 \text{ day}$	340.00		
	J.	Lemay (Asst.):	May 8-31; June 1-30; July 1-19; Aug. 14	010100		
			= 74 days @ \$55/day	4,070.00		
	Ν.	McGary (Asst.):	May 7-31; June 1-30, July 1-19	4 070 00		
	r	Macman (Asst).	= 2 days @ \$55/day	4,070.00		
	R.	Wong (Geol.):	May 25,26: Sept. 12.13. $= 4 \text{ days @ $105/day}$	420.00		
				\$26,888.00		
			Apportioned Cost = \$26,888.00 x 19.6 line km/60.57 line km =		8,701.00	
2)	CON	ITRACTORS:				
	a)	Line Cutting (AM	MEX EXPLORATION SERVICES): 11.3 km x \$313.66/line km.		3,544.00	
	b)	Baseline Survey (R.	STROTHERS & ASSOCIATES): 1.0 km x \$3.241.90/3.3 km.		982.00	
	c)	Bulldozer (PI	NETREE LOGGING CO. LTD.): KOMATZUE DOZER: 6.75 hrs. x \$53.50/hr. =	178.75		
			Mob. & Demob.	$\frac{361.14}{520.00}$		
			Apportioned Cost \$539.89 x 26 units / 84 units =	539.89	167.00	
	<i>त</i> \	Dwo.fting (1	CLASER). Broduction of baco mans 102 bro x \$0/br	019 00		
	u)	Draiting (L.	GLASER); Production of base maps 102 mrs. x \$97mr.	910.00		
			Apportioned Costs: \$918.00 x 26 units/84 units		284.00	
	e)	<u>Geophysical Consulti</u>	ng (V. RONKA): \$150.00 x 26 units/84 units		46.00	108

108.

f) Property Consultant (I. SUTHERLAND) 1.5 days x \$125.00/day = Apportioned Costs: \$187.00 x 26 units/84 units
Total Cost
\$ 187.00
\$ 58.00

- 2 -

3) TRANSPORTATION & TRAVEL

a)	REDHAWK RENTA	LS (3/4 ton 4 x 4 truck): \$762.00/mo. including 4% sal insurance. Rental period - May 7 to June 8; July 16-19 = 37 da	es tax, \$60.00/ ys x \$762/30 da	mo. ys =	940.00
b)	BOW MAC TRUCK	RENTALS (Jimmy 4 x 4): \$767.00/mo. including 4% sales	tax, \$65.00/mo	•	
		insurance. Rental period: June 12 - July 18 = 37 days x 2 Tires	\$767/30 days =		945.00 156.00
c)	TRUCK FUEL	Distance travelled - 6,980 km, average consumption	4.55 litres		
		Fuel cost: \$0.21/litre x 6,980 km x 4.55 litres/16	16 KM KM	=	417.00
d)	JET AIRCRAFT	(Vancouver - Castlegar - Vancouver)			457.00
e)	BUS-CAR-TAXI	(Vancouver & Castlegar)			218.00
f)	ACCOMODATION	(Salmo Area)			653.00
g)	FREIGHT	(Vancouver - Salmo - Vancouver)	0.11.1.1		440.00
		Assessment Total 20% x \$4,227.00	SUDTOTAI		\$4,227.00 845.00
		Apportioned Cost \$845.00 x 26 units/84 units		=	

262.00

4) MATERIALS & SUPPLIES (CONSUMABLES)

		- 3 -		
4)	MATERIALS & SUPPLIES (CONSUMABLES) cont.		<u>Total Costs</u>	Apportioned Cost
	d) Photography-Reproduction of Base Maps e) Food and Meals	· · · ·	\$ 655.00 <u>3,048.00</u> \$ 6,154.00	
	Apportioned Costs: \$6,154.00 x 3	26 units/84 units =		\$ 1,905.00
5)	EQUIPMENT RENTALS		·	
	a) Magnetometer (Phoenix Geophysics): 2 m b) E.M 16 (Geonics Limited): 2 m	no. @ \$330.00/mo. = \$660.00 no. @ \$372.00/mo. = \$744.00	1,404.00	
	Apportioned Costs: \$1,404.00 x \$	10.25 km/40.0 line km		360.00
6)	ANALYTICAL COSTS			
	a) <u>Geochemical Assay</u> (Rossbacher Labs.):	Analysis of 1272 soils and 17 core samples for 7 elements; in molybdenum, lead, zinc, silver W/F @ \$5.25/sample and backgrou silver/lead @ \$0.15/sample and preparation and soil pH @ \$0.1 preparation @ \$1.00/sample and assay of rocks for Au @ \$2.50	9 rock and drill ncluding copper, , @ \$2.50/sample; und correction for d \$0.20/soil sample 50/sample plus rock d selected geochemical /sample and Sn @ \$2.00/sample.	
		Total Soils: 1,272 samples Rocks: 179 " Au: 59 " Sn: 9 "	x \$8.60/sample 10,939.00 x \$8.90/sample 1,593.00 x \$2.50/sample 147.00 x \$2.00/sample 18.00 12,697.00	
		Apportioned costs \$12,697.00	x 421 samples/1451 samples	3,684.00

		<u>Total Costs</u>	Apportioned Cost
REF	ORT PREPARATION		
a)	<u>Text</u> :		
	M. Bradley (Proj. Geol): Aug. 23; Oct. 11,12,15-19; Nov. 7-9,21-23,26-30; Dec. 5-7, 10-14, 17-21: 32 days @ \$110/day W. Clark (Geol.): Oct. 12: 1 day @ \$ 95/day	\$ 3,520.00 95.00	
	S. Hoffman (Geochemist): Aug. 11,13,23,24,29,30; Sept. 1,4; Oct. 15; Nov. 15,16; Dec. 13-15: 14 days @ \$135/day	1,890.00	
b)	<u>Typing</u> 5 days @ \$41/day	205.00	
c)	Computer Processing	846.00	
d)	Keypunching	715.00	
e)	Digitizing & Machine Plotting (Geophysics)		
	E.M 16 data: \$11.25/line km x 40 line km Magnetic data: \$11.25/line km x 40 line km	450.00 450.00	
f)	Drafting (L. GLASER) 77 hours x \$9.00/hr.	693.00	
g)	Reproduction	Total $\frac{300.00}{9,164.00}$	
	Apportioned Cost: \$9,164.00 x 26 units/84 units		\$2,836.00
	Total Assessment Work Applied to MUT GROUP A		\$22,829.00
	Total Assessment Credits on MUT A,B,C,		\$75,437.00

7)

111.

APPORTIONED COSTS TO MUT CLAIMS 2 & 3 (GROUP B)

1)	LABOUR COSTS			<u>Total Costs</u>	Apportioned Cost
	M. Bradley (Proj. Geol.):	May 1-12,14-16,22-31; J	June 1-30; July 1-13,15-19	¢ 0 000 00	
	W. Clark (Geol.):		1)y 1-19	\$ 8,030.00	
	A Eufo (Acct).		= 80 days @ \$95/day	7,600.00	
	J. Gravel (Asst.):	May 12-26; Sept. 12,13	- o days @ \$607day	480.00	
	C Hoffman (Coochemict).	= May 24 26	= 17 days @ \$78/day	1,343.00	
	N. Humphries (Geol.):	May 25,26; Sept. 12,13=	• 3 days @ \$135/day • 4 days @ \$85/day	405.00	
	J. Lemay (Asst.)	May 8-31; June 1-30; Ju	1y 1-19; Aug. 14		
	N. McGarv (Asst.):	= May 7-31: June 1-30: Ju	= /4 days @ \$55/day 1 v 1-19	4,070.00	
			74 days @ \$55/day	4,070.00	
	C. Macrae (Asst.) R. Wong (Geol.)	May 25,26 = May 25,26: Sept. 12.13=	= 2 days @ \$65/day = 4 days @ \$105/day	130.00	
	ki nong (deoriy)			\$26,888.00	
		Apportioned Cost = \$26,	.888.00 x 12.01 line km/60.57 lin	e km =	\$ 5,331.00
2)	CONTRACTORS				
	a) Line Cutting (AME	X EXPLORATION SERVICES):	5.37 km x \$313.66/line km		1,684.00
	b) Baseline Survey (R.	STROTHERS & ASSOCIATES):	0.685 km x \$3,241.90/3.3 km		673.00
	c) <u>Bulldozer</u> (PIN	ETREE LOGGING CO. LTD.):	KOMATZUE DOZER: 6.75 hrs. x \$53 Mob. & Demob.	.50/hr. = 178.75 361.14 539.89	
		Apportioned Cost \$539.8	39 x 26 units/84 units	=	167.00
	d) <u>Drafting</u> (L. GLASER):	Production of base maps	102 hours x \$9/hour	918.00	
		Apportioned Cost \$918.0	00 x 26 units/84 units		284.00
	e) Geophysical Consulting	(V. RONKA): \$150.00 x 2	.6 units/84 units		46.00
	-				L

				- 2	-				
	f)	Property Consu	ltant (I. SUTHERL	AND): 1.5 days x \$12	5.00/day	=	<u>Total Costs</u> \$ 187.00	Арр	ortioned Cost
			Apportioned	Costs \$187.00 x 26 ur	nits/84 units			\$	58.00
3)	TRA	NSPORTATION & T	RAVEL						
	a)	Redhawk Rental	$\frac{s}{100}$ (3/4 ton 4 x	4 truck): \$762.00/mo.	including 4% sale	s tax, \$60.00/	mo.		•
			Rental Period	- May 7 to June 8; Ju	uly 16-19 = 37 day	s x \$762/30 da	ys 940.00		
	b)	Bow Mac Truck	Rentals (Jimmy 4	x 4) \$767.00/mo. inclu	uding 4% sales tax	, \$65.00/mo.			
			Rental Pe 2 Tires	riod - June 12 to Jul	y 18 = 37 days x \$	767.00/30 days	945.00 156.00		
	c)	<u>Truck Fuel</u> : D	istance travelled	- 6,980 km, average co	onsumption <u>4.55 li</u> 16	tres km			
		F	uel cost: \$0.21/1	itre x 6,980 km x 4.55	5 litres/16 km	=	417.00		
	d)	<u>Jet Aircraft</u> :	(Vancouver - Cast	legar - Vancouver)			457.00		
	e)	<u>Bus-Car-Taxi</u> :	(Vancouver-Castle	gar)			218.00		
	f)	Accomodation:	(Salmo Area)				653.00		
	g)	Freight:	(Vancouver-Salmo-	Vancouver)			440.00		
						Subtotal	\$4,227.00		
			Assessment Total Apportioned Cost	- 20% x \$4,227.00 - \$845.00 x 26 units/8	84 units	=	845.00		262.00
	h)	<u>Helicopte</u> r (Hi	ghland Helicopter)	: 0.8 hour x \$315/hour	r + \$17.82 fuel	, z	269.82		
			Assessment Valuat	tion - 50% x \$269.82		=			135.00

	- 3 [·] -		
4)	MATERIALS & SUPPLIES (CONSUMABLES)	<u>Total Costs</u>	Apportioned Cos
	a) Office & Field Equipment	\$ 1,352.00	
	b) Lumber	849.00	
	c) Camp Fuel	250.00	
	d) Photography-Reproduction of Base Maps	655.00	
	e) Food and Meals	<u>3,048.00</u> \$6,154.00	
	Apportioned Costs: \$6,154.00 x 26 units/84 units =		\$ 1,905.00
5)	EQUIPMENT RENTALS		
	a) Magnetometer (Phoenix Geophysics): 2 mo. @ \$330.00/mo. = \$660.00		
	b) E.M16 (Geonics Limited): 2 mo. @ \$372.00/mo. = \$744.00	1,404.00	
	Apportioned Costs: \$1,404.00 x 5.37 km/40.0 line km =		188.00
6)	ANALYTICAL COSTS		
	 a) <u>Geochemical Assay</u> (Rossbacher Labs): Analysis of 1,272 soils and 179 rock and drill core samples for 7 elements; including Cu/Mo/ Pb/Zn/Ag @ \$2.50/sample; W/F @ \$5.25/sample and background correction for Ag/Pb @ \$0.15/samp and \$0.20/soil sample preparation and soil pH @ \$0.50/sample plus rock preparation @ \$1.00/sam and selected geochemical assay of rocks for Au @ \$2.50/sample and Sn @ \$2.00/sample. 	le ple	
	Total Costs: Soils: 1,272 samples x \$8.60/samp Rocks: 179 " x \$8.90/ " Au: 59 " x \$2.50/ " Sn: 9 " x \$2.00/ "	le 10,939.00 1,593.00 147.00 <u>18.00</u>	114.
	Apportioned Costs: \$12,697.00 x 274 samples/145 samples	\$12 , 097.00	2,398.00

2

	- 4 -			
			Total Costs	Apportioned Cost
REPORT PREPARATION				
a) Text:				
M. Bradley (Proj. Geol.):	Aug. 23; Oct. 11,12,15-19, Nov. Dec. 5-7,10-14,17-21:	7-9,21-23,26-30; 32 days @ \$110/day	\$ 3,520.00	
W. Clark (Geol.):	Oct. 12:	1 day @ \$ 95/day	95.00	
S. Hoffman (Geochemist):	Aug. 11,13,23,24,29,30; Sept.1,4 Nov. 15,16; Dec. 13-15:	4; Oct. 15; 14 days @ \$135/day	1,890.00	
b) Typing: 5 days @ \$41/da;	y		205.00	
c) Computer Processing:			846.00	
d) Keypunching:			715.00	
e) Digitizing & Machine Plot	ting (Geophysics):			
E.M 16 data: \$1 Magnetic data: \$1	1.25/line km x 40 line km 1.25/line km x 40 line km		450.00 450.00	
f) <u>Drafting</u> : (L. GLASER) 77	hours x \$9/hour.		693.00	
g) Reproduction:			300.00	
		Total:	\$ 9,164.00	
Apportioned Cost:	\$9,164.00 x 26 units/84 units			\$ 2,836.00
т	otal Assessment Work Applied to M			\$15,967.00
T.	otal Assessment work Appred to A			\$75 437 00
1	otal Assessment creates on not Age	6 U 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0 2 6 0		φ <i>10</i> ,407.00
		•		

-

7)

APPORTIONED COSTS TO MUT CLAIMS 5 & 6 (GROUP C)

1)	LAB	BOUR COSTS		Total Costs	Apportioned Cost
	М.	Bradley (Proj. Geol):	May 1-12, 14-16,22-31; June 1-30; July 1-13, 15-19		
			= 73 days @ \$110/day	\$ 8,030.00	
	Ψ.	Clark (Geol.):	May 1-31; June 1-30; July 1-19		
		Tufe (Acat)	= 80 days @ \$ 95/day	7,600.00	
	Α.	Fyre (Asst.):	$\begin{array}{rcl} \text{May } 9-1425,26; & = 8 \text{ days } 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	480.00	
	U. c	Graver (ASSL.):	May 12-20; Sept. 12,13; = $1/$ days $0 \Rightarrow 18/$ day	1,343.00	
	з. М	Humphroy (Cool).	$\begin{array}{rcl} \text{May } 24-20; & = 3 \text{ days } \emptyset \ \$135/\text{day} \\ \text{May } 25 \ 26 \text{ South } 12 \ 12 \text{ and } 12 \text{ days } \emptyset \ \$135/\text{day} \\ \end{array}$	405.00	
	1	Lompy (Acct):	May 25,20; Sept. 12,13; = 4 days $0 \Rightarrow 85/day$	340.00	
	υ.	Lemay (ASSL.):	May $6-31$; June 1-30; Juny 1-19; Aug. 14 - 74 days $0 \notin EE/days$	4 070 00	
	N	McGary (Asst).	- 74 ddys @ ⊅ 55/ddy May 7_31• June 1_30• July 1_19•	4,070.00	
	**•	neddi y (1330.7.	= 74 days 0 \$ 55/day	4 070 00	
	C.	Macrae (Asst.):	May 25, 26: = $2 \text{ days } 0 \text{ $ 65/day}$	130.00	
	R.	Wong (Geol.):	May 25,26: Sept. 12.13: = 4 days 0 \$105/day	420 00	
				\$26,888.00	
			Apportioned Cost = \$26,888.00 x 28.96 line km/60.57 line km =	(, , ,	\$12,856.00
2)	CON	ITRACTORS			
•	a)	Line Cutting (AM	X EXPLORATION SERVICES): 24.53 km x \$313.66/}ine km		7,694.00
	ь)	Baseline Survey (R	STROTHERS & ASSOCIATES) \cdot 1 615 km x \$3 241 90/3 3 km		1 587 00
	~,				1,507.00
	C)	Buildozer (PI	NEIREE LOGGING CO. LID.): KOMATZUE DOZER: 6.75 Hrs. x \$53.50/Hr.=	178.75	
			Mob. & Demob.	$\frac{361.14}{361.14}$	
				539.89	
		Аррс	ertioned Cost: \$539.89 x 32 units/84 units =		206.00
	d)	Drafting (L. GLASER)	: Production of base maps: 102 hrs. x \$9/hr.	918.00	
		Ann(ortioned Cost. \$918 00 x 32 units/84 units		350 00
		трр			000.00
	e)	Geophysical Consultin	ng (V. RONKA): \$150.00 x 32 units/84 units		57.00

116.

APPORTIONED COSTS TO MUT CLAIMS 5 & 6 (GROUP C)

1)	LABOUR COSTS	·	Total Costs	Apportioned Cost
	M. Bradley (Proj. Geol):	May 1-12, 14-16,22-31; June 1-30; July 1-13, 15-19 = 73 days @ \$110/day	00 000 0 0	
	W. Clark (Geol.):	May 1-31; June 1-30; July 1-19	φ 0,050.00	
	 A. Fyfe (Asst.): J. Gravel (Asst.): S. Hoffman (Geochemist): N. Humphrey (Geol.): J. Lemay (Asst.): N. McGary (Asst.): C. Macrae (Asst.): 	$\begin{array}{rcl} &=&80 \; days \; @ \; \$ \; 95/day \\ &=& 8 \; days \; @ \; \$ \; 60/day \\ &=& 8 \; days \; @ \; \$ \; 60/day \\ &=& 3 \; days \; @ \; \$ \; 78/day \\ &=& 3 \; days \; @ \; \$ \; 135/day \\ &=& 3 \; days \; @ \; \$ \; 135/day \\ &=& 3 \; days \; @ \; \$ \; \$ \; 85/day \\ &=& 74 \; days \; @ \; \$ \; \$ \; \$ \; 85/day \\ &=& 74 \; days \; @ \; \$ \; \$ \; \$ \; \$ \; \$ \; \$ \; \$ \; \$ \; \$$	7,600.00 480.00 1,343.00 405.00 340.00 4,070.00 130.00	
	R. Wong (Geol.):	May 25,26; Sept. 12,13; = 4 days @ \$105/day	420.00	
		Apportioned Cost = \$26,888.00 x 28.96 line km/60.57 line km	\$20,000.00 ≂	\$12,856.00
2)	CONTRACTORS			
	a) <u>Line Cutting</u> (AM	EX EXPLORATION SERVICES): 24.53 km x \$313.66/1ine km		7,694.00
	b) <u>Baseline Survey</u> (R.	STROTHERS & ASSOCIATES): 1.615 km x \$3,241.90/3.3 km		1,587.00
	c) <u>Bulldozer</u> (PI	NETREE LOGGING CO. LTD.): KOMATZUE DOZER: 6.75 Hrs. x \$53.50/Hr Mob. & Demob.	$ \begin{array}{r} \bullet & 178.75 \\ \underline{361.14} \\ 539.89 \end{array} $	
	Арро	ortioned Cost: \$539.89 x 32 units/84 units	=	206.00
	d) <u>Drafting</u> (L. GLASER)	: Production of base maps: 102 hrs. x \$9/hr.	918.00	
	Арро	ortioned Cost: \$918.00 x 32 units/84 units	=	350.00
	e) <u>Geophysical Consulti</u>	ng (V. RONKA): \$150.00 x 32 units/84 units		57.00

116.

f)	Property Cons	ultant (I. SUTHERLAND) 1.5 days x \$125.00/day	=	<u>Total Costs</u> \$ 187.00	Apportioned Cost
		Apportioned Costs: \$187.00 x 32 units/84 units			\$ 71.00
TRA	NSPORTATION &	TRAVEL			
a)	<u>Redhawk Renta</u>	<pre>Is (3/4 ton 4 x 4 truck): \$762.00/mo. including 4% sales ta \$60.00/mo. insurance. Rental Period - May 7 to June 8; July 16-19: = 37 days x</pre>	x, \$762/30 days	940.00	-
b)	<u>Bow Mac Renta</u>	ls (Jimmy 4 x 4): \$767.00/mo including 4% sales tax, \$65.00/ Rental Period - June 12-July 18: = 37 days x \$767.00/30 d 2 Tires	mo. insurance lays	945.00 156.00	
c)	<u>Truck Fuel</u> :	Distance travelled 6,980 km, average consumption 4.55 litres			
		10 km Fuel Cost: \$0.21/litre x 6980 km x 4.55 litres/16 km	=	417.00	
d)	<u>Jet Aircraft</u>	(Vancouver - Castlegar - Vancouver)		457.00	
e)	<u>Bus-Car-Taxi</u>	(Vancouver & Castlegar)		218.00	
f)	Accomodation	(Salmo Area)		653.00	
g)	<u>Freight</u>	(Vancouver - Salmo - Vancouver)		440.00	
		S	ubtotal	\$4,227.00	
		Assessment Total 20% x \$4,227.00		845.00	
		Apportioned Cost: \$845.00 x 32 units/84 units	=		322.00

- .

- 2 -

4)	MAT	ERIALS & SUPPLIES (CONSUMABLES)	<u>Total Costs</u>	Apportioned Cost
	a) b) c) d) e)	Office & Field Equipment Lumber Camp Fuel Photography-Reproduction of Base Maps Food & Meals	\$ 1,352.00 849.00 250.00 655.00 3,048.00 \$ 6,154.00	
		Apportioned Costs: \$6,154.00 x 32 units/84 units =		\$ 2,344.00
5)	EQU	JIPMENT RENTALS		
	a) b)	Magnetometer (Phoenix Geophysics): 2 mo. @ \$330.00/mo. = \$660.00 E.M 16 (Geonics Limited): 2 mo. @ \$372.00/mo. = \$744.00	1,404.00	
		Apportioned Costs: \$1,404.00 x 24.38 km/40.0 line km		855.00
6)	ANA	LYTICAL COSTS:		
	a)	<u>Geochemical Assay</u> : (Rossbacher Labs):		
		Analysis of 1,272 soils and 179 rock and drill core samples for 7 elements; including Cu/Mo/Pb/Zn/Ag @ \$2.50/sample; W/F @ \$5.25/sample and background correction for Ag/Pb @ \$0.15/sample and \$0.20/soil sample preparation and soil pH @ \$0.50/sample plus rock preparation @ \$1.00/sample and selected geochemical assay of rocks for Au @ \$2.50/sample and Sn @ \$2.00/sample.		
		Total Costs: Soils: 1,272 samples x \$8.60/sample Rocks: 179 " x \$8.90/sample Au: 59 " x \$2.50/sample Sn: 9 " x \$2.00/sample	\$10,939.00 1,593.00 147.00 <u>18.00</u> \$12,697.00	
		Apportioned Cost: \$12,697.00 x 756 samples/1,451 samples		6,615.00
	b)	Petrographic (Coots Petrographic)		
		20 Thin sections @ \$5.50 9 k-feldspar stains @ \$0.75		110.00 7.00

	• + •		
		<u>Total Costs</u>	Apportioned Cost
c)	Specific Gravity (Chemex Labs.)		
	\$5/sample x 15 rock samples.		\$ 75.00
REP	ORT PREPARATION		
a)	<u>Text</u> :		
	M. Bradley (Proj. Geol.): Aug. 23; Oct. 11,12,15-19; Nov. 7-9,21-23,26-30; Dec. 5-7;10-14,17-21: 32 days @ \$110/day W. Clark (Geol.): Oct. 12: 1 day @ \$95/day	\$ 3,520.00 95.00	
	S. Hoffman (Geochemist): Aug. 11,13,23,24,29,30; Sept. 1,4; Oct. 15; Dec. 13-15: 14 days @ \$135/day	1,890.00	
b)	<u>Typing</u> 5 days @ \$41/day	205.00	
c)	Computer Processing	846.00	
d)	Keypunching	715.00	
e)	Digitizing & Machine Plotting (Geophysics)		
	E.M. – 16 data: \$11.25/line km x 40 line km Magnetic data: \$11.25/line km x 40 line km	450.00 450.00	
f)	Drafting (L. GLASER) 77 hours x \$9/hour	693.00	
g)	Reproduction	300.00	
	Те	otal \$ 9,164.00	
	Apportioned Cost: \$9,164.00 x 32 units/84 units		3,491.00
	Total Assessment Work Applied to MUT GROUP C		\$36,641.00
	Total Assessment Credits on MUT A,B,C,		\$75,437.00
	•		

7)

APPENDIX 4

Trace Element Data for Soil, Talus Fine and Stream Sediment Samples.

M.U.T. CLAIMS 1979

TRACE ELEMENT DATA FOR SOIL, TALUS FINE

and STREAM SEDIMENT SAMPLES

(LISTED BY SAMPLE TYPE AND SAMPLER NUMBER)

TRACE ELEMENT ANALYSIS (PPM)

	· •			•			•									
	NO.		,	•												
	F F			• •	. •											
				• *				- 1		TR/	ACE E	LEMENT	ANAL	YSIS	(PPM)	
	WIP EAB	SAMPLE	SAMPLE COORD	• ·												
	IN R	NUMBER	FAST NORTH	NTS					Мо	Cu	Pb	Zn	Ag	W	F	
	1070517	1410008	VMA952155426170	19250214 1	0.9% 7/21 0		75 4 2	14 4 85	2	490	64	50.00	- <u>-</u>		520	
2	1070517	420017	VV/05/00/5/35013		0 6 0010 00	1 222	1945	10 4 NC	2	400		2403	2.1	<u>^</u>	150	
2	10170517	420017	Y 148 50 805 4 55 51 5	02003 2711	9 0.0010 80 9 0 0 15 20	4 227 643 190	2		2	144	9 L O	1204	2.4	10	450	
ر ن	1 170517	460013	VY4054125435462	02503 5716	006 721 0	240 LON	11 2	9 243E	2	200	200	1234	2 4	10	500	
5	1070617	460021	VV/2/0155/2/217	192512 6 L	0 7 021 51	24 <u>1</u> 25	21 2	10 15 CM	2	200	100	4100	0.2	ŏ	560	
6	1070517	400000	V44966925737924	122E0211 1	0 6 720 710	60 .	22.2	NCC1 6	4	20	1.4	0.50	0.2	0	500	
7	1 1/2001 7	400011	- 114005020404002 - VV/061106737173	0200011 0	9 3 120 110	25 AS	22 2		1	20	10	100	0.2	0	510	
2	1.0700.77	400002	YV/ 06/ 06/ 362 30	02FV5 2 L	0 6 820 2 6		12	1015		24	24	1 2 4	0.2	<u> </u>	200	
0	1070517	1400147	YM4862635434165	82502 1 E	9 6 020 5 0	5	12 2	10 23 444	1	20	20	144	0.42	ő	410	
10	1 1705.17	400210	VV/2052226/34010	3253212 1	9 0 1 5 2 0 1 5	5	22 2			20	20	04	0.7		700	
11	1070517	400299	VV4952005435190	102E03 2 L	997.920.12	052	12 2	N 0 0	1	200	22	2020	1 6	å	740	
12	1 1705 17	460300	YY4846205434200	9250311 1	997.020.4	005. 05	12 2	12 11 SW		200	50	22.00	0 4	ő	050	
12	10/2517	460431	YY4848555434175	82503 2 1	927.020.4 1	K K I	12 2	12 14 W	2	20	22	136	1 2	a	620	
14	1070517	460431	VY4848545434148	132F03 4 1	906.920.21	/ 1	12 2	10 26NW	1	. 24	26	126	0.2	ň	640	
15	1.379517	470032	YY4367045435583	82F112 2 1	2 7.54 410	/ 1 1 1 1	11	10 20 44	1	20	18	96	0.2	ă	540	
1.6	1079517	49:021	YY4857615435919	82503 3 4	4 6 92 5	54 1	23	20 N	1	48	36	7.02	1.5	õ	590	
17	1070517	400136	VY48473554364CD	825.33 3	486 40 3	22 111	21	24 M	1,2	248	00	2974	2 4	2	840	
18	1079517	490157	YY4866825434952	82503 3	4 7.40 5	74	23	22 F	1	1.6	26	154	5.2	ວັ	740	
19	1070517	4901 08	VY4857665435977	82F03 2 1	4 6 20 2	43	23	101	Î	46	12	650	1.4	ň	660	
20	1.070517	490280	YY4855105434120	82503 4 1	4 7.30 4	.10	23.2	11 104	i	30	34	148	0.2	õ	580	
21	170517	400293	YY4855005434710	82E03 4 L	4 6.10 3	44	43	16W		20	22	72	0.2	ő	720	
22	1070517	491212	YY4848275434729	82503 4 1	4 7.20 6	94	43	148	2	46	32	722	0.5	2	620	,
23	1 379517	490346	YY4846165434575	82503 4 1	4 6.80 6	84	43 2	12 195W	2	48	70	750	0.2	อ	640	
24	1079517	490349	YY4945275434528	82F03 4 1	4 7.10 3	44	43 2	12 125	4	60	24	1000	0.6	15	815	
25	1079517	490427	VY4343105434260	82E03 5 1	4 6 80 6	44	43 2	14 1258	2	44	26	546	0.4	15	820	
26	1 179517	491428	VV4843105434218	82E03 6 1	4 7.20 4	438	43 2	12 10 SW	2	40	62	520	0.4	10	840	
27	1079517	49.04.81	YY4840005434086	32 E03 3 M	4 7.00 6	34	43 2	14 1250	2	44	58	550	3.4	30	780	
28	1.079517	49.15.09	YY4833975433776	82813 5 1	4 7.12 6	74	43 2	10 85W	2	40	30	416	0.2	35	820	
20	1070517	490526	YY4836985435278	82503 4 M	48 6 43 2	33 322	43 2	12 20 NW	6	66	18	2462	0.6	35	920	
30	1 1/0517	490541	VV4237036433876	32502 6 1	4 7.08 6	54	43 2	12 1354	· 7	42	30	520	0.6	40	7.10	
	1070517	49 3644	VV4864225634422	82503 2 1	4 7 20 6	22	43 2	8 10 SW		50	26	679	0.6	20	620	
2.2	1070617	490549	VV4844305434322	8253312 1	4 7 30 6	34	- 41	1054	2	30	6.6	554	0.4	10	710	
22	1070517	493574	VY4841765424116	82E03 6 1	4 4 33 4	2	41 2	10	2	26	16	812	0.2	10	650	
34	1079517	49 16 41	YY4864125438567	82E03 6	496.60 4	34 481	43 2	21 1055	2	108	106	1901	1.2	15	1100	
35	2079517	430014	YY4858125436082	82 803 4721	6 6.74 1 5	1 100		51 1030 51/F		152	44	1940	2.6	10	660	
36	2079517	470033	YY4866915435589	82F.13 8 1	2 7.54 100	331	11	30 NE		19	12	76	0.2	10	600	
37	2070617	490360	YY4850255435980	A2E03 3711	6 5 34 12 24	ANA MAR	104	31 N	1 i	8.8	26	1290	0.6	12	420	
3.8	2070517	4490061	Y4850215436178	82E03 3 1	0 7.04 1030	4 NUN	23	24 N	1	112	40	2204	0.6	10	620	
20	2010217	1,0000	VV/960016707000			20		14 135	2	202	70	2050	2 0	ă	630	

40	5079517	410001	YY48533054360	40 32503 27	L 9P6.14 5	308MB DOLBR	1042	11 14 E	2	56	10	562	0.2	0	770
41	50/19517	\$410002	YY49539054359	65 82F03 37	1 986.0410	30BMB322MOLBR	50A2	11 * 28 E	1	36	10	310	0.2	0	740
42	5079517	\$410003	YY49539054359	65 82F 33 37	L 986.1410	258MB 322MOLBR	4 J A 2	28 E	1	36	10	350	0.2	2	710
43	5079517	410004	YY48545754358	90 12533 27	L 9F6.1420	40BMB MOLBR	20A2	11 19 E	1	64	8	290	ა. 3	0	590
44	5379517	410005	YY4855205435	10 825 03 27	L 995.9410	25BM8 DOL8P	2	9 9 N	1	32	50	890	0.4	2	600
45	5079517	41.00.05	YY4855855435	37 82F03 27	L 9P5.8410	306M8315M0L88	2042	11 15 SE	1	36	46	590	0.8	0	620
4.6	5070517	41 00 07	YY44562054350	90 32503 37	L 955.2410	25 848315 MOL88	5 JA2	11 28 NW	1	32	44	754	J.4	2	880
47	5079517	410009	YY4851705436	25 32F03 27	1 985 74 5	2088831580188	1042	11 4 NW	2	32	10	560	0.4	30	520
4.9	5079517	410010	YY4851595436	50 82 503 35	1 876.04 0	15TEP 315088	304.2	15 45 N	12	48	30	754	0.2	10	560
40	5070517	420002	YY4855635436	81 82503 37	1 905 9412	228M8322M8	704	35 NF	4	20	14	840	1.8	5	450
50	5070517	420002	VY4255905436	08 82803 37	1 976.0425	408 VB 18	704	37 NE	4	28	14	330	2.4	30	440
5.5	5070517	420004	VVA956205636	30 82 503 30	1 9 95 74 20	SPEAR MR	500	33115	4	44	34	8.60	1.9	600	1.0
51	5019011	420004	VU/062626222	50 025 02 07	006 000	30950111 100	205	25 410	6	24	20	450	1 2	40	560
22	50/9917	420005	VV/062006737	73 325 32 37		2704921500	151	12 MU	2	24	14	626	1 6		560
55	5 170517	420005		20 02503 27		2 C C C C C C C C C C C C C C C C C C C	1 27	1 2 - 11 M 7 Mill	2	27	1 2	662	2 4	Š	560
24	5 310911	420007	114354105450	00 02 - 05 21		2004001600	1054	1.2 MM	-	20	14	6.60	2 4 4	ă	100
55	53/9517	420008	Y Y 43 54 10 54 30	00 825 33 27	1. 985. 1540	5084831509	405	12 NW	4	44	14	202	2.0	<u>,</u>	200
55	5079517	420009	Y 143 44525436	72 32503 29	L 996 9440	0084631568	603	1955	2	40	3	390	1.5	0	100
57 ·	5079517	420010	YYI485.4985436	34 825 33 39	L 996.1 10	2001931106	534	28 S E	2	60	8	794	2.2	. 10	730
53	5079517	420011	YY4355315435	91 82F03 37	L 9P6.1425	5 35BMR 322MB	7 J A	27 SE	1	75	8	350	2.0	10	710
5 9	5079517	420012	YY43555054351	60 82F03 39	U. 9P5.9130	1 408MB322MB	3 O A	30 S E	1	40	14	430	1.4	o	580
60	5079817	420013	YY4455855435	22 82F 33 37	LL 996.8620	308MB315D8	5 OA	20 S E	1	132	149	4300	3.2	0	580.

and the second secon

.

61	5079517	142 0014	YYA856185435390	182 FO3 1	271L	9 Pi6 . 3/4 15	2584B	MB	055	20 SE	1	40	24 618	1.6	0 620
62	5 379517	420015	YY4856385435964	82F 33	3711	905.5515	25.848	CB	105	20 S E	1	40	20 850	1.8	0 640
63	5 779517	420016	YY4856605435834	82512	2711	9 5.9420	303MB	MB	055	175=	1	56	18 540	1.8	2 670
64	5079517	420018	YY4456835435801	82503	3711	0 5.0435	459487	122MB	205	25 116	i	28	12 680	1.6	0 610
4.5	5 3705.17	63 10 01	VVL85207543427C	1925 33	2711	0 5 7410	202482	22200	115	20 10	2	20	16 760	0 6	15 490
20	FORGENZ	120000	VV 050105436213	22033	2714		2000000	22003	105	20 114	2	20	10 700	3.0	10 490
00	50[79]517	430002	YYH859105435300	0 25 0 3	371L	A D	205443	52 ZM 03	105	2000		20	10 (00	V. 5	10 450
67	50179517	430003	YY4859405436325	92F 33	371L	9 5.64 5	258883	322MBR	105	20 NW	2	12	18 560	3.9	10 540
68	5079517	430004	YY4859595436361	82F03	271L	9 5.3410	303883	322M95	105	1455	2	16	24 646	0.7	2 520
69	5079517	430005	YY4359995436371	82503	271L	9 5.5410	309MB3	3 2 2 MBR	135	1455	.2	22	16 562	1.0	2 550
70	5079517	43 30 36	YY49602854364CC	82F 33	271L	9 5.74 10)30BM 3	315L88	105	14 S E	2	20	18 330	0.8	2 480
71	5079517	430007	YY4856195436294	32733	371L	9 6.1410	158MB	MBR	2052	17 35 E	2	20	12 756	1.0	2 560
72	5070517	430:03	YV4856425436265	828.33	3711	6 6.3615	159.48	MRR	1552	15 23 E	1	18	10 752	1.3	2 560
72	5070017	433330	VVV854456434333	825.33	3711	6 6 26 5	15344	MRD	1052	18 20 5	Î,	16	16 780	1.0	0 400
ر ، بر	5.070517	120010	VV(0550)5(3)3	02522	3711	6 6 1610	10040		4052	20 10 C	2	10	10 700	5 U	2 600
(4	5079517	430010	TTH855909436205	02500	2716	6 0.1510	20040	- PDA 000	4054		2	10	10 700	0.0	2 900
(5	5019517	430011	YY4657105436178	52F03	ZTIL	6 6.2510	20548	UBK	2725	20 2 5 E	2	28	20 880	0.1	10 200
76	5 0 7 9 5 1 7	430215	-YY4857385436149	192F03	271L	6 6 0 4 10	206 MB	N.1 8	3052	20 18 5	2	20	20 750	0.6	10 470
77	5079517	430013	YY4357605436120	82533	271L	6 5.8610	20BMB	MBR	3552	13 18 E	1	20	16 830	0.9	5 400
78	5079517	430014	YY4857835436090	82F03	271 L	6 5.8 10	158M	N.C. R.	3552	19 18NE	2	28	18 622	0.9	2 410
79	5 179517	430015	YY4856105436059	132F03	4721.	6 6.0730	358TL	DBR	1552	19 10NE	4	108	28 1100	1.9	12 510
80	5079517	430017	YY4858305436030	32E03	2721	6 6.3410	1584	033	1552	15 10NF	2	28	18 600	5.8	10 580
01	5 170517	620010	VV/ 955025/26319	82503	2711	6 6 2410	20840	MPD	2052	10 17 NE	4	20	18 710	0.9	8 480
01	5070717	430310	11F010720400010	122503	3711	0 0.2410	- 200000 - 250000	000	2032	20 10 0		10	12 660	2.5	5 400 ·
5 <u>4</u>	5010511	420019	114055099430550	32503		005.9410	205%01		4,7,5,2	20 15 6	4	42	12 000	2.2	0.20
83	201321	430020	YYH855445436384	82503	3711	942.24 2	255483	SZZDEK	40 2	KN LE US	6	28	12 748	J. 2	10 470
34	5079517	430021	YYK855215436412	82F03	2711.	995.8410	308MB	MBB	2052	23 20 NW	4	24	10 958	1.3	2 420
85	5079517	430022	YY4854955436439	82F03	371L	9P5.64 5	25 BM B	08.8	3052	21 22NW	4	36	10 1250	0.7	2 550
86	5079517	430023	YY4354705436470	S2F03	371L	9 5.54 5	30AMB	CBR	3052	25 26 NW	6	28	14 870	0.7	5 550
87	5079517	432024	YY4854495436500	82F03	371L	9 5.56 5	2.58 MB	MBR	2052	28 22 NN	6	2.8	10 800	0.7	5 450
8.8	5079917	430025	YY4854255436529	82503	3711	985.36 5	20.84	1.83	3052	23 36 NW	6	36	12 666	J. 5	10 560
29	5 7 2 5 1 7	430026	YY4353695436556	32E 13	2711	98 5.45 5	208E	MBR	7052	45*40 NH	10	28	20 716	0.6	10 600
6.3	5070517	100000	VV/056736/36/ 70	02503	2711	1 5 9/10	20950	DBB	P40421	A BONE	4	24	18 920	0.4	10 500
90	201221	460001	114656729435476	02703	3711	1 9.9410	20055	100	P40421			27	20 0/2	5 4	10 000
91	5019517	460002	YY4857255436510	82203	3716	6P6.3+15	25852	1.8K	PIJA	51 NU	4	32	20 842	0.4	5 55U
S 2	50/9517	460003	YY4357605436542	82503	3910	616.2420	308EP1	110898	POSA	30 Nc	4	24	18 944	0.4	0 560
93	5079517	460604	YY43 5800 5436570	82 F03	371L	9 5.9415	253FP	LBB	P05A	25NE	2	22	12 712	0.5	5 410
94	5079517	460005	YY48584J5436602	82F03	391L	9 5.6418	25B=P	LBR	PO 4 A	25 NE	4	22	16 1015	0.4	10 530
95	5079517	460006	YY4858805436630	82503	3911	9 6.3418	253FP	OP.B R	P04	2 8 N E	2	22	14 : 25	0.4	10 480
4.9	5079517	4600.27	YY4359205436670	82503	4911	9 5.8518	2585P	1.88	POSA	20 NF	1	16	16 548	0.5	2 420
	5079517	60008	VY4859525436700	132503	4911	9 5.7418	25850	0888	POSS	15 NF	2	16	18 544	0-2	10 530
0	5070517	440000	VV/ 850005634720	2202	2011	0 5 4419	25050	0232	POSS	10 N	2	22	24 500	0.4	15 530
70	5079517	450009	114833705430723	192:00	2011	0 6 5/10	22000	0280	0050	15.0	1	14	19 429	5 4	10 400
99	50//9517	450010	YY4860205436760	182403	2910	9 5.5418	20077		PUSK	12 1		10	10 420	· · ·	10 400
-100	5079517	460011	YY4360685436795	32103	1552C	9 5. 1518	258.48	LRK	PIOK	10 N	2	20	20 584	J.+	15 560
101	5079517	460012	YY4860975436823	182 F 33	591U	2 5.5418	258FP	LBR	P065	10 N	2	16	18 Z80	0.4	5 460
102	5079517	460013	YY485260543671J	82F03	271L	9P6.0415	30345	MOLBR	3 S 2	9 15 NW	2	36	10 332	0.2	2 630
1.03	5 3 7 9 5 1 7	*460314	YY4353005436070	82F03	271L	905.8415	308.88	OLBR	8 S Z	9 8NW	3	38	8 432	0.2	5 610
104	5079517	*460015	YY4853005436070	82703	2716	905.8412	25848	DBR	1552	9 8NW	4	48	10 530	J. 4	10 730
105	5079517	460.016	YY4853665436000	82E 33	2711	986.2415	3.0848	LOLAF	P 3A2	10 15 NW	2	32	12 426	0.4	2 620
106	5070517	460017	VY4954265435926	112503	2711	605.0415	30838	MBR	1042	10 21 SE	1	36	10 386	0.2	2 630
103	5070617	400017	NVK 25 55054 25730	102012	2711	005 04 15	20955	0280	3 4 2	11 2755	2	8.0	44 382	0.4	5 740
107	5019517	400019	114355505455760	102003	10116	392.1713	20000		1642	10 1055	2	20	16 266	3 4	0 520
108	50/951/	460020	YY4356005435720	82403	4/16	893.8415	305653	DIDUSOK	1042	10 1255		50	10 540	0.4	10 1000
109	5079517	460022	YY 48 51 70 5 4 3 6 2 4 C	192 - 03	3/11	395.4428	40848	KR K	70A1	11 43NW	8	48	0 11 30	0.0	10 1030
110	5079517	460023	YY4848905435532	192803	1371L	6P5.9418	30843	MBR	P 542	11 33 SE	6	56	10 882	0.4	10 660
111	5 3798 17	460024	YY4848905435482	82F03	371L	9 6.2420	35848	ሮኒዓጵ	542	10 21 SE	4	42	12 732	0.5	10 600
112	5070517	460325	YY4848915435432	82F03	371L	9 6.2425	358MB	LOUBR	642	12 21SE	4	48	26 702	3.6	15 613
113	5070517	460326	YY4348925435382	82503	3711	6 6.1425	359 MB	LOLSR	P 7A2	9 20 S	4	40	14 844	0.5	10 620
1	5070817	440027	VV4942025425332	125.13	2711	9 6.1422	33818	MAR	1042	11 20 S	4	28	14 1016	0.6	10 700
110	5010111	660000	VV:0/06/06/06/06	1925.12	2711	9 6 1520	3.34.44	Deo.	8 4 2	11 21 5	4	40	16 9.02	3.8	15 630
115		1400028	1110409709455285			0 0 0 000	21000	1 DF	01640	11 20 3	17	20	10 702	0.0	15 (00)
116	5079517	460029	YYH848990435233	1022-113	12916	7 2. 34 23	000355 00040	6533	PLOAZ	1.1 12 2	1 7	22	17 201	0.4	10 760
117	5079517	460030	YY4349005435185	135403	12916	A 10.5452	221111	GRAR	9 A 2	A 14 2	4	40	10 196	0 • Z	10 (50
118	5070517	460031	YY4849000435102	182F 33	291L	9 5.9425	35888	M38	. 9A	11 13SF	4	44	30 674	0.2	2 7×0
119	5079517	460032	YY4949035435331	92F03	2911	9 6.0420	32040	MB	1542	10 19 S	4	44	94 834	3.4	0 650
				1		~ · · · • •		44 O D	0 4 3	11 10 5	4	32	60 854	0.4	5 59.)

\$

2

2

 \supset

3

0

وي.

نې ،

9

121.	50795171	460034	YYA349108434990	18.2 = 0.3	12911	9:15-9425	358MB	MBR	2042	11 17 SW	14	3.2	60 0	566	5.2	10,	540
122	5079517	460035	YY4849105434935	32903	271L	9 5.4425	35811 -	L	1342	10 10 SW	2	78	74	798	1.8	1.)	670
123	5079517	463036	YY4849115434892	82F 33	2711	9 5.6425	358M9	MBR	942	10 1258	3	44	46 1	445	0.4	5	700
124	5079517	460037	YY4949155434841	32FU3	4711	9 6.0425	35852	IORBR	54.2	9 8 5 4	1 2	24	32 /	620	0.4	5	540
125	5079517	440.030	VV4849165434762	275.1	4011	9 6 24 25	35849	MRR	8 4 2	10 10 10	5	20	16	416	0.2	10	710
126	5 170517	60000	VY6860195636760	02 03	2011	004 24 25	35850	1 0200	0 4 2	11 20 10	2	20	10 .	710	V• 2 N 2	10	110
120	6070517	400040		025 13	2011	950.2423	22055	COROF	042	11 20198	2	20	20	510	Q • £	2	510
127	5019517	400041	T 11+0+9200434031	02500	3716	9 0 . 4 4 2 5	22055	0338	TOAL	10 25.98	4	22		1.50	0.0	2	490
125	50/0517	460042	Y 9 + 8 + 9 2 LD 4 3 4 6 4 2	32833	3711	990.3425	35872	LKBR	642	10 24 NW	13	28	14	202	0.4	2	510
129	50/0517	460043	YY4349220434722	132503	291L	906.3425	1359FP	LURAR	952	9 19NW	2	30	10	216	0.5	5	510
130	5079517	450344	YY4849255434542	82 FU3	191L	206.0425	358FP -	LRBR	10A2	11 10 W	4	32	18 .	290	J. 6	5	490
131	5079517	460045	YY4849255434492	82F03	391L	9 6.3425	358F 63	BR	9A2	10 21 SW	2	22	10	198	0.4	0	540
132	5079517	460045	YY4840985434543	82503	271L	9 6 24 25	35859	ORBR	5A2	8 10 W	2	22	10	112	0.6	0	450
133	5079517	460047	YY4840935434592	182F03	271L	9 6.2425	358FP	<u> ሮጽዓጽ</u>	1242	11 7NW	2	20	12	144	0.4	5	ن 45
134 -	5079517	460048	YY 485090 5434639	82F03	2711.	9 6.6425	358FP	LPBR	942	10 9 NW	2	24	8	136	0.4	2	440
135	5079517	460049	YY4850875434689	82803	271L	906.2425	358FP	LORBR	9 S 2	9 16NW	1	20	12	154	0.6	0	530
136	5079517	46 10 30	YY4850895434738	82503	371L	9P6.1422	308FP	LORBR	10A2	9 21 NW	2	32	12	132	0,2	0	420
137	5079517	461051	YY4350695434787	82F03	271L	9 6.0425	35848	MBR	1552	11 17 NW	4	28	12	330	0.6	15	640
138	5079517 *	460052	YY4850895434839	82F03	471L	9 6.4425	358MB	MBR	1142	10 5NW	2	24	12	240	0.6	2	460
139	5074517 #	460053	YY4850895434339	82F03	471L	9 5.5425	358MB	OLBR	1042	8 4 NW	1	32	16	172	0.4	2	500
140	5079517	460054	YY4850325435631	82533	3711	SP6.2425	35613	MBR	85	2051	2	70	16	438	0.6	10	550
141	5079517	460255	YY4850305435730	82503	1711	996.3425	35852	LRBR	84	10.0%	2	32	12	2.82	0.4	- 5	430
142	5170517	460056	YY4450305435831	82503	2711	996.2420	30948	MRS	8.4	2.2 NW	2	52	10	59.)	0.4	2	560
143	5.179517	460057	YY4250275435993	82503	3711	805.7.30	40848	MBR	200	3.2 NW	4	36	10	771	0.8	15.	510
144	5070517	46 1059	YY4351235436127	52612	3911	905.4 30	40888	082	354	25 N	8	64	14	470 976	0.0 0 A	10	6.00
144	5070517	400000	VV/260205/26/26127	326.32	2711	876 4630	40010	LOOD	354	ה כב	2	4.4	10.1	<u>520</u> 101	0.0	20	E 1.7
140	5 Ards 17	400000	1111030203430121	02503	2711	0.90.0430	36040	100	254	20 M	110	77	10 1	000	0.0	2.U • =	2.40
140	2411211	450060	T 145 502054 56220	025.00	2716	012.1425	22630	ED DD	204	2011-1210	10	50	1.4	4 J J -	0.0	1.2	0.+U
147	2010217	460031	T 14520192406322	52503	5/11	940.2423	SONFP	UPBR	JZA	30 ∿W	8	22	10 1	004	0.0		650
148	5979517	460062	Y 148 488 515 436365	82503	3716	8.16.04.20	30848	MBR	30A	34 N 8	6	80	50 3	045	9.8	20	470
149	5079517	460.063	YY4848885436473	82F03	391L	995.8420	30848	MBR	25 A	2.4 NW	1	16	24 1	203	1.0	0	430
150	5 9795 17	46-7764	YY484885436570	82F03	3716	9 5.8420	308F P	LRBR	15A	21 NW	1	38	22 1	112	1.0	0	450
151	5079517	460065	YY4848885436670	82503	371L	9 5.9420	303FP	LSBR	104	29 N W	2	44	66 1	434	0.5	10	510
152	5 3 7 9 5 1 7	460066	YY4848885436770	82F03	3716	995.6420	3085P	L283		25 N	2	- 2 2	26	954	0.6	0	430
153	5079517	460067	YY4848885436870	82F03	271L	2P6.0420	3085P	CRBR		20 N W	2	24	20	763	0.2	0	480
154	5079517	460069	YY4848895436568	32F)3	371L	995.7420	308FP	LRBR	15A	25.NW	2	24	20	642	J. 2	0	470
155	5079517	463069	YY4849895435582	82F 03	271L	9P5.6425	359MB	MBR	P BA2	10 11 SE	2	58	16	3 90 -	0.2	2	730
156	5079517	460370	YY4850395435530	32503	271L	9 5.8425	35848	DBR	1 0 A	15 S	2	44	22	560	0.4	2	680
157	5079517	460071	YY4853405435430	82F03	291L	9 6.2425	35848	DBR	104	19 S	2	42	16	904	0.2	2	640
158	5 3 7 9 5 1 7	460372	YY4850505435330	82F03	2911	9 6.3422	32848	DBR	1552	11 20 S	4	40	20	734	0.2	5	720
159	5079517	46 1073	Y 14850655435230	82 F-0 3	291L	6P5.6420	308MB	MAR	2352	11 20 S	4	44	62	766	0.6	5	810
150	5073517	463074	Y Y4850695435135	82533	391L	9P6.1422	32848	MBB	15A2	9 22 SE	4	52	50	508	0.4	5	720
1.6.1	5 179517	460.075	YY4850785435035	82503	4711	995.7420	BUBEP	RBR		13 9 S	2	2 0	18	442	5.2	20	470
162	5079517	46 30 76	Y44850885434032	82 E 0 3	3711	9 6.0425	35 BMB	DBR	942	14 22SE	4	76	32	880	0.6	0	6.5)
163	5.179517	460078	YY4851005434449	82503	3911	9 6.5425	35BEP	08.89	1.04	28 SW	1 1	.20	10	162	0.2	ō	460
164	5070517	460079	YY4851905434352	82633	2811	9 6.0425	358MB	MBR	1.04	30.5W	1 î	16	10	34	0.2	ž	570
145	5072517	140080	VV6251205434270	32513	3911	006 4425	35350	CC B 2	100	3454	1	26	16	110	2.2	2	570
100	5070517	400000	VY4051105424140	328 03	2711	004 3420	40860	ORDR	1.04	29814	2	12	12	57		5	720
100	5070517	100001	YY 251225434100	02000	2011	0 5 04 25	36020		7 . 7.	17 1	2	40	10	220	0.2	ő	450
107	5079517	400000	THOSIZUS454070	02500	2711	7 2.7425	D D D D D D D D D D D D D D D D D D D	NOO	146	26 11	2		14	200	1 2	2	620
103	5079517	400034	- + + + + 0 0 1 2 0 0 4 3 3 9 7 6	025.03	2731	9 6 2425	250.40	0100	24	20 K	2	20	20	270	0+2	6	520
169	50/19517	460085	414351305433900	02503	12716	9 0.2423	22040	ULDK OLDK	- 7A	22 NW	2	24	2.17	214	0.44		000
170	5 0795 17	4600386	YY4851355433800	122203	13716	y p. 1425	351348	ULBR.	95	20 N	2	32	15	310	0.2	12	600
171	5079517	46 30 87	YY4851405433706	87F03	1916	975.9425	3585P	()អ អូន	. 9A	4 S		20	8	00	0.2	U U	460
172	5079517	46-2088	YY1251505433602	82503	1711.	- VOD • 34 25	358FP	DRBR	10	4 N	1	26	12	128	0.2	0	560
173	5079517	460089	YY4851965433550	1826.03	11911	9P5.7425	35 NFP	0838	1 J A	4 NW	1 .	1.8	10	168	0.2	0	490
174	5079517	460099	YY4853005433590	82803	2711	905.4425	35966	CERE	7۸	1.0 NW	1	30	18	1 20	0.2	0	560
175	5079517	660091	- YY 43 48 39 54 355 70	32503	271L	9P5.1425	12440	በሆ ባ ዓ	104	10.514	4	40	10	780	0.2	5	730
176	50 79517	460002	-YY4847909435970	82F 0 3	171L	906.0420	30444	P (3 M	2 J A	8 SW	7	44	14	870	0.2	2.5	640
177	5 379517	463093	YY4347335435570	02F03	1711	926.0425	359.98	MAR	104	12 51/	6	68	5.5	200	5.0	40	760
178	5070517	4000.94	YY4846905435570	121-03	11211	086.1425	35348	DHH	P15A	3.2 SW	11	86	36	785). 2	20	950
179	5079517	460095	YY4346405435570	92603	LINE	- 99 6 . 1420	3.03.40	MDD	15A	20.55	2	43	22	850	0.2	10	740
180	5079517	460006	YY4845925435570	82603	3411	235.4425	35848	MBR	1 0 A	22 N.W	5	66	1.8	690	0.2	20	750
• •											-			-	-		

1. 11. 4	6 3 7 6 6 1 7	11 DAGE MALALED	1 - '	- 1. ee	and of an	20010		` ```` ``	11 22 21			in a'				
101	s studs ru	1400097 114849449	14355 /U 82F 03 3	(IL)	Abb. 0450	30303	DBR	ΫŔ	2 Q W M	1 4	62	20	930	0.5	25	830
182	5079517	460098 YY4844915	435570 32503 3	71L (925.9420	BOBEP	LORBR	101	2 O NW	2	26	6 1	200	0.2	12	315
103	5070517	442000 VV634642E	435570 82503 3	711 0	000 01.27	20.022	nno	2.1 4	574 MILE		4.0	20	010	0.0	1 7	
						59050	200	204	2.4014	0		20	410	0. 6	14	80V
134	5079917	400100 11404 3840	435570 82F03 2	/1L '	995.4425	35894	MBE	10A	16 NW	4	34	10	930	0.4	5	720
185	50179517	460101 YY4843455	435570 82F03 3	71L 9	995.5425	35888	LOABR	15A -	32.NW	5	48	14 2	103	0.2	10	630
196	5070517	440102 VV/9/23.5	126670 67577	711 0	006 01.25	25050	0000	0.4	\$ 6 86.1		26	77 1	000	5 /		6.00
130	3013017	400102 114042703	133370 62603 2		3 P • 07 2 J	335FP	UN D -	0 A	1 -+ 1814	2	20	65 1	300	0.9	0	220
187	50/9517	460103 YY4342485	435570 82603 2	116 9	9 6.2425	35848	DESR	5 A C	11 NW	4	34	16 1	200	0.2	10	620
188	5079617	460104 774841955	435570 82 F03 3	711 5	996.0425	358EP	10388	204	28 MW	8	32	26 1	450	0.4	2	540
1.20	5 10 5 17	110115 VV/211/05	125570 02502 2	711 0	004 14.95	25050	10000	104	1010		2.2		050	č ,	~	
139	2019211	400105 11401405	432570 027 33 2	112 -	770.1425	22057	LORDK	TOA	TAWA		20	24	990	0.2	0	570
190	5079517	460106 YY4845955	435630 82503 3	71L 9	9 P 5 • 8 4 20	308F P	L P B	104	21 NW	2	20	10	710	0.4	Q.	400
191	5 07 95 1 7	460107 YY4845955	435676 82503 2	711 9	906.2425	35 84B	MBR	8.4	15 W	6	8.6	26 2	120	3.2	2.1	1.40
101						20010	1.0.0	1 0 4			50	20 2	1.20	0. 2	20	0.70
192	50(9)17	460108 YY4845935	435721 82503 3	110 .	485. 1420	30338	LBR	15A	. 25 NW	4	52	30 1	080	0.2	- 20	650
173	5079517	460109 YY4845915	435765 82FU3 3	71L 9	896.0427	35BFP	LORBR	204 -	35 NW	9	56	26-1	390	0.2	35	720
194	5079517	460110 YY4845905	435816 825.12 3	011 0	926-2420	30852	09.89	5 A	3.2 MIJ	5	32	R	951	0.2	40	6.60
105			135050 02503 3			10000	00.00		22.00	1	10			0.0		000
195	50/9217	460111 YY4545895	435828 82FU3 3	210 0	042+4430	408 ° P	OF R.A.	AU I	3 2 NW	(/	18	81	140	V.+	18	620
196	5079517	460112 YY4845895	435905 82F03 3	71L (9 6.0425	35 RF P	OR BR	104	21 W	9	36	10	63.8	J. 2	15	660
197	5079517	460113 YY4845895	435051 82533 3	011 0	9 5 8425	3585P	CP BB	201	33 MW	4	20	ß	820	0.2	12	490
100	5 9 7 9 7 7					20000			10114		20	~~	0.10	0 •2		400
198	201/921/	450114 Y1+845895	436000 82803 1	(1L)	98 2•9420	20818	MBR	15A .	10 NW	4	4 4	26	940	·0•2	2	430
199	5079517	460115 YY4845895	436030 82F03 3	71L 9	985.2 25	35BFP	8 B	20A	32 N	6	36	12	830	0.2	0	530
200	5070517	460115 YY4845895	436089 82502 3	711 /	605. 9425	358MB	1.8.8	154	35 NE	2	28	18 1	100	0.2	0	480
200	507511					250 10	00.00	1 5 4	2211	2	10	10 1	2.00		č	
- 20 É	2012421	400117 YY4845845	436131 02-03 3	116 9	942.445	35355	URBR	154	30NE	5	40	14	940	1.2	5	500
202	5079517	460118 YY4845875	436181 82F03 3	71L (9P6.7425	35 BMB	LBR	8 A	28 N E	4	40	16	910	0.2	5	500
213	5070517	467119 44445845	436222 82503 3	711 0	925-5430	4 OB MB	192	200	2.0 NC	5	36	22	890	1.0	10	5.3.3
200			196226 02109 9			100000		200			20					
204	50/9517	1460120 YN4845895	436274 82533 3	115 6	945.0430	40848	MBR	15A	25 N	12	.92	22 1	000	4.6	2	550
235	5079517	463121 YY4345845	436324 82F 03 3	716 🤉	9 5.7425	358MA	LBR	205	22 N	4	70	22 1	230	5.6	0	550
206	5070517	460122 444845825	436269 82503 3	711 0	9 5. 7425	3 5 R 4 R	NBP	124	24 N	A	232	30 2	780	12.0	S	720
200	5070517			* 1 L. 7 * 1		10000	1.00	1.04	2717			20 2		12.0	1.5	120
207	50/9517	480123 YY4845835	436411 32503 3	UTE 2	9175.4430	40648	LBK	LUA	ZINE	(84	20 1	.575	2.1	10	500
20.8	5079517	460124 YY4845825	436462 82F03 3	י 117	98 5. 5425	3.58 MB	MAR	12A	30 NW	8	96	18 1	950	0.9	15	730
2.19	5070517	4611 25 YY4345815	436501 825.13 3	711 0	005,0425	3585P	02.82	104	25 N	2	4.8	19 1	040	2.4	5	520
200	607(617			711 /		2000		104	201	2	222			2.4.4	2	100
210	2019211	400120 TY4842842	436551 82603 3	ILL S	VM2 • 94 25	30.040	WHK	194	Z4NW	2	232	24 2	(460	2.0	0	020
211	5079517	460127 YY4345805	43659B 82F03 3	51L · (995.9430	403118	DBR	50A	20 N	18.	344	321	820	4.0	0	740
212	5070517	1440128 VV4845885	434560 82533 2	411 0	0 6 2420	SORMA	MBD	D15A		6	104	22 2	8501	0.8	20	530
						201.10	NDD	222	15.45	-	104			0.0		
613	50/9517	403129 11+042802	430090 325 33 2	LTP .	9 2. 4422	30000	PUR	PIGA	12 NE	د	40	24 1	020	0.0	2	490
214	5079517	460130 YY4846805	436490 82F03 2	91L (995.4425	35848	NRR	104	. 15 W	5	72	30 1	610	0.4	2	670
215	5070517	460131 YM4867135	433547 82503 3	711 0	995,2425	35BEP	FB	6 4	22SW	1	18	24	110	0.2	0	410
21/	5070617	400122 444047105	(33) 80 83503 3	777	004 74 25	26250	00.00	100	21.01	,	20	20		0.5	õ	610
216	5019211	400132 11485/105	433690 02F03 3	114 .	234+ 44 CD	300FP	UKBK	102	21.2M	1	20	20	95	0.2	0	210
217	5079517	460133 YY4867105	433750 82 603 3	71L (984.4430	403FP	C6 85	104	24 NW	1	. 24	32	80	0.2	0	560
218	5079517	460134 YM4867105	433850 82833 1	711.	9P5.1425	35852	OR BR	104	25 NF	1	20	20	1:05	0.2	0	430
210	5 0705 17	(41125 VV(967005	122040 02502 2	711 0	0015 1/20	200=0	0000	G A		1	2.6	2.2	1 (12	1 7		100
619	2 0 6 9 2 7	CE010011 CC1004	455949 02505 5	116 .	70 - 4720	000F M	USON	OA		1	20	44	105	0.2	0	490
220	5074917	460136 YY4867005	43405C 82F03 3	71L (995.8425	358FP	DRBR	105	21 SE	1	18	14	36	0.2	0	440
221	500-1.17	460137 YY4857105	434159 82F03 2	71L (9P15.3420	3 0 B F P	0338	104	15	1	16	20	116	0.2	0	430
	E	LANIZO VYLOLLOOF	121270 02502 2	711 0	005 71.25	25050	neap	104	20.115	•	24	22	120	0.2	0	540
664	2010011	40155 114500905	434270 02F03 3		575.1425	55666		IUA	50 NC	. 1	20	~ ~ ~	120	0.4		J+0
223	5 0 7 9 5 1 7	460139 YY4866985	434368 82703 3	AL 0	995 1425	3585P	ORBR	9 A	33NE	1	16	10	116	0.4	J	ل +- +
774	5079517	463140 474866955	434470 82F 33 3	711 9	9 5.1425	359FP	OPBR	10	21 NF	1	12	18	170	0.2	J	420
275	5 0 70 5 1 7	440141 VV4744015	124575 42533 3	711 6	0 5 6425	35050	0 a	ģ	22115	2	1.6	1.0	1.62	0.2	ò	6.4.3
22.2	201921	400141 114300915	434515 525 35 5		7 5.4425	220FF			22.00	4	10	10	102	0.2		0.40
226	50 79 517	460142 YY4866895	43468C 82F 33 2	716 9	9 5.4425	358FP	RR	10 A	17 NE	2	12	16	220	0.3	0	470
227	5079517	460143 YY4866875	434739 82F03 2	71L (9 5.2425	3585P	E.B.	114	17 NF	1	12	14	160	J.3	2	450
220	5070517	140144 VV/ 146955	121768 22533 3	711 0	0 5 4425	35850	OD HO	104	21.894	,	16	10	1.84	0.3	ō	470
620	30/3517	400144 114300000		4 ± L		330 7	08.04	104	£1150	-	10	10	100	0.0	Š	
229	5 2 7 9 5 1 7	460145 YY4366805	434870 82503 2	110 .	9 3. 14.5	35355	PB		17 NE	1	20	10	200	0 • 2	0	520
230	5 079517	460146 444366325	435)19 32F03 2	716 9	9 5.6425	3585P	02.88	5A	12 NE	2	20	10	168	0.2	0	490
241	5 17 6 5 1 7	663160 VV6366706	435432 N2503 3	711 0	0 5 64.25	35950	09.0.9	.Ω.Λ.	21 MG	,	14	14	176	0.2	a	493
222				· • • •			0000	0.4	6 L 19 L		1.1	T.4	A 10	0.2	Ŭ,	
232	5 of 95 17	460149 YY4366795	435434 82103 2	114	7 12.4422	3.04-19	(PM 3 4 P	ਲਾਮ	15 NE	i	10	24	516	0.42	U	510
233	5 079517	460150 YYAAS6720	435532 82 803 2	711. 🤇	9 5.9425	3585P	<u>08.38</u>	8.4	1.2 NE	1	14	10	214	0.2	0	375
3 1 /	Saliakir	ACTIST VVLACCING	615500 525112	711 0	9 5. 1.24	ISRED	1.0089	10 4	17.50	,	12	14	22:1	0.2	a	480
C > 11 √ + 12				· · L ·		31000	6.0000	1.00	10146			1.7		···· (.		6.2.5
235	5 57 95 17	400105 YAM800100	(2222.40 955.53 3	<i>i</i> 11. ⁴	A 15 . 90 5 2	2.001-14	PUPER	10	50 N.5	2	2 O	1 4	1 4 3	0.2	0	50
236	5010坊17	460153 494364155	435526 82633 3	711. (9 6.0425	35888	LBS	11 ^	26 N 0	1	16	10	196	0.2	U	490
217	5 March 1	46.3154 486.46.3156	435580 92534 2	711 0	9 6. 14 35	3.53.89	MBR	7	ISNE	1	1.6	12	136	0.2	0	620
6.11				· · · ·		36.010	0.0	10	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1 /	* 5	201	0 • C	~ ~	1 3 3
238	5 079517	HOUTDO AMERCICOL	422230 251 23 3	e i la la la	4. (?• (]* ()	7.0124.0K	15.05	10	4 4 N 2	1	1.11	10	6.40	0.2	0	4 Z U
239	50179517	460155 474866755	433596 32803 3	711 9	985.0420	308MB	DBR	105	25 SW	1	16	50	93	0.2.	υ	52ú
	- ÷,								í							
240	5079517	-460157 YY4465755	433596 82803 2	711	906.9425	359812	R B.	5 A	1255	2	20	22	77.	0 6	· 1	1 10

ì

)

5

١

1

3

241	5070517	(460158	YY48647564	33596 ;8	2F031271	L 9 P/5 .	31425	35250	08.8 R	5 A	16 SH	11	22	16 86	0. 4.	Э	660
242	5379517	460159	YY49637554	33596 8	32F 0 3 37 1	L 9 5.	5425	35 17 -	RB	5 A	25 SW	1	12	16 72	0.8	0	540
243	5079517	460160	YY48527554	33596 8	2703 27:	195.	7425	358FP	DEBR	5A	15 SW	2	14	16 90	0.2	Ô	530
244	5079517	460161	YY48617554	33596 3	2F J 3 371	L 995.	5420	308FP	R B	104	24 SW	1	10	46 108	5.2	ā	500
245	5079517	460163	YY43514054	33700 8	32F 33 371	L 995.	5425	3585P	RB	12A	33 S W	1 5	24	16 136	0.4	ō	560
245	5079517	4601 64	YYA3613954	33800 3	2 F 03 371	L 9P5.	2425	35BEP	DR BB	2.04	35 S	1	22	24 106	0.2	ō	550
247	5179517	460165	YY48614054	33910 8	2=03 171	L 935.	7420	30950	2B	15	14.50	1.	24	48 90	0.4	õ	440
243	5079917	46.01.65	YY43513554	34015 8	2803 371	925.	1425	358=0	0838	94	25 W	1 î	24	24 104	0.2	č	510
249	5.379517	460167	YY48613054	34125 8	2533 371	195.	44.25	35 85 P	8.8	8 Å	28 9		26	34 80	0.4	à	440
250	5079517	460163	YY48613054	14225 8	2203 371	1 9 5.	3425	358FP	83	104	25 1	2	16	20 95	0.4	õ	510
251	5079517	4601 69	YY48612554	34329 8	2533 371	1 925.	0425	35862	RB	6.4	22 NW	. 1	12	18 103	0.2	ŏ	260
252	5079517	*460170	YY48612054	344 30 8	2603 371	L 9/5.	1425	358FP	OPBR	BA	26 N.J	1 î	24	28 94	3. 2	·0	620
253	5070517	* 460171	YY43012054	344 20 8	25 13 371	905	04.25	358=P	0888	84	2.6 NW	1 5	22	26 102	0.2	Ö	620
254	5079517	46.11 72	YY48611854	34530 8	2503 771	1 905.	3425	35860	8.B	84	0	1	20	10 93	0.2	ő	560
255	5079517	460173	YY49611354	34636 8	32F03 271	L 905.	4420	30BFP	E.B.	12A	15 NW	li	12	14 105	0.2	ŏ	430
256	5 170517	46 11 74	YY43611154	34740 8	2=13 271	1 905	5425	35850	O2BR	- <u>0</u> A	12 M	ī	12	16 94	0.2	ő	500
257	5079517	460175	YX48610554	34943 8	2 = 3 3 271	1 0 5	54.20	30450	0888	103	10 N		14	10 108	0.2	ñ	500
25.8	5079517	45 11 75	YM48610054	34940 8	2603 771	1 9 5.	9420	3055P	1 P B	104	10 10		20	8 140	0.2	ň	540
250	5070517	460177	VX48600054	35038 8	2503 271	1 0 5	84.25	25860	200	5.4	10.00	2	19	6 108	0.2	ŏ	1.25
2/3	5 1705 17	400177	VV/2/1055/	261/20	22502 271	1 0 5	0422	15950	59	0	10110	2	13	2 110	3 3	ž	400
261	5 0 7 9 5 1 7	460170	VY68600056	36724 9		1 0 5	2625	2.58 MR	60 61.80	0,	20 NG	2	18	10 118	0.2	0	500
262	5079517	4601 80	Y Y 4 8 6 0 8 8 5 4	36336 8	2 = 0 3 3 9 1	1 0 5	7425	358VR		8.5	22110		20	10 134	0.2	õ	550
202	5 7 0 5 1 7	460100	YY48608454	36430 8	22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 0 5	3425	35383	882	3 4	22MC 24 ME	1	20	22 100	0.4	- 0 - 0	250
200	5 1705 17	460102	VV48608054	35530 0	25.13 271		54.25	35850	DR	154	29.45	1. 1	16	12 1/6	0.7	ă	520
204	5070517	400102	VV/4578354	35625 9	2613 371	104	04.30	7020	Mao	5 1	25 1	2	18	20 216	0.2	0	470
20.2	5070517	400100	VV/ 257806/	35720 2	20032371	1 0 5	34.25	25240	000	5 1	20 MU		19	10 236	3 2	2	500
200	5070517	400104	- 1140570054 - VV/057755	32729 0			1/ 25	22040	0.00	6.5	20104		10	16 200	0.2	2	100
201	5019511	4601.55	- 1145211224 - VV/ 1627067	32021 0	2593 271	1 0 5	71420	20010		14	10 10	2	20	14 504	1 2	3	4.20
253	5070517	400100	- 1 1455: 1054 - VV/ 9572662	2602210			1420	20955 2504 7	50 K	TOA	10 10	2	20	22 1010	1.44	0	620
207	5 77 7517	40.1601	1145275224	30022 0				3000 1	0.0	101	12 00	4	40	52 1010	-9.40 1.1	Š	200
270	5079517	450188	1143603654	33543 0	22 - 03 371	L 925.	0420	20052	8 9 CD 0 0	104	263W		18	24 150	0.2	0	450
271	5079517	460189	Y 148595854	33553 8	2703 371	L 2005.	4/20	200000	UKBK OD	LUA	2454		20	20 110	0.2	0	520
272	5079517	40 11 9.1	1148589054	33595 0	2 - 0 3 3 1 1	L 970.	0420	30669	F D D	84	2058		. 10	10 100	0.2	2	500
273	5019517	450191	Y 148 385554	33800 8	328 33 171	L 935.	4420	308FP	685	15A	1224		24	34 230	0.2	0	500
274	5079517	46J192	Y 1485855554	33820 8	32-03 211	L 903.	1425	2085P	K B	104	10 24	2	20	8 100	0.2	0	440
275	5079517	460193	Y 143535454	33945 8	2 - 3 3 271	L 9 5.	3420	30859	н 5 рр	154	12NW		16	18 166	0•2	0	350
215	50/9517	450194	Y 148585054	34043 8	32503 371	L 9 5.	3425	358FP	KB PP	124	24 NW		16	20 134	0.4	0	44U = 10
277	5079517	460195	YY48584554	34140 8	32893 371	L 9 5.	8425	35350	F.B	TOA	30 W		18	14 125	0.4	0	540
278	50/951/	146:01:96	Y 1485830154	34240 8	32F03 371	L 912.	1425	35388	URBR	8A	30NW		16	18 126	0.2	0	420
279	5019511	\$463197	Y148583954	34340 8	325 33 271	L 9 5.	1425	35825	88	S A	18 W	1	12	1.6 113	0.2	0	470
280	5079517	*460198	YY48585454	33945	32603 271	L 9 5.	7 4 2 5	358FP	RB	34	18 W	1	12	16 118	J+2	0	450
231	5079517	460199	YY43583454	34444	32 F 0 3 271	L 9 5.	1425	358FP	DR BR	SA	ZNW		16	16 154	0. Z	0	370
282	5079517	460200	YY48583054	34543 8	32F-33 291	L 9 5.	5425	3582P	DABS -	87	15 NW		20	12 154	0.2	0	260
283	5079517	460201	Y Y45582554	34640 0	32103 371	E 275.	3425	35859	LKG -	- / A	22.04		24	12 148	0.2	, 0	420
-284	50/9517	460202	Y 143445154	35612 8	32- 33 371	L 985.	1425	35548	LBR	6 A	22148	6	40	16 995	0.2	15	080
285	5079517	46.32.33	Y 148445054	35653 8	32803 271	L 995.	8425	358/48	LRK	32	14 NW	4	50	26 1410	0.4	2	540
235	5079517	460204	Y Y 48 44 50 5 4	35659 8	37 - 33 37 1	L 985.	1425	353FP	ORBR -	12A	ZANW	6	15	10 916	0.2	. 2	460
287	5 3 7 9 5 1 7	460205	YY48445054	35735 8	32F J3 301	L 9 5.	44 25	35 8F P	LRB	ЭA	Z 5 NW	6	30	14 1130	0.2	10	540
288	5 1795 17	460206	YY43445054	35735	12603 361	L 996.	1420	3.08 MB	LBR	104	33 W	10	52	18 785	J.2	20	810
239	5079517	460207	YY48445054	35829	32203 391	L 935.	6420	30'BEP	LORBR	15 A	42 NW	2	18	18,708	0.2	2	440
500	5079517	460208	Y 143445354	35929 8	32E03 391	L 995.	5420	30848	MBR	104	40 NE	4	48	20 1290	2.5	2	600
291	5079517	460210	YY48444454	36.220 8	32F03 391	L 6P/5.	.94:30	403/18	LBR	3)A	42NW	6	6.8	26 1710	2.4	2	620
292	5079517	460213	YY484440/54	36174 8	325 33 391	L 835.	7+20	30 9 M B	MAR	1 J A	4.2 SW	8	135	24 1134	3.4	18	600
293	5079517	460214	YY48444054	36220 8	32F03 [391	L 006.	.2425	35838	MBR	15A	38 NW	6	60	36 1540	1.5	ю.	520
294	5079517	460215	YY43443954	36272	32 FO 3 39 1	L 916.	0425	35848	LBR	2 U A	40 N W	10	200	16 1204	3.0	5	400
205	50/9517	469216	- Y Y 48 44 30 5 4	36312 1	32F 0 3 371	1 205.	74.32	4.013 413	MAR	12 A	45 88	2	90	40 940	1.0	0	640
295	5079617	46-1217	YY43443854	36364 1	32503 391	J. 92/6.	. 44.30	40888	tuse	1 S A	33,014	4	104	18 600	0.6	12	600
217	5071517	46.5213	YY48443654	36400 8	32503 391	1. 985.	9425	35848	MBR	104	38 NW	2	70	18 306	J. 2	8	760
25.8	5 3 79 5 1 7	460219	YY48443554	36453 1	32F 0 3 37 1	L 586.	1425	3 SRMB	MBR	15A	35 NW	2	86	20 476	0.2	8	620
500	5079517	460220	YY48443454	36499 8	32533 371	L 225.	.9425	356MB	MBR	10A -	35 NW	2	80	16 520	0.2	10	620
210	6070617	41.3221	VV48443354	36545	121-13 371	1. 9P6.	1425	35.8°P	C98R	8 A	27 NW	2	50	12 508	0.2	8	430

j

201	5070517	1602.22	VV:/ 0 / / 7 7.5 / 7 / 5 0 /		. or him	o w ov or		HOD	- 1 ¹	2.2.1.1	5	0.0	· / ·	- 00	~ ~	-	
501	11010111	100222	1 14544525450565	02800	12210	9 0.0425	30000	PLEAR	5A	ZCNW	2	20	10 .	200	0.2	5	600
302.	5079517	460223	YY 484432 5436629	82703	3716	9 5.8425	35 BE P	OPDR	P10A	26 NW	2	60	18	340	0.2	2	580
303	5 2 7 9 5 1 7	460224	YY4344315436677	92503	3711	9 5.7425	3 58 F P	10888	P 84	2.0 MM	2	6.0	1.6	331	0.2	12	6.3.5
3.34	5070517	4.4.1225	VV5242005426620	225.12	2711	006 26 25	25940	NOD	DEA	20 111		00	20	220	5.5	. 1 0	000
	20179217	400225	114645900450050	02705	13716	900.2+25	22045	1915K	r 24 -	DOWW	2	28	48 4	2 34	0+2	10	600
305	5 0/795 17	*#460225	YY4845055436630	825 33	371L	9 5.9425	358FP	CRBR	104	24 NW	2	32	16 -	472	0.2	0	610
306	5079517	*460227	YY4345055436630	82503	3711	9 5.0425	358 ° P	0233	104	24 NW	2	32	20 . 4	446	0.2	2	411
207	5070517	460229	YY4250205434735	82 = 03	2711	0 5 6 25	25920	0020	0 1	24 14		20	14	1 40	0.5	Ż	- 50
207	5 3 7 9 5 1 7	400-10		02100				CONDA CONDA	- 5 A 	2 + W		20	14	140	0.2	0	525
308 .	5010517	462229	YY+858205434785	82-03	3/16	9 p. 24-25	3585P	OP B R	1 Q A	32 W	1	20	14	134	0.2	0	460
309	5079517	460230	YY4358175434836	32F03	371L	9 5.5425	35 RF P	CR BR	9A	23 NW	1	24	18	1 72	0.2	0	580
310	5079517	460231	YY4358155434388	82F03	3711	9 6.0425	35852	1 28	5 Å	2252	1	24	16	0.2	0.2	ñ	500
211		100000	YY/ 25 3155 (2/2)	000000			0.0000	100	<i>.</i>			<u>6</u> -7	10		0.2		290
211	2012011	40.232	110020102434934	82503	2/16	y p. 1425	30348	MOR	5 A	13.2M		24	12 1	108	0.2	0	570
312	5079517	460233	YY 435810 5434984	82503	271L	9 5.8425	353FP	DRBR	4A	15 SW	1	24	12 1	1 2 2	0.2	. O	540
313	5079517	460234	YY4358135435335	82FJ3	2711	9 5.7425	359=P	CPBB	4 ∆	16 SW	1 1	. 22	14	104	0.2	0	610
21.4	5 705 17	460228	VV4250105435084	62611	2711	0 5 74 25	3 80 5 5	1 0000		21 00		2 2	10 1	1 4 1	N	5	750
		4002.31	1940.001.004.0004	02000	12111	5 5.1725	2.200	LUNDA	44	21.35	1	22	10 1	192	0.44	Ŭ,	100
315	- 2 J/9517	460236	YN4851345435134	32203	271L	9 5.8425	358FP	ORBR	5 A	10 SW	1	28	-16	110	0.2	0	600
316	50/9517	460237	YY4858055435184	82F03	271L	9 6.1425	358FP	CPBR	5 A	12 W	1	24	12	122	0.2	0	450
217	5079517	460238	YY4858055435233	32503	3711	9 6.1425	3 5 8 5 P	DEB	1.0.5	2 O NW	1	24	12	138	0.2	0	540
310	6070417	410220	VV/ V50025/25202	375.32	2711	0 5 1/ 25	15050	00.00	5 1	T G NUL		20		1.30	1 2	Š	500
210	50/19517	400239	114856025455265	32503	2116	9 9 9 9 9 7 2 9	22072	URBS	24	I D NW	4	20	12	100	V• 2	0	200
319	50/921/	460240	YM4858005435333	82503	371L	9 5.8425	3 58 MB	MBR .	2 0 A	2 4 NW		16	16	120	0.2	0	520
320	5079517	460241	Y14857995435383	32F03	271L	9 5.7425	35 BM B	MBR	84	14 NW	2	20	12 1	120	0.2	0	510
321	5079517	460242	YY4357995435433	82503	3711	9 6.0425	35888	MAR	9 /	25 MW	2	28	14	102	0.2	- 0	600
221		400242	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000			22000	1.0000	74	22186	-	20	1-	+ 7 <u>~</u>	0.2		5.50
31.2	2010010	450243	Y 1485 (945435675	32503	12/16	9 2.4425	35358	LUKBR	IA -	25 NW	2	25	10	109	2.2	0	540
323	50174517	460244	YY4857505435530	82FJ3	271L	9 5.1425	35BFP	LORBR	8 A 👘	17 NW	2	24	14	236	0.2	0	520
374	5079517	460245	YY4854855435623	825.33	3711	995.8425	35548	DBR -	84	205F	2	94	94	364	0.4	0	900
2 2 5	5070517	460246	VV/ 25/005/25/75	02502	2711	016 21 75	25240	NOD	1 0 4	1255	5	;;	2.2		1 0	Š	
225		400240	1 140 240 02 45 20 75	02003	5116	9/10 - 21+ 25	55546	11.00	TOA	<i></i>	2	44	57.	220	1.40	۷.	500
326	2019210	460247	YY4854855435(23)	32203	2/16	9 6.0425	35 SMB	ULBR	10A	1258	2	28	30	420	0.4	0	480
327	5079517	460248	YY14854755435777	82F031	271L	9015,9425	359MB	LOLBR	8 A	14 SE	2	40	74 0	620	0.2	Û	640
328	5079517	463249	YY4854885435823	825.13	3711	996.2425	35BMR	OBR	7.5	20 5	,	22	340 1	120	1 9	Ô.	520
220	5070517	100000	VV/05/005/05/05/05	02700	2711	005 0/25	22010	000	101	1.0	t t	<u> </u>	70 1	120	1.0	Ĩ	120
229	2014211	400200	114324082432672	d KH U S	2116	942.9422	20 B 8 8	UBK	LUA	12NE	1	20	18 1	5.10	1.0	4	500
330	5079517	460251	YY 435485 5435923	32503	3711	986.1425	35848	MBR	12A	27 NE		56	12 9	550	0.2	0	520
331	5079517	460252	Y 14854895435973	82 F 0 3	371L	905.5425	35348	1.58	124	25 F	2	40 -	10	500	0.2	0	690
2.12	5070517	467252	VY4854885436320	32503	3711	985 7428	40848	1.00	201	22 NE	2	20	10	740	0.2	ō	700
222	5070517	400200	VV/05/005/00020	02:02	37.1	0 5 11 25	2 5 6 4 0	100	LUA	24 11	, ²	20	10	= / /	0.2	ž	700
ددد	- > q/q>1/	460254	Y 1+8 2488 34360 (0)	02803	3116	9 9.0425	20806	Pi HK		34 C	4	28	10	200	0.2	0	820
334	5079517	460255	YY4854885436119	82F03	371L	985.5425	358M3	LBR	12A	32 S E	4	42	16 .	816	J.2	0	603
335	5079517	460256	YY4854835433595	32F03	2711	9P 5.1425	3 58 F P	OFBR	2 S	13 14 NW	1	18	20	96 .	0.2	0	560
276	5170517	460257	VV4854325433595	32503	2711	986 0425	35850	0688	124	13 10 NH	1	1.9	16	1 3 2	∆ 2	Ó	560
220		400201	114034335433575	005.00			2,000	0000	1,04	12 1700	:	10	10		0.0	0	5.50
231	2010221	1460258	114553035433255	82503	DITE	MO. 4425	32866	UK KK	6 A	13 O2M	1	10	15	134	0+2	0	220
338	5 7 7 9 5 1 7	460259	YY 435233 5433595	82503	3711	90/6+3/425	358FP	LPB		20 30 SE	1	20	24	82	0.2	ა	580
339	5079517	450260	YY4852525433643	82 E 0 3	2911	9 6.0425	358EP	OP BS	5 A'	11 4NW	1	16	10	2:04	0.2	C	580
340	5170517	440241	VV/252005/23600	32512	2011	0 5 04.25	35050	0000	6 1 2	11 5 500		14	10	1 9 9	0.2	0	500
540	5 7 7 9 1 7	460201	114072097455077	02000	2914	0 10 10 20	990-F		OA2	11 2/56		10	10	100	.02	Š	500
341	2010211	460262	Y 14852885435749	82203	22215	9 0. 1425	35878	CRK	5A 2	IZ DNR	1	22	12.	140	0.2	0	640
342	5079517	450263	YY4852825433849	82503	291L	9 6.0425	358FP	ORBR	6 A 2	11 4 NW	1	20	10	144	0.2	0	480
343	512517	460264	YY4352795433859	82503	2711	9 6.1425	358EP	LORBR	842	13 4NW	1	20	14	240	0.4	D	640
311	5070517	1100005	YY/052775/220/0	025.12	2711	0 4 11.25	3 5 5 5 5	10000	4 4 3	16 25 MU	2	2.	1 0	1 50		Ā	4.3.3
244		400200	114032113433949	02000	2714	7 0.4420	2000F	00706	042	10 2000		24	10	420	0.4		850
345	50/19517	450266	Y14852745433955	82503	3/16	9 0.2425	35848	CHK	1052	15 23 NW	1	52	26	570	0.6	12	810
346	5079517	460267	YY4352705434043	82F03	371L	9 5.8425	3 5 B M B	MBR	9A 2	14 25 NW	1	28	16	272	0.4	2	730
347	5079517	463268	YY4852675434053	82 503	3711	9 5.0425	35852	0788	542	11 22NW	2	.20	12	274	0.2	0	680
2,0	Coloria	100000	VV/0520/5/2/1/2	225.22	1 7 7 1 1	0 5 0/ 25	2500	0000	())	10 7/ 301	,	20		1 3/	5 5	ŏ	(70
346	2712211	403209	714852645454145	02503	2110	7. 2. 7. 22	22000	UNDR	OAZ	10 54 19	1	20	14	124	0.2	0	010
349	5079517	460271	YY 485260 5434193	82FU3	391L	9 6.5425	358FP	CR8R	8A 2	11 25 SW	1	22	10	110	0.2	0	650
350	5079517	460272	YY4852605434243	82F03	381L	9 6.6425	35848	MBR	3 A 2	12 30 SW	1	26	14	122	0.2	С	790
351	5070517	46:1272	YY4852565434263	82503	12911	9 6. 1425	3 59 MB	188	642	14 245%	Īī	22	8	93	0.2	(1	730
251	5070517	400210	VV/ 05 75 06 (7/ 2/ 2	22502	13011	0 1 21 25	25050	Lopan	74.2	11 15 614	1	10		1 2 2	~ ~	ŏ	720
224	2011/211	400274	T THOD 20 UP 4 34 39 3	SC PUS	LOIL	4 0 + 24 42	22257	LUNSK	IAZ	11 12 2%	1	10	. 0	122	0.2	Ų	140
353	5 7 7 9 5 1 7	462275	YY4852465434443	82503	1271L	9 5.7425	35848	DLBR	8 A 2	11 13 NW	1	24	12	98	0.Z	3	800
354	5079517	460276	YY4852435434493	132F03	271L	9 6.2425	358FP	RB	6A 2	12 11 W	1	12	16	166	J.2	U	630
355	5070517	460277	VY4852405434543	828.13	2711	9 6.44.25	358CD	DORBE	1042	13 17 W	1	24	14	114	0.2	n	600
222		100011		0.00	0.000	6 1 11 31	2 - 0	100	* U ~ G		:	2.7		* * *	~ ~	ž	
356	5 279517	7946 2278	TT48525126 19115	1021-03	12/11.	7 5.4422	308718	RNR	142	11 14 W		20	12	130	0.2	U	240
357	50[79]517	約460279	YY4852356 1 3	132F)3	271L	9 6.5425	35948	MBR	7 A 2	11 14 W	1	20	8	124	0.2	0	560
358	5079517	44.0283	YY4854795435528	82F 33	3711	206.0425	35 8M B	DDR	5 A 2	10 30 NW	2	44	22	536	0.2	О	1400
350	5070617	131. 12 81	VV4354936426470	325112	12/11	9 5 2426	350.00	0996	612	12 10 10	1	20	14	3.4%		ñ	620
ייני ייני				126-02	5711	- 2 - 2 + 2 pr 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2.2.11.1.1	117 (110) 20 0 10 0	042	10 01100		20	1 7	565	V • 4	2	020
1 (A 13)	5179517	4502312	- Y Y 4 3 5 4 2 1 15 4 3 5 4 2 7 -	こさどたける	5715	N 11 - 2 (s 2) -		Lins B K	662	EN ZENW	4 T	+ 8	3 44	5 15 (1	0.2	(1	1

361	5079517	460283	YYH853765435491	182F03137	16.24	25 35NFP	ORBR	-6 A Z	12 2	2 NW	1 1	20	.1 2	164	0.2	0 640
352	5079517	46 02 54	YY4053285435483	32503 27	11 9 6.14	25 358FP	DRAR	5A 2	12 1	7 N 2	1	20	14	138	3.2	0 650
353	5079517	460235	YY4854815435275	82503 27	11 9 6.04	25 358FP	CRAR	6 A Z	13 1	7 W	1 1	22	14	136	0.2	0 490
364	5079517	460286	YY4854835435225	82F03 37	11 9 5.44	25 35BFP	LORBR	1042	92	2 8	1	22	12	110	0.2	0 644
36.5	5079517	460287	YY4854865435176	82 503 27	11 986.24	25 358FP	OF BR	7 1 2	11 1	5 %	1	18	12	100	0.2	0 640
366	5070517	460299	YY4854885435126	82833 27	11 9 6.64	25 358MB	LBR	742	10	554	1.	22	10	100	0.2	0 590
347	5079517	461228	YY4354895435077	32513 27	11 0 6 44	25 25800	L D R	63.2	12 1	1 CW	1.	24	. 1 2	1.24	0.2	0 500
368	5079517	460200	YY4854005435274	82503 37		25 25960		6 4 2	1 2 1	1 3 N	1	24	17	1 7 0	0.2	. 0 510
260	5 1705 17	400290	VV/45/005/3/075	02103 37		25 25055		5 4 2	16 2	12.3M 11.5M	1	10	10	120	0.2	0 140
207	5070517	400291	- 1140J490J4J497J	02000 07		23 33000	05.08	JAL	14 2	1 2 3 6		10	1 4	1.24	0.2	0 390
370	5070517	400292	114634900434923	02503 37	11 0 6 04	20 000FF	URSK	242	11 4	1134 E CH		14	10	130	2.2	0 520
211	5070517	400293	1 14034913434570	025 35 27		25 556FP	UNDR	UAZ	10	2 2 M		18	10	125	0.2	0 530
372		450294	1 1 48 5 49 2 5 4 5 4 8 1 8	02503 21	1 19 0.04	20 201200	M0.5	642 540		0.5%		10	12		0.2	0 650
3 (3	5079517	460195	114352295434042	82 - 0 3 27		25 35859		542	12 1	14 NW	1	20	12	150	0.2	0 700
5/4		450295	114852275434655	82FJJ 37		20 00052	UN SH	942	12 2	(1, PVW		22	14	144	0.2	0 730
375	5 1 (15 1 (450297	YY4352255434748	32533 27	16 9 6.14	25 358FP	URBR	64	11 1	. 6 NW	1	28	12	148	0.2	0 740
376	5079517	460298	Y14852215434781	82103 27	11 9 6.04	25 35852	GRSR	742	11 1	.5 NW	1	16	14	150	0.2	0 700
377	5079517	46.3300	YY4852195434890	82503 29	11 9 6.54	25 358FP	ORBR	752.	12	SW	1	24	14	2 2.2	J•2	0 670
378	5979517	460301	YY4352155434890	82103 37	IL 9 6.44	25 356FP	DRBR	94	15 Z	22 W	1	24	16	2 52	0.2	0 670
379	5079517	460302	YY4952105434990	82F03 37	1L 9 6.34	25 358MB	MBP	6 A 2 ·	15 2	24 W	1	32	20	236	0.2	0 740
350	5079517	460303	YY4852105435038	82503 37	1L 9 6.34	25 35948	OL BR	7 A 2	12 2	25 W '	1	40	20	234	0.2	0 860
381	5 9795 2 7	460304	YY4852055435090	82 503 37	16.44	25 358MB	CLBR	6 A 2	11 2	27 W	1	36	2.0	316	0.2	5 780
38.2	5 2795 17	460305	YY4852025435138	82503 57	1L 9 6.44	25 355FP	OP. BR	5A2.	11	4 W	1	34	12	820	0.2	0 680
383	5079517	460307	YY14352005435236	82FJ3 27	1L 90/6.54	25 358FP	OP BR	7A 2	11 5	SE S	2	80	20	1116	1.0	2 710
334	5079517	460303	YY4351995435240	82F03 37	16.04	25 358MB 36	. Р	7 A 2	15 2	28	2	48	26	522	0.2	2 1050
385	5079517	46 33 39	YY4851955435280	82F03 29	11 9 6.84	25 35848	MBR	842	14	5 S E	2	76	52	2943	0.6	0 970
386	5079517	460310	YY4851915435322	82F03 27	11 9 6.44	25 35BFP	FR	15A Z	12 1	L 5 S 8	2	92	20	438	1.0	0 760
387	5079517	460311	YY4851905435320	82F03 37	1L 9P6.54	25 35BMB	DBR	1542	14 3	15 S E	2	104	42	443	0.6	0 1250
388	5079517	460312	YY4351865435432	82 603 37	11 906.54	25 355MB	DBR	10A2	12 3	32 SE	2	92	140	590	J.4	0 1100
389	5079517	460313	Y 14851835435478	82 503 37	11 986.54	25 358M8	MBR	1042	12 2	28.55	2	58	106	830	0.4	0 870
390	5079517	460314	YY4851805435530	82503 37	11 906.64	25 25388	MBR	942	12 3	32 SE	2	90	20	768	0.2	10 1000
391	5079517	460315	YY4851805435629	82FU3 27	11 906.84	25 35888	LBR	SA 2	11	6 SE	2	80	12	603	0.2	5 880
392	5079517	460316	YY4851805435430	82F03 27	11 996.14	25 35BEP	LBR	9A2	12 1	2 5 5	2	76	16	440	0.Z	0 820
393	5079517	463317	YY4351805435779	32503 17	11 985.54	25 358 43	LBR	1042	14	455	2	60	20	372	0.2	10 830
394	5079517	460318	YY4351815435827	82E03 27	11 986.14	25 358EP3	F	74.2	10 1	4139	1	30	8	210	0.2	0 820
395	5079517	450319	YY4851805435880	82533 37	11 9 6.14	25 358MB	MBQ	6 4 2	11 2	25 NW	1 1	34	10	288	0.2	2 900
396	5079517	460320	YY4851805435930	82503 37	11 9 5.74	25 35848	MBR	842	17 2	32 N'N	2	44	12	608	3.2	10 810
297	5070517	46.13.21	YY4851805435580	32 503 37	11 9 5.14	25 35RV8	OI BR	7 4 2	12 2	22 MW	1 2	28	10	555	0.2	15 850
308	5079517	40.0322	YV4851805436330	825 33 27	11 9 5.74	25 35RMR	DBR	8 1 2	12	ລີພ	4	36	12	650	3.2	12 880
300	5070517	460322	VY4346155434475	82513 27	11 895 94	25 35850	ORBO	2012	11 7	A Q NPJ	1	34	14	156	0.4	0 620
200	5070517	400323	VV4946195434425	82503 37	11 006 14	25 25850	1 0080	1042	12 2	25 W 1	1	36	22	210	0.7	10 810
400	5079517	1400324	114040105404725	02:00 07	11 056 56			1640	12 3			20	22	164	0.2	12 620
401	5079517	400325	- T T 40 40 1 9 2 4 3 4 3 7 3	02000 01	11 004 04	22 22000 35 2500	1.08	1042	13 3	27 611		20	16	204	0.6	0 745
402	5019517	40.03.25	114040192434323	02503 37	16 320.04	הויסכים כב מעמידים ה		1042	11 1	2434		52	10	200	0.4	0 700
433	5079517	460327	Y 14346195434271	02503 37	16 870.44	20 30 MMH.	LDK	2042	12 2	225W		20	. 5	192	Q + + 3 /	0 570
404	50/951/	460328	YY4846205439223	82F03 37	11 920-14	25 35579	UNDR	PLIAZ	13 3	22.28		20	12	105	0.0	0 020
405	5079517	460330	YY4346205434175	82733 37	16 905 14	25 35848	MOR	540 640	: 2 2	25NW		52	30	200	U • +	
436	5 3 7 9 5 1 7	460331	YY4846215434125	82503 37	16 9 6.04	25 358MB	GKBR	2082	-12 3	33 N2	1 4	75	30	480	0.5	0 1350
407	5079517	460332	Y Y43 46 225 4340 75	32503 37	16 9 5.54	25 35818	ULSK	5 A 2				28	18	200	0.0	0 700
438	50/951/	460333	YY4846235434025	32F03 18	11 9 0.04	25 35848	MBR	582		S J WW		32	20	495	0.4	0 820
409	5 3 7 9 5 1 7	460334	YY4546225433977	82503 38	16 9 5.84	25 358MB	MBR	5 4 2	11 6	2 NW		34	20	308	J.4	2 810
410	5079517	460335	YY4846255433927	B 2 F 0 3 28	11 906.14	25 358MB	MBR -	74.2	11 2	23 NW		22	76	356	0.2	0 690
411	5079517	460336	YY4046255433877	82F03 38	11 905.74	25 353MB	MBR	542	10 2	21 N	1	28	36	374	0+2	10 780
412	5079517	460337	YY4346285433827	82803 39	11 9 5.84	25 358MB	MER	6A2	10 2	21 NW	1	20	32	213	J•4	2 600
413	5079517	460338	YY4846295433779	102F03 39	11 9 6.24	25 358FP	ORBR	742	10 2	25 NW	1	18	18	128	J. 4	0 540
414	5379517	46 33 39	YY4846305433727	82F03 29	11. 9 5.74	25 358FP	OP.BR	542	10 1	L5 NW	1	14	14	98	0.2	0 560
415	5079517	460340	YY4846305433577	82503 28	11 9 4.24	25 3585P	OP BR	54.2	11 1	1821	1	28	16	120	0.2	0 570
416	5079517	460341	YY4846315433527	32F03 25	11 9 6.14	25 358FP	LORSR	542	12 1	12 🖬	2	24	24	150	0.2	2 650
417	5279517	463342	YY4346315433577	82603 39	11 906.14	25 358FP	PB	5 A 2	12 2	22 W	1	20	18	130	0.2	2 510.
413	5079517	460343	YY4850505433500	32F33 27	11 9 5.64	25 35BFP	0838	5A 2	11 1	LONW	1	34	54	100	0.2	0 710
419	5079517	460344	YY4849955433590	827.03 27	11 9 5.94	25 253EP	OR8R	4 A 2	11	5 NW	1	22	16	126	0.2	0 820
420	5079517	460345	YY4843855433550	82F03 27	11 9 6.04	25 358FP	GRBR	4A2	10	8 NW	1	14	16	150	J.2	0 550

2

Y

3

3

)

421	5079517	1460346	YY4848355433550	182F03127	711	9 5.8425 358FP	ORBR	5 A 2	12 15 NW	1 1	22	24 118	0.2	3 710
422	5 0 7 9 5 1 7	460347	YY4847955433590	82203 27	711	9 5.6425 3585P	1.0252	7 4 2	15 19 MM	1	1.9	16 90	0.2	0 670
423	5079517	460348	YY4847505433590	82533 27	711	9P5 9425 358EP	10230	65.2	12 11 9	i	22	18 168	0.2	0 550
474	5379517	463349	YY4846905433550	82503 29	711	9 6.04.25 35BEP	10638	7 \ 2	12 10 Mar	l î	16	20 112	0.2	0 040
425	5079517	460350	YY43454054335 CO	02503 20	211	0 6 04 25 35850	OPap	4 4 2	10 1650		20	20 120	0.2	0 000
426	5079517	460350	VVA3440054335 00	82 5 3 20	211	005 AL 25 35850	0585	542	10 10 30	1 1	20	14 140	2.2	2 000
420	5070517	440752	VV/ 24//56/2250	102:03 20	311	0 6 1/25 2500	0000	542	14 1238		24	14 140	0.2	0 570
+21	5009011	400322		02503 29	9 i L. 3 1 I	0 K 1K 25 26050	UK BK	5 1 2	14 125%		66	15 204	0.2	0 570
	5070517	+100355 +1/(07E/	T1+0+3900+33390	102502 25	71 <u>.</u> 511		P D 0 0	5AC	TO TO 2M		20	20 104	0.2	0 720
429	5019517	#450354	Y Y 1+ 54 34 05 4 3 35 90	182503 29	7 I L	9 B.0F25 358FP	R B	542	15 185W		24	20 152	5.2	0 700
430	50r9p17	469355	YY434340543355C	82F03 29	91L 	9 6.4425 358-P	LORBE	742	11 19 W		20	. 16 172	0.2	0 560
431	50/9517	460356	YY483395540	82103 28	311	996.4425 35893	LBR	44 2	12 4 SF	1	92	16 293	0.6	0 860
432	5 7 9 5 1 7	460357	YY483395543548C	82F03 28	3 I L.	996.3425 35848	LBR	4 A 2	14 18SE	1	50	14 308	0.8.	0 770
433	5019517	460358	YY4833955435382	82503 28	31L	9 5.9425 35BMB	GPBR	842	10 11 SE	4	64	20 120	0.2	0 1490
434	5079517	460359	YY4333955435331	82 83 88	31L	905.8425 3584B	MBR	5 A 2	10 15 SW	2	60	18 330	ა. 2	0 1820
435	5079517	460360	YY4833955435281	82F03 28	81L	906.3425 35RMR	MBR	4 A 2	10 13 SE	2	94	18 360	0.4	0 1130
436	5079517	46 03 61	YY4833955435281	82803 28	31L	9 6.2425 35BMR	MBR	5 A 2	12 18NW	1	40	22 588	0.8	10 350
437	5079517	46.03.62	YY4433755435231	82F03 36	31L	9 6.3425 358MB	LBR	5 A 2	13 23 W	1	66	18 536	3.3	10 810
43.8	5079517	460363	.YY4833955435081	82F03 28	31L	9 5.0425 358MB	LBR	4 A 2	15 15 W	2	88	20 650	1.4	0 810
439	5079517	4603.64	YY4833955435031	82 FU3 29	91L	9P6.3425 35848	LBR	742	11 10 SW	1 1	42	18 918	0.8	0 540
440	5079517	460365	Y4833955434985	82833 28	91L	996.4425 35RM8	LAR	4 5 2	14 16 SW	2	34	18 620	1.4	0 550
441	5079517	460365	YY4833955434935	82 803 28	311	9P6.5425 358MB	LAR	5A 2	16 18 SW	10	62	16 923	6.5	0 590
442	5079517	42.03.67	YY4833995434885	82E03 38	311	9 6.1425 358MB	LBR	742	17 22SW	6	82	20 2040	1.2	0 940
443	5079517	46.0368	YY4833995434835	82503 28	811	926.0425 353MB	1.88	5 4 2	16 1750	2	50	28 1800	2.0	0 1000
445	5079517	44.03.60	VY4833055434785	1 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	211	094 2425 35848	1.0.0	612	14 20 55	2	43	26 1368	1.0	0 720
477	5070517	460370	VV/933065/3/735	92.03 30	011	0 4 44 25 35049	NBD	5 4 2	15 26 5	20	76	12 1400	2 6	0 940
445	5070517	460371	VV/033005/3/695	02-03 30	0 I L 0 1 I	014 5425 25013	182	542	15 12 W	20	70	20 1860	2.6	0 1020
440	5070517	460311	VV/223045/3//60	22 = 12 1	1		LUX	12 2	10 454		126	20 1000	2.0	0 500
441	5070517	400372	VV/JJJJ9J9J9404000	02503 1	211	5 1 • 0/2 0 • 5 10·+	C000	12 2	10 434	-	194	70 42.00	2.0	0 000
440	5119011	403375	YYY 333055737434033	02-03 20	51L 511	0 4 74 25 35946	0.000	6 4 2	10 00 80		20	16 060	2.0	0 800
449	5 11 95 17	400514	114033755434303	02503 30	911. 514		0.00	642	12 2013	2	20	16 960	0 • K	0 000
470	5079517	460375	1 14555935434535	32103 38	3 I L	9 6.0425 55618	205K	242	IZ ZONW	1 1 2	44	10 990	1 2	0 720
451	5079517	400376	Y 148339935434487	827.03 30	911	9 0. 1425 35BFP	M B R	842	15 23 W	10		24 1580	1	0 580
452	50/9517	460380	Y 14833955434285	02103 20	51L	946.3425 35578	MUR	1042	10 175W	6	24	28 1750	0.8	0 720
453	50/9517	460381	YY148 3 39 954 34 2 35	82-03 28	31L	9 6.4425 35848	LRK	P 5AZ	15 4 SW	4	32	28 2800	0.8	0 . 620
454	50/9517	460382	YY4833955434151	82FJ3 28	81L.	9 6.4425 358MB	MBR	542	10 4 SW	4	42	16 1650	0.5	0 630
455	5 17 95 17	460383	YY4833955434140	82 803 20	311	9 6.3425 35843	MBR	542	11 5 SW	2	42	16 1500	1.0	0 650
456	50/9517	46038+	YY4833995434090	82F J 3 2	916	9 5.0425 35848	MRR	542	15 12 SW	2	28	18 720	0.8	0 700
457	50/9517	460385	YY4333955434040	82F03 28	311	9 6.0425 35548	LHR	542	12 12 SW	2	32	20 749	0.4	0 690
458	5079517	460386	YY4840805435580	82F03 27	716	9 5.2425 35BMB	DBR	5 4 2	17 12 SW	4	40	22 604	0.6	0 680
459	5079517	460387	YY4840305435530	82F03 2	715	986.1425 358MB	LBR	P 5A2	17 6 SW		34	20 1120	0.4	0 600
460	5079517	460388	YY48393754355BU	82F03 37	711	9715-2425 35848	CBR	5A 2	16 22NW	2	58	20 1500	1.4	0 670
461	5072517	450389	YY4838875435580	82FJ3 34	41L	9P6.4425 3584B	DBR	542	20 23 W	1	76	16 1383	1.2	0 1220
462	5079517	450390	YY4838405435580	82503 27	71L	9P6.0425 358 48	DBR	5 A 2	19 5 W	1	42	16 1390	1.4	0 770
453	5079517	460391	YY4937895435580	82F03 27	71L	985.7425 3584B	LBR	1142	19 7 W	6	64	26 1720	1.0	12 860
454	5079517	460392	YY 4337395435580	82FJ3 21	91L	9P6.2425 358MB	MBR.	5 A 2	16 12 SW	2	58	16 1030	1.4	0 600
465	5079517	460393	YY4835895435590	82F03 28	31L	935.7425 35848	LBR	842	16 12 SW	6	68	20 1200	1.6	U 820
455	5079517	460394	YY4836395435580	32F03 38	31L	8P6.4425 35BMB	DBR	3042	19 30 NW	4	50	34 2000	1.8	0 640
467	5079517	463395	YY4335415435580	82503 38	81L	985.9420 30BMB	DBR	1042	10 32 SW	2	158	26 342	0.6	0 1200
468	5079517	460396	YY4834905435530	82F03 35	91L	885.5420 30845	GR	1042	12 25 SW	5	64	42 360	0.6	0 930
469	5079517	460397	YY4334415435580	82F03 38	81 L	987.3420 30BNB	MBR	8 A 2	15 22 S	. 2	252	14 670	0.8	0 1050
470	5079517	460393	YY4833905435633	82F-03 18	811.	9P6.3425 358118	MBR	5A2	14 32 W	6	90	28 2030	1.0	0 810
471	5079517	4603 99	YY4836905435730	32 F03 38	81L	9 6.1425 35BMB	MAR	7 A 2	10 30 N	1	84	22 324	1.0	057 0
472	5079517	460400	YY4336905435780	E2F03 39	91L	9 5.7425 353MB	MBR	1042	16 42 W	4	212	30 730	1.0	0 780
473	5079517	460401	YY4-136905435825	82F03 38	81L	9 6.0420 30848	MBR	1242	12 32 N	2	118	28 396	0.6	0 900
474	5074517	440402	YY4836905435929	82F03 38	81L	9P6.0425 35848	MBR	1042	16 28 NW	2	76	18 400	0.6	0 660
475	5 3 7 9 5 1 7	460403	YY4836905435976	82F03 3	71L	905.3425 35HEP	62.8 3	1042	12 30 N	1	79	16 630	0.4	0 570
476	5079517	460404	YY4836905436025	32F33 31	711	995.6425 35BMR	MAR	8A 2	15 25 N	Ĩ	60	20 448	0.6	5 100
417 .	5070517	460435	YY4336505436076	825.03 34	011	9 5.9425 31.84R	MBR	1052	16 1 11	1	68	20 634	3.5	5 600
479	50/0517	41.04.04	YY44369166435520	182601 21	811	00 5 64 25 YOUMR	MILR	8 6 2	1250	4	50	16 1360	1.2	0 100
579	5070517	4604.01	YYS 3 366 466 366 1 3	111112 21	11	996.1425.35009	1.88	8 4 2	17 1959	1	28	14 12 90	0.6	0 640 0 640
	6.370617	21. 30 30	- YV2 1160/ 57(17410	102103 20	 1 1 1	0 6 1626 36303	N D D	6.80	11 20-06 11 20-06	5	7.6	20 700		0 540
4 D U	2010011	100403	1.000303030303050	V2100-51	11	v 0+1.455 (350.03)	The OV) A (אריז וו	С.	(0)	en 000	0.0	V. 1233

٣)

 \mathbb{D}

٦.

þ

 $\frac{1}{2}$

9

 $\left[\right)$

2

2

 $\mathbf{\hat{j}}$

9

 \mathcal{O}

0

2

 $\sum_{j=1}^{n}$

 \mathbf{y}^{\prime}

3

	481	5079517	1460409	YYI4836945435229	82F03	139-11	9 6.2425	3.5 BM B	MBR	. 54.2	.14	22 NW	12	46	12 164	0 1.2	0	71.0
	4.8.2	5.170517	460610	VV/836025/25122	82503	2011	084 0125	260.90	1.0.0	1242	20	1.0 54	1	00	10 17/			100
	402	5 07 05 17	460410	VV/ 32700E/35021	22502	2011	0 6 0 10	2000		1212	20	10 %	4	00		1.0	0	950
	402	5 0 7 0 5 1 7	400411	11433.000435051 11433.000435051	02003	15012	0 0 0425	20000	PDE	OA Z	12	25 8	2	22	10 176	J U.4	0	720
	404	50/1917	460412	Y Y 4336955434930	32 803	3012	9 2.44.25	35848	LBK	6 A 2	12	22 W	3	38	8 150)o o⊾s	0	750
	435	5 27 95 17	463413	YY 433697 543483C	82F03	13816	986.1425	35843	LBR	12A2	16	26 W	4	32	12 225	0.6	2	660
	436	5079517	460414	YYH837005434730	92F03	381L	9P6.0425	35848	MBR	1042	19	30 N W	8	62	14 360	0 0.6	0	620
	487	5079517	460415	YY4837005434630	82F03	2415	935.9425	35848	LBR	1242	22	11 W	10	84	20 208	3 1.3	0	720
	488	5079517	460416	YY4837005434530	82703	2916	9P 6. 5425	35949	MBR	5 A 2	12	18 SW	4	50	16 42	0 0.6	5	640
	429	5079517	460418	YY4937005434232	82503	3811	994.64.25	35648	MAR	84.2	14	21 55	2	32	24 11	0 0.6	Ö	610
	490	5079517	46.7419	YY4337055434134	82E 13	2811	9 6 1425	35848	182	8 4 2	16	12 5	2	26	14 109		. 0	600
	401	5 0706 17	1400419	VV/927105/2/0/9	225.33	2411	0 6 64 25	3 50 10	MDD	5 4 2	15	10 5		20	20 120		Š	600
	4 4 4	6 0 0 6 1 7	400420		02003	2010	9 0.4425	25042	NON	242	19	10 5		50	20 150		0	030
	492	50/9517	469421	Y 14837035433980	52705	2811	9 6.4425	30840	MBR	5 A 2	12	12.SW	2	24	14 / 1		0	580
	493	5 3 7 9 5 1 7	460422	YY4837105433910	82F03	281L	9 6.0425	35888	GR	5 A 2	12	S	6	32	12 56	0 0.4	Z O	950
	494	5 779517	460423	YY4837125433813	32F03	281L	9 5.9425	35.948	GR BR	5A 2	11	4 S	4	44	16 83	30 0.2	10	790
	495	5079517	460424	YY4837045433710	82F03	271L	9 5.5425	35848	LBR	5 A 2	12	10 S M	2	28	30 60	50 J.6	- 5	560
	496	5079517	460425	YY4848505434440	82F03	391L	90 5.8425	35848	DBR	1252	12	32 SW	4	40	16 4.	30 0.2	0	860
	497	5079517	460425	YY4848505434380	82FJ3	371L	985.5425	35848	CBR	9A 2	13	35 SW	2	40	26 20	50 0.4	0	690
	498	5079517	460427	YY4848515434329	82F 13	3911	985.9425	35 P.M.P.	MBR	1142	11	3654	2	3.8	42 2	0.2	n n	480
	400	5079517	463428	VV4848545634280	22502	3011	004 4425	350 48	MBR	2012	14	25 51	5	22	26 20	19 1 2	Ő	600
	500 '	5070517	467420	VV/2/0565/2/220	02:00	2011	004 1/25	25040	MDO	16/2	15	21 610	2	22	20 20	54 0.2		5000
	500	5070517	400423	114548552454256 WWV0405554734256	03533	12011	004 0425	- 22010 - 25040		1 2 4 2	1.5	2254	1 2	26	24 1)4 U.Z	. 0	220
	501	5079517	460430	114348575434214	02505	13910	990.0925	.325446	M B K	842	15	20.2%	4	24	24 20			020
	502	50/9517	460432	Y 14948505434159	82203	3/16	9106.4425	35848	MHK	1042	14	33 W	2	28	20 2:	55 0.2	10	610
	503	5 0/795 17	460434	YM4848575434115	82F03	3716	906.5425	35 BM B	MBR	542	11	35 N	1	24	24 3	78 0.4	10	590
	504	5079517	460435	YY4848605434C70	82503	371L	9P5.9425	3 58 MB	MBR	5 A 2	15	32 N	2	28	26 1	95 0 . 2	5	700
	505	5079517	460435	YY4348615434032	82F03	381L	906.2425	358M8	LBR	542	14	24 N	2	28	20 1	96 0.2	5	630
	506	5079517	460437	YY48486154340CC	82F03	118E	9 5.7425	35848	MBR	7 4 2	12	24 NW	1	52	18 24	+6 0.2	10	610
	507	5079517	460438	YY4848635435970	82F03	281L	9 5.7425	358MB	MBR	542	ĩĩ	12 NW	i	30	14 26	50 0.2	5	620
	508	5079517	46 14 39	YY4848105435940	R2 FUS	3811	9 5.7425	35848	MAR	542	10	2311	1	28	20 1	76 0.2	0	600
	500	5070517	407437	VYA248615434010	02503	2011	0 5 0.25	26040	x 0.0	5 4 2	10	2. J. NU		20	20 1		Ň	550
	539	20179211	400440	1140480494949490	02000	1 20 11	9 9.1425	- 2 2 0 4 2 - 2 C 3 4 0	1400	542	11	2 4 187		20	20 1-			500
	510	5079517	460441	114848602434850	52503	3910	A 12 • 14 5 2	22348	. 1955	642	10	20 N.M		22	22 2	0.4	. 0	200
	511	5079517	460442	YY4848615434800	82103	291L	9 5.8425	35848	MBR	5 A Z	11	18 NW	1	24	24 2.	36 0.4	· J	203
	512	5074517	460443	_YY 48486↓5434730	82F03	291L	9 5.3425	3 5 B M B	MBR	15A2	10	17 NW	1	24	12 1	52 0.2	: 0	520
	513	5079517	460444	YY48486554⇒4558	82F03	291L	9 6.0425	35848	MRB	5A 2	10	13NW	1	28	10 14	46 0.2	0	560
	514	5079517	460445	YY4839905435630	82F03	271L	985.3425	35848	DBR	3342	19	10 W	4	72	16 14	00 3.3	: 0	1300
ŧ	515	5 07 95 17	460446	YY4839905436080	82F03	3916	9P5.3425	359FP	LORBR	1042	15	32 NW	1	60	22 30	0.5	0	510
	516	5079517	466447	YY48399d5436030	82 F03	3916	995.0425	358FP	LORBR	5 A 2	15	30 N W	1	64	20 3	0.8	3 5	600
	517	5179517	460449	YY4839905435930	82E03	3811	286.1425	353FP	02.88	542	16	3.9 NW	2	38	16 7	20 0.6	5	480
	518	5070517	460452	VV4830005435790	32EU3	2011	975 5425	35678	DBB	942	22	41 W	40	440	42 26	50 2.8	10	900
	510	5 0 7 0 5 1 7	460452	VV4230005435730	82501	12011	904 0425	35 AMR	DRP	812	16	36 NuL	40	72	19 31		10	840
	519	5 0 7 0 5 1 7	400405	114539903435736	02103	1	005 0425	25040	000	5 4 2	10	1000		6 7	- 20 51			750
	520	5079517	40 34 54	Y Y 48 3990 24 3 38 80	02703	2/16	985. 1425	225550	UDR 1108	542	11	12111		22	20 8	+0 0.4	1 10	150
	521	5079517	400455	1 1480/102439350	82703	12/16	9 0 . 34 25	228MB	r HR	442	11	SUNE	2	96	18 3	JU U.G	10	180
	522	5 1795 17	460455	YY4861635439852	82103	271L	975.5425	358MB	CBR	4 A 2.	12	• N	6	60	24 10	30 0.8	> 5	740
	523	5 279 5 17	460457	YY4361145439852	32F03	3716	995.7425	353MB	DBB	4A 2	14	22 NW	6	52	30 4	30 0.8	10	400
	524	5079517	460458	Y Y 4860695439850	82 F.) 3	371L	905.6425	358MB	MBR	4 A 2	15		5	56	44 15	60 1.) 30	720
	525	5 3 7 9 5 1 7	460459	YY486J135439852	828-03	371L	9P 5.7425	358MB	DBR	442	12	25 NW	6	92	84 22	JO 3. 6	10	740
	526	5079517	460460	YY4360125439795	82F03	371L	905.6425	3584B	322MBR	442	16	29 N	6	52	32 4	30 2.0) 0	530
	527	5079517	460461	YY4860125439750	82F03	371L	985.2425	35848	DBR	1042	15	NW	20	84	30 5	20 1.0) 5	640
	578	5079517	460462	YY4860125439657	82503	11111	924.9425	358/4B	DBR	542	15	10 W	8	. 68	46 6	40 0.2	0	520
	520	5079517	460463	YY4860125439600	82 803	3111	984 8425	3594R	CBR	64.2	17	25 SW	110	84	32 14	00 1.4		600
	520	5 7 7 6 1 7	460400	VV/040125420557	025.32	2711	005 64 25	25040	000	4 4 2	15	25.54	12	<u> </u>	40.13	60 0 9		570
	55U	5017511	400404	11100012343437371	02503	2716	005 0425	- 2 2 3 1 5 - 2 5 9 4 0	DES	742	17	37.00	1 10	70	70 13	00 0.0 20 1 0		620
	231	50/491/	400405	TTHOOJ127439300	02103	5/10		52515		142	11	5131	1 10	92	. 20 12:	.J ().č		020
	53 Z	5079517	460466	YY486012543946C	82F03	3/16	995.9425	358MB	LBR	442	15	W	8	100	30 10	00 0.2	<u>ن</u> ک	100
	533	5379517	463467	YY4360115439431	32F03	371L	924.6425	3584B	LBR	4 A 2	13	W	10	108	24 10	40 0.2	2 10	790
	534	5079517	460468	YY4860105439360	82F03	3716	994.9425	35BMB	DBR	5 A 2	15	30 W	8	100	64 10	30 0.2	2 5	720
	535	5079517	460469	YY4360105439331	82703	3711	995.4425	35 BMB	LBR	742	15	30 W	8	100	58 11	23 3.3	2 2	840
	536	5 2 7 9 5 1 7	460470	YY4860105437256	82F-13	3711	925.5425	359 MB	LBR	1042	15	W	6	123	82 11	50 0.4	5	770
	537	5070517	46.04 71	YY4050105430156	82503	3711	125.7425	35RVA	DBR	1 04 2	17	21 W	6	88	44 10	40 0 4	15	670
	ارر محم	5 1705 17	400471	- V V & 3 & 3 & 4 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7	026.13	1711	005 5495	3.08.40	CRC	4 1 2	15	12 1	6	72	34 4	00 0 0	2 20	650
	358	5019511	40.0472	T 3 460 210 24 3 21 J 2	02003	1 1 1 1 1	- 49,2+2,472 - 007 - 57 55	- 2 V 0 10	UD5.	746	12	10.00		14	- J-4 0 			0.20
	539	5 179517	-469473	- 4 4 4 6 2 6 1 9 6 4 3 9 0 4 1	こうえたきろ	11711	- 984.9435	2015/18	MBR	6A 2	11	15.2.8	1 4	44	20 5	∠0 0a	: 0	640

129

•

2

 $\overline{}$

÷.

្លា

Ċ.,

្នា

਼ੇ

Э

٢

 \bigcirc

 \bigcirc

(

.....

 \bigcirc

 \otimes

 \bigcirc

 \bigcirc

					ġ.						
				•	,						
									· · · ·		
	541	5 379517	1460475 494960125438960	פיווני ברה בלא	4-9425 358MB	DBB 4A	2 12'155W	1 8 81	1 25 840	1 7 16 600	
		r a r a r a r						0 00	20 0.40	0.2 10 990	1
	242	50(29517	400476 Y 1435015 2438905	82503 1116 9	5.0425 3584B	MBR 11A	2 25 9SW	8 90	06 1 0 8 0	0.2 15 640)
	543	5 379517	460477 YM45080 85838860	22FJ3 371L 9	1 4.8425 35BMB	DBR 7A	2 20 10SW	10 138	46 2120	1.8 15 460	١
	544	5070517	460678 YV48601756388001	82503 3711 9	5 747526 AVA	080 81	2 20 25 5	0 12	2 2 2 2 2 0		ί.
	J.+ .+ .		400418 144500115451500	02105 5716 9		000 040		0 120	42 2120	1.2 10 650	į.
	545	50/2517	460479 YM4360155438751	-32F03[39IL 9	PP-8420 308MB	DBR 11A	2 18 2858	6 140	0 42 1800	0.2 40 1100	<u>ر</u>
	546	5079617	460480 44860165438702	82F13 371L 9	9 5.9425 35BMB	DB2 1042	20 25 SE	6 149	3 50 1840	0.2 41 1010	۱.
	547	5 3 7 0 5 1 7	14601 01 VY1260126430460	12502 2011 0	5 01 20 20 20 21 8	000 104					
			400401 114580155458059	02103 3916 9	1.01120 20010	אניב אייט	2 11 6936	6 50	3 23 1100		1
	548	5079517	460482 YY 436017 5438603	82FJ3 381L 9	9 6.1425 358MB	DBR 5A	2 17 23SE	4 76	5 26 1400	0.2 10 1200	ر
	549	5079517	460453 YY4360175438558	82F03 391L 9	5.8425 358MB	CBR 5A	2 15 28 SF	4 7:	20 1320	0.2 20 1200	١.
	650	6 070617	1440404 VV124120 5422501	02 = 12 2011 0	4 34 36 36040	000 74					<u>(</u>
	000		400404 110000200400001	021-00 0910 9	0.0420 0000	UDK TA	2 20 2135	41	60 1000	0.2 2 230	1
	551	5 3 7 9 5 1 7	460485 YY 486018 5438452	82F03 391L 9	7P6.3425 358MB	DBR 5A	2 23 28 SE	2 40	0 76 960	0.2 5 400)
	552	5009517	460485 444360185438401	82F03 391L 9	26.0425 35543	DBS 841	2 2 3 7 2 SF	4 3/	5 46 600	0.2. 0 430	1
	552	5070517	1460107 VV6060176630366	92502 2011 0	D6 31 35 35 940	אל כפת			E (())		<u>.</u>
			400401 114000110400000			LUN 14.			3 000	0.2 20 420	/
	554	5 3 7 9 5 1 7	465488 YY4560165438353	82F03 281L 9	9 6.1425 358FP	PS 7A1	2 23 18SE	6 28	3 26 560	0.2 5 470)
	555	5079517	460489 YY4350165438253	82F03 281L 9	0 6.0425 35BEP	R.B. 54.	2 25 18SE	6 2	3 28 520	0.2 0 560)
	65/	5070517	463603 4466601466239300	32=12 2011 0	14 1125 35BHD	100 77			33 1930		
	550					NOR TRI	20 1935		+ <u>52 1000</u>		,
	5 7 (> U(M)> I (400491 MAUSJ185438151	028133 2816 9	+ 10 • 11425 353MB	мик 5А	2 19 19 SE	4 40	+ 40 1800	0.2 5 480	ر
	558	5079517	460492 YY4360195438106	82F03 281L 9	9 6.1425 35BMB	MBR 6A)	2 17 18SE	2 48	3 46 1960	0.2 10 600	>
	550	5170517	460404 YY4368045438005	82=03 2711 0	DA. 2425 25848	MBD 5A	1255	2 40	46 560	0 2 5 570	٦
	5.5						12.30				<i>.</i>
	200	50(0)51([450495 Y14859005438960]	82F03 271C 9	9 5-0425 35588	DBR 5A	15 55	4 4) 45 (U)	0.2 20 660	;
	561	5079517	460496 YY4968985439002	82F33 371L 9	5.3425 35BMB	MBR 54	21 SE	6 30) 30 500	0.2 5 630)
	562	5070517	460407 YM486806430052	82503 3711 0	5.7425 258MB	280 7A	2255	6 3	2 26 520	0 2 5 700	1
	502	5 3 10 5 1 7				1000 IA					ί.
	563	50/9517	460498 YY4869005439100	82FJ3 371L 9	1 15.0425 35BMB	MBR 4A	25 E	6 24	4 22 280	0.2 10 600)
	554	501791517	460499 144869005439150	82F03 371L 9	785.5425 35B4B	MBR 4A	27 E	4 20	34 280	0.2 15 620	J
•	545	5070517	460500 YY4360005430210	82E03 2711 0	095 3425 358MB	NBD 45	25.55	4 2/	16 400	1 2 2 590	1
						HOD 10		4 2.			(
	556	50/14517	1460501 Y 14869005439250	82703 3/16 9	UD . 0425 35848	MBR 45	25 E	4 20	J 14 420	0.2 10 660	2
	567	5079517	460502 YM4869035439300	82F03 271L 9	9 5.5425 35BMB	MAR 4S	15 S E	4 20	0 20 320	0.2 5 610	<u>ر</u>
	568	5,770-17	460503 YY4268985439347	82503 3711 9	9 5 6425 35848	MBR 45	23. F	4 1/	5 16 260	0.2 5 670)
	500	5070617		01501 2711 0		ND0 50	22 5				Ś.
	209	2017/211	400504 114809005439400	82FU3 5/1L 9	114 1422 22513	MINK 22	2455	2 2	+ 00 300	0.2 10 820	2
	570	5 0 7 9 5 1 7	460505 Y14368975439450	32F03 371L 9	PP15 - 5425 358MB	LBP. 7A	. 22 SE	4 28	3 36 390	0.2 10 800	ر
	571	5079517	460505 YY4869005439500	82EU3 3711 9	005.9425 35848	MBR 55	20 SE	4 2	A 32 380	0.2 8 670	5
	= 7 3	5070517	143507 VY4240005430550	02522 2711 0	10% 0% 25 250M2	100 54	2000	4 3	14 390		ź
	572	20179211	400307 114504003439330	62F39 371L 9	20 • U+ 20 • 0 • 0 • 0	LOS 24	2035	4 2	+ 10 565	0.2 0.090	
	573	5079517	460503 YM4869005439600	82503 371L 9	20,5.6,425 358 48	MBR 5A	20 SE	4 24	4 22 500	0.2 5 340)
	574	5079517	460509 YM4369005439645	82F03 371L 9	9 5.4425 35BMB	MBR 10S	20 S E	. 4 2.	4 14 440	0.2 10 660	ز
	575	5 7 7 9 5 1 7	463512 44446005439722	22513 3711 0	5.4425 358MB	089 124	2255	6 43	2 22 285	0.2 15 730	٦
· .		5070517				000 100	2000				
	210	2019211	400211 114054005454150	02F03 3/1C 9	7 0.0420 300 NG	LOK IDA	22.30	0 4	+ 22 600	0.2 15 800	,
	577	5079517	460512 YY4869005439847	82F03 371L 9	9B5 9425 35BMB	DBR 10A	30 SE	6 4	4 54 530	0.2 10 740	2
	578	5.079517	470105 444359776439848	82503 3421 8	3E 5.37100208 MB 322	DBR 20A	27#35 N	6 78	5 38 1000	1.6 10 620	3
	670	5070517	4701 04 VV4250175430240	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35 A700016840222	0000 254	20 2014		4 24 640	2 4 0 440	'n
	579	2019211	470105 114034175453040	52FU3 572C 0		. UNDA 274	20 2010		4 24 300		
	530	50/19/517	- 1410101 Y143587354358581	- 254-031 372 B	3MD+4/100208M8322	UBR 25 A	0019 25 NW	14 94	5 Z4 1100	4.8 5 610	1
	581	5079517	470108 YY4358235439845	82F03 381L 9	0R5.03100158MB322	DBR 25A	0021*35 NW	12 12	0 18 660	1.8 0 670	נ
	582	5079517	470109 44857805439850	82503 3811 A	3P5.03100208MB322	DBR 204	14 25 NW	2 10	0 14-340	2.0 0 650	٦.
	500	E 170E 17	171110 VV6357005630000	925 12 2021	05 1216006010000		AA14 25 MH		 		ì
	553	2712211	470110 TT4007800439350	32FU3 342L 0	090.1010020090022	9 9 M 8 9 9 9	0015 35 NW	4 01	J 26 (40	1.6 10 260	ر ۱
	584	5079517	470111 YY4857805439749	82503 2711 6	SP 5 - 2 3 1 0 0 2 08 M 9 3 2 2	1 MBR 10	0012 20NW	4 60	D Z6 46D	1.0 5 640	<u>ן</u>
	585	5073517	470112 444857805435700	82F03 172L 9	995.1510015843322	DBR 80	0015 00	6 6	4 44 560	0.4 0.640	3
	594	5 17C 517	177112 VV1257205120450	102503 2721 C	085 7510015848322	080 80	16 15 55	6 81	8 50 720	0.2 0.840	٦.
	200	11010	470113 114037803437030	32103 2720 3	51510015011522						
	587	5079517	470114 YY4857805439600	82803 2726 9	9R2+6510015EM9322	. DBK 80	21 ZOSW	16 14	0,110,1260	5.4 0 750	٦.
	588	50'79'517	470115 YY4857805439552	82F03 272L 9	985.7510020848322	DBR 70	17 10S	6 90	5 34 8AU	1.0 0 810	3
	590	5070517	470116 YY4957815439500	82F03 2711 A	5 5 8415025849322	088 50	17 305	6 7	2 46 1900	0.4 2 670	2
	500	5070517	170117 00/057005/30/50	00 CA2 2721 /	0 6 53 10015043333		17 2000	4	0 20 1200		à
	240	2019211	470117 TT4857805435450	02 mus 3/26 h	19.020100105010322	UDK 20A	LI DUSW	0 8		0.2 5 700	5
	591	5079517	473118 YY48578054394CC	82FJ3 372L 6	SP6.84100158MB322	. 55A	18 30S	8 15	Z 50 1580	1.2 2 1000	3
	592	5074517	470119 44857805439350	82F03 372L 8	3P15.9415020BMB322	D8P 804	17 30 SW	4 10	64 2200	0.8 0 790	2
	602	6070717	170100 VV/057005/20200	82512 2721 0	206 0410016040200	000 704	17 214		2 50 0.00	0.2 0.71	à
	243	2014211	410120 114021802434300	UZEUDIDIZE B	1-1-1-24 10012 0-022		LI DUW				~
	594	5079517	470121 YY4857805439247	82503 241L 9	993.6302008349322	DPP 704	18 30W	6 11	2 44 1040	1.4 0 67	J
	595	5079517	470122 44857795439202	82F03 3411 8	3P.00305010348322	DBR 60A	17 30 SW	8 12	8 58 1440	1.4 5 720	5
	501	E 370 E 17	170102 VV/057035/30150	יורמב ברבכוי	10 A 201 0000000000	DBORNA	10 27 64	4 13	4 00 1480	1.6 0 4.20	n.
		2012217		021 JJ J026 (ź
	597	50795 17	470124 YY4857805439100	82F73 3821, 8	5P(5+8 310020BMN322	CIBR 79A	20 30SW	5 14	0 84 I900	3. 4 5 600	7
	598	5079517	470125 44457805439350	82F-)3 372L 0) ちょちがわちのえちはせきまええ	2 – DBR 20A	21 30 SW	4 9	2 50 1380	1.4 5 1050	3
	500	6.970617	410126 YY4457805410111	A28 13 1721 0	005. 4613 11 50.00322	DER ADA	21 2554	4 10	1 34 22.13	1.2 10 1250	5
	377	0010011			シュー・サーンド キロノス フリリッシス たた						Ś
	600	5079517	- 1470L27 YY4357825438955	-32F03 372L C	5 5.4420025548322	C UNR 15A	18 NO 28	1 4 84	4 22 1920	0.6 15 910	J

¥* *****1

Ű2

3

24

0

D

 $\langle \rangle$

 \mathbb{O}

 \supset

Э

 $\left(\right)$

0

Э

2

Э

)

3

).

601	5 0791517	1470128	YY148578215438901	182F03: 372	L 6 5.9410	015BMB322	DB	R 404	17 25SW	2 1	60	30 1300	1.2	5 1050
602	5079517	470129	YY4857813438852	82F03 372	L 6 5.8415	020BM8322	2 DBF	R GOA	18 25 SW	2	72	14 1560	0.8	2 1150
603	5079517	470130	YY4857805438305	82503 372	1. 6 5.84.09	015 BMB322	2 08	R 60A	16 25 SW	1	36	26 1140	0.4	10 890
60.4	5.079517	47.01.31	YY4357825438757	82503 272	1 6 5.9409	020888322	2001	P 30A	16 20SW	2	40	28 900	0.4	0 1000
605	5079517	470132	YV48578254387.33	82502 272	1 6 5 9410	015848322		R 60A	18 205	2	40	28 800	0.2	5 1100
605	5070517	470133	VVN357825438652	82503 272	926.14.05	0108M8322	DB	R 80A	19 25 54	4	84	26 1300	0.4	10 1400
600	5070517	470124	VV4957835439604	825 19 272	1 6 6.2410	015348322		P 30A	17 20 9	2	108	28 1340	0.2	10 1400
001	5070517	470126	VV/257026/22556	226.1 2 272		0120000322	- 000 > 001	0 304	20 2054	1	200	30 1120	0.2	5 1200
000	5019517	470133	1114891829435396	02503 272		01000000000	יחט ב	0 104	17 20 54		90	14 12:0	() · C	5 1200
609	5079517	470130	T 748578154365J2	02003 212		010040522	: UDI : DD/		17 205%		24	10 1240	2.2	
610	5079517	470137	YY4857850438453	82103 242	L 965.94.02	0000388010	וטע כ	R 70A	17 205		66	40.1225	0.2	10 1350
611	5079517	470138	YY4857805438404	82733 391	L 645.0410	017888315	5 08	R 20A	18 225	1.	55	42 1180	0.2	5 94J
612	5079517	470139	YY 485780 5438360	22F J 3 391	L 6 6.0410	015888315	D DBI	7 30A	20 25 5	2	88	48 940	0.2	20 1350
613	5 0 7 9 5 1 7	470140	YY4857825438304	32F03 391	L 6 5.9410	015BMB322	2 08	R 40A	19 25 5		68	68 1340	0.2	2 980
614	5079517	470141	YY4357825438256	82F03 291	L 6 5.9405	010BFP322	MRB	R 45A	17 20 \$	2	56	26 1283	0.2	5 780
615	5079517	470142	YY4857805438210	82F03 291	L 6 6.0409	0158 MB 322	2 DRI	R 10A	20 255	2	56	40 1700	0 • 2	10 910
615	5079517	470143	YY4357815438160	82F03 3A1	L 9P6.0305	010BMB111	L MB	R 254	22 25S	2	52	52 1690	0.2	5 840
617	5079517	470144	YY4857805438103	82F 33 3A1	L 976.2305	015BMB111	L MB	R 30A	22 30S	2	32	30 2600	0.2	0 720
61.8	5079517	480116	YY4366805439801	82F03 141	C 945.7410	20848	DBR	P 4 0 A	1 O S	8	48	16 300	0.2	10 740
619	5079517	480117	YY4866805439755	82F03 141	L 975.24 5	10548	DBR	P20A	- 15 SW	6	48	10 660	0.Z	15 760
620	5 2 7 9 5 1 7	483118	YY4856805439705	82F 03 142	L 6P5.1425	3 0 B M B	DBR	P1 0A	5 S W	6	40	16 500	0.2	25 740
621	5079517	480119	YY4366805439657	82F03 142	L 685.2425	30648	DBR	P 55	7 SW	8	44	12 540	0.2	20 740
622	5079517	480120	YY4866805639610	82503 141	1 695.14 7	15848	DBR	P154	1554	8	50	20 620	0.2	25 760
623	5079517	480121	YY4966805439565	82503 142	L 6P6.1425	30348	•	P3/0A	5 W	8	50	23 460	0.2	20 650
624	5079517	48.01.22	YY4366805439459	82E03 141	1 695.2410	15848		P 5 0 5	55	8	56	32 640	0.2	25 800
625	5079517	48.01.23	YM4866815439619	82EJ3 141	1 694 8415	20848		PTOS	555	6	72	44 840	0.2	20 820
620	5070517	400125	VV/2//8/5/20175	92533 141	1 695 0410	1.58 MR		P505	1055	6	76	44 780	0.2	15 920
020	5070517	1400124	VV/06/005/2022	02503 141	1 600 9615	20.946		0405	1055		72	46 720). 2	20 1000
027	5079517	400125	114000000010100020	02 - 03 141		20.310		P403	1000	~	6.0	2.3 620	0.2	20 940
628	5079517	480120	114000803439211	02803 141		225-10		0055	1055	4	40	34 520	3.2	16 740
629	5079517	480127	Y 14856805439228	82503 142	L 014.0413	20345		P293	10.55	,	00	54 555	0.2	15 1500
630	5079517	480128	YY4866805439185	82503 141	615.0420	20030		P155	22	4	00 ()	44 000	0.2	15 1000
631	5 7795 17	480129	YY436680543914C	82F03 141	L 695.0325	304 48		1230	205	4	64	42 455	0.2	20 820
632	5079517	480130	YY4856805439095	82F03 141	L 584.8310	15848		P355	255	2	- 76	12 500	0.2	15 800
633	5 0 7 9 5 1 7	430131	Y 14866805439345	82F03 141	L 685.0310	158MB		405	255	ک	68	62 530	0.2	10 800
634	5079517	480132	YY4866805439003	82F03 141	L 685.5415	20888		PZOS	15 SW	2	84	72 820	0.2	15 790
635	5079517	490133	YY4866805439958	82F03 141	L 695.3320	25848		105	15 SW	2	72	52 630	0.2	15 650
536	5079517	480134	YY4866805438910	82F03 142	L 695.5325	S OBMB		105	15 SW	2	60	88 620	·0 • 2	10 820
637	5079517	490001	YY4857805436360	82503 37	L 9 5.4412	20848	MBR	1552	14 22E	2	24	46 990	0.8	10 520
638	5079517	490002	YY4858195436391	82503 371	L 9 5.6412	25BMB	MBR	2052	14 21 E	2	28	34 1064	0.8	8 520
639	5079517	490003	YY4358505436420	82F03 37	L 9 5.5415	258FP	LBR	20M2	19 25 E	4	28	37 668	··) • 6	10 590
640	5079517	490004	YY4858905436460	82 FO 3 371	L 9 5.6415	258 FP	LORBR	30M2	14 265	4	20	35 834	0.8	5 410
641	5379517	490005	YY4859405436500	82F03 371	L 9 5.7415	258FP	ORBR	3352	16 22NE	4	20	36 720	0.6	10 460
642	5079517	490006	YY4859705436520	82F03 391	L 6 5.4412	258FP	DRBR	4052	12 22 NE	2	22	37 606	3.7	5 410
643	5079517	490007	Y44860005436560	82F03 281	L 9 5.2412	22BFP	ORBR	3552	14 18N	1	16	38 582	1.1	15 450
644	5 2 7 9 5 1 7	473338	YY4360435436590	82F03 27	L 9 5.2412	22BFP	OR BR	3052	13 12 NE	1	16	32 510	0.8	8 395
645	5079517	490009	YY4850805436620	82803 281	L 9 5.1412	233FP	DRBR	4052	12 12N	4	20	41 516	0.6	12 490
54.6	5079517	490010	YY4854605436280	82FJ3 371	L 9P5.6412	25848	MER	P25A	22 N	2	32	33 484	0.5	12 490
647	5 179517	490011	YY485490543624C	82E03 37	1 925.7412	2 5B 4B	BA	35A	28 NE	4	44	32 1152	1.0	15 650
648	5079517	490012	YY4855225436231	82 E03 371	1. 996.5412	24348	MBR	45A	30 N	6	36	35 1030	0.7	2 630
640	5376517	49.1.1.3	VY4855555434143	82503 371	1 9 5.7412	258.48	188	255	22 F	2	36	30 772	0.5	10 440
650	507017	49.1014	VV4855895436129	82513 37	1 9 5 8412	258MB	082	658	22 N	2	2.8	34 748	0.2	2 520
650	5 1 7 6 1 7	1200115	VY2856205436190	82533 391	1 9 5 8412	25REP	0282	455	22 NF	1	3.2	37 844	0.4	2 530
457	5 7 7 5 1 7	403019	VVL956505126160	826 32 37	1 9 5 6417	24850	5 EUGD	400	22 NG	1	24	32 742	0.5	10 460
052	5014911	490010	1111020242020	102003 31.	N O 10 0017	570FF	- NE UBK	205	2212	1	1.6	32 400	0.5	0 400
653	50/19517	490017	TTH000020400018	02002 21		. (HOFF SEDFO		202	64C 33N	1	20	20 20	3 5	0 400
654	5079517	499018	YY4357125435980		L 4 D . 9412	201011		102	ZJ N LON		24		1.0	0 400 5 670
655	5 0 7 9 5 1 7	493019	YYA457495435940	82F 0.3 27	0 4 0.0412	201111	0000	100	10 N	4	80	12 2008		2 240
656	5079517	490020	YYA857835435949	132803:39	L 7 5.6912	200512	UKUB	102	ZZN	4	20	24 448	0.5	0 470
657	5079517	490022	YY1354305134315	1828-03 37	1, 905.7612	254323	7198 8 300000-	295	24 014	4	32	23 724	0.0	0 550
653	5079517	493923	YY4854005436359	182103 31	1 995.9412	7 2781-12 32	2111 DBR	258	7.6 NW	2	2.0	21 192	1.1	0 570
659	5079517	490024	YY48536954364C0	82693-371	L 685.6412	2594832.	ZMAR	45A	28 N.W	14	44	35 1168	5.9	25 410
650	5079517	490025	- ¥Y4853315436432	182FD3 37	1. 985.5412	- 25840321	2 MBR	65 A	34 MM - 1	. 12	40	36 1032	0.0	15 520

3

3

<u>></u>

<u>___</u>

3

Ì.;

 \mathbf{i}

þ.

)

)

)

٦,

3

Ì

	6070617	10000	NNK 25 2005 / 22 / 20	1.00 - 00 - 00 - 10		000ND000000							
601	50/951/	490028	1111353005436470	82F03 371L	9 Up • 34+12	25340322MDK	65A	45 NW	18	38	43 948	0.4	25 430
662	50/2517	490027	YY4352705436510	32F03 371L	995.8412	24 BMB322 MBR	305	3.8 NW	20	40	34 1140	0.4	20 560
663	5079517	490028	YYI4852305436550	82F03 3715	6 5.8412	2585P FFDBR	35A	26 NW	4	24	34 1110	0.5	12 470
664	50/9517	490029	YY4848855435629	82503 371 L	9 5.5412	25BEP ORBR	25 A	23 N	2	34	32 664	J. 7	2 510
665	5079517	490030	YY4348855435669	82F03 371L	9 5.5412	253FP COBR	10M	2.2 M	2	35	42 624	8.0	5 530
666	5079517	490031	YY4948865435725	32F03 391L	9 5.3412	258MB MBR	25A	23 N	1	36	-30 390	0.6	0 660
667	5079517	490032	YY4348895435769	82503 2716	9 5.6412	248MB MRR	205	18 N	2	38	52 992	0.9	10 530
668	5079517	490033	YY4343895435939	82203 371L	9 5.5412	253 MB MB R	60 S	22 N	5	36	34 874.	0.4	5 530
559	5079517	490034	YY4348895435899	32F03 391L	9P5.7412	258M8322M88	70A	22 N	S	32	32 836	0.4	2 620
673	5079517	*490035	YY4848905435900	82F J3 371L	9 5.6412	248FP ORBR	55A	28 N	6	28	30 348	0.5	15 430
671	5079517	490036	YY4848905435939	82503 3710	9P 5.4412	258EP 322085R	504	37 N	12	44	34 988	0.3	30 700
672	5079517	490037	YY4848905436985	32F03 371L	9 5.4412	248M8 MBR	60A	32 N	8	36	34 1062	J. 3	35 640
673	5079517	490038	YY4348825436039	82F03 371L	9 5.6412	25848 M8R	60A	32 N	6	36	34 948	0.9	20 630
674	5079517	490039	YY4348835436087	82FJ3 371L	9 6.2422	30BMB MBR	60A	35 SW	10	52	30 1540	0.6	30 760
675	5079517	490040	YY4348855436131	82F03 391L	9 6.2412	24BMB MBR	305	32 NW	10	60	26 1508	0.5	15 800
676	5079517	490041	YY4348855436180	82F03 391L	9 5.8412	248 MB MBR	255	32 NW	E	46	40 1084	0.5	12 .760
677	5079517	490042	YY4343855436218	82 FO3 271L	9 5.9412	248FP ORBS	30Å	20 N	4	40	30 624	0.8	5 470
678	5079517	490043	YY4848865436273	82F 33 371L	6 5.7412	24BEP CRBR	255	27 N	2	28	28 1034	0.9	0 450
679	5079517	490044	YY4348855436311	82F03 391L	995.9420	308FP221088R	654	32 NW	2	22	30 890	0.6	2 380
630	5079517	420045	YY4849355436273	82803 3711	9 8.7412	248MB MBR	704	32 M	4	40	34 872	0.6	20 500
681	5079517	490046	Y14849835436272	32F03 371L	986.2412	288/48221 MBR	605	28 N	12	90	32 4280	1.0	15 640
682	5079517	490047	YY4850205436272	82F03 3711	905.7412	22848221M88	555	32.NW	1 2	50	32 1870	2.5	10 640
683	5079517	490048	YY4850775436272	82E03 3711	905.9412	248592210888	705	3.2 NW	l a	22	34 1441	0.6	5 440
634	5079517	490049	YY4351355436272	82803 3711	995.6412	248 MB322MBR	704	2 R N	12	36	30 1142	0.0	8 520
685	5079517	490050	YY4351855436272	82 E03 3711	9 5 4 4 12	248M8 M88	30M	22 NU	4	20	26 794	1.0	5 440
686	5079517	490.051	YY4852355436272	82603 3711	9 5 6412	24860 0880	205	29 N		3.2	78 750	1.6	0 420
637	5.079517	491052	Y14352855436272	82EU3 3011	9 5 0412	24852 0888	154	40 N	10	44	20 700	0.3	0 480
693	5079517	490053	YN4853395434272	32E03 5711	9 5 9412	240FF 085K	45 1	34 Mil	10	20	34 479	0.6	5 200
689	5170517	490054	VV4853855436272	82503 3711	0 5 4412	24949 090	76.8	27 14	10	20	54 050 40 444	0.0	2 990
690	5079517	490055	Y4854385436272	82512 3711	0 6 6412	24040 008	455	22 N	10	36	76 916	1 3	15 400
6.21	5170517	490056	VY4954895436272	32503 2711	005 3412	24040 805	N C 50	16.11	4	50	20 010	1+0 	20 740
6.92	5070517	490057	VV6851336435683	82503 2711	006 1612	24010132200N	150	200	2	. 2.2	20 017	0.5	20 140
403	5070517	490058	YYA950305A35791	02F03 2711	0 5 0412	2406602220600	255	203	2	26	30 270	0.3	0 620
634	5070517	49.0050	VV4851205436682	22503 3711	025 7412	200.40 808	2.75	24 N	1	4 O	36 972	1 0	10 490
625	5 17 65 17	491162	VV4350205434178	1021 03 3711	00 5 04 12	243483228489	555	28 NW	110	60	46 10 52	1.0	5 700
606	5070517	490062	- YV4850185436207	87503 3711	005 0412	240 10 2221 05	675	20.00	10	60	20 714	1 3	
697	5 3 7 9 5 1 7	490365	- YM4350205434266	82203 3711	0 5 8412	20010222055	3 7 4	20 54		42	30 710	2	12 720
623	5079517	49:0065	YM4848875436420	82F03 3711	9 5 9412	26848 M88	2 2 2	20	4	44	40 2228	1 0	2 530
699	5079517	49.0.066	VY4848885434520	825 13 3711	9 5.0412	24840 0288	2.15	22 NW	2	30	32 1008	2 0	2 320
700	5070517	400067	VVA8A3805676620	82503 3711	0 6 0412	24860 0000	6.35	2.2 Mil	2	24	124 1272	1 0	2 500
701	5070517	490001	VV4248975434720	82 503 3711	0 5 8412	20005 00000	603	22 114	2	24	49 1024	1.5	2 470
701	5079517	490000	YY4349805436820	82503 3711	905.8412	258503220080	304	22 1	2	24	36 1360	1.0	2 400
7.03	5070517	490070	Y434395436015	825.13 3711	9 6 1412	268EP 0830	305	28 N	2	16	32 942	0.0	2 42
704	5070517	400070	VN4848005437013	82503 3711	0 5 0412	26017 0037	9 7 N	22 N	2	20	22 566	0.5	2 420
716	5 1765 17	49 10 72	VV4849385435582	325 33 2711	005 8412	248 M8 322 M8 8	2052	10 1255	2	20	32 776	0.4	a 530
7.04	5070517	100072	NY4250365436570	02513 2711	0 5 7/ 12		2052	11 1250	2	41	40 636	0.7	6 420
700	5070517	490073	1 H4 7 5 0 5 5 5 4 3 5 4 9 0	02100 2711	0 6 1/12	201010 - 000 2000 - 000	2032	10 1005	2	40	30 6(9	0.2	9 620
7.107	5070517	490074	VVA250405435380	82503 2011	0 5 84.12	24050 PDA- 24848 180	2052	11 225	2	-00	26 200 26 566	0.5	12 1020
7.00	5070517	49 30 13		02003 3712	0 6 0 1 2	240.00 0000	2032	11 223	2	20	40 340	0.0	10 740
709	5019211 5010517	49 10 10	1 140 50 605 4 552 10 VVA 36 37 VIGA 361 03	02.703 2910	005 0/12	20028 UTDK-	2032	10 15 5	2	40	42 790	3.0	10 100
710	5070017	490011	VY406.3706436.36	102003 2010	001. 2112	20000222208	2012	16 125		20	(0) (0) (0) (0) (0) (0)	1.0	5 0.00 E 7 1 1
111	5 7 7 7 7 1 7	490078	1 111320702432330	02003 3716	0 6 1 6 12	2.102000CCMPK	2042	14 212	0	20	011 000	1.0	
112		490079	T 14070720434388	06000 8116	0 1 0.1712	- 24002 UKBK - 22020 - 0000	1000	10 100	4	24	20 520	0.1	0 520
713		477981	TTP-500010439370	071 93 2712	9 0.0012	24DEF DRMR 27DEF 00000	1022	10 102		50	34 847	U• (0 590
114	50/7517	490082	TTHUS LOUP 434493	02773 2911	10 • 01+12	DONER DEUR	1032	A 122M		62	20 146	0.3	0 480
715	5079517	493383	TT0351755434355		· · · · · · · · · · · · · · · · · · ·	5085P CFBR	5125	11 185		24	28 166	0.4	0 450
-71.6	50/9617	490384	YY[43511154343)5	87133 3910	925.6612	2485 P 3 Z 2 O 8 B 8	2052	11 22 5	1	1.5	2.8 1.05	2.5	0 500
71.7	5 17 5 1 7	490085	YY6351155434212		- 2.6•06-12	- 29 BEP	1.125	10 72 8		20	38 120	0.1	0 460
71.8	5579517	490086	YY[485115]5434119	821-03 3711	- 905-0612	24BLP322CPBP	2052	10 22 N	1	24	30 344	0.3	10 360
21.0	5079517	490087	YY4851205434020	92503 391L	0.2415	248FP CRAR	1582	10 22 1	1	36	32 420	0.8	2 520
1210	5 20517	-49.6334	- YY4 45 U105 4 U194 5	182033-13911	9 16 14 12	PARMA MAR	1925	11 22W	1 1	3.5	34 296	1.4	2 42.)

Υ.

15

ħ

5

)

ţ.

ģ.

?

3

1

721	5079517	490089	YYK851325433849	82503	13711	9 15 - 714 1 2	2437 P	REDBR	1552	11 220	1.1	2.8	36 3	22 0.	4	10 335
722	5079517	*490090	YY4851405433749	82413	2711	0 5 74 5	24860	nonp	1057	11 CN		20	3/ 3	1/1 7	Å	
723	5 17 15 17	*49.001	YY4851405433755	82=03	2711	9 5 7412	24850	0000	1032	11 01		20	27 6	50 0. 56 0	4	0 420
724	5070517	100002	VV6351425423460	02500	2711	0 6 0 6 12	34055		1026				22 1	⊃o 0. ⊃o o	· ' †	0 420
725	5070617	490092	VVK252525433500	02000	2714	9 0.0112	24075		00/42	12 05		22	50 2		4	0 1010
120	5000017	490095	114052525455590	02503	2716	9 2.1112	24057	UKBK	1752	11 85		10	25 1	34 0.	2	0 550
120	2010011	490094	YY4350810435580	8202	2711	9 5.6412	Z4BMB	мня	305	18 S	2	128	34 /	30 0.	5	5 450
127	50/9517	490095	YY4851305435580	82103	2711	9 6 - 0 - 12	24848	MBR	355	12 S	2	52	30 7	42 0.	6	2 610
728	5079517	490095	YY4851805435580	82F J 3	301L	985.4412	24 B M B 3	322MBR	735	32 S	4	116	62 6	30 1.	3	10 500
729	5 J795 1 7	490397	YY4352305435580	82503	391L	996-2412	2.65 MB	322MBR	60M	22 S	4	80	40 81	98 Ú.	З	2 630
730	5079517	490098	YY4852805435580	82 F O 3	3710	9 5.0412	26 BF P	QP BR	70A	22 S	2	200	52 7	30 J.	ß	0 540
731	5 179517	493399	YY4853335435580	82F 0 3	291L	9 6.0412	268FP	CRBR	6 0 A	20 S	2	56	46 4	30 0.	5	0 530
13.2	5079517	490100	YY4353805435530	82503	291L	. 9 5.8412	268FP	OR BR	6 J A	16 S	2	36	34 8	08 0.	6	0 400
733	5079517	490101	YY4354305435590	82503	291L	9 6.6412	268MB	MBR	45 A	15 S	2	60	56 8.	28 J.	6	0 730
734	5079517	490102	YY4854755435580	82F03	2916	986.1412	248FP3	322099R	65S	7 N	2	32	26 2	70 U.	5	0 430
735	5079517	490103	YY4355255435520	82503	391L	905.8412	248F23	3220838	55A	22W	2	64	26 9	58 1.	2	2 725
736	5079517	4901-04	YY4355795435580	82E) 3	3711	9 5.7412	24BEP	DP32	355	2214	2	36	28 3	70 0.	5	2 530
737	5 1795 17	490105	YY4356255435580	82503	4711	9 5.9412	24850	CRER	105	6 W	1	20	36 3	70 D.	Š	8 550
739	5 7 7 9 5 1 7	40106	VV4854705435590	92613	2711	0 6 6 12	24850	0000	255	27 M		20	56 3	66 D	6	5 533
720	5 2 2 6 2 7	403107	VY4267176426530	000000	2711		25000		200	24 N 10 U		70	60.5		6	10 540
139	5010517	490107	+ 14557175455550	02500	2716	9 3. 7:12	200-2	CP NB	2.014	12 %		24	- 40 21	+U U.	0	10 560
 740	50/9517	490108	YY4357805435530	82203	2710	9 5 1412	25352	CRBR	35M	16 W		28	30 1	40 0.	4	5 570
(4 L	5079517	490109	YY4858275435580	82-03	3716	9 6.1412	25 B-P	ORBR	255	22 N		20	52 4	.0 80	1	5 560
742	5 07 95 1 7	490110	YY 4352785435580	82F03	1710	9 5.0412	248MB	MBR	65 A	2 2 N	2	26	32 4	30 0.	.5	2 640
743	5079517	490111	YY 435923 5435580	82F03	371L	9 5.9412	248FP	CR 3R	25S	26 N	1	22	24 2	64 0.	Ŧ	5 493
744	5 0795 1 7	490112	YY4859735435530	82F 03	3711	. 9 5.6412	24 R F P	05.82	45S	30 N	1	20	26 2	18 0.	. 3	2 510
745	5 1 7 9 5 1 7	490113	YY4360205435580	82F03	391L	9 5.6412	248FP	OPBR	205	2 2 N	1	14	24 1	38 0.	2	2 460
746	5073517	490114	YY4860705435580	82 F D 3	2916	9 5.4412	183FP	0888	255	20 E	1	20	28 2	20 0.	3	2 550
747	5 3 7 9 5 1 7	493115	YY49 1175435580	32FJ3	291L	9 5.4412	248FP	CR BR	105	2 D E	1	20	30 2	20 0.	. 3	8 630
748	5079517	490116	YY4361705435590	82F03	391L	9 5.0412	24RFP	DRBR	155	24E	1 1	14	26 2	34 O.	.4	5 520
749	5079517	493117	YY4847355435622	82F03	2711	985.5412	263523	22 CRBR	135	10 N	4	34	46 6	72).	. 3	25 750
75.0	5079517	490118	YV4347355435676	82633	2711	925.5412	2486P	3220838	1.05	22 N	4	42	46 9	05 0	9	15 800
751	5070517	490110	VV4847385435726	925.13	4711	996.0612	258501	220238	P15A	11N	4	28	32 8	an t.	ó	10 620
75.2	5 7 9 5 1 7	491120	YY4847355425730	02100	2711	005 5412	248MB	222 NRP	60.8	24 N		56	46 10	ດຳ ຄ.	5	15 7.10
753	5070517	400121	VV (447365/35810	32503	2711	085 7412	203501	2220080	204	23 N	6	52	24 8	20 01 20 0	6	10 800
755	Editer	400121	- 1 140 47 3 3 3 4 3 3 0 1 0 - VV/ 0 / 7 7 6 / 7 5 0 0 0	02502	2711	075 1412	20055.	2220735	204	2.2 N		52	24 0	<u>40 96</u> 00 1	.0	16 300
124	5079517	490122	- 1 1454/535455300 	02000	2716	001 2412	240552		49A 60A	22 N		26	20 10	70 I. En n		15 155
100	5017517	490125	T14547335435056	02503	3716	910.2412	24057		AUA (FC	25 N	1 4	44	10 10	20 0. 20 0.	• •	25 620
(56	5079517	490124	11454/333433942	92103	12/12	9 5. 1412	24557	0688	425	20 N		20	10 8		.4	35 820
757	5079517	490125	Y 1484735543548	32503	3(1)	. 9 5.8412	24859	UKBK	455	22 N	2	32	22 1	80 0. Fo 1	• 4	15 750
758	5079517	499125	YY4847395436031	32F03	3710	995.3412	243EP	3ZZORBR	ACI	29 N	4	36	16 12	50 0.	. 6	15 660
759	5079517	490127	Y 14847355436076	82403	371L	. 995.4412	243FP.	BZZORBR	65A	27 N	10	80	10 12	64 2.	. 1	10 780
750	5079517	490128	YY4847395436122	82F J 3	3710	. 9 5.6412	24 BF P	CRBR	40A	30 N	4	48	10 12	30 1.	• 1	10 680
761	5079517	490129	YY 4847355436170	82F03	3710	6 5.6412	288M8	MŖR	705	2 2 N	2	42	30 11	70 0.	ó	5 560
762	5079517	490130	YY4847355436216	82FJ3	371L	9 5.4412	308FP	CRBR	7 O S	21 N	4	88	30 16	74 2.	1	10 680
763	5 3 7 9 5 1 7	490131	YY4347355436275	82F J 3	371L	9 6.2412	248FP	02.38	15S	2 3 N	4	112	10 9	50 1.	• 4	12 740
764	5079517	490132	YY4847355436310	32FJ3	3710	. 985.9412	203FP	3220R8R	P155	24 N	1	100	64	80 0.	• 6	0 1280
765	5079517	490135	YY4847355436446	32F03	371L	9 6.0412	248FP	0P3R	455	22 N	4	84	16 16	94 U.	. 8	15 950
766	5079517	490137	YY4847355436503	82F 0 3	3711	9P5.4412	24BEP	110638	40\$	24 N	4	72	164 10	68 J.	. 3	8 990
767	5079517	490138	YY4347355436538	82 F03	3911	9 6.0412	248FP	DRBR	155	22N	2	52	14 6	20 0.	. 6	10 850
753	5079517	490139	YY4847355436581	82=03	3911	905.9412	268FP1	LILCRAR	2 J M	30 N	4	44	26 4	60 0.	. 6	15 780
769	5079517	490140	YY4847355436630	82403	3911	9 5.7412	268FP	CFSR	25B	32 N	4	20	14 7	44 0.	.5	5 630
770	5079517	493141	YY4947355436675	82F03	3911	9 95 . 54 12	249594	48108BR	305	26 N	6	32	92 29	43 0.	9	5 610
771	5079517	490142	YY4846305436500	82503	3911	995.9412	2685P4	810888	305	22 N	2	20	24 9	16 0	4	2 430
772	5070517	4911 42	VV42671254334CA	82502	13711	9 5 1412	18850	02.02	305	321	2	1.8	18 1	30 0	. 2	0 440
112	5070517	400145		32502	12711	005 2412	2000	2220000	- 4.0 ¢	26 N	1	14	20 1	20 0	• ~ ?	0 470
(1)	5014511	490144	114001120432002	02503	12712	005 //12	240571	1220100	703	2 11 18		10	20 1	20 U. 40 N	• 4	
114	5079517	490145	YY4557125433701	02103	12/11	9412.4412	2435 2	922UKKK	422	22.8	1 2	18	28 1	40 J. 27 2	د.	0 520
775	5079517	493146	Y YA867105433800	82193	2916	. 9175 - 314 12	243224	+81UKKK	222	1 Z W	2	20	52 1	20 Û.	<u>د</u> ،	0 550
776	5079517	490147	YY4867105433900	825 33	1371L	9 5.0412	24859	LURBE.	305	30 N		28	36 1	45 0	• 2	2 620
777	5 27 3 5 1 7	490143	YY4357005434000	32F03	13711.	925-8412	30AFP	572CFBR	305	26 N	2	24	22 1	66 U.	• 2	0 450
778	5079517	420149	YY4867025434110	82 F O 3	13711	9 97.3412	26 NE P7	481 CF BR	5 5 A	2 C N	1	16	80 2	20 0.	. 2	0 1080
779	5079517	490150	YY4367005434212	82F03	3716	9 4.4414	248FP	LORAR	20\$	32 N	1	16	20 1	28 0.	• 2	0 530
707	0.5966.19	Provide 1	- Web Strait A 1 2 1 2 1 2		1111	0 6 0417	074763.D	00.00	3.0.4	2 7 M#	1	1.8	14 1	72 .1	. >	a 490

1

,

ੇ

 \bigcirc

5

. . .

 \bigcirc

ූ

<u>;</u>}

0

2

5

 \odot

Э

i j

 \bigcirc

 $\langle \cdot \rangle$

<u>مر</u>

								·		1.1							
187	5 3 7 9 5 1 7	490152	YYA866955434420	82503	3116 9 15.	• 8H+12	26 RF P	OR BR	3 OH	22 5	1	14	12	158	0.3	0	370
732	5009517	4901 53	YY4366925434525	82503	2711 924	7412	20BEP 3	2209.82	251	20.5	3	10	12	144	0.2	0	630
703	5 37 0 5 1 7	100154	NYK4/ (DUS () () 0	02502	2711 0 6	<i></i>	24950	0000	2.24	200	î.	10			0.2	Ý	000
100	2013571	490104	114000000040404020	102505	5116 9 2	• 21+12	205-2	UNDK	202	225	1	20	12	1 ++ ++	Q. 2	0	650
784	5 3 7 9 5 1 7	490155	YY4366895434739	82503	271L 9 5	.4412	309.FP	CEBS	355	13 N	1	16	10	174	0.2	0	470
785	5079517	490154	YY4366855434817	1.2E33	2711 9 5	.44.12	26852	00.65	255	185	1	16	10	1.0.2	0 3	à	100
704	E OFCE 17	100150	VV2366015735311	02532	2011 0 5	6 . 1	2/050	00.00		200			20	310	0.5	<u> </u>	450
100	2010011	1130722	1111000010400001	025 33	241C 4 b	• OF 12 1	24552	UNDR	. 202	ZZN	1	24	27	218	0.2	0	8.30
787	5) 7 9 5 1 7	490159	YY4366605435172	82F03	2711 9 4.	• 9412	3 () B F P	CRBR	305	10 N	1	16	14	280	0.3	2	500
783	5079517	490160	YY4866805435279	82F.)3	2711 9 5	5412	24852	09.88	355	8 N	1	12	20	222	0.3	Ô.	44.5
700	5 370517	102161	VVK 044005475200	02002	2711 0 5	51.10	34055	0000	105	225	5	20	1.0	100	.	~	400
107	2010011	440101	114000090400002	02003	5/16 9 2	15475	24758	UKSK	402	22 5	2	20	10	190	0.3	U	4 <u>2</u> 0
790	50 [79] 51 7	4901.62	YY#86672j5435485	182FU3	2711 9 4	• 8 4 1 2	243FP	CR BR	355	20 E	4	24	12	238	0.2	0	54Q
771	5 279517	490163	YY4866705435589	82F03	2711 9 5.	.2412	248H0	DBR	105	12	1	16	12	104	0.2	· 0	390
702	5170517	400164	VV4245705425520	1275.32	2711 0 5	61.12	24960	0000	201	126	2	5%	10	220	2.2	-	110
7,72	5070517	1,00104		102-0-	2710 9 0		24055	0206	5 0 4	12 5	4	24	10	200	0.00	2	450
193	50(49517	490105	TTH80+702432239	02103	2116 9 5	· http://	30855	UEBR	205	145	2	30	12	1.70	0.2	2	450
794	5079517	490166	YY4863705435585	82703	2716 9 5	•9412 J	24BFP	CABR	35 S	10 E	2	28	8	204	0.2	0	530
795	5179517	490167	YY4867185435596	82E13	2711 985	7412	2485 P 3	2208BR	358	85	2	24	14	260	0.2	Ô	530
704	5070517	100140	VV/ 247296/ 23664	02502	3711 005	01.12	3/0503	220080	105	221		20	30	100		ž	/ 30
793	201221	490100	114001202455590	56105	3116 990	•0412	240572	ZZUMDK	405	6.6 W	1	20	20	120	0• <u>2</u>	J.	000
797	50/9517	493169	YY 486633 5433556	[82F03	3711 995	• 3p+12	248EP3	Z 2 OR 3 8	35 B	21 W	1	18	24	116	0.2	0	535
728	5079517	490170	YY4365375433596	82FU3	3711 905	.7412	268FP3	22CRBR	35S -	22 W	1	28	28	104	0.2	0	570
799	5079517	49 11 71	YY4964385433556	82503	3711 9 5	7412	2485P	DRBB	305	21 W	1	24	24	108	0.2	8	490
820	6 3 7 0 5 1 7	100172	VV/4242206422504	02502	2711 0 5	0/12	34950	0000	01.05	2011	î.	1				ž	150
500 .	5019517	490172	1140033054333790	02503	2710 9 5	• 9412	243-2	UNSK -	PLUS	20 W	1	15	16	. 92	0.2	0	450
801	5079517	4901 73	YY4352385433596	82503	3716 9 5	•7412	24852	CRBR	355	2,2 W	1	12	20	112	0.2	0	420
802	5079517	490174	YY4861555433655	82F 33	3711 9 6	. 8412	248FP	0888	45 S	2 2 W	1	12	26	110	0.2	Ċ	430
8.13	5075517	490175	VV4361525633652	82513	2011 9 5	6412	24850	0082	205	24.54		24	2.0	112	0.2	à	433
005	5070517	100171	11110110010072	02100	2721 0 0		24050	0000	203	2.4 %		л. т л. /	10		3 3		
804	50/951/	490176	Y Y4361545433750	82403	3/16 9 5	• ([+12	24BFP	UEBR	302	25 W	1	24	16	1.5.2	0.2	Û	400
805	5079517	493177	YY4361475433835	82F J 3	371L 9P 5.	4412	248FP3	2208 BR	355	24 S	1	24	46	140	υ. 2	0	480
806	5079517	490178	YY4361305433930	82FU3	3711 9 5	6412	26BEP	68.38	305	228	1	16	24	126	0.2	0	420
007	5070517	40/01 70	VV/ 261205474072	025.03	2711 0 5	61.12	24950	0000	6.15	21.1	,	14	22	1.04	0.2	5	450
001		499119	14101233434072	02103	571L 9 0	• 0 + 1 2	24066	0000		5J W		10	2 4	104	0.2	0	4 50
818	50/951/	490180	YY4361285434178	82503	3/16 9/5	• 44 12	24BFP	CRBR	305	2 2 W	1	24	30	118	0.5	0	440
80.9	5079517	490181	YY4861205434282	92 803	3711 9 5	•4412	24BFP	CRAR	30A	27W	1	16	22	128	0.2	Э	420
810	5079517	490182	YY4361195434384	82503	3711 985	2412	2485P3	220888	45 A	22 W	1	20	28	140	0.2	0	44)
011	5070517	+(00107	VY/ 3411 05/7/ / 07	22532	3711 005	0413	349593	220000	2.25	224		20	20	1 20		5	550
011	5079517	4490105	114501135454442	02703	2117 2622	• 1)(+ 1 2	240773	CZUMOK -	202	6.0 Yi	1	20	20	170	0.2	0	220
812	5077517	*490184	YY 4361155434486	82 53	3711 995	•1412	268FP3	22 OR BR	45A	23W	1	16	30	140	0.2	Ū	530
813	5 2 7 9 5 1 7	490185	YY4861105434592	82F-03	171L 9 5	.9412	24BEP	ORBR	105	1 O N	1	20	26	108	0.2	0	400
914	5079517	4001 94	YY4361005436693	82533	2711 0 5	.8412	24860	0505	155	181	1	1.6	14	130	11.2	2	570
014	5070517	400100	1111001032434033	02502		0,12	22050	0000	275	10.05		10		1 20	U •2	-	
615	50/1951/	490187	Y 14561005434792	82503	2716 9 5	• 5412	24552	UKSK	305	IUN	1	10	12	124	J • 2	0	400
816	5079517	490133	YY 4361005434390	82703	271L 9 5	• 6 4 1 7	C 43F P	OFBR	305	9 N	6	26	14	155	1.2	0	700
817	5079517	4901.89	YY4360965434938	82F03	2711 9 5	.8412	248FP	OR BR	404	11N	2	20	8	188	0.8	0	580
219	5170517	493193	YY4360995435053	82533	2711 9 6	. 04 12	2485 P	OFBR	365	10 N	2	20	6	146	0.6	0	520
210	5 3 7 0 5 1 7	6.01.01	NY COCORE SEV OU	02.03	3711 0 5	24.12	24250	nr nn	250	2 2 11	-	2.0	1.5	1 7/		ž	610
819	ווכן יזן כי כ	490191	11430323435190	1 32 50 3	3/10 2/2	• 24 1 2	24098	UNDR	222	2 Z :N	4	20	10	110	V•4	0	200
820	5079517	490192	YY4360905435290	82F03	271L 9 5	•4412	24BFP	ORBR	30A	12 N	1	20	16	136	0.4	0	580
821	5079517	490193	YY4960875435387	82F03	3711 9 6	. 0412	24852	02 8 8	155	22 N	1	20	10	156	0.4	0	620
822	5079517	4001 04	YY4860825435436	82513	2711 9 5	.8412	24350	0588	155	201	1	16	14	214	0 4	2	590
011	5070517	100105	NN(057725425(70	000000	2711 0 5		2/050	02.70	2.55	2211	1	20	•	202	2.	-	513
823	2012211	490195	114851115455876	02FJ5	5/IL 9 5	• 6412	24057	UKOK	203	4 Z IN	2	20	14	292	0.4	0	240
824	5079517	490196	YY4857715435785	82FD3	371L 9 6	.1 412	268FP	DRBR	30 S	23 N	1	20	8	3 08	0.4	0	740
. 225	5079517	4901.97	YY4357695435879	82 F 0 3	3711 9 5	.7412	26BFP	OR B R	205	23 N	2	28	16	388	0.4	0	600
876	5 1705 17	407100	VV4957605436376	82513	2711 0 5	4412	24890	0989	355	1.1 N	2	22	1.6	7 2.0	0.4	- Ā	630
10	5070517	10.99	1140070004100017			0112	21000	00000	575			22		100	0.4	ž	600
827	2010211	+90200	YY +860302433590	82-03	3415 AND	• 21+ 7 5	248743	ZZEKOK	504	262	1	22	58	192	0.2	2	030
828	5079517	490201	YY48593254336C0	82F03	3911 9 5	•9412	248FP	ORBR	35 S	22N	1	16	12	128	J.2	2	500
829	5070517	490202	YY4355395433600	1 828 33	6511 9 6	. 0412	24859	OP BR	305	105	1 1	16	10	143	0.2	0	420
330	5070517	490202	YY425256545422750	825.13	3911 005	9420	30350 3	2209.08	451	. 255	ī	24	4 8	174	0.2	5	53.7
550		100203		02:03	3711 0 0		200000		724	222		5.		1/2	0 • £		500
821	2010211	490204	1 T T T T T T T T T T T T T T T T T T T	02-33	311L 9 5	• 1 + 1 2	20059	UN DR	222	NZC	} ⊥	24	24	143	0.2	τu	200
832	5079517	490205	YY4858495434030	82503	3711 9 5	-8412	248FP	ORBR	255	26 S	2	24	12	162	0.2	0	560
833	5074517	490205	YY43 58 45 54 340 95	82 FO3	3911 9 6	.0412	248FP	CPBR	304	2 2 W	1	20	16	110	0.2	2	570
921	5070517	400007	VV4858435434102	82512	1011 0 5	8612	24850	CPAP	155	21 4	1	24	14	144	0.2	2	540
004		190201				• • • • • • •	2 T 1/ F		1 / 3	CT N		4. T	17	1.11.11	V• C	4	5.40
835	5 0/95 1 7	490208	YYHU5U305434201	1825-23	3911 9 5	• (+ (+ 1 2	2495 P	CRAR	204	21 W	1	10	16	165	0.2	U	うちい
936	5079517	490209	YY4858335434394	182F03	2711 9 5	-5412	24352	CRBR	205	20 W	1	20	14	140	· 0.2	0	530
837.	5079517	*490210	YYAB58295434491	82F03	2911 9 5	. 3412	248FP	CRAR	205	1 8 W	2	20	10	150	0.2	ð	500
020	6020612		VVLASHODEAAAEND	92612	2011 0 4	5612	27.3100	npap	245	1014	2	27	10	120	0 7	~	40.0
85 B	2017211	1120211	- TTHO 70270404040202	02103	2716 7 2	· 2016	6 H 0 F F	0.000	6.25	10.4	6	<u>(</u>)	10	1.20	0.2	<u>0</u>	4170
830	5079517	M20515	YY4358265434592	182EJ3	791L 916	• 04 12	243CP	URBR	105	8 W	1	16	8	126	0.4	- O	450

134

.

``

Ċ1

45) 1

Ð

2

0

Э

Э

9

ĵ)

Э

0

1

3

3

··•

841	501791517	1490214	YYA 94 30 05 43 56 25	182F031271L	9 5.9612	248M8 .M	ABRRED	205	14%	1 2	24	18 15	564	0.2	0	63.1
									•	-					÷	000
542	5 0 7 9 9 1 7	490215	YYAB43015435532	18250312716	9 5.6412	24BMB P	4BRGR -	65 S	18 W ·	1 6	24	20 10	186	0.2	0	660
0/2	6070617	1000010	VULOIDACENSETIA	33533 2731	old all 12	37 540	100	101	1011			10 20				
Ç++ 2	5 U[7 %]2 1 7	1490213	- 7 7 1 8 4 20 2 2 4 5 2 7 4 0	10200012116	9 0 0 0 + 1 2	24015 8	e 1956	604	198	4	20	- 10 ZU	210	0.4	0	620
844	5079517	490217	· YY& 14 3 195 4 3 5 7 8 1	182603 3011	994.1412	248503220	27.97	255	2 2 N	2	24	ד נוז	20	3.8	2	677
		1		02.03	e e e e e e			223	L. L. / 4	-	<u> </u>	10 1	C	V • 0	,	
845	5 01795 1 7	490218	YY4843105435831	18250313910	6PI5 8K-12	248FP 322L	. ORBR	255	3.3 N	4	32	36 9	110	1.0	12	500
	5070517	100000	VV/0/5158/16/16/19	33503 3711		2/050222	0000	70.	5.51			5, ,			• -	
240	20//Sp17	4440574	-11H94010 0400004	102000 0111	. 9P10.0P12	240593220	VUKBR.	IDA	35%	110	98	- 34 14	12	2+4	0	910
P 4 7	5079517	401221	VVK842155435920	102 11 2011	905 6412	248523220	-0.30	75 1	38 51	20	303	16 9	2.4	2 2	0	010
0.4.1		14.0220	110421202020	10010010010	25 24 017 1-	2400 - 2220	- 20 0 N	124	2014	1 20	2.40	10 0	· · · · · ·	200	0	510
843	5079517	491221	YYK-143176435961	182FJ3 391L	9PI6.04-12	243EP3220	P B B	704	42 N	140	230	46 6	58	3.0	0	590
0.0	50201.37	402222	144 012228 121000	100502 2011	ade al 12	24 0102 221	100	7.3.4			100					
349	50(79)517	490232	114542205420635	186600 10916	042.1111	200403220	SUK.	7 J A	32N	14	152	34 22	105	3.0	J	54Q
350	5079517	40.1223	VY2343255434366	82603 2011	806 1612	268503220	1220	7.3 4	2 0 M	1 12	122	44 42	40	24	0	170
0.20	2012221	1400220	11404050	10210313316	0-0-1-12	5.0 m = 25.5 C	10.00	TOA	2 7 18	1 1 2	195	-1-1 12	. 40	2.44	0	679
851	5 07 95 1 7	49.0224	YY4343305436099	182FJ31391L	885.8412	248FP 3220	lrbr 🗌	75A	35 N	1 12	120	42 4	240	2.6	a	600
		1								1						
852	5 0 / 9 5 1 7	490225	YYH34331 5436140	82-03-3911	9915.9612	248523220	PR BR	455	26 N	4	40	20 17	178	2.2	0	430
253	5 1705 17	100226	VV/0/2215/26100	92503 3011	0 4 14.12		10.0	1 G 1	2 3 5	0	216	24 14	70	2 4	0	0.0.1
0.00	1 1 1 1 1 1	1420220	0110110101010		10.1412	240.00		7 J A	2014		210	24 10	1.0	2.0	U.	0.00
854	5079517	1490227	YYI43433515436230	182F03/391L	996.3412	248483221	432	40S	288	4	80	24 11	130	0.8	0	710
											~ ~					
855	5 3/79/5 17	490228	YY4543365436275	82502 3916	9 6.2412	268FP (JR 3 R 👘	355	25 N	2	36	20 12	200	0.8	10	480
06.4	6 0 7 0 6 1 7	1000000	VV/012101122220	0202 2011	0 4 44.13	24250 0	000	100	26.51	1 -	40	14 /		a 0	20	500
020	2.11.2.7.1	490229	114242402420250	10540313416	7 0 + 4 + 1 2	24058 0	- K D K	403	- 24 -	2	50	10 4	+ 4 0	0.5	2.0	280
857	5079517	490230	YY4943405436362	82E03 3711	986.5412	2435P3221	12.3R	355	28 N	4	90	16 3	386	1.0	1.0	570
									2011							
858	5 0 7 9 5 1 7	490231	YY 4343445436411	82803 371L	9 5.8412	24888 (JRBR -	35A.,	30 N	4	148	10 2	344	0.8	10	540
050	5 70517	1000222	VVLDLDLLELDLDLDLD	02512 2011	004 2412	24040222	40.0	450	2011	1 1	114	27 7	2 5 2	0 4	27	70.1
024		490252	1 (4040400400401)	10540313317	2-0.6415	240105221	05	400	- 2 5 W	1 1	110	۲۵ -	226	0.47	20	100
86.0	5079517	490233	YY4343505436503	1 82E 111 3911	996.6412	248503220	7 P R R	3.35	24 12	2	40	14 :	336	0.4	10	490
000		470255						555		-	10				10	
861	5 7 7 9 5 1 7	490234	YY 434350 5436551	82F03 371U	9 6.1412	24869 [JPBR .	355	2 2 N	3	34	10 2	222	0.4	15	540
063	6070617	1000226	VV/ JAJE JE / JAECE	0000012000	000 1/12	260482223		200	2.2.61	1	21	20 .	1 2 0	3 /	2.0	770
062	20101211	490200	T 143423429420242	82FJ3 5/1L	940.1442	200703220	NHK	222	52 N	1 4	20	20 3	200	0.4	30	720
5. 4. 7	5070517	400236	VV4943595436630	1125 56 33 3611	0 5.0412	24850 C	2000	205	2.5 N	2	40	10 5	74	n. 4	15	645
00.1		4702.50	1140400000			1-10-1 (5.7.5	2313	-	40	10 2	- 1 -	0.4	L)	0.00
86.4	50/79/517	1490237	YY143435715436631	82F03 371L	9 5.8412	248FP 0	3R 9R	P30S	22 N	4	56	10 3	324	0.8	5	520
045	E.170E.7	1,00000	VV/12/12/01/2/11	07507 7711	0 1 0 10	2/050			22.11					3 /	10	100
565	2010/211	7490235	YY4344415436641	82503 3716	9 6.9412	24868	JRBR	4 J A	22 N	2	38	18 4	+22	0.4	10	600
96.6	5070517	4400230	VV/3266115636562	92502 2711	0 6 1612	24860 0	ncao	204	22 M	2	24	10 1	2.2.1	1 2	2	540
000		14002.50	100044470400046	020010110	- 10. The T	2477 (MOR.	403	£ 2, 14	-	<u> </u>	10 -	720	V • 2	۲.	J40
857	5 0 7 9 5 1 7	490240	YYI43444115436443	182F031371M	9 6.3412	248FP C	RBR	155	26 N	4	24	14 2	276	0.4	15	500
		103911	NALO COL DE L'AREA	0.05 3.01 1.711		24050		1000								
858	27/1/21/	1490241	Y Y 48 495 75 4 3 3 3 0 0 0	32F J 3 1 / 1 L	9 3.8412	24358 L	DK RK	1022	10 9N	1 2	• 30	12 1	[48]	0.4	3	620
94.0	5 0 7 0 5 1 7	100.262	VV/0/0625/22552	07501 1711	0 5 9/12	24050 0	סמפר	205	10 01	2	20	12 1	1.6	A 4	•	650
009	1 1 1 1 1 1 1 1 1	1490242		loze jolitere	7 2.0	24066 0	25.24	203	TO 314	4	20	1 2 1	1.1.9	7.4	2	000
870	5079517	490243	Y14849525433601	82F03 171L	9 6.2412	-268FP (2888	155	10 10N	2	22	14 1	163 -	0.2	2	640
										1 -					-	
871	50179517	490244	YY 4849545433650	82503 1716	9 5.0412	26859 [JP BR	122	9 I D N	2	22	12 1	130	0.4	0	630
972	SAZASIZ	400265	VY4866645673700	97603 3011	0 6 2412	24850 0	10 80	3/11 2	10 22N	1 1	20	14 1	24	Δ 2	2	670
10 T Z	2417211	1420240	19404340340333000	0210515716	1000712	24016 0	3 F 13 F.	2 40 5	10 2214	-	20.	1 1	104	0.2		010
873	5079517	1490246	- YYI4849435433750	82F03 291L	9 6.2412	248FP (DP 88	2552	10 14N	1 2	20	12 1	148	0.2	0	- 580
		1.000.13				2/050		0.000	10 101	1 7					÷	
874	50174517	490247	_ Y Y 40 49 49 49 5 3 3 3 J U	82-03 27IL	9 6.0412	24356 (JEBR	5025	10 180	4	44	14 6	290	0.0	5	110
875	5079517	49.0248	YV4849455433351	82633 2911	9 5.2412	24REP 0	קפק	3052	10 20N	2	24	24 2	206	0.4	2	520
015		4701 10						2001		-						
876	5079517	490249	YY148494354339CU	1 82F03 391L	9 6.0412	24BFP (ORBR	2552	10 22N	2	20	16	210	0.2	5	560
077	E A TCE 17	100050	VVVDIOLIELAZOEN	00012 2011	0 5 54.12	2/050 5	2000	2502	11 34 51	1 2	2 2	10 -	776		10	661
877	2019211	490250	11404941040000	02200 0010	2 2 2 2 2 4 1 2	24077 (un o n	2225	11 2414	1 4	54	10 4	200	0+2	10	000
878	5079517	490251	YY48494154340C0	82E1313911	9 5 8412	243EP (DP BR	2052	10 27 N	2	37	16	146	3.2	5	590
			114013415151000					2002							ź	
879	5 2 7 9 5 1 7	1490252	YY 484938 5434049	82F03 371L	9 6.0412	248FP (јр в к	40A2	11 21 N	2	. 20	12 4	212	0.2	2 - 2	600
000	= 070517	400252	VV/2/0275/2/100	02532 2011	0 6 04 12	24959 0	noeo	61163	10 30%	2	22	20 1	56	0.2	0	660
010	2019211	490200	11424224242424040	102003 3910		24076 1	DEDE	TUM L	10 206	4	26	20	200	Q • 2	0	000
881	5079517	490254	YY4849325434149	82E.) 3 3911	9 6.2412	24BEP (0888	3.342	10 24 N	1 2	20	18 1	158	3.4	.)	690
						~									č	
832	50/9p1/	490255	114849345434115	182F03 4 L	440+40	D 1J 322		43 2	10 12W	1 1	20	22	96	0.4	0	200
007	5070517	400254	YY4840305434107	182533 3711	926.5412	248E03220	0888	40 1 2	10 265	1	20	20 1	34	0.2	ŝ	610
000	201221	1-20220	1,11,12,10,12,11,1		10.17.12				40 600	1 ÷			ь (у т 	v • £	Ÿ	
834	5079517	490257	YYI4849305434249	82F) 3 371L	996.1412	248FP3220	DR B Ř	35A2	10 285	1	28	26	170	0.4	0	690
		10.000	NN1 21 01 01 01 0 0 0	100000	od i ilia	3/0503000	מחמר		11 2011	1 7		17		A	~	610
885	5 0(142 17	490258	YY4849305434297	1824031341L	- 780 • 0f4 12	243583226	JERK	4242	11 30W	1 1	10	16	130	0.2	0	D40
826	5070517	400250	VY4840305434345	19260313911	906.2412	2485P3226	0282	4552	325	1 1	28	34	1 68	0.2	a	630
040	201721	770627									20				ž	
837	5 3 7 9 5 1 7	490260	YYH3492715434393	82F03 391L	906.5412	248593220	JPBR	3052	11 30W	2	28	32	190	U • Z	5	180
000	6070517	1000211	VYK340225424440	13253212011	0 4 04 12	24850 0	10 9 0	200	280	2	. 20	10	24.0	0.2	E .	620
888	5019211	4902.01	114347225454444	02203 3716	7 0.01415	24066 0	.uk 0 K	202	223	6	~ U	10 4	440	U + L	2	020
889	5079517	490262	YY4857865433589	825.33 2911	9 6.2412	248FP 0	088R	1052	10 125	1	24	12	112	0.4	0	620
		1.0.0.0.						1010		1 7						
890	50179517	440263	xx4857345433539	18220312116	9 0.4412	1245FP (JEDE	LUAZ	10 203	1	8	10	112	02	U	227
201	5070517	40:321.4	YY4356606433580	82 503 2011	4 6.2612	248FP	083.8	592	11 225	2	28	14 1	116	0.4	0	600
471	11000	1400004		1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 0.1716		Carloga AN		44 GG4	-	<u> </u>	• T 4		V • 7	<u> </u>	000
892	5079517	490265	YY4856385433589	82FJ3 341L	9 6.2412	243FP (DRBR	1542	11 21 S	1	32	20	156	J.2	0	620
		1.0					2000	2.200	11 0111	1 .	12	10			-	110
893	50//9517	4902.66		18220313716	- 7412 • 1412	24368 3220	эквн.	2022	II ZIW	1 1	42	10	100	0.02	J	54Q
007	5 Atrole 17	+1.00367	VVLUEBANEL22EDO	192503 2011	005 04.12	248502220	כאפר	3512	11 221	1	26	1.9	140	3.2	0	620
074	ד מרויט ב	1440201	KUCCCECCECCUTICI	102-03 3716	2140412	6701 63460		JAC	11 2211	1	50	10	4 TV	V. C	v	020
895	5 179517	*490268	Y4355305433559	182503 3711	OP15.9412	248FP3220	DEBR	45 42	10 21 W	+ 1	36	20 1	138	0.2	0	600
0.7.7		1.0.0		100-00100	only shine	3/050 3335	00.00	1	10 100	1 7	2.2	20	261		~	5/3
895	5079517	490269	Y T T+3553054336 J4	182103 4916	. 740.4412	14358 372L	JE 15K	0742	T 2 T 9 M	1	20	20 1	200	0•Z	Ų	200
007	5 7 70 5 1 7	400020	VYARESZNE AZZARA	1 825 1 1 2711	00% 2412	262502000	0282	3:100	11 214	1	17.	14	74	0.2	0	550
13-11	1 09 M 2 1 1	1429513	1 101010000	1	- The share	2.4.11 2.221	0.00	1036	11 C.J.M.	+ +	10	A 'F	1.7	U • C	v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
898	5079517	490271	YYA255355433700	182F03 371L	9 6.4412	249FP (<u> 26 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </u>	1052	10 21 W	2	20	18 1	1.04	0.2	υ	720
0.00		100000	VULACE DOLLARA	02532 2011	0 6 74 13	2/050	0000	1503	10 100	1 7	1.4	2.0	1 7 7	0 7	-	671
899	5079517	440272	- 〒〒行いいつとわり 45 5 7 5 0	1 986031 8816	- ソーフ・/月上乙	C111377 P 3	ORDK	1225	10 18X	1	10	20	177	0•4	U	7/0
~ ` `	しいつかくしつ	40172		- 67CA1 271E	005,3412	2611503221		6542	12 14 W	1	20	14	142	0.2	0	620

ì

3

7

2

)

)

',

٢

¥

3

3

3

931	5079517	1490274	YY4855215433850	1825031371	1 905 5412	26850	32200 00	4552	11 211	2 1	22	14 104	0.2		510
0.0.0	5070517	403375	VY4055205422002	005 00 000		0,0000		7752		1 :		14 100	, 0•2	v	200
902	5014517	490215	114855205435900	02F J 3 291	L 9 D. 1416	2 - 3 - P	URBR	1225	11 18W	1 1	20	16 128	3 0.4	0	500
903	5 0 7 9 5 1 7	470276	YY4855205433950	82F03 291	9 5.6412	248 F P	DP B R	1052	11 12W	2	18	10 122	2 0.2	0	470
904	5519517	490277	YY4855205434000	82F03 491	9 5.8412	24BEP	ORBR	3052	10 12N	1 1	16	10 14/	5 0 2	, J	560
915	5170517	40.3278	YY1955475424345	925.12 701	0 6 3612	24950	0090	1000	10 4.1	1	20	10 17		ž	2000
0.00	5070517	100270				2.4057	UN OK	1032	10 41	2	20	10 150) U.Z	0	050
2.10	2010011	1440214	TTF \$2210P434048	02503 191	C 9 5.8412	248-P	DERS	2022	10 7N	1	24	14 242	2 0.2	0	550
907	5079517	490281	YY4355095434148	82503 291	L 9 5.9412	24348	MBR	3552	10 12W	1	24	20 98	3 0.2	0	940
938	5079517	490282	YY4855035434197	82F03 291	9 5.8412	248EP	OP B B	3052	10 184	Ĩ	16	16 150	0.2	õ	520
010	5,170517	40.12.83	VV4355055434247	182533 201	0 5 74.12	24950	0000	3652	10 161	1	37			ž	100
		490200	11113 5 5 6 5 5 4 3 4 2 4 7	02703 291		24555	UNDR	2052	10 14%	1	24	10 100	1 0.2	Û	650
910	2012011	490284	YY4855055434257	825 33 291	L 9 5.6412	24848	ORBR	3052	10 16W	1	16	10 74	+ ().2	0	740
911	5.079617	490285	YY4355045434347	82FU3 391	9 5.9412	243FP	ORBR	2052	11 23W	1	22	10 123	0.2	0	640
912	5079517	490235	YY4855015434397	82603 391	9 5.9412	24 R F 9	ORBR	3052	10 21 W		24	8 17/	1 .1 2		670
013	5172517	40.3257	VV/ 255005/24/47	1025 32 201	0 4 34.13	24050	0000	2032			2.7				570
1014	500001	490201	117030003434447	02F J5 291	- 7 0.5412	24061	UPBK	2225	11 14W	1 1	28	20 90	> 0+2	0	240
914	50 (19)51 7	490238	YY4855005434497	82F03 791	L 9 6. 2 412	248-P	DRBR	2552	10 8W	1	20	8.99	3 0.2	0	630
915	5079517	490289	YY4855005954544	82F03 291	L 9 5.6412	24 BF P	OR BR	3552	10 144	1 1	16	10 112	2 0.2	С	620
916	5079517	490290	YY4855005434595	82E03 391	9 6.1412	248EP	0238	3052	10 22W		24	10 94	0 2	0	770
917	5070517	490291	YY4355005434642	82503 401	0 5 8/ 12	2/050		1052	10 20	1	20	12 10		ž	500
010		490291	1 113 1000 1454042	02103 491		24078	UM.5K	1032	10 5		20	12 102	+ 0.2	U.	590
912	2010011	490292	114822042434692	82503 391	L 9 6.1412	24459	ORBR	1052	8 2.2.W	1 1	16	20 68	3 0.Z	0	580
919	5079517	490294	YY4855005434750	82503 291	. 9 6.5412	2 4 B E P	02 B R	3052	9 18W	1	20	14 92	0.2	0	620
920	5079517	49 22 96	YY4847425435480	82 F 33 371	9 5.8412	248MB	MBB	2052	11 225	4	40	34 79.	0.4	5	780
021	5 1705 17	401207	VV4847515435425	826 12 271	0 5 5412	26040	MDD	02362	12 215		2.2	20 700		• •	200
022	5000517	100000	114047202422422	02.03 311		24040		F2032	12 213	4	52	20 190	0.2	14	640
922	2010211	490298	- X Y + 3 4 7 5 4 5 5 4 5 5 3 7 9	32833 291	- 9 6 • 3 4 1 2	24353	MBR	3025	11 18S	2	24	14 852	0.4	0	840
923	5079517	490299	- Y Y 43 476054353 24	82F33 291	L S 6.1412	24 BE P	LORBR	2052	14 125	4	28	14 1160) 0.4	0	820
924	5 379517	*490300	YY4347625435275	82F03 291	9 5.3412	248FP	LORBR	3052	11 85	4	40	12 746	0.4	ð	930
925	5079517	#4903.01	VV4947625435275	82 503 201	0 6 6 6 1 2	26.850	1 12 8 0	3053	11 00		21	10 7/0			2 2 0
014	5070617	400202	VV/04771542502	02102 201		20018		2022	11 03	7	20	16 140) U++	0	0.00
	5000517	490502	114041705435220	025 03 291	L 7 5.0412	24540	jetene.	2022	12 105	4	28	10 802	: 0.4	0	540
927	2014911	440303	YY4347735435130	32503 291	. 9 6 • 2 4 1 2	24883	MBPGRA	2052	12 10 5	4	56	20 1049	0.4	15	740
< 5 B	5079517	490304	- ***4847825435126	82803 291	L 9 6.1412	24AE	GREY	3552	12 9S	4	60	12 252	2 0.4	2	450
929	5079517	490305	YY4347835435375	82E03 291	9 6. 4412	24850	0242	3552	11 125	2	36	14 554	0.2	0	7:00
930	5079517	490306	YY4947905435020	32513 201	9 6 0412	24BED	0232	2552	11 105	2	4.0	10 079		õ	700
023	5070517	100000		22522 201		2,4015	0.000	5,52	11 103	4	40	10 970			100
951	50/(4) 17	490307	114040025454914	52FJ3 391	L 940.6412	248593	SZZURSK	2225	11 225	4	40	18 752	1.2	30	800
932	5 0 / 9 5 1 7	490303	YY 48481Q5434920	82FJ3 291	- 9 6.3412	248FP	ORBR	40 S 2	12 14S	4	60	14 490) 1.0	12	780
933	5079517	490309	YY4848125434879	82F03 491	9 5.8412	24BEP	083 R	2052	11 45	2	20	16 540	1.0	0	590
934	5079517	490310	YY4848105434826	825 33 271	9 6.0412	248EP	DRBR	2052	11 105	2	36	24 530	0.6	ñ	690
035	5170517	1.01211	VV4349205414772	925.12 271	0 4 3413	24950	0000	2652	12 200	-	20	22 701		ŏ	710
07.	5070517	100011	114340203434772	02503 371		24050	0755	3232	10 000	2	20	22 100	0.0	0	110
936	50/1951/	490313	YY4848295434721	82203 341	L 9 3.9412	2487 P	CRBR	3052	14 21W	3	30	16 333	5 0.4	0	740
937	5079517	490314	YY 4248325434630	82F03 391	- 996.1412	248MB3	322 MBR	65 A 2	15*27W	2	32	32 362	2 0.4	10	540
938	5079517	490315	YY4349365434626	82FJ3 371	L 905.6412	24PEP	322088R	3052	13 22W	1 1	2	2 . (5 0.2	2	390
030	5079517	490316	YY4848405434580	82F 13 391	9 6.2412	2484B	MBR	3252	12 234	4	34	18 883	2.5	a	600
. 04.0	5070517	100217	VV/0/0/75/3/530	02512 201	0 4 4412	24949	NODCOA	2500	12 100		24	10 66		č	6 2 0
540		490311	1140404040404040	02F05 291	9 0.0412	24050	- PD406A	2932	12 10%	4	20	10 0.40	2.0	0	620
941	2010211	490313	YY4848495434490	85423 201	- 9 0.2412	24622	ORBR	2052	12 21W	2	34	16 364	+ 0.6	0	880
942	5779517	490319	YY 4848035434475	82F)3 391	L 9 6.5412	248°P	CE BR	3552	12 30W	4	48	26 1077	2 0.6	0	910
943	5079517	490320	YY4347535434474	82FJ3 391	9 5.4412	248FP	OPBR	7542	12 26W	2	32	76 648	0.6	5	640
95.5	5070517	400321	VY4847025434472	82513 371	904.6412	268507	2220082	6052	12 924	2	4.2	12 66	> 14	۔ ج	650
0.5	5070517	00000	VV/0/4676/3//7/	02002021		240503		40.10	14 74 1	5	22	20 22		Ę	500
7+1	2019211	493322	114546615454414	6200 371	- 980.9412	240783	DZZLEDE	OUAZ	14 248	2	22	28 283	0.0	2	220
946	5079517	490323	YY4346205434473	82F03 371	L 9P 5.4 412	248523	3220888	3552	13 26W	2	40	14 212	2 0.6	2	700
947	5079517	490324	YY4349025434478	82FJ3 391	L 9 6.2412	24 BE P	ORBR	2352	12 22W	1	12	2 230) 3.6	2	C 6 7
94 9	5079517	493325	YY4849225434476	92E13 291	9 6.5412	2485P	CRBR	2052	12 18W	2	36	16 322	0.6	2	710
04.0	5070517	400326	VV/2/5005/25525	02 50 2 241	006 06 12	249531	2220205		12 100	-	57	10 70		, -	703
34 3	5074517	490520	114040505455555	00700 241	- 970.0412	240583	222608	4242	12 102	0	20	20 ();	0.8	14	190
950	2018211	490321	TTH04599543548C	8243 241	L 9 2.9412	24 HEP	ORBR	3025	13 125	6	84	22 1310	0.4	30	660
951	5079617	49:03:28	YY4845995435430	82FU3 391	- 9P 6.4412	248593	3220PBR	45A2	13 22 S	4	36	16 1820) Ú.4	5	640
952	5079517	49.0329	YY4846005435330	32533 291	0 5.9412	24 BE P	OPBR	P3052	12 205	2	24	20 143/	5 0.4	12	540
953	5070517	*492331	YY4446015435220	32803 201	9 6. 2412	ZAREP	0898	3052	12 125	2	30	14 1090	0 0 6	20	740
	5 3 2 0 5 1 7	10000	VVX.244016426233	02502 221		3/000	00.00	2002	13 130	4	20	17 1000		20	140
724	1 1 6 1 1 0 0	-H90331	114040010400320	02503 291		240579		2025	12 125	4	50	14 1104	0.2	.20	090
\$55	5079517	491332	- Y Y 4 3 4 6 0 2 5 4 3 5 2 7 2	82733 291	L 9 6.8412	24 B F P	DABR	2052	12 10 S	4	32	12 1090	0,2	12	780
956	507-9517	49.1333	YYA346005435220	82503 291	9 5.7412	24850	CEBR	2052	12 105	4	33	16 1272	0.2	15	950
957	5079517	490334	YY48460154351 70	32 FU3 291	L 9 6.1412	24BFP	OBBR	P2052	12 105	6	38	10 534	0.4	20	1050
05.9	5370517	201116	YY4346036436121	102 21 201	0 6 26 12	24NCD	Cone	2462	12 14 0		40	16 1614		10	000
7.5 M	2010211			1 0 0 0 0 0 1 0 0 1 0 0 1	μ ν αν∙κατ⊥α Γ α ¹ κ ονιτ	2 11 C C 7		2002	13 34 5	1 7	-+0	10 1000	. 0.0	10	
	5 3770 17	400335	114340039433940	. oznu s isti	u 7 0.6416	< 4 (b) H	1.14.1216	2025	14 642	1 4	28	16 (4)	5 0.6	6.3	- 120

.

٠.

7

\$

Ņ

1

-

3

2

Ş

3

2

961	5079517 14	90338	YYA3460564	34970182F	031 2811	9 6.5412	248EP	ORAR	3052	13 185	, 2	32	12 772	1 8	12 810
0.5.2	5070517	01220	YYD AAAAAAA	34020 82=	02 2011	0 7 04 12	24.000	0200	7507	13 200	,	7,			12 010
0/2	5070517		111 34000004	24920 021	22 2210		24068	UKOK -	1.732	15 205	(+	14	12 670	7• 0	30 970
905	2017/217 4	+90340	1148400004	34811 028	03 4911	9 0. 2412	243559	URBR	1025	12 85	2	34	12 7.56	1.0	10 720
954	50/9517 4	+90341	YY48461054	34820 825	33 4911	. 9 6.1412	2485P	093R	1952	12 105	2	24	8 530	0.8	8 640
965	5079517 4	490342	YY48460954	34769 826	03 3911	. 9 6.7412	248EP	ORBR	4052	12 24W	3	28	14 520	0.4	0 1050
956	· 5079517 4	90343	YY48461054	34720 82F	03 3911	9P6.3412	248FP322	0988	4552	12 22W	2	38	26 930	0.4	20 890
967	5079517 4	90344	YY43461254	34669 82 F	03 3911	9 6.3412	248E2	DRBR	4052	12 241	4	50	102 338	1.6	2 1050
963	5079517 4	91345	YY48441454	34625 925	12 2011	0 6 5412	24250	00.00	2402	10 220	5	10	202 200	4.0	
64.0	5070517 4	G0347	VV43457654	34520 225	12 2011	0 4 4412	24000	OD D D	2222	12 223	1 5	74	22 800	0.0	0 720
070					33 2710	7 7 9 12	211077	11505	2032	15 194	2	38	18 415	. 0 • ∠	2 720
970		+90245	1148454054	24728 82 P	03 3910	9 p.4412	ZABMB	MERGEA	2052	15 54W	4	64	16 326	0.2	10 1100
. 971	5 1 / 95 1 / 4	+90350	YY48450054	34528 828	03 381	. 9 6.6412	248EP	OSBR	1052	32 225	2	40	22 662	0.2	. 12 690
<u>972</u>	50[7]%17 [4	+90351	YY43446054	34529 825	03 3810	. 9 6.5412	24BMB	MBR	1052	13 22 5	2	52	16 630	0.6	15 810
973	5079517 4	+90352	YY48442554	34527 825	03 2811	. 9 4.6412	24 BF P	0 R B R	15S2	12 13 S	2	46	18 840	0.4	12 660
974	5079517 4	9 13 53	YY49442054	34576 32F	03 3816	9 6.6412	248FP	CRBP	3052	12 25 W	4	58	16 850	0.6	20 790
975	5 3 7 9 5 1 7 4	90354	YY48442554	34624 82 F	03 381L	9 6.4412	24848	MBR GPA	3052	14 22W	6	64	10 604	0.2	30 1040
975	5070517 4	93355	VY48642654	34675 825	12 2211	0 6 1/412	24850	0000	3752	14 225	2	6.0	20 620	~ ~	10 070
077	5074517	0.1254	VV/ 9/ / 2054	2/72/ 025	01 2011	0 4 04.12	24000	OBOD	2022	10 222	2	- C C	10 (5)		10 670
911 C70	5070517	10000	1140442024	34724 025	23 2016	0 5 0412	24072	0838	2252	12 225	3	. 54	10 650	0.2	LZ 880
710	20171217 4	49 0007	1143442834	24119 32 5	02 2811	. 9 2.3412	248FP	CERKER	3052	14 225	4	16	8 930	0.4	20 890
979	50/9517 4	+90358	YY 48443054	34823 825	23 2810	. 9 6.1412	24848	MARGPA	3552	12 235	4	56	10 1700	J.2	20 830
980	5079517 4	490359	YY43442954	34875 82F	03 2811	. 9 5.6412	24359	DRBR	2052	12 185	2	40	24 1020	1.0	35 620
981	5077517 4	90360	YY48444354	35522 825	J3 271L	9 5.7412	24850	083R	1552	12 18W	3	34	10 316	0.4	20 610
982	5079517 4	90361	YY43444054	35473 828	03 2911	9 5.6412	24859	NB B R	2552	12 22W	4	3.8	10 1112	0.6	30 820
983	5079517 4	9/13 62	YY48444154	35420 822	13 3411	906 9412	248 ED 322	00.0.0	2552	142234		74	10 722	2.5	35 050
08.5	5.373517 44	0 12 63	VYARAAASA	35272 625	12 2/11	005 5412	2405 222	0000	2002	164101		77	10 744	2.0	30 700
005			1140474034	37372 626			24078922		2032	12.12.4	e e e	12	10 (04	1.0	20 790
989	20/921/ 744	193304	11434444224	35312 821	J.3 141L	9993-9412	24312322	СРВК	2525	15 19W	5	58	18 770	9.6	15 760
996	50/9517 4	+90365	YY43444054	35320 82F	032411	. 995.9412	248FP322	DRBR	30A2	15*12W	8	64	16 1060	0.5	20 730
937	5079517 4	+90366	YY48444054	35272 82F	03 2416	. 9P 5.7412	24BFP322	CPSR	3)\$2	15*18W	10	74	16 762	0.4	20 790
988	5079517 4	90367	YY48444054	35221 82F	03 2411	9P5.5412	248FP 322	OPBR	2	15 20\$	8	68	14 683	0.4	12 600
680	5079517 4	90368	YY43443754	35174 82F	33 341L	9P5.9412	248FP322	OP 3P	3052	15 225	6	64	12 1120	1.0	30 740
990	5079517 4	90369	YY43443654	35120 925	13 3811	9 6.0412	24352	CRAR	3552	14 225	Å	4.8	28 1008	0.8	20 590
001	5079517 4	90370	YY49443954	35075 825	03 2911	9 5 7412	24BED	028.8	1552	14 125	4	56	14 11 70	1.0	25 750
002	5070517	0.0271	VVLOALSIEL	25 124 025	17 1011	0 4 04 12	24000	0000	2.26.2	1 - 1/5	17	20	17 11:0	1.0	20 770
772		0 1 2 7 2	1140443434	32024 325	33 2010	9 0.0412	24059	0000	2032	15 155	4	20	12 1128	1.0	20 110
993	50/1517 4	190372	1143443334	34973 325	03 3811	9 0 - 4 + 1 2	24852	0888	2052	14 21 5	4	34	14 1532	0.4	23 710
994	5079517 4	+90373	YY43443454	34920 32F	23 2811	9 6.1412	24852	DRBR	2052	14 205	4	- 34	8 1636	0.6	20 640
995	5079517 4	+93374	Y 148438954	34772 827	J3 381L	. 9 6.1412	24859	OPBR	2052	15 21 S	4	40	8 1246	0.6	20 680
996	5079517 4	+90375	YY48435054	34770 82F	03 3811	. 9 6.1412	248FP	CRBR	3 O S 2	14 22S	6	48	18 1064	8 . 0	20 700
<u> 997</u>	5079517 4	90376	YY43430654	34774 82F	3911	. 9 6.2412	248FP	ORBR	3552	14 215	4	32	10 1322	0.8	15 490
5 9.8	5079517 4	+90377	YY48430754	34824 82F	03 281L	9 6.4412	24BEP	OFBR	3552	14 20S	4	28	8 1736	1.0	12 580
999	5079517 4	90378	YY43430754	34374 32 F	33 2810	9 4.8412	248F2	0888	3052	14 185	4	32	10 952	1.0	25 700
1000	5079517 4	9.13.79	YY48430554	34920 82F	33 2811	9 6. 2412	24859	0989	1552	13 125	2	28	8 1368	Λ g	15 600
1001	5070517 4	0.13.90	VVLALZOLEL	34072 025	1 2 2011	0 6 6/17	24051	0000	2502	10 100	2	20	13 1/30	2.0	12.000
1001	5070517	00201	VV/9/2025/	34712 020	03 2011	0 6 1/12	24055		2022	10 100	2	40	12 1420	.0.5	45 700
1002	2014211 4	10001	1 1404 20 201	55020 02F	05 2911	. 7 0 . 14 12	24058		2032	15 125	4	40	12 1320	0.8	15 650
1053	5 3 / 9 5 1 / 4	93382	YY43430454	35072 324	33 241L	9 5. 1412	248EP	DRSR	2052	15 115	8	56	12 962	2.0	25 760
1004	5079517 4	+90383	Y Y 4 8 4 3 0 2 5 4	35120 32F	03 2911	. 9 5.7412	2435P	DR 3R	3052	14 12W	4	42	22 1740	0.8	20 530
-1005	5079517 4	190384	YY43430254	35171 82F	33 291	. 9 6.1412	24852	CRBR	1052	14 20W	4	48	14 688	J.8	15 730
1006	5079517 4	90385	YY 484 30 254	35220 82F	03 3716	9 6.3412	24859	CRBR	1552	16 21W	2	58	14 1570	0.4	35 1010
1007	5079517 4	903.86	YY43430254	35269 82F	03 3711	926.0412	243EP 322	CP B B	3052	18#228	2	34	14 1446	0.6	8 700
1008	5 2 7 9 5 1 7 4	90337	YY49430054	35318 E2E	33 2411	906.0412	24859322	OR B 3	45 62	20#24	Ā	54	16 550	0.4	12 800
1009	5 7 7 5 1 7 4	00134	VV43 120054	35360 325	13 3411	006 1612	24369322	npap	2502	10 284	6	7.0	14 1226	5.4	0 71.3
1010	5070517	00200	VV/ 0/ 2005/	35/10 025	73 2711	0 6 24 12	24000 222	0000	2002	10 20 8		70	14 1220	0. 4	5 /10
1010	50170517 4	00200	VV/2/2006/	25470 026	12 2110	0 5 7/12	24055 3/050		2032	19 248	1 4	20	10 1094	0.4	
1011	5 1 1 5 1 1 4	UV CUF	1140427004	32412 327	12 2415	3 3. 11+12	24568	しょうべ	SUAL	TA SOM	6	30	16 1216	0.4	10 700
1012	5079517 4	903 91	YY434298543	35520 82F	J3 391L	9 5.8412	Z4REP	UFBR	3542	18 24W	. 6	28	22 1608	0.4	2 720
1013	5079517 4	93392	YY48414954	35619 82F	J3 291L	9 5.9412	24 B F P	OR B R	2552	14 20W	1	22	24 860	0.2	0 640
1014	5079517 4	90393	YY48415054	35670 82F	03-2716	9 6.1412	248FP	OFBR	1052	15 18W	1	34	20 2060	1.2	0 620
1015	5079517 4	9.03.94	YY43415054	35720 828	33 2711	985.7412	248FP 322	CR.B.R	55A2	17 18W	4	36	24 1560	0.8	0 600
1016	5070517 4	03305	YY43415354	35770 425	33 3711	925 7412	24252322	CEBR	1052	15 32N	1 5	24	24 1024	0.0	2 410
1017.	5070517 4	93396	YY43415054	35317 025	03 3011	946,1412	24150322	0535	4500	20#62M	0	120	72 1064	2.3	0 220
1010	5070517	00107	VYAQAIGNEA	25970 025	73 7711	006 2612		OC 4 D	6010	2017211	0	140	10 5773	4.0	0 000 n non
1013		0 2 2 0 2	1110412024	10010 02F	31 3110	005 74 12	24058222		0002	204431	8	200	18 3/10	1.4	2 190
1919	D779517 4	102208	TT45412004	200101956	いきときんして	- 4800 + 1412	64MEP 372	URRA	23A2	22334 N	10	112	28 1130	3.2	0 630

•• ·

)

4

5

X

;

5

)

	1321	501791517	490400	YYA841505436012	182503	1391L	9 15.71412	24852	DRBR	3542	18 32 N	14	148	22 1180	4.2	0 620
	1000					100				0010						020
	1022	2014011	490401	TTH841500436062	1952293	12215	940+14	24652	3220PBK	8042	20#28N	2	1/5	42 592	1.0	0 950
	1023	5079517	490402	YY4341505436112	82.F03	381L	9 6.3412	248FP	DRBR	2052	18 34N	2	162	20 482	0.4	5 920
	1024	5079517	49.14.13	YY4841505436162	82E33	3811	9 5.9412	2485P	0538	6552	20 244	1 6	320	24 4160	1 2	12 10.00
	1000		10000		122522	10010		2 41/1 7	00000	0532	20 244	0	520	54 4100	1 • 4	12 1000
	1025	2 Oluala 1 U	490404	YY464150p436210	32003	13816	9 6 . 1412	24855	CRBRH	4052	20 27SM	1	56	14 536	0.4	15 800
	1026	5 379517	490405	YY4841505436262	182503	13816	9 5.9412	24BFP	CP BR	2552	20 27N	1 1	68	20 640	0.4	2 750
	1027	5000517	1.001.06	VV4941505436310	82643	2811	0 6 1612	2/850	0090	2.152	17. 22 M	1 7	6.0	20 440	ō ź	2 (00
	4 2 A 4		490400	114341202450510				2.9000	19500	2032	14 66 14		00	50 040	0.44	0 640
	1028	5 0 7 9 5 1 7	- 490407	YY4841505436362	182 E 0 3	391L	9P6.3412	_248FP	3220RBR -	3582	12 22N	1	84	14 390	0.6	45 750
	1329	5 17 95 17	49.14.03	YY4841505436410	825.03	3911	9 6.2412	24859	6933	3052	14 22 M	1 1	22	14 303	0.2	15 660
	1010	CODOCT	100000		0.25.22	2011		240000	0000			1 .		1. 000		
	LUDU	2014011	420103	111041202420430	102403	12415	V 0.4412	24557	UKAK	2022	12 22N	1	30	16 265	0.2	15 670
	1031	5079517	490410	YYA341505436510	82503	391L	9 6.1412	24BEP	ORBR	20S2	12 21N	1 1	24	16 334	0.4	15 830
	1.332	5170517	491411	YY4841505436562	325.33	2911	0 5 9412	24850	0082	2552	12 20 1		32	12 576	0.2	10 620
	1012		100411	111011202120202	100000	2716		240.0	0.000	2232	12 2011		10	12 0.00	0.2	10 050
	1033	50/19/517	490412	YY+871505436610	182F03	2/10	9 5.0412	24859	CPBR	4052	15 20N	1	40	28 990	0.2	15 630
•	1034	5079517	490413	YY4842005436610	82533	291L	9 5.9412	248FP	CRAR	1552	15 18 N	2	26	16 560	0.2	12 580
	1025	5 0 705 17	+ 100111	VV4242605426610	22502	2411	0 4 13/ 12	2/950	0020	02052	15 201	2	20	10 510		
				117542000430010	02103	LEALL	7 0. 1717	24059	02.20	85032	10 2010		20	10 215	0.2	20 900
	1036	5 0 7 9 5 1 7	#490415	YY 484250 5436610	82 - 03	1142	9 6.6412	248FP	CRBR	P3552	15 20N	2	24	10 210	0.2	. 15 850
	1037	5075517	490416	YY48430J5436610	182F33	2H1L	9 6.6412	2435P	CEBR	P3052	15 20N	1	26	8 220	J.2	0 760
	1020	5070517	100417	VV/2/2005/2/715	192532	2011	001 2112	24040	11040000	u 1005	16 205		12	14 200	0 2	16 10/0
	1030	201021	440411	114042002424112	02703	JOIL	- 700 • 3 + 1 Z	24010	LIQUERGE	⊔ ວຽວ'⊂	12 205	0	4 2	14 000	0.2	10 1040
	1039	5079517	490413	YY 434301 5434667	82503	341L	9P6.2412	24 BF P	1100888	3052	15 3D E	6	48	8 666	J. 6	20 1070
	1040	5.379517	49:1419	YY4343045434617	825 13	3411	996.4412	248EP	1100888	3552	20 30E	6	64	14 938	0.4	25 1051
	1010	5070517	100123	VV/ 3/ 3/ 5/ 5/ 5/ 57 5	22532	2411	006 2612	3/050	1100000	02012	264225	1		1/ 2020		15 000
-	1041	2012011	490420	114545052454570	192 - 0 2	13416	910.2412	24965	TTOCKOK	P 204 2	204025	10	03	14 2020	0.4	10 220
	1042	5079,517	490421	YY4843055434515	82F03	3911.	9 6.5412	24859	CRAR	2052	15 285	2	44	30 820	0.4	12 890
	1043	5070517	40/14/22	VV4243056434467	32813	3.311	9 6 3412	24350	0000	1552	15 245	2	28	12 720	N 6	15 1040
	1040		490422	1114049099494407	02100	DOIL		2 407 6	0607	1,32	1 2 6 7 4	-	20	12 120	0.0	13 1040
	1044	5 3 (19)5 1 (490423	YY43430 (5434415	82503	13816	9 5.9412	24859	LORBR	4552	15 22 5	6	15	12 800	J. 5	20 1100
	1045	5079517	490424	YY4843085434368	82FJ3	2811	9 6.3412	2435 P	08 3 8	3552	15 185	2	46	14 863	0.4	10 830
	10/6	6 170 6 17	100125	VV/ 9/ 71 VE/ 2/ 215	02502	2011	0 6 3613	27.000	0200	4 15 7	15 170	5	4.0	12 0.04		0 000
	1040	2010011	490425	114345105454515	02000	2016	9 0.4416	24552	UKDK	4032	10 15 2	1 4	40	12 904	0.0	0 000
	1047	5 0 7 9 5 1 7	49 1425	YY4943105434270		4910	9 6.2412	24BFP	DRBR	1352	15 12S	4	34	12 808	0.6	20 960
	1048	5 2 7 9 5 1 7	490429	YY4843085434170	32503	3911	9 6. 4412	24850	CSBR	3052	15 22 N	1	32	18 836	0.6	8 770
	10/0	5070517	101123	XX(16 21) 5 6 7 (1 7 0	0.25.2	12011	0 1 1 1 2	34050	00.00	1540	15 2011			20 1070		0 070
	1049	2010921	490430	114343103434120	02503	12010	V 0.4412	24052	LIKINK	4042	10 DOM	0	4 4	20 1010	Q•4	0 970
	1050	5079517	490431	Y Y 434 310 54 340 70	82F 33	3916	986.1412	2 0 B E B	322 OR BR -	4082	34 N	1	26	20 186	0.2	0 760
	1051	5079517	490432	YY4343105434320	32503	3811	996.1412	24980	3220238	4542	13 30W	1 1	36	10 214	0.4	0 8.00
	1071		100101		000000	2010	005 7/10	0.050		1000	12 201					
	1052	2019211	490434	4149431424332()	82-03	13210	942.1412	24 Br P	JZZUKUK	1052	11 22N	1	32	76 405	J. 4	0 740
	1053	50179517	490437	YM4843165433777	82F03	391L	9 6.0412	24BFP	ORBR	3052	15 22W	2	42	22 318	0.4	0 760
	1054	5.170517	400428	VV4843195433726	82503	3011	0 6 4412	24850	0080	4512	15 22W	1	29	24 176	.) 2	0 770
	1074	5017717	100400	114040101400120	02.00	12015	0 0 1 1 1 2	24 17 1	0000	4 2 4 2	10 2211	1 .	20	24 170	0.2	3 110
	1055	5019011	490439	Y14345185433678	1952203	1146	9 6.7412	24852	UKBR	1052	15 22%	1	30	28 144	0.4	0 620
	1056	5079517	493443	YY4943205433627	82733	3911	9 5.6412	248FP	DPBR	1552	15 22 W	1 1	40	14 193	0.2	10 830
	1057	5070517	100141	VV/2/2205/22570	02512	2011	0 6 2612	24050	0000	2052	14 194		22	16 160		0 64.0
	1927	2010211	490441	114045205455570	02105	1 C VIL	7 0.4412	24055	Cripe.	2032	14 100	1	2		0.2	0 040
	1058	50 79 517	490442	YY4842795433591	182803	391L	9 6.3412	248FP	QR 88	2552	14 22W	1	28	28 208	0.2	2 690
	1059	5079517	490443	YY4842285433591	182F03	13911	9 6.0412	243FP	ORBR	2052	14 228	1	2.8	28 174.	0.2	0 670
	1040	5070517	103/11	VYLALIONE AT TECO	02512	2011	0 4 7/17	2/ 900	0000	3053	1 2 204		20	2/ 27/		0 4 2 0
	1000	201221	470444	114341603455340	02-05	2916	9 0.2412	440FF	0454	2032	12 2.0 M	· ·	20	24 214	Q+ 4	0 000
	1061	5079517	490445	YY 484125 5433590	82FJJ	391L	9 6.4412	248FP	C283	2052	14 24W	1 1	44	18 258	0.4	2 800
	1062	5079517	490446	YY4940805433590	82F03	2911	9 6.5412	248EP	OP BR	1552	12 20W	1	36	22 262	0.4	0 1150
	1062	5070517	400417	VV4860205722500	82502	2011	0 6 9412	24053	0000	2102	12 174	1	2 3	70 700	י ז	0 465
		5019517	470441	117370202020	92 - 92	12716	· · · · · · · · ·	6.707.7	05.05	222			20		1.4	
	1064	50/79517	490443	YY 453982 5433588	182703	391L	9 6. 3412	248EP	028R	65A	14 23W	1	24	56 498	1.2	12 650
	1065	5079517	#490449	YY4839326433588	82F03	1391L	9 6.5412	248FP	DRBR	3552	14 22W	1	36	18 766	0.6	2 650
	10/0	5 1 2 1 5 1 7	2102152	VV/ 220206/22500	0.00.00	2011	0 4 5412	34050	00.9.0	2002	15 221		2.2	20 910	0 4	E (0)
	1000	22/14/211	7490490	1140393224553266	102-33	2010	3 0.3412	240-2	UNDN	22252	10 220	1 +	52	20 310	0.4	9 000
	1057	5079517	490451	YY 4340005435531	82F03	271L	9 6.3412	249FP	OPBR	3052	16 18S	2	.40	16 1540	0.4	5 790
	1063	5079517	490452	Y14840005435482	132F03	2711	9 6.1412	24BEP	OR BR	3052	17 105	2	36	24 1710	0.5	2 620
	1000	6.370517	403452	VV/0/0305/76/76	0.00.00	12011	0 4 2/12	2/050	00.20	2/102	17 234	17	2.2	10 2170	0.0	2 (70
	1004	2012211	470423	11404000433433	027 33	12716	7 0. 2414	24058	LAOK	2032	LI CUN	1 7	26	10 21/0	0.0	2 010
	1070	5079517	490454	YYA940005435384	182203	291L	9 6.1412	24BFP	CP BR	1552	15 20W	2	28	10 1642	0.4	0 720
	1071	5070517	49:1455	YY4343005435335	32F03	2911	9 6.0412	24 RMR	MAR	1052	14 20W	4	42	12 3000	0.4	10 740
	1070	E 0 2 0 E 1 7	100101	VV/22200670500	0.0000	12711	0 6 0010	24050	0000	1500	1 - 1 - 1 - 1		10	30 16/0	<u> </u>	2 010
	1072	5079517	440456	T 1 45 4 JUUP 4 35 2 5 5	32103	12116	7 2. 7415	245FP	UFBK	7225	TO TOM	1 4	40	20 1002	0.5	2 010
	1073	5079517	490457	YY4840005435235	82 F 0 3	271L	9 6.0412	248FP	CRBR	1552	14 18W	1 4	32	12 1400	0.6	12 650
	1074	5070517	497458	VY4840005435195	182E 112	2711	9 5 7412	24 8 5 0	00.00	1552	14 18W	4	20	30 810	0.9	5 550
	1014		1753450			10000		6 7 9 F		1202	1 7 100 1 1 m m m m m		ں ر	20 010		
	1075	5 07 95 17	490459	- Ү Үүн 3 400 0 Б 4 3 5 1 3 5	82833	1551C	9 5.9412	2485 P	0888	1552	14 20W	Z	24	38 786	0.8	0 520
	1076	5079517	493469	YY4940005435085	82F03	2711	9 6.2412	24REP	ORBR	2052	15 16W	4	38	26 830	J. 4	0 630
	1 1 7 7	E 1 7 1 6 1 7	10241	VULACATALCARADA	1025.12	2011	0 1 2/12	26050	0000	2600	16 100	1	E /.	14 2502		10 710
	1077) ג נייןעכ	493401	114040000400030	1541 13	CYLL	10.0415	< 9 DF P	LKNK	2026	10 10 M	0	24	14 6200	0.0	12 /10
	1078	5079517	490462	YYI494000B434985	82503	1341L	995.8412	24860	3220P 13R	5 5A 2	15 21W -	12	64	$16 \ 1642$	0.6	5 790
	1079	5079517	490413	YY484000543493A	182513	12911	9 5,9412	248F0	CRAR	2352	15 16W	4	34	10 1000	0.4	0 640
	- XU (7				02.03	1 2 2 2 2		5 111 F	0000			1 7	,			17 D170
	1030	5 0-795 17	- 490464	- YYI434JUU5434350	1821-13	2911	9 3.6412	Z43-P	LISKK	2552	1.55 1.75 1.0	1 K		1 # 176 G (4	· · · · ·	

5

D

 $\left(\right)$

Э

 \odot

.

 \mathbf{i}

2

لا

3

ļ

3

5

	1.181	5070517 400445	VV6240005434240 102E	312411 005 0412	243503220000	5543 17 1449	1 0 .52	22 .020	
			14040003434040 021		ZHOPPOZZUKOK	22AZ 11 104	0 22	22 950 0	• 4 12 630
	1092	5079517 490466	YY4849095434790 328.	03 241L 996.5412	208FP322CP8R	60A2 17 183	10 114	30 2780 1	•5 10 770
	1093	5079517 490467	YY4840005434740 82 Fi	03 241 9 6.2412	24BFP CRBR	3052 15 205	6 82	14 1132 0	.6 30 830
	1084	5079517 490468	YY484J005434650 82F	13 3811 9 6.1412	24BEP ORBS	2052 14 225	7 74	12 1068 0	20 1150
	1035	5070517 600460	VV1340005434540 1925	13 2811 0 6 0412	34950 0990	1602 15 220	2 20	16 2620 0	
	1000	5513511 450407	111104000040404040	75 501C 7 5+0F12	24055 0808	1932 19 223	5 20	14 2460 0	-5 12 760
•	1036	50/9517 490470	YY 484000 5434591 82F)3 281L 9 6.5H12	24BEP OFBR	1552 14 185	2 25	8 1448 0	0.8 0 550
	1037	5)79517 493471	YY4340005434540 82F	33311 9P6.1412	248FP322CFBR	40A2 14 28S	4 94	20 3150 0	.6 35 1000
	1098	501951795490472	YY4840005434491432F	1323811 9 6-1412	2485 P 0882	35523514 225	2 66	12 2040	1.6 15 1150
	1090	5 370517 401472	VV/0/2005/3///2 325	2 2011 0 6 06 12	24250 0000	2360 15 246		10 1010	
•	1007	501511 495475			24056 9508	3332 19 243	4 42	10 1955 0	
	1090	50/9017 490474	YY4340005434392 82F	J3 3810 9 5. 1412	246EP URBR	2082 14 228	6 54	12 13-00 0	.6 12 770
	1091 -	5079517 490475	YY4340005434342 32F	3 3011 9 6.5412	24BFP DRBR	2582 12 228	8 48	20 1136 0	0.8 10 930
	1092	5079517 490476	YY4840005434295 82E	13 2811 9 6.2412	24BEP DB38	3552 12 125	4 50	14 1653 6	1.4 12 960
,	1003	5.370517 103177	VV4240008444042 025	12 2211 0 4 24 12	2/250 0000	2602 16 16 6	3 34	10 1000	
	1095	5577717 493477	114340000434243 828	2016 9 0.2412	240FF UNDS	3002 14 143	2 20	10 1650 0	140 10 720
	1094	5079517 490478	YY4840005434195 825)3 281L 9 6.3 412	248EP ORBR	2052 12 115	2 42	8 984 0	0.6 15 930
	1095	5079517 490479	YY4840005434145 82F	03 5811 9 6.1412	24BEP GR88	2582 12	2 23	10 1136 0	0.4 15 780
	1096	5170517 490480	YYA 340005434096 325	13 5811 9 5 5412	24BUB MBD	3057 12 85	2 48	20 632	1.6 12 860
	1000	5 3 7 3 1 7 3 4 0 3 4 0 3	V111940005434075 025		24050 0050				
	1047	5 1 19 17 49 04 52	114040002424042 3271	12 241C A D. (415	Z45FP OF5K	2025 15 172	2 20	20 646 0	DAS TS LAO
	1098	5079517 490483	YY4340005434000 82E	03 291L 9 5.8 412	24BEP ORBR	1052 13 12W	2 28	6 298 0	0.6 0 600
	1099	5079517 490484	YY4340005433952 32F)3 391L 9B 6.0 412	248FP 32208 88	3542 14 24W	2 44	22 760 0	.4 2 750
	1100	5070517 400485	Y4340015433901 825	13 3011 0 6 1612	24850 0989	1152 12 2414	1 14	2 96 0	0.2 0 910
	1100	507011 470405				1052 12 24%		2 0(3)	
	1131	50/9517 490486	YY14540035433852 82F	J3 391L 9 6.3412	248-P CFBR	1925 15 25 M	1 30	6 160 0	I.4 0 690
	1102	5079517 490487	YY4340005433801 82F	J3 391L 9 6.2 412	248FP OPBR	15S2 12 26W	1 14	6 106 (0.2 0 520
	1103	5079517 422483	Y14840005433752 82F	03 3911 9 6.1412	248FP DRBR	1052 12 30W	1 18	4 120 0	0 780
	1104	5070517 400480	VY4840005433715 825	13 1011 0 6 1412	24850 0088	3052 14 120	1 34	12 604	3 4 3 453
	1107	500017 490404						12 004 0	
	1103	-50/9517 490490	Y 14540005433654 82F	J3 2916 9P 6•3 +12	248FP3220F8F	2552 14 16W	1 28	20 820 0	J.8 0 650
	1106	5079517 *490491	YY4840005433603 82F	J3 291L 9 6.4412	24BEP OBBR	6542 12 12W	1 18	36 472 0).4 0 730
	1107	5070517 #490492	YY4340025433603 82F	13 2911 9 6.6412	2485P 0888	6542 12 12W	1 28	48 600 (0.2 0 740
	1100	5070517 400403	VV/JD204E/JEE05 C2E	11 2011 0 (2112			3 12/	74 404 4	
	1106	2019217 490493	114033433435283 827	J3 301L 9 0.2412	<u>24588</u> UPOK	3552 12 215	6 154	34 424 (0.0 2 1020
	1109	5 0 7 9 5 1 7 4 9 0 4 9 4	YY 483395 5435630 82F	D3 191L 9 5•4≙∵	248EP CRBR	75H2 14 12 S	2 72	720 900 6	a 2 0 1030
	1110	5079517 490495	YY4333955435680 82 F)3 291L 9 6.0412	24BEP OPBR	3552 11 16N	1 52	20 436 0	0.6 0 650
	1111	5079517 493496	YY4833935435730 925	13 2011 9 5. 8412	2485P CRBR	3552 12 18N	1 50	14 210 1	1.2 0 780
	1117	5070517 400407	VV/022006/25700 225	32 2011 0 5 4412	2/050 00 80		1 20	22 240 /	
	1112	5079517 490497	1 14055905457780 825	JJ JV16 9 D+4912	240FF UNDR	20A2 10 22N	1 00	22 200 1	0.4 10 720
	1113	50 79 517 493493	Y14833985435830 82P	03 391L 9 5•9 412	243FP DEBR	2552 11 23N	2 200	16 608 0	0.6 10 820
	1114	5079517 490499	YY4834005435830 82F	33 391L 9 6.2412	248FP OBBR	3052 12 24 N	1 42	12 396 (0.4 2 550
	1115	5079517 490500	Y148340 35435930 32E	13 3911 986.0612	248523220888	3552 12 32N	4 294	20 372	1.6 10 680
	1116	5 370517 403531	VY4834005435680 925	13 2011 0 6 11:12	24860 0990	2052 12 21 1	1 42	30 846 (2 - 2 - 5 + 0
	1110		1314034000400360000		24012 0505		1 72	00 840	
	1117	50(9517 490502	YY 4834005436029 82F	J3 391L 9 5.8412	ZABEP URBR	2552 13 21N	1 20	30 350 0	1.2 2 630
	1118	5079517 490503	YY 433400(5436030 (82 P	33[2911 9 6.0412	24BEP ORBR	1082 14 20N	1 28	42 534 (J.Z 10 530
	1119	5079517 490504	YY4333955433990 825	J3 291L 9 5.9412	248FP LORBR	1082 12 125	1 48	12 196 (0.2 0 740
	1120	5 170517 400505	VV4833955433940 82E	13 4011 9 6 0412	24850 0582	1052 11 105	2 28	14 340	1.6 0 560
	1120						2 20	16 200	
	1121	5019517 490506	Y14033403433043 82F	J3 471L 9 D. 0+12	24 FP LURBR	1052 12 105	1 2 32	10 240	0.2 3 100
	1122	5079517 490507	YY 483396 5433840 82F	J3 491L 9 6.1412	248FP ORGRAY	' 1052 11 11S	2 48	14 630 (0.8 Z 900
	1123	5079517 490508	YY4333975433790 82F	13 391L 9 6.3412	248FP DRGRAY	1032 12 215	2 58	32 426	0.2 2 900
	1124	5079517 402512	YY4833365433750 82F	3 7911 9 6.1412	248FP ORBR	552 11 85	1 24	12 328	0.8 2 610
	1107	F070617 (03010	111000000000000000000000000000000000000	13 7711 0 6 261	24850 0080	502 11 100	1 22	1/ 1/2	
	1125	5009517 490511	YY4833900433693 32F	J.3 11LL 9 0.5412	ZANEP USBR	5H2 11 105	1 22	14 302 0	2 0 3 0
	1126	5079517 490512	YY4334005433640 82F	3 6916 9 6.2412	248EP ORBR	1052 11 105	1 22	14 320 4	J.Z 0 620
	-1127	5079517 #490513	YY4834005433591 82F	J3 291M 9 5.9412	248FP OPBR	35B2 11 12N	1 32	16 246 (0.2 0 680
	1128	5070517 4400514	XX4834005433521 925	13 291N 9 5.6412	24BEP CRBR	3082 11 12N	1 20	12 318	0.2 0.590
	1120		VV/03//66/22500 025		3/050 ODan	2010 12 214	1 1 10	77 210 /	
	1153	515064 1156105	114024422422290 025	12 271 2 D. 0412	ZADEP UNDA	2032 12 251	1 40	22 510	0 120
	1130	5079517 490516	YY483500 5433590 82F	03 75IL 9 6.0412	ZABEP OPSR	1552 10 8W	1 20	15 438 v	J.4 U 63U
	1131	5079517 490517	YY4835455433590 82F)3 791L 9 5.8412	208FP LCRBR	582 11 8W	1 30	16 490 (0.2 0 560
	1132	5016517 400519	YY4336005433500 92=	11 7611 0 4 1412	24REP DRRP	582 11 99	1 24	· 20 24R	1.2 0 850
			117000000000000000000000000000000000000					50 670 V	
·	1133	2014011 490219	TTHO 36400433590 82F	13 14TF A 0.1415	240FP UPBR	202 11 11W	1 24	20 004 0	J.4 U 6/U
	1134	5079517 490520	YY4837005433590 82F	3 291L 9 5.941?	ZABMB MBR	55B2 11 12W	1 24	14 520 3	5.Z 0 660
	1135	5079517 490521	YY4837455433590 82P	13 291L 9 6.0412	24BEP OPBR Y	2052 12 16W	1 23	12 182 0	D.Z 0 700
	1136	5079517 400522	YY4838005433521 82E	13 2011 9 4.4412	248EP ORRE	45A2 12 20W	1 22	30 300	0.2 0 660
	1133	5070617 V00500	VV/030765/33600 035		3/850 00004V	2 1 C 2 C 2 C C C C C C C C C C C C C C	1 4 4 2	10 500 0	
	1157	5074517 490523	114020120422290 024	23 271L Y 0 • 3/+12		2036 16 10W	1 4 42	12 240 5	
	1138	5 179517 490524	YY4836905435482 92F	33 341L 99 6.2412	243893220880	60A2 13 21S	4 44	22 1160 V	J.B 0 640
	1139	5079517 490525	YY4336965435380 82F	3 2416 9 6.0412	24BEP DRBR	45A 2 15 20S	2 94	30 2060 3	3.4 0 830
	1140	5079517 400627	YY4336985435178 025	13 3411 905 9412	248603220988	25.50 15 014	1 2 60	10 12:00	
	L X 737		· · · · · · · · · · · · · · · · · · ·						

٦.

 \tilde{n}

þ

j,

2

2

)

3

۹. ۲

Э

ş

<u>;</u>•

2

þ

2

1
	COTOCIT	Lancha	WW ON OF CARDON	rancan and	a bernitan	area to take		the Acres	1 2	- · ·			
1141	2010211	490528	1140309012435085	82403 2810	9 9 1412	24359 0889	K 2052	14 ZUW	2	34	18 2900	0.4	0 770
1142	5079517	490529	-YY433695 5484779	82503 2411	9 5.8412	24BMB LBR	GRA 20B2	15 16 SW	8	70	14 1116	1.0	0 1100
1143	5079517	490530	YY4336955434881	82503 3811	9 5.8412	24860 028	2 3552	18 220	4	40	34 1280	0.8	0 400
1144	5070517	400531	VV4936965434787	92503 3011	0.05 24.12	24050222000		304370	1 2 -		22 1200	0.0	0 090
1144	5 0705 17	490991		02100 0910	004 04 14		< <u>)</u>), 2	204244	0	24	22 1280	0.5	0 620
1145	50/19517	490532	YYH835995434675	182-03 381L	996.0412	248FP322083	R 65A2	18 ZIW	1 10	54	18 1022	1.1	10 470
1146	5 179517	490533	YY4837005434582	82F03 281L	9 5.8412	24BEP CRBI	R 40S2	16 12 5	4	28	30 1014	0.3	10 620
1147	5070517	490534	YY4337005434483	82503 3911	9 6.4412	2485P DER	9 4542	17 225		36	22 1306		6 6 1 1
1.0	5070517	400525	VV/ 237325/2/295	1025 32 2011	0 4 34 3	34950 099	1 0.140	17 535		00		1 1	
1 1 4 3	50/1917	490555	1140575254545555	CKF J3 541L	9 0.0412	24558 685	K 8042	11 205	1 18	98	58 3640	1.0	10 450
1149	5019517	490536	YY4337075434275	32F03 241L	986.6412	248FP3220P8	R 55A2	25≄20S	8	76	20 698	1.2	15 590
1150	5079517	490537	YY4337065434195	82503 291L	9 5.9412	24BEP DEBI	R 2052	16 135	2	40	22 1290	0.6	20 570
1151	5079517	490538	YY4337085434087	82F02 2911	9 6.1412	24869 ORBI	3 40P2	16 185	4	44	28 1120	0.6	5 59.1
1157	5070517	110.0520	VVV. 927105424010	02502 2011	0 1 1/412	34950 000	1000	17 70		2.2	16 026	^ n	
1172		490339	114537105434010	02003 2910	9 0 . 44 12	CHOPP LIND	ನ ವಿಭಾಷ	. 14 73		52	10 924	U • 0	6 4hU
1123	50/9517	490540	YY4337095433943	132-03 291L	9 6.2412	24BFP CFR	R Z082	11 8 S	2	42	22 825	0.8	5 620
1154	5079517	490542	YY4837105433765	82F03 791L	9 5.4412	2485P LOR	3R 3082	14 95	2	26	12 553	0.2	80 560
1155	5079517	490543	YY4344255434472	82F03 281L	9 6 . 2412	2485P C28	R 3052	11 145	1 1	32	20 816	0.4	15 540
1156	5 1735 17	49.3545	NV4844348434280	1825/12 2011	0 6 1612	24963 009	. 2002	12 200		26	10 510	0 /	0 540
1100		470747			7 0 1712	2.40°°° UNO	N 2062	16 6.0 W	4	50	12 200	U • 4	0 540
1157	50/9517	490546	YY484431543433J	82703 281L	9 6.2412	ZABEP ORBI	R 3552	. 17 14W	6	50	22 636	0.4	20 740
1153	5079517	490547	YY 484431 5434280	32F 33 291L	9 6.2412	243M8 M8R	- 3552	1.18 14W	6	52	14 532	0.4	20 730
1159	5 0795 17	490548	YY4844365434252	82FJ3 291L	9 6.2412	24859322058	3052	12 16W	3	40	16 7.00	3.2	15 660
1160	5 07 0 5 1 7	400550	YV4944316434205	92 513 2911	4 5 9412	24952 0991		1 1 1 1 1 1 1	1	1. 4	16 276	0 1	E 910
1100	5 N/0 5 1 7	40050		02:03 2710						40	10 570	0.4	
1151	119010	490551	- 114344292424272	65603 211C	940.4412	245-2315UPR	- 2082 	15 25 N	2	34	14 1340	0.4	20 630
1162	5 0796 17	490552	YY4844395434130	82503 3911.	90/5.9412	249593150931	R 2.0A.2	15 26N	S	50	12 720	ა.8	10 620
1163	5079517	490553	YY4344395434080	82F03 391L	9 6.2412	24BEP ORB	R 4082	15 28N	2	32	12 244	J. 4	5 520
1166	5070517	490554	VV4844275424038	82503 2011	076 1412	248=0322000		12 29 1	1 1	20	12 2/0	0 6	5 5
1104	5070517	1400004	1140440104020		0001412	24007 022040	· · · · · · · · · · · · · · · · · · ·	12 204		20	12 2.40	0.01	
1165	2012211	490555	114844435433992	32103 291L	940+1412	248FP 3220P8	<. 1522	2 12 12N	1	32	8 244	0.2	0 600
1166	5079517	490556	YYJ43444U5433950	82FJ3 191L	9 6.3412	24BFP OPB	R 2052	11 105	1	24	12 398	0.2	0 480
1167	5079517	490557	YY4844405433900	82F03 291L	9 6.0412	24562 0851	2552	12 128	1 1	24	100 1026	0.4	0 520
1168	5079517	490558	YY4344415433855	92 503 3911	9 6.3412	243EP CRB	3 3 5 5 2	2 11 22N	1	28	24 270	0.2	0 610
1160	5070517	1.03550	VV4044415433910	62603 2011	0 6 2612	24850 058	ຸ່ມ ວິຍິຍິຍິມ	12 200		26	14 340	1 0	5 570
1137		490000	114944419499910		9 0 0 0 7 1 2	24012 020	1 1 0 0 2			20	14 340	1.0	
1170	5 3/ 95 1 7	490560	YY4344435433750	82503 291L	9 0.4412	245FP URB	< 3025	11 14W		26	14 222	0.2	2 530
1171	5079517	490551	YY434445433714	82FJ3 291L	9 6.7412	24BEP ORB	R 2052	2 11 14W	2	24	36 300	0.2	10 500
1172	5 3 7 9 5 1 7	493562	YY4844475433665	82F03 291L	9 6.4412	2485P 088	R 2042	11 20W	2	22	16 202	0.2	5 460
1173	5079517	490563	YY4344495433631	82=13 2011	9 6.2412	243EP 088	2 2552	V 11 16W	2	24	14 134	0.2	5 500
117/	5 170 5 17	470501	VV(2/10// 10// 22//2	025 32 2011		1/0F0 000			1 .	24	1/ 220	0.0	10 50
11/4	5 J195 I (1441204	114841012433043	102PU3 291L	9 10 . 4412	ZAPLA CKP	K 2227	11 12W	1	30	14 208	0.2	10 200
1175	5 ()795 1 7	493565	YY 4341895433653	182F03 291C	9 5.9412	248FP DF8	R 1052	2 11 8N	1	30	10 274	0 • S	5 500
1176	5079517	490565	YY4841835433740	22F03 291L	9 6.1412	248FP 322088	R 2.5H2	2 11 16W	1	28	24 534	0.4	0 540
1177	5 279 517	493567	YY4841825433792	82F03 391L	9 6.1412	248MB MBR	SEH 40HZ	25 24 N	10	48	10 448	0.2	2 830
1179	5070517	400548	VY4341835433840	82503 2011	0 5 8412	24852 098	2 1502	8 201	1 ,	1.4	4 96	11 2	0 550
1170	5070517	470505	114041020400040	02103 2011	000 1012		· · · · · · · · · · · · · · · · · · ·			20	7 90	V. C	5 550
1119	דו כוידוניכ	440569	YY4041845453890	32FU3 3911	940.1412	24857322088	K 2082	2 11121W	1	20	5 152	0.2	5 610
1180	50 79 517	490573	YY4841805433940	82F03 391L	9 6. 2412	248FP CRB	R 30S2	10 24W	1	20	6 138	U • 2	5 620
1181	5079517	490571	YY4841805433990	82FJ3 391L	986.1412	24852322028	R 2542	2 11 32N	1	32	10 340	0.2	0 670
1182	5 0 7 9 5 1 7	490572	YY4841805434035	82F03 291L	985.9412	248EP3220RB	R 30H2	2 12 20W	1	26	12 538	0.2	8 550
1183	5079517	490573	YY48417854340.90	82533 5511	9 6. 2412	24350 OF8	2 3083	> 12	lī	30	14 794	0.2	0 640
1100		100570	VV/3/1765/2/126	02502 5011	0 6 1/12	2/0ED 000			1	50	14 014	0.0	3 2 2 4
1154	20/321/	1490375	1111041(10404100	102 FU3 1991L	9 0 . 1412		K 2002		2	22	14 510	0.5	2 040
1185	50 79 517	493576	YY 4841755434185	82F03 291L	9 6.2412	248F 088	R 3JA2	15 105	I I	36	28 490	Q.4	30 FIO
1186	5079517	490577	YY4841505435520	32FJ3 271L	9 5.5412	2485P DR8	R 30S2	2 15 14W	2	20	26 700	0.4	0 510
1127	5070517	49.0578	YY4861515435470	82E33 2711	9 6.0412	24868 088	8 1052	14 14W	4	28	20 2080	0.6	0 610
1100	5000517	105570	VV/ 0/1505/25/10	02512 2711	0 5 5412	34959 000	- 1600 - 7513		4	20	16 2380	0 1	0 660
1133	5000000	490519	114541525455410	021 33 2110	9 20 24 12			17 19 1	0	20	14 2000	U • ' +	0 .00
1139	5079-17	490580	YYA341555435370	82103 3416	9 5.9412	24859 GRB	R 55H2	21 28W	8	32	26 2120	0.4	0 600
1190	50部部に17	490581	YYA841585435319	82F03 371L	9 5.5412	263FP 088	२ २.३८२	20 30W	4	32	12 4500	0.2	0 640
1191	5079517	490582	YY4341605435270	82F73 271L	9 5.7412	248FP ORB	R 1052	2 15 22W	10	56	16 5900	0.2	5 730
1102	5079517	49115 23	VY4841605435220	82 F.13 2711	9 5.9412	24850 OPA	8 2083	15 2014	4	36	12 3300	2.4	15 750
1176	201121211 6 5 7 6 6 5 7	100000	00/0/1/00/100220	01633 3/11	0 5 6 1 1 2	34859 000				20	26 1000	N 1	
1163	53/951/	1450584	TT#841032435170	02-03 3416	7 5.5412	CHOPP CEB	x 2224	10 22W	0	40	20 1590	V • *	0 010
1194	5079517	490585	YYA341655435120	82F03 271L	9 15 9 9 4 1 2	ZABEP ORS	R 15SZ	2 15 8W	4	30	14 1650	0.4	0 610
1195	5079517	490586	YY4341605435070	92F03 271L	9 5.3/12	20REP DR3	R 40A2	2 14 12W	4	48	20 920	J. 2	5 660
1194	5170517	493587	YY4941705435120	182F03 2511	9 5.4412	24BEP DOR	a 2552	20 12W	4	3.5	4 593	3-4	20 920
1107	6070517	LADALOO	VV4941744434071	97607 2011	0 5 3612	24880 000) titer) 15 160	2	31	12 10/0	0 K	10 670
1197	• <u>207211</u>	117.00 08		har a lane		- ETF 21 P - 3125-151 - 57.000 0 - 5005	· L/20	. The trial		24	16 1703	V • Q	10 210
1168	50/79/517	490539	YY454115434920	122223 211C	V 0.2912	マイガドヤー 口RB	K ZDAS	2 15 I4W	.4	6 J	8 1872	8.4	4J I010
1199	5079517	493593	YY4841785434374	82F03 271L	9 5.5412	24BEP OFB	e 15sa	2 12 165	3	44	10 2360	0.6	70 940
1200	5079517	490591	YY'A34180 5434224	22513 2711	cish a a	27920 000	n 100-	1 1 1 1 1 1	•	~ ·	· • • · · ·		

1201	5079517	1490592	YY 4841815434773	32F03 271	9 5.5412	24888	ORBR	3052	15 105	4	48	8 620	0.2	5 660
1202	5079517	490593	YY4341825434725	82F03 341	L 9P5.0412	20882322	ORBR	6 OH 2	15 21S	4	48	26 473	0.6	0 650
1203	5079517	490594	YY4841812434575	82503 341	L 9P6.0412	248MP322	DBR	45A2	15 22S	6	62	12 376	0.3	0 780
1204	5079517	40.35.95	YY4841825434625	32F03 341	995.9412	208FP 323	0288	55A2	16 32 S	10	83	14 940	0.6	5 9.00
1205	5079517	+20595	YY4841855434575	82 F03 341	L 9P6.0412	200FP322	OR BB	2042	15 325	14	100	26 1140	2.6	0 740
1206	5079517	493597	YY4841855434526	82F33 381	9 6.2412	2485P	0583	3082	15 225	2	32	10 1250	0.6	0 610
1207	5079517	490598	YY4841905434472	82503 341	9 5.9612	24950	DP BR	2052	15 235	4	72	8 1040	0.6	0 823
1208	5079517	490599	YY4841905434425	82E03 341	9PK.0412	24960322	0232	4532	15 265	6	04	24 2740	0.6	0 020
1210	5070517	490501	VV4841005434325	32507 201	0 6 3612	24350	npap	15.42	16 185		52	16 1270	0.0	0 7/0
1210	5 0 7 9 5 1 7	400502	YY4841055434275	32 53 3 291	0 5 04 12	24850	0000	1762	15 145		64	20 040	0.0	0 740
1210	5 37 05 17	* 40.36.03	VV4241055424275	182502 401		24066	0000	1000	15 195	1 7	4.0	20 900	0 4	0 750
1213	5 370517	+403636	VV/0/1055/3/225	02103 491	-9 p_{-9} $p_{1/2}$	24055	0000	202	1/ 05	2	60	10 120	0.4	0 750
1212	5070517	403605	- + + + + + + + + + + + + + + + + + + +	02503 491		20055		2002.	14 05	14	40	0 544 20 7 00	0.44	100
1213	5079517	450505	114000000409800	182F05 141		24859	DEPK	2052	10 104	1 1	44	22 100	0.2	195 670
1214	50/19517	490005	T 14366499439850	02-03 141		24351	UK BK	25/2	14 184	4	44	28 600	0.2	15 560
1215	50/9517	490607	Y Y14966055439850	32503 241	412	24359	OR BR	1042	14 18W		50	234 1740	0.2	0 1900
1216	50/9517	4905-08	YY4865655437851	82-03 241	L 9 5 • 9412	24652	- ER	2082	17 16W	8	96	98 1625	2.6	20 1200
1217	5 2795 17	490509	YY 4865295435852	82803 241	9 5.1412	24850	OB B R	2082	10 15 W	8	72	54 1140	0.Z	15 970
1218	5079517	490510	YY 485489 5439853	82F03 281	L 9P16.71412	248FP 322	CR BR	15A 2 -	15 14W	1	52	282 1260	0.2	0 2100
1219	5079517	493611	YY 4864495439850	82503 281	L 9 5.2412	248FP	CPBR	1082	14 12W	2	80	52 940	0.4	15 970
1220	5 07 95 17	49)612	YY4864005439850	82F03 281	L 9 5.7412	24BFP	CE B R	2582	17 8W	4	52	30 1080	0.2	2 920
1221	5079517	490513	YY4863525439852	32F03 281	L 9 5.2412	248FP	ORBR	2082	15 8W -	4	50	24 300	2.6	0 660
1222	5079517	490614	YY4863025431852	32F03 281	L 9P5.3412	20859322	CFSR	2542	16 18W	14	90	22 420	2.3	0 830
1223	5079517	490615	YY4362575439352	82703 381	L 9 4.4412	24852	OPBR	1052	16 22 N	6	84	26 3 20	1.0	0 760
1224	5079517	490615	YY4862605439800	82F03 781	L 9 5.3412	24882	<u>ORBR</u>	3352	12 4S	4	83	28 700	2.4	0 960
1225	5 3 7 9 5 1 7	490517	YY4862705439750	82F03 781	L 9 5.1412	2485 P	ORBR	3082	15 55	2	80	34 680	0.4	5 860
1226	5079517	490613	YY43627454397J1	82FU3 781	L 9 5.4412	248FP	DRAR	1052	15 4S	2	68	54 620	1.8	2 1350
1227	5079517	490619	YY4362805439651	82FD3 281	L 995.1412	24 BFP322	OF BR	2352	16 10 5	2	52	40 720	1.8	0 1000
1228	5079517	49 16 20	YY4852855439605	82F03 281	9P5.3412	24BEP 322	OF BR	1552	18 195	2	72	34 920	1.2	2 1100
1229	5079517	490621	YY4862915434553	82 503 301	9 5 5412	24850	OBBB	1 182	17 215	1	72	46 900	0.4	5 1050
1230	5079517	490622	YY4862995439506	82503 341	9 5.0412	24850	08.89	1052	16 22 W	4	115	24 1140	1.8	0 1400
1231	5070517	490623	Y 14863015439457	82503 281	0 5 7412	24848	NBBUB	1052	10 151	6	80	24 920	2.0	15 1500
1232	5070517	490624	VY4863105639406	82503 281	1 0 6 3612	24850	0080	15/2	17 145	2	166	30 1040	2.0	25 050
1233	5070517	40.36.25	YV4863136420352	925 33 281	0 6 3412	2401 0	0000	2052	12 22 1	2	40	34 560	1.0	20 930
1233	5070517	490525	VM49632366430336	0203301	0 5 1412	24000	0803	2002	10 220	2	100	26 1080	0.0	15 1400
1224	5079517	490020	VV4943366430367	625 12 201		20055	0000	2042 A 182	16 226	2	200	26 1050	.1 2	10,1300
1200	5070517	490021	VV/242266/20207	02503 201	$1 9 3 \cdot 3412$	20055		7512	20 245	2	120	20 100	1.4 6	5 1500
1220	5079517	490025	YVA0A3A0EA301E3	02803 391	1 4 5 3412	24055		1500	20 245	2	120	28 000	V•0 / /	21200
1227	5079517	490029	VV/ 04 24 45 4 201 0 0	02533 291	103.3412	24952	CROR .	2062	10 10W		20	42 1200	4.4	20 950
1220	5079517	1900 50	- 1 1408 34 35 4 5 9 1 0 8	02203 291		249558	0000	2022	11 100	2	50	, 62 000	1.0	25 723
1259	5079517	4900001	1 14863515439000	02003 391	$L = 9 = 2 \cdot 24 \cdot 12$	24552	0003	2022	10 445	4	44	92 000	0.4	25 (20
1240	50/9517	499052	Y 14863585439010	02F03 391		24557	0385	4082	15 255	2	54	106 600	0.4	15 840
1241	5079517	490533	YY4863695438961	82F03 391		24862481		ZJAZ	20 285	· 2	40	212 360	0.42	15 900
1242	50/9517	490534	YY4863705436910	82 FO 3 391	L 995.6412	24352481	UKBY	2022	20 255		28	92 640	0.2	0 690
1243	5079517	490535	YY43637 45438862	82803 391	L 9P5.6412	24859481	DRBR	3052	22 265	2	36	94 520	0.2	10 700
1244	5079517	490636	YY4863825433815	82F03 391	L 9P5.5412	208FP481	ORBR	1552	25 24 S	2	28	52 600	0.Z	15 710
1245	5079517	490637	YY 486388 5438766	82F03 391	L 996.0412	24848481	OFBRGR	1582	24 24S	6	56	52 840	0.2	10 720
1246	5 3 7 9 5 1 7	490633	YY 4863945438715	82F03 391	L 995.7412	2435P481	CRBR	4382	23 23 5	2	20	28 540	0.2	0 580
1247	5079517	490639	YY4864005438670	32F03 391	L 995.0412	2486P481	LOPBR	1552	27 28W	4	.40	42 280	0.2	15 780
1248	5079517	490640	YY4864065439617	82F03 391	L 985.5412	2085 P481	OPBR	882	20 22S	2	56	72 540	0.2	20 760
1249	5079517	490642	YY4364205438511	82F03 391	L 996.0412	248=P481	DRBR	3552	20 225	2	44	58 420	0.2	0 680
1250	5079517	490543	YY4864235438468	32 F03 391	L 986.0412	249FP481	CRBR	1552	18 225	2	56	46 520	0.2	10 750
1251	5079517	490644	YY4864295438419	82F03 391	L 9 5.5412	243FP	ORBR	1082	17 24S	2	52	62 860	0.2	15 670
1252	5079517	*490645	YY4864375438368	32FJ3 391	L 9 5.6412	24850	DRBR	1052	16 22 SE	2	48	52 640	0.2	5 720
1253	5079517	*49)646	YY4864375438368	82F03 391	L 9 5.3412	2435P	ORBR	1502	17 22 55	2	40	48 780	0.2	10 700
1254	6 379 517	460162	YY 4361455433605	82503 321	L 895.8420	30848	MBR	204	32 S W	2	16	68 146	0.2	0 500
1255	6079517	460211	YY4844425436079	82703 391	L 895.9420	305MB	MBR	404	39 K	36	440	70 1240	7.8	5 900
1256	6079517	460212	YY4844415436120	82F 33 391	L 586.0420	30848	MBR	2 J A	37 W	10	216	26 1480	5.0	30 820
1257	6079517	463377	YY4533955434436	82F03 3F1	L 896.1420	30348	MBR	5012	22 30 %	14	55	52 1660	1.0	0 660
1258	6079517	46.03.78	YY48 3395 54 343 84	82 F03 3F1	826.2420	338MB	MBR	3012	17 2554	14	56	40 1400	1.4	0 750
1259	6079517	4633.79	YY4833965434235	82F03 3F1	BP6-3420	30844	MPR	2342	15 3154	14	54	26 13.30	1.4	0 430
1240	4 1 7 0 5 1 7	469217	VV/427/55/24222	12012 201	001 2420	20200	Vnn	1.34.5	10 00 0	- ' -			•••	

١

3

÷

٩,

٩,

ĥ

1

à

;

1261	6079517	460448	YY4839905435980	182F031391L	30,6.3425	35 BMB	DBR	1042	15	42 W	2	140	22	286	1.8	0	1500
1262	6 070517	44.2452	YY4839906435880	82E03 291L	826.0425	353FP	PB	1842	20	34 NW	8	38	22	1260	1.5	10	500
1262	6.070517	460450	YY4839905435830	82503 3911	8 P5 . 94 35	45BMB	LBR	50A2	20	40 NW	18	80	20	1560	3.4	5	520
1200	6070517	400433	VY4847125433925	82503 3811	825.5312	243FP	3220F 88	DEUSZ	10	324	580	164037	000	90 00	10.8	800	970
1204	0019517	4 9 0 7 0 9	VVA3AAA05A35985	82503 3011	8 95 . 74 30	40848	LBR	124		42 NW	4	46	18	1340	1.6	o	380
1205	5219511	400209	114017755434369	225.33 2011	0.014.12	24840	322PL GR	704		27N	8	112	16	2070	3.9	10	900
1266	62/9517	490133	Y 148475554565555	32=02 371	005 0412	24PMB	372 M88	704		2 (N	4	56	62	2660	0.7	10	640
1257	62/9917	440134	114047333430400	0200000000	006 2612	24 BM B	322088	70H2	12	215	2	24	54	208	0.2	10	620
1268	62/9517	490295	114841409435526	62503 3011	004 4412	27010	2220080	7042	18	225	l g	92	46	2820	2.2	0	015
1269	52791517	493633	YY 48419U5434375	[82FU3]301C	250.4415	220558	JEE OF ON	10112	10							·	• • •
END OF	FTI F																

T=0.445 DR=1 \$1.53, \$3.78T

APPENDIX 5

Trace Element Data for Rock Chip Samples.

÷		•			-						•	TRACE	ELEME	NT ANAI	LYSIS			
	щ	•	K 1 - 1						· ·	а ў .	•		(P	PM)				
	i s i	SAMPLE	SAMPLE COORD.							• •	· _		•	•		· · .		
	PRC PRC	NUMBER	EAST NORTH	N.T.S.						Mo	Cu	₽b`	Zn	Ag	Sn	W	F	Au (pp
	8179517	470001	YY48497554355857	82E03 34	448 1	GY32	83	Mav	440		36	10	0.0					
	8179517	470004	YY4849105435415	82F03 34	238	DGY43		nor	411		24	10	100	0.2		0	710	
	8179517	470005	YY4849105435415	82F03 44	448 1	GY	1209065N	NUL	744 494 7		20	7	152	0.2		0	860	
	8179517	470006	YY4848455435380	82F03 41	236 4	MBK 32	130507055	<u> </u>	2220	k			20	<u> </u>		<u>v</u>	1200	20
1	8179517	470008	YY4846856435435	82503 34	236 1	MPRAZ	8217075NE	DDK	2220	14	28	8	160	0.2		0	1900	20
	8179517	470009	YY4848655435580	82F03 23	236	MAK 52	332325655	DBK	2226 6368	74	<u></u>	*	70	0.2		0	1800	10
	8179517	470010	YY4847705435550	82F03 31	236 0	DGY52	B202000 13028505E	MAK	4740		24		170	0.2			410	30
	8179517	470011	YY4847605435600	82F03 34	448 1	GY32	B202000	MCV	47246	~	274	7	120	0.2		2	000	
	8179517	470012	YY484760543560C	82F 03 31	234 [00843	830426856	MWH	4268	74	210	*	1320	0.2		120	0000	10
	8179517	470014	YY4846855435580	82F03 31	234	RB42	8305245SE		474	28	20	<u>-</u>	<u> </u>	<u></u>		<u>0</u>	1400	10
ı.	8179517	470015	YY4846855435590	82F03 31	234	M0852	8302850F	MBK	424	6	64	2	276	0.2		42	7000	10
	8179517	470016	YY4847555435620	82F 03 41	236 0	DG Y43	8303030SF	MBK	424	24	12	2	210	0.2		50	4400	TU
	8179517	470017	YY4849505435580	82F03 44	236 [DGY54		DBK	424	16	24	4	<u></u>	<u> </u>		16	1400	20
	8179517	470018	YY4845605435455	82F03 36	446 0	DGY53	83 03 02 0W	DBK	424	14	24	7	140	0.2		12	1100	20
	8179517	470019	YY4844905435395	_82F03 33	236 D	DG Y 54	3 02550SE	MDK	474	18	28	2	148	0.2		16	1000	
	8179517	4700Z0	YY4844505435345	82F03 43	444 T	00832	82030155W1202030N	MGY	4161	6	168	2	1618	0.2	<u></u>	9001	3000	
	8179517	470021	YY4839055435255	82F 03 31	236 M	MBK33	8305576NW1307119SE	MBK	3210	24	76	10	348	0.6		5	1050	10
· _	8179517	470022	YY4844805435225	82F03 34	246 M	IBK 5		MBK	450M	12	10	2	22	0-4		ō	265	1
	8179517	470023	¥Y484370543507C	82F03 32	236 1	48K52	· · · · · · · · · · · · · · · · · · ·	MBK	424M	14	192	2	1250	0.2		160	4400	
	8179517	470024	YY4840555435530	82F03 32	236 H	18K42			424	32	104	2	388	1.0		10	1180	
		470025	YY483895543524C	82F03 34	246	48K43		LBK	312C	76	400	6	2180	3.0		0	6400	
	8179517	470026	YY4838755435220	82F03 43	246 N	BK53		MBK	424C	24	80	2	524	0.6		0	1170	
	8179517	470027	YY4837305434925	82F03 34	236				424C	14	36	- Ā	312	0.2		2	590	
	<u>8179517</u>	<u> 470028</u>	YM4836505435020	82F03 32	236 M	R 853		MBK	474A	10	84	ż	260	1.0		2	1480	

TRACE ELEMENT DATA FOR ROCK CHIP SAMPLES (LISTED BY SAMPLE TYPE and SAMPLER NUMBER)

b)

										'		
9170517	470020 WY4035155434	785 82502 22 224 804		-								
81 7951 7	470030 VV6934365634	103 02703 33 230 MBK 800 83503 33 344 DDV/3	· •	Mek	424	20	52 -	14	252	8.0	10 1150	•
8179517	470031 994832155434	515 82EN3 44 234 WARAA	and the second sec	MOM	424	14	32	18	56	5.4	. 0 420	
8179517	470037 114867005434	100 82F03 33 238 1 GY53	3310080N 13025555		3310	U 1			-318.		10_2050.	-
8179517	470038 YY4867005433	985 82F03 31 236 LGR52	3 04080SE	LGR	4400	2	6	A	36	0.2	0 970	10
8179517	470040 114867005433	750 82F03 33 236 MRB53	13030805E8301020E	MRB	315C	ž	ŭ	10	26	0.2	0 700	10
8179517	470041 YY4867305433	740 82F03 32 246 L8K43		MGY	426M	4	5	8	40	0.2	0 900	< 10 10
8079517	470042 YY4837705434	060 82F03 46 438 DBK42	:	DBK	424C	6	80	34	260	1.0	0 2500	10
8179517	470045 YY4847105436	<u>675 82F03 31 336 MWH33</u>		LWH	111E	8	11	6	90	0.2	0 720	10
8179517	470048 YY4841355435	715 82F03 43 246 DGY52	2 3304555\$E3308035\$.DBK	3225	22	80	10 1	1280	1.2	12 1400	-
8179517	470049 YY4841455435	765 82F03 43 236 DGY43	l 	мвк	3225	18	44	8	348	1.2	5 1550	
8079517	<u>470050 YY4841455435</u>	805 82F03 35 246 DRB	<u>1200515 EB3165055</u>	<u>DBK</u>	<u>322C</u>	4_	48	20	640	3.0	0 900	-
8179517	- 4/0051 ¥¥4841405435	865 82F03 33 236 DBK42	3303845SE	DBK	411	16	80	16	840	3.6	5 920	
9170517	470061 VV/847055/35	CDJ C2FUJ 42 246 UGY54 445 92503 43 344 19453	32100255W4313575NE	DBK	424	17	32	2	82	0.4	5 900	
8179517	470062 1146414995435	640 82E03 42 246 LDN33	81017155 1316520U		4246	20	<u>44</u>	Z		Q + Z	20 960	-
8179517	470070 ¥¥4844255434	505 82F03 36 448 LGV22	9 13125355W	Man	4204	10	64	2	372	0,4	10 2200	20
8179517	_ 470072 YY4844405434	135 82F03 32 446 DBK52		DBK	3220	14	26	2	1 04	0.2	15 700	3
8179517	470073 YY4844305434	360 82F03 33 448 LGY42	1306525SE	LGY	3150	1	6	10	22	0.2	0 470	-
8179517	470075 YY4844805433	910 82F03 37 446 DBK		DBK	3220	2	350284	00	118	62.0	5000 340	120
8179517	470076 YY4844805433	910 82F03 37 446 DBK		O BK	322C	6	214 55	00	232	10.4	20 4500	120
8179517	470078 YY4841805434	820 82F03	13060705W4214070NE	_	424	9	20	4	40	0.8	0 1650	-
8179517	470080 YY4848155434	675 82F03 32 236 MRB33	1304535SE3	MBK	4240	2	16	2	-10	0.2	0 610	
8179517	<u>470081 YY4848105434</u>	<u>665 82F03 32 238 LGY33</u>	1305040SE	<u> </u>	<u>315C</u>	1	14	2	30_	0.2	0 1450	
8179517	470082 YY4848205434	675 82F03 37 446 MRB32		MOB	1600	2	50	2	32	0.4	0 480	20
8179517	- 470083 1148483054340 - 470084 - 8848483054340	550 82F03 31 236 LRW33	1304565SE4303555NW	LRB	315	I	8	2	20	0.2	0 800	
B179517	470087 YY48485556434	175 92EA3 33 364 MGT46	220505055	MCT.	.4261	<u>.</u>	4	4	26	0.2.	0 490	
81 7951 7	470089 ¥¥4847455434	185 82603 36 441 MVR52	3205585NW	007	400A	1	12	8	294	0.2	· U /4U	••
8179517	470090 YY4846505434	745 82F03 33 246 D8K43	1306075NW	001 08K	3150	10	12	10	204	0.7	0 430	20
8179517	470091 YY4847405434	735 B2F03 31 448 LGY22	1305570NW13055855F	LGY	3150	<u>1</u>	<u> </u>	6	38	0.4	0 1820	•
8179517	470092 YY48461554344	485 82F03 31 236 MRB33	13044455 E4316290	MBK	315C	1	28	ž	16	0.6	0 940	
8179517	470093 YY48461554344	475 82F03 31 23 MWH 33	1304545 SE	MGY	315C	ī	12	6	22	0.2	25 640	
8179517	470094 ¥¥48462054344	415 82F03 33 236 MR833	1303055SE	MGY	315C	1	14	4	12	0. Ž	0 650	
8179517	470096 114856305436	625 82F03 35 446 DBR42	11110355	MBR	426G	40	132	12	80	0•Z	900 950	100
<u> </u>	<u>470098 YY48562054360</u>	560 82F03 45 236 DGY33		MGR	42.6G	320		2	70	0.2	325_2700	40
8179517	470100 YY4855805436	710 82F03 35 446 DBR33		MBR	426G	520	100	2	140	0.2	1000 5200	40
8179517	470101 YY48540554361	800 82F03 33 236 LWH33		LWH	1610	18	8	6	20	0.2	0 15 205	20
9170517	480001 1146515(5456	517 62F03 1 226 06Y3	10 7//0 4//0 0191	<u>_MPI_</u>	1110	1	14		24 .	0.2	2330_	
8179517	480002 FT48546454567 480003 VV4854575434	209 02703 3 220 MKD3 271 82603 4 224 MBD 22	12 1468 N42 9171 N	DBK	4246	22	36 -	4	154	0.2	2 680	
8179517	480005 YY4848875435/	629 82F03 ¥2 226 MGV3	13 77805	067	4248	2	40	2	32	0.2		
8179517	480006 YY48488754350	528 82F03 X3 226 LCR2	13 5866SF	LGY	421	1	32	2		0.2	0 1480	-
8179517	480007 YY48490154358	871 82F03 11 226 MGY3	12 6124SE4313781SW	MBK	424G	12	20	4	78	0.2	10 790	
8179517	480008 4448490754358	865 82F03 11 436 DGY3	14_43475F	DBK	422A	· · 1	20	4	250	0.2	70 1520	
8179517	480009 YY48485654359	15 82F03 23 226 MRB4	84 6460SE4117850 W	MGY	4118	12	12	2	344	0.2	70 2700	20
8179517	480011 YY48485754359	09 82F03 23 226 MOB4	12 22	WH	421	8	4	2	38	0.2	0 200	. 1 0
<u> </u>	<u>480013 YY48489354363</u>	347 82F03 31 226 MGY3	4211572 N4214657NE	DGY	4248	24	38	2	610	0.4	0 660	
8179517	480014 YY48492754346	36 82F03 43 226 MRB11	33 1670 E	DPU	4240	2	12	8	90	0.2	0 490	
	480015 1148492554346	522 82F03 43 226 MRB11	33 588 W33 2572 E	DPU	4240	2	12	10	102	0.2	2 450	
8170517	480018 VY4851016435	112 82503 1 236 MGY 2	35 32515EBZ TI10 S		4246		14		46	0• Z_	0_670_	
8179517	480019 974851705435	156 02703 1 230 MRD3 752 82603 8 334 D003	14 44 13 44405 6401 2002MC	MCA.	4210	4	34 380	*	20	0 0	0 470	10
8179517	480020 YY4852115435	154 82F03 6 436 MRR11	14 6241 SFR4 30265	MGY	3310	1	10	10	42	0.0	2 1340	20
8179517	480021 YY48528254359	22 82F03 4 53 LGY4	C3 2963 E4212282NF	DGY	424 R		26	10	92	0.2	2 680	
* 8179517	480022 1148528354360	37 82F03 2 226 MRB54	4211577 N11 3436SE	DGY	424	6	116	4	54	0.4	5 1080	
8179517	480023 YY48437954360	92 82F03 4 226 MOB3	_22_61505F	LGY	421	ī	28	2	36	0.4	5 560	10
8179517	480024 YY48538054360	98 82F03 4 226 LBR3	22 61505E	MGY	4240	2	32	6	64	0.4	0 1890	40
8179517	480025 YY48538254361	112 82F03 4 226 DGY3	12 3256SE	DGY	424C	22	62	2	148	0.2	5 900	
8179517	480026 9948538654361	46 97FA2 2 77 1 CV77	10 9480CE8911609 N	104	1.71		30	•				

8179517 480091 YY484009543391	1 82F03	2	13 6157SE	BK 424	12 24	8	124 0.4		0 880
8179517 480092 YY484010543391	1 82F03	. 22	13.4264SE	8K 424	18 12	12	16 0.2		0 230
8179517 480094 YY485739543655	8 82F03	<u>L</u> UQ_2	160	<u>1638</u>	1 60	6	80 0.4	V	2 900
8179517 480095 YY483677543548	2 82F03	226 DGY2	13 4749SE	BK 424	10 46	16 1	148 1.6		0 1400
8179517 480096 YY483698543479 8179517 480097 YY483711543428	2 82F03 1 82F03	DGV22	<u>12 1029 FB215429</u> 12 21765F3316171	<u>S BK 424</u> NF BK 424	<u> </u>	<u> </u>	<u>230 0.4</u> 124 0.4		<u>0 590</u>
8179517 480098 YY483709543363	3 82F03	DGY2	12 5370SE	BK 424	16 16	10 .	156 1.0	•	5 630
6179517 480099 YY484336543396	6 82F03	226 HCV2	12 404255	<u> </u>	4 1200	364023	500_23.0_	550 140	0_370 8
8179517 480100 11483393543519 8179517 480101 YY483694543596	3 82F03	226 MGY	12 5442SE	BK 424	2 66	22	80 0.6		0 4300
8179517 480102 YY484305543539	4 82F03	226 DGY2	12 3985SE4215480	NE BK 424	18 44	14	368_0.6		0 920
8179517 480103 YY484318543484	4 82F03	226 MGY2	1216468NE	MGY 4218	8 24	61	380 0.4	0 1	0 4100 2
8179517 480105 YY484339543395	7 82F03	226 MGY	13 95305	DGY 424	1 16		54 0.6		0 660
8179517 480106 YY484138543511	6 82F03	DRB2		WH 421	4 8	10	42 0.4	0	0 295 2
8179517 480107 YY484177543460 8179517 480108 YY484452543534	7 82F03 7 82F03	226 DGY22 226 DBB22	12 559 E	BK 424 /	12 30	2 2	156 0.8 80 0.2	1	5 1000
8179517 480109 YY483987543569	3 82F03	226 DBR 22	12 1952 SE	BK 424	16 110	12 5	520 2.2		0 2100 2
8179517 480110 YY483987543589	4 82F03	226 BK 3	12 2554SE	BK 424	20 48	20	60 0.4		0 1880
8179517 480111 YY483991543595 8179517 480112 YY486672543991	3 82F03	226 MDR 33	<u>13 515750</u> 93100855	BK_331 LGY 162	4 40	222	60 0.2		0 400
8179517 480113 YY486669543990	5 82F03	226 MBR3	14 2428SE	BK 424	18 32	6 8	200 0.2		0 620
8179517 480114 YY486471543987	4 82F03	6 MGY2	13 9015N	MGY 422	1 8	34	60 0.2		0 540
8179517 480115 11486036543905 8179517 480135 11486692543900	6 82F03	226 LBK3 226 1912	12 20405E 41 68805E	MGY 421A 1 PT 111	4 40	ь. я	20 0.2		0 /80 5 240 :
8179517 480136 YY486680543951	582F03	226 LOR 3	92.92855		24	6	60 0.Z		0_150
8179517 480137 YY486680543951	5 82F03	226 DGY3	1117815 W	BK 424	20 40	8 1	120 0.2		0 480
8179517 480138 11486407543912 8179517 480139 YY486254543889	0 62503	ZZO LUKZ	tt oco M	101 421	5 22	12 0	100 0.2		0 050
	0 02503	DBR		DBR 416G	10 8	2 1	60 0.2		0 1 3 0 0
8179517 480140 YY486189543875	4 82F03	DBR MGY		DBR 416G WH 112	<u>10 8</u> 10 16	2380	20114.0	0 1	0 1300 0 1050é
8179517 480140 YY486189543875 FILE DB=0 5.38. 53.46T	4 82F03	MGY		<u>DBR 416G</u> WH 112	<u>10 8</u> 10 16	2380	20114.0	0 1	0 10506
8179517 480140 YY486189543875 FILE DR=0\$.38, \$3.46T	4 82F03	DBR Mgy		DBR 416G WH 112	<u>10 8</u> 10 16	2380	20114.0	0 1	0 1300 0 1050¢
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	₩GY	· · · · · · · · · · · · · · · · · · ·	DBR 416G WH 112	<u>10 8</u> 10 16	2380	20114.0	0 1	0 1300 0 1050¢
8179517 480140 YY486189543875 FILE _DR=0 \$.38, \$3.46T	4 82F03	DBR MGY		DBR 416G WH 112	<u>10 8</u> 10 16	2380	60 0.7 20114.0	0 1	0 1300 0 1050¢
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	DBR MGY		<u>DBR 4166</u> WH 112	<u>10 8</u> 10 16	2380	60 0.2 20114.0	0 1	<u>0 1300</u> 0 1050¢
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	<u>DBR</u> MGY		<u>DBR 4166</u> WH 112		2380	60 0.2 20114.0	0 1	<u>0 1300</u> 0 1050¢
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	<u>DBR</u> WGY		DBR 416G		2380	<u>60 0.7</u> 20114.0	0 1	0 1300
8179517 480140 YY486189543875 FILE _DR=0 \$.38, \$3.46T	4 82F03	DBR MGY		DBR 416G		2380	<u>60</u> 0.2 20114.0	0	0 1300
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	DBR MGY		DBR 416G		2380	<u>60 0.7</u> 20114.0	0	0 10506
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	DBR MGY		DBR 416G WH 112		2380	<u>60 0.7</u> 20114.0	0	0 1300
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	<u>6 82F03</u>	DBR MGY		DBR 416G		2380	20114.0	0	0 1300
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	DBR MGY		<u>DBR 416G</u> WH 112		2380	<u>60</u> 0.2 20114.0	0	0 10506
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	DBR MGY		<u>DBR 416G</u> WH 112		2380	60 0.2 20114.0	0	
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	4 82F03	DBR MGY		DBR_416G WH 112		2380	<u>160 0.7</u> 20114.0	0	0 1300
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	<u>4</u> 82F03	DBR MGY		<u>DBR 416G</u> WH 112		2380	60 0.2 20114.0	0	0 1300
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	<u>4</u> 82F03	DBR MGY		<u>DBR 416G</u> WH 112		2380	60 0.2 20114.0	0	0 1300
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	<u>4</u> 82F03	DBR MGY		DBR_416G WH 112		2380	60 0.2 20114.0	0	0 1300
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	<u>4</u> 82F03	DBR MGY		DBR_416G WH 112		2380	60 0.2 20114.0	0	
8179517 480140 YY486189543875 FILE DR=0 \$.38, \$3.46T	<u>4</u> 82F03	DBR MGY		DBR 416G		2380	60 0.2 20114.0	0	0 1300

APPENDIX 6

Lognormal Distribution of Trace Element Content of Soil and Talus Samples.

۱ ۱	.										А. С.		4. 1
, , ,	14					CA9 11441C	VALUES						·
					·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··								
	n an an an		1999 - C. S. M. T. M. Martines (* 1996) - C. M. T.	8000-34.3-6580-35-6840-84.5-6830-84.5-6930-8-6940	Z E 7 E	RO OMITIED RO OMITIED RO OMITIED	FOR CU FOR CU		12 - 14 19 19 - 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	#)))),),),),),),),),),),),),)		al (2) - Construction (2) - Calcology and a calculation of the second calculation of the	na na ann an ann an ann an ann an ann an a
	>	·····			<u> </u>	RO OMITTED	FOR ZN						
					2 E 2 E 2 E	RO CMITTED	FOR W						
	M.U.T. CLAIN SALMO, B.C. TRACE ELEMEN	NS CONTENT	OF SOILS A	AND TALUS	FINES		· · · · · · · · · · · · · · · · · · ·	adho dadharo kono bo ar in dalayon		-			
	NO. OF ELEMP Input forma	ENTS SAMPLE T USED IS (ED IS 7 110,16,781	,4F5.0,20	X,F5.1,5X,2	F5.0,F4.0)	11-1 - 10-1-10 - 11 - 0 -11-10-10-10-10-10-10-10-10-10-10-10-10-						
					<u></u>	<u> </u>			; 1				
	ELEMENTS	MO	CU	PB	ZN	AG	W	F			a general dan serieta da serieta da serieta da serieta da serieta	n en el el la desenta de la construita en en alla de desta de la construita de desta de la construita de desta	- 19 (k. 6. (k. 68)) (k. 68)
	ZERC =	0.0	0.0	0.0	0.0	0.0	0.0	0.0		* · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	NO.SAMPS Mean Val	1175	1175 35.158	1175 19.748	1175 483.709	1175 0.366	625 7.694	1175 635.703					
	STD.DEV. ANOM POS	0.307 9.024	0.231 102.076	0.224 55.516	0.398 3027.073	0.278 1.316	0.367 41.713	0.094 978.493			99 - 1 - 99 - 199 - 1 - 99 - 99 - 99 -	n en en de la reale second a la commune segle a de la COC hand ad 1999 de la composition de la composition de l	arege alde der der i dat i i an enterstätte Sonne regen i station die Stationagig ande e
	A NÚM INEG Súp 1	0.535	12.109	7.025	77.294	0.102	1.419	413.000 788.690			4		
	SDM1	1.087	20.633	11.778	193.359	C.193	3.304	512.391					
													•
			<u></u>		•								. •
		1 Maria ang Kang Ing Propinsi Kang Kang Kang Kang Kang Kang Kang Kang	k tyra Angeler talatala talan yang ber enterferan ya taran			1	anna anna anna anna anna anna anna ann	•		1990) - BAL (BALL & LANDAR 1997) (F. 2012) (T. 1971) (BALA & CONTRACT	####******	1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
							<u></u>		+ + <u></u>	. <u></u>		<u> </u>	,
	· · · · · · · · · · · · · · · · · · ·				e •				-1	alan germaniger man frankriger der der for an der der der an der sollte sollte sollte sollte sollte sollte soll			
, [·			•			-			•			
.							•	•		,			
,		anana ya 1949 - Banganan e sugar cu kana ku ka Aka Uk	Re na gle her den heren alle here nav ander den som alle den som alle den som alle den som alle den heren alle	a an	1	n na an ann an tha a	άγι τη γο <u>μη</u> τική τη ματοληγιατική ματοληγία το πολογοριατικό το τη του τη προστάτο τη του τη προστάτο τη αυτολ			nakena (nage ander specifien specifie) soler den soler an en	1949 p. n. p. 1. da an an agus an		<u>an baar ay ay ah </u>
	en en angeler ander ander ander ander ander angeler ander		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	An the same and state and specific title to the second second second second second second second second second		4	en on ogenamenden med	a an to get the state of		10. – Constanto I., 19. – J. K. S. K. S. Manakaranya.	1005 (p. 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	e na a canagana ay na nanta arang nga	an a guaran a guaran agu gabaran ya san gu saga sakarnar An an
													149

INTERVAL PPM	n	C %
0.25		
0.31		0.0
C. 38	0.0	0.0
0.45	0.0	0.0
0.54	0.0	0.0
0.64	0.0	0.0
0.74	0.0	Ø.0
0.01	0.0	0.0
······································	32.9	32.9
1.00	0.0	32.9
1.30	0.0	32.9
1.55	0.0	32.9
1.35 ******************************	29.4	62.4
2.21	0.0	62.4
2.63	1.5	64.0
3.14	0.0	64.0
3.75 ***********	17.3	81.3
4 • 4 8	0.8	82.0
5.34	8 - 1	90.1
6.32	○ • • •	<u> </u>
7.61		95.0
9.08	4.4	
10.34	2.1	7/•1
12.94	0.9	98.0
15.45	0.9	<u> 98.8</u>
18.44	0.4	aa.2

15(

1 MT F M. U.	LOGARITHMIC VALUES ZEROS OMITTED (VAL(STOV/F) 0.231/ 4.0 NO.SAMPLESII F. CLAIMS, SALMO B.C., TRACE ELEMENT CONT	75 ENT OF SOILS AND TALUS FINES	
INTERVAL PPM			C 7
7,11			
3.12		0.1	0.2
9.28		0.0	0.2
10.60		0.2	0.3
*		1•4	1.8
12.02		C.O	1.8
		1.1	2.9
10.01 ********		3.0	10.9
」 H • U O		8.3	19.1
20.63 ***		3.8	23.0
23.57		10.1	33.1
26.93 <u>*********</u> *		. 8.5	41.6
30.77 ** *****		8.3	50.0
35.16		11.9	61.9
40.17 *****		5.5	67.4
45.89 ******		7.2	74.6
52.43		3 • 7	78.3
59.90 *****		5.9	84.2
68.44 ***	······································	3.6	87.7
78.20 ***		3 • 9	91.7
89 . 34 ***		3.1	94.8
102.07 *		1.3	96.1
116.62		0.9	96.9
133.24		1 - 1	28.0
152.23		······································	

· •1

م	B	
INTERVAL PPM	3	C 7
4.19		*******
4.77	0.0	C.5
5.42	0.0	0.6
6.17	C.9	1,4
7.02	0.0	1.4
7.99	0.0	1.4
9.10	3.1	4.5
******** 10.35	8.5	13.0
11.78	0.0	13.0
******* 13.40	9.4	22.5
**************************************	9.5	32.0
**************************************	10.6	47.5
***** 19.75	5.9	48.5
***************************************	12.6	61.1
**** 25.57	4.3	65.4
******	B.1	73.4
*******	7.5	80.9
*****	5.1	86.0
4* 4*	2.8	88.9
	3.1	91.9
*	2.0	93.9
*	1.3	95.1
53.17 *	1.2	96.3
<pre>/1.88</pre>	1.3	97.6
81.80		

INTERVAL PPM		ž	CI
30.90			
38.86		0.0	0.1
48.87		0.0	0.1
61.46		0.1	0.2
77.29		0.4	0.6
97.21	······	2.0	2.6
****** 122.25		6.6	9.2
********* 153.75	албай наруы түрктө түрктөрөр улуруулаан толагылана такар айрыларуы урысталарын калартын арын	. 7.7	16.9
***** 193.36		6.0	22.9
****		5.3	28.2
**** 305.82	Non an	4.5	32.8
29. 4.1		5.4	38.2
レッチャロ1 本本本文本 メッコープへ		5.5	43.7
40. 1. 1. ## ############################	####1 umportant and a social que que apresante, a su posse a presa de la deficie de la deficie - de la deficie -	8.0	51.7
で115 · 51 	·	9.7	61.4
/35.04 *******		12.3	73.7
4440 ****		9.6	83.3
1210.01		5.7	89.0
1521.75		5.5	94.6
1913.80		2.8	97,4
2406.86		1.4	99.7
3026.95	· .	0.8	99.5
3806.80		0.3	99.8
4787.55		0.1	99.9
6020.99			

LDGAPITHMIC VALUES ZERDS OMITTED INTERVAL(STOV/E) 0.278/ 4.0 NO.SAMPLES	1175	· · · · · · · · · · · · · · · · · · ·
M.U.T. CLAIMS, SALMO B.C., TRACE ELEMENT CO	NTENT OF SOILS AND TALUS FINES	landrides na deler simos escalardo sarancesca anay desdesso (dagono (dagono dagono)).
AG AG	7	<u> </u>
0.05		
Ω. 06	0.0	0.0
0.07	0.0	0.0
	0.0	0.0
0.00	0.1	C.1
		0.1
0.12	0.0	0.1
<u>r.14</u>	0.0	0.1
0.15	0.0	0.1
C.19 *** *** *** *** *** ****************	42.6	42.6
0.23	0.0	42.5
0.27	2.2	44.9
C.31	0.0	44.9
0.37 ********	18-4	63.2
0.4 3	1.6	
Q.50		64 0
0.59	11.7	74.5
0.69	7.0	10+5
C.81		04.4
0.96	9.7	1.00
1.12	4.3	89.4
** 1.32	2.0	91.5
* 1.54	1.3	92.8
* 1.81	1.9	94.6
**	L •?	95.R
2.49	0.8	96.6

54

INTERVAL (STOV/F) 0.367/ 4.0 NO. SAMPLES 625 Malla Ta (LATEX) SALMO D. C. TRACE FLEMENT CONTOUR A		
W	IF SOILS AND TALUS FINES	
INTERVAL PPM	2,	C Z
C.61		
C.75	0.0	0.0
0.93		0.0
1.15	0.0	0.0
1.42	0.0	0.0
1.75	0.0	0.0
2.17	20.3	20.3
2.67	0.0	20.3
3.30	0.0	20.3
4.09	0.0	20.3
**************************************	19.0	39.4
6.23	0.0	39.4
7-69	0.0	39.4
*** 9.50	3.7	43.0
<u> </u>	19.8	62.9
±1•1↔ ★☆☆☆☆☆☆ 14 50	7.0	69.9
<u>4.30</u>	12.6	82.6
1/.9/ ****	9.9	92.5
27.13	2.4	94.9
27.34	· · ·	
33.77 *		97.0
41.72	1.9	<u>48.4</u>
51.53	0.3	99.2
63.66	0+2	99.4
79.64	0.2	99.5
\$7.14	0.2	99.7

÷

ΤΝΤΓΕΥΔ΄	ZERUS CHITTED	V01 EC1175			
M.U.T. C	LAIMS, SALMO B.C., TRACE ELEM	ENT CONTENT OF SOILS AND TA	LUS FINES		
INTERVAL PPM	F		(y) (y)	<u> </u>	
332.89					
351.33	n an	na dhadharaige anns dhaaranna ar na dhigtarai kinna ann a dha ar la ann a' Marainin an Arganaintharai a' chumhan	0.3	0.4	
370.79			0.4	0.9	
391.32			0.7	1.5	
* 413.00	ԱՅՅԱՅՆ ՅԻՆՆՆ ՅԱՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆՆ	אות	1.2	2.7	WWW a forming pgs - I
**			2.2	4.9	
****			4.4	9•4	
425 50 ###	nin na ana amin'ny fisiana mandro amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisia Ny fisiana	nemanikarakanakanakaran karanan kakanakan kana sayan dari karana sata ana para kana karana karana kana karana k	3.3	13.2	
*****			5.3	18.5	
212.27 *******			7.1	25.5	
541,	nnolog angenangan angenangan sangangan nangangan sa sangas ang ar suna ar su sa sa sa sa sa sa	на американата пистад аланатара ист наконадельната са сталиникаланна с оронаци	7.1	32.6	
)/J./2 *******			8.3	40.9	
01:2 • 3 5 xx. *****			8.6	49.4	
(3) · ()	an ba tha bha ann, i chuir da th' tha mhadar chann a tartin that i chuir an	nt Mandalan na an a	10.9	60.3	
۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	· · · · · · · · · · · · · · · · · · ·	······································	6.0	66.3	·
103.07 *******			7.7	74.0	
? 4 (• 2 9 ** * * *	Nan man and an and the second s	atore in substangeno menugan entri successioni per al andre istangi a operative istangi a	5.4	79.4	. <u> </u>
788.68 ******			6.4	85.8	
832•36 *			2.0	27.7	
878.47	tellin in de lan angelijeliter oor it stooraat televise te ondere oor aller oor aller af televise ander oor al	YN DY DY LLAND A MAR	2.9	90.6	
927.13 **		·	2.7	93.4	
978.48			1.7	95.1	
1032.68	18 ประเพณิเปลี่ยนแน่นอยู่ได้เสียงสุดภาษาภาพแสดงและสิติสายการการการการการการการการการการการการการก	nin an Dreinheiten ein meinen Mentensiel der Bestahlte gestatigt der Bestahlten der Bestahlten Bestahlten Unter Fein	1.4	96.4	
1089.89 *			1.0	97.4	
1150.24	,		0.6	98.0	
. 1213.95	30 40 50	50 70 80 90	100		NUMBER OF STREET

APPENDIX 7

Lognormal Distribution of Trace Element Content of Stream Sediments.

								4 2				
, 				LO	GAR ITHMIC	VALUES	an a sharan ar a sa a sharan an asar a sa s					
				7 Г	RO DMITTEO							
r delle sollarde gerande agen alle for the sollar the second state and a solution of		արուց բրչակիչ։ Երնեն ռես /ս ։ Վերոստ, հիմն ներմ աներ։ ուց են է ենք սպաց ուծեն։		ZE	RO DMITTED	FOR CU		h, an an a Marian an Anna an An	₩1	analasa ang sang sang sang sang sang sang sa	effert samt förstandar anvenden den sinder i som som som	
				Z C Z E	RO CMITTED	FOR PE						
		•		Z 8 7. E	RO OMITTED RO CMITTED	FOR AG FOR W						
M. U. T. CLATY	/ 5			ZF	RO OMITTED	FOR F	19 Mar 19 Marine Marine Marine Marine Marine 19 Marine Marine Marine Marine Marine Marine Marine Marine Marine M	17 January - La Salan and Angel		alah di sela da karang sebahan segarah segarah di Barri - sak		
SALMO, B.C.	T CONTENT		CENTWENTS									
TRAUE LLEAD	AL CONTRAT	UP SIREAN	SEDIMENTS		<u></u>				·			
NO. OF ELEME Input format	ENTS SAMPLE F USED IS t	ED_IS7 [T10,16,T8]	1,4F5.0,20	X,F5.1,5X,2	F5.0,F4.0)							
n handsaksaksaan aansa (No Manual Contraction (Manual)	a dar mangar aktor (sa aktor (sa akkar pa bar) ak	agangatang, Kumu Malandarian na t	มนากน้ำมาตามาสุดเทศสายาสุดเทศสายาง	na 1 2 na 11 12 12 12 12 12 12 12 12 12 12 12 12 12			****** ***** ***			en de la companya de	
							·					
		,										
ELEMENTS	мо	CU	PS	ZN	AG .	W	F					
7E80 =	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
				2/	27		27			<u></u>		
MEAN VAL	1.574	39.374	32.169	470.912	0.417	14 18.043	665.199		a tanta a subges places a super places - yes a bill as a bill of bill the same	19 al 19-1 (1944) - 1 (1941) - 1		
STD PRV. Anly Prs	0.196	0.292	0.252	0.523 5240.398	0.344 2.039	0.230 52.121	0.071 921.497					
ANGH NEG	<u> </u>	10.258	10.007	42.317	0.035	6.246	480.185				· · · · · · · · · · · · · · · · · · ·	
S D M 1	0.976	20.097	17.996	141.165	0.189	19.616	565.170					
		19 and 1999 1997 1984 1984 1997 1984 1997 1997 1997 1997 1997 1997 1997 199		18 14 - 1944 (Martin and Self Lands) y 2 ^{4 14} 1944 (Martin Coll Martin) y 24 14 (Martin) y 24 14 (Martin Coll Martin) y 24 14 (Martin Coll Martin) y 24 14 14 (Martin Coll Martin) y 24 14 14 14 14 14 14 14 14 14 14 14 14 14		99 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -						
				<u></u>								
an ta Sun an anna an					Mandari Mari ya Julia ya Juliya Manana Taulima Canana mu Mana Amada	aljans, M. (1991) - 1. Laj (1993) - 1. Laj (1993) - 1. M. (1993)			****	1		•
					•							
						<u></u>	·····				·····	
		 		49-49-48-49-49-49-49-49-49-49-49-49-49-49-49-49-		********	1964-1971 - 1972 - 1974 - 197					
			•						•			
			•									
						۰۰ - ۱۳۵۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰						
·										· · · · · · · · · · · · · · · · · · ·		
					n an an an an an an a fearmachadha	nder and normal solender e					· · · · · · · · · · · · · · · · · · ·	angang sa
aan a ameerika a sa a mar baashadaa a ameerika aana madaa ayaa aasaa a		4										ŀ
												-

ì

	LUGAR ITANTO VALUES ZEROS ORITTED		
	INTERVAL(STOV/F) 0.196/ 4.0 NO.SAMPLES 36 M.U.T. CLAIMS, SALMO B.C., TRACE FLEMENT CONTENT OF STREAM SEDIMENTS	ngang pangan ng milijan pan na kan ng kan na kan ng kan na kan ng ka	na ann an mEiste - ann a maraichte Eistern anna an an e T
ter service of	40		
		**	
			0.0
0.44		0.0	0.0
0.50		0.0	0.0
C.56		0.0	0.0
0.62		0.0	0.0
C.7C		0.0	0.0
0.78		0.0	0.0
0.87		0.0	0.0
0.99	*****	44.4	44.4
1.09		0.0	44.4
1.22		0.0	44 . 4
1.37			
1,53			++••+
1.72		0.0	44 •4
1.92		0.0	44.4
2.15	***************************************	41.7	85.1
2.41		0.0	85.1
2.70		0.0	86.1
3.02		0.0	86.1
3.38		0.0	86.1
3,79		0.0	86.1
L 24	** ****	8.3	94.4
· · · · · · · · · · · · · · · · · · ·		0.0	94.4
9+75		0.0	94.4
5.32		0.0	94.4
5.05	0 10 20 30 40 53 60 70 80 90 \$ 86 SAMPLES IN CLASS INTERVAL	100	

INTERVAL	(STDV/F) ZEROS OMITTED (STDV/F) 0.292/ 4.0 NO.54	APLES 36		
M.U.T. CI	LAIMS, SALMO B.C., TRACE ELEME	T CONTENT OF STREAM SEDIM	ENTS	ан ан арал I мене ом то соманны и ст
INTERVAL PPM	CU	· · · · · · · · · · · · · · · · · · ·	х,	C.#
5,24	******			
6.19			0.0	0.0
7 . 3 3			0.0	0.0
8- 67			0.0	0.0
10.26	MAANDA VERMAANDA MAARAANDA MAARAANDA AMAANDA AMAANDA AMAANDA AMAANDA AMAANDA AMAANDA AMAANDA AMAANDA AMAANDA A		0.0	0.0
		·	0.0	0.0
12.14			0.0	0.0
14.30 *****		NAMEN NO RECORDER OF A DECEMBER OF AN OTHER AND A DECEMBER OF A	5.6	5.6
16.99 ***********			13.9	19.4
20.10			2.8	22.2
23.78		มการสารการสารปลูกการสารการสารสารการการการการการการการการการการการการกา	11.1	33.3
28.13 *******			8 - 3	41.7
33.28			5.5	47.2
39.37	*		10 4	66 7
46.58	*		۰ م	75.0
55.11			<u> </u>	75.0
~** 65.20			2.8	8.11
** 77.14			2.8	80.6
** 91.25	· · · · · · · · · · · · · · · · · · ·		2.8	83.3
107.97			0.0	83.3
**** 127.74			5.6	88.9
151.12			0.0	88.9
172.79	· · ·		0.0	88.9
	en e	n nyan tahun terun ang pada ang ang ang ang ang ang ang ang ang an	2.8	91.7
2:1.7) #\$			2.8	94.4
200.25			0 . 0	94.4

1

& OP SAMPLES IN CLASS INTERVAL

9
 i

•	M.U.T. CLAIMS, SALMO B.C., TRACE ELEMENT CONTEN	T OF STREAM SEDIMENTS
	PB	
INTESVAL PPM		₹ <u>C</u> ₹
5.63		0.0 0.0
6.51		0.0 0.0
7.53		0.0 0.0
8.71		
10.07		
11.64		
13.46		5.6 5.7
15.56		
18.00		5.6 11.1
20.81	· · · · · · · · · · · · · · · · · · ·	5.6 15.7
******** 24.00	** * * * *	16.7 33.3
27.82	******	16.7 50.0
********** 32.17	**	11.1 61.1
***** 37.20		5.6 66.7
<u>*****</u> 43.01		5.6 72.2
49.73		0.0 72.2
57 50		C.O 72.2
xx + + + + + + + + + + + + + + + + + +	**	11.1 83.3
74 00 74 00		5.6 83.9
10.98		0.0 88.9
88.90 **		2.3 91.7
102.79		5.6 97.2
118.86		0.0 97.2
137.43		0.0 97.2
150.91		

B OF SAMPLES IN CLASS INTERVAL

ZER OS OMITTED INTERVAL(STOV/F) 0.523/ 4.0 NO.SAMPLES 36 M.U.T. CLAIMS, SALMO B.C., TRACE ELEMENT CONTEN	T OF STREAM SEDIMENTS	• .
ZN		
INTERVAL PPM		Сх
12.69	0.0	0.0
17.14	0.0	0.0
23.17	0.0	0.0
31.31	0.0	0.0
42.32	0.0	0.0
57.19 *****	5.6	5.6
77.29 ****		16.7
104 • 45 ** *****	11.1	27.8
141.16	5.6	33.3
190.78	0.0	33.3
257.93	0.0	33.3
348.45 *****	5.6	38.9
470.91 *****	13.9	52.8
636.47 ************	19.4	72.2
860.09	2.8	75.0
1162.38	5.6	80.6
1570.91	5.6	86.1
2123.02	8.3	94.4
2869.17	2 • 3	97.2
2877.57 #*	2.8	100.0
5240.39	0.0	100.0
7082.17	0.0	100.0
9571.27	0.0	100.0
12935.18	0.0	100.0

ZERUS OMITTED INTERVAL(STDV/F) 0.344/ 4.0 NO. SAMPLES 36			
M.U.I. CLAIMS, SALMU B.C., TRACE ELEMENT CONTENT OF ST	REAM SEDIMENTS		
INTERVAL PPM	CV Vo	CZ	
0.04		······································	
0.05	0.0	0.0	
0.06	0.0	0.7	
0.07	0.0	0.0	
0.09	0.0	0.0	
C.10	0.0	0.0	
0.13	0.0	0.0	
0.15	0.0	0.0	
0.19	0.0	0.0	
**************************************	41.7	41.7	
0.28	0.0	41.7	
0.34	0.0	41.7	
******	19.4	61.1	
0.51	0.0	61.1	•
<u> </u>	16.7	77.9	·
C 74	0.0	77.3	
0.10	0.0	77.3	
. U•42 ##	2.8	80.6	
	2.8	83.3	
	8.3	91.7	
	2.8	94.4	
2.04	2.8	97.2	
2.49	0.0	97.2	
3.03	2.8	100.0	
3.70	0.0	1.00.0	
4.51			

INTERVAL PPM		C %
3.68	0-0	14.3
4.20	0.0	14.3
4.79	0.0	14.3
5.47	0.0	14.3
6.25	0.0	14.3
7.13	0.0	14.3
8.14	0.0	14.3
9 . 30 *****	21.4	35.7
10.62	7.1	42.9
12.12	0.0	42.9
13.84	21.4	64.3
15.8C	0.0	64.3
18.04	7.1	71.4
20.60	0.0	71.4
23.52	0.0	71.4
26.86 ******	7 • 1	78.6
30.67 ******	14.3	92.9
35.01	0.0	92.9
39.69	7.1	100.0
45.05	0.0	100.0
52.12	0.0	100.0
59.51	0.0	100.0
· 67.95	0.0	100.0
77.58	0.0	100.0

Ē

	INTERVAL(COMMUNE) M.U.T. CLAIMS, S	LDGARITHMIC VAL ZEROS OMITTED 0.071/ 4.0 NO SALMO B.C., TRACE EL	UES • SAMPLES 36 EMENT CONTENT OF STREAM	SEDIMENTS		
INTERVAL PPM		F	•			
40.7 - 9.8			****	ره مو به به به به به به ما ها ها به	U~; ====================================	
**	and the provided of the constant of the constant of provided and the first of the constant of	nan mangana kana kana kana kana kana kana kan	na mana mana mana mana mana mana mana m	2 • 8	2.8	
			·	0.0	2.8	
442.01				0.0	2.8	
401.01		n yn general fan ferste fry yw yn an general fer yn yn yn yn fforfan yn arben yn yn yn araff yn yn arben yn yn	***	. 2.8	5.6	
440.18	·			0.0	5.6	· ·
500 .1 5 **				2.8	8.3	
520,94 ¥%	48-48		AR 4 TRANSLAND AND AND AND AND AND AND AND AND AND	2.8	11.1	
542.61				5.6	.16.7	
565.17	* *			8.3	25.0	
5°9.67 ******	\$¢ #		na na manana na mana na mana na	8.3	33.3	
613.14	がずおが			11.1	44.4	
638.64	***			13.0	58.3	
665.19	181 Jahr 201 - 200 - 201	uddi Malford Carrow Carlon		0.0	50.3	
692 . 85	***			•••	20.0	
721.65	· · · · · · · · · · · · · · · · · · ·	<u></u>		<u></u>	75.0	<u>_</u>
751.66	In the contraction states of the second	and a second	tudi o alfonegolomoji (proceso) angerente angerente angerente angerente angerente angerente angerente angerente	0.0		
782.92				2.8	77.8	
<u>215.47</u>				2.9	80.6	
- 849.38	*** ** ** *	allender Millel Context Round of Montal and the second distance and an analysis of the second of the second of	11/11/11/11/11/11/11/11/11/11/11/11/11/	11.1	91.7	
884.70				2.8	94.4	
921,48				2.9	.97.2	
959.30				٥.0	97.2	
999.71				0.0	97.2	
1041.27				0.0	97.2	
. 1084,57				0.0	97.2	
EXECUTION TRAVINATED 20:	10 20 30 52:31 T=.632 8C=0	40 50 8 OF SAMPLES IN 52-75	60 70 80 CLASS INTERVAL	90 100	na na sena se a se a se a se a se a se a	

