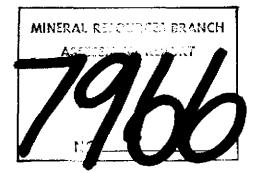
AMAX OF CANADA LIMITED

MINERALS EXPLORATION DIVISION

April 11, 1980

No # 14- # 1960

Chief Gold Commissioner, Dept. Energy, Mines & Petroleum Resources, Mineral Resources Branch, Parliament Building, Victoria, B.C.


Dear Sir:

Re: Tidewater Mo Property - Skeena M.D.

Attached are two copies of the 1979 Diamond Drilling Report containing Drill Logs and Assay Results for the above property. Since we are conducting ongoing exploration programs on this property, we would like to have the assay results kept confidential for a period of three years.

Thank-you. Yours truly, AMAX OF CANADA LIMITED

D. G. Allen

1979 Assessment Report

Diamond Drilling

.

TITLE	Tidewater Property
CLAIMS	Tide, Tide II, Tide 2, 3, 4, 5 Crown Grants – Success, Molybdenum
COMMODITY	Мо
LOCATION	5 km west of Kitsault, B.C. Latitude 55°28'N Longitude 129°34'W Skeena Mining Division 103 P 5
BY	D.G. Allen, P.Eng. (B.C.)
FOR	AMAX of Canada Limited
WORK PERIOD	September 28 - November 13, 1979

-

AMAX VANCOUVER OFFICE

TABLE OF CONTENTS

APPENDICES

APPENDIX	I	-	Statement	of (Costs
	II	_	Diamond D	rill	Logs

;

ILLUSTRATIONS

Figure 1 - Location Map------1:250,000---After Page 1

2 - Drill Hole Location-----1:5,000-----In Pocket

INTRODUCTION


Location and Access

The Tidewater property is situated near the head of Alice Arm (Observatory Inlet), 10 km northwest of the AMAX owned Kitsault Mine. Access is by float plane to Kitsault and by helicopter or boat from Kitsault.

Property Status

The property consists of 8 claims (2 crown grants plus 54 units) under option from R. Dunn. Status is as follows:

Cla	.im	Record	ling Date	Record Number
Tide	4 units	July	20, 1977	395
Tide II	l unit	July	20, 1977	396
Tide 2	16 units	April	18, 1979	1237
Tide 3	12 units	April	18, 1979	1299
Tide 4	9 units	April	18, 1979	1300
Tide 5	12 units	April	18, 1979	1238
Crown Grants				
Success		June	28, 1977	375
Molybdenum		June	28, 1977	374

AMAX OF CANADA LIMITED

TIDEWATER PROPERTY SKEENA MINING DIVISION - BRITISH COLUMBIA

LOCATION MAP KILOMETRES NILES SCALE 0 z 2 1:250,000

Germald & allen

N. T. S. Ref. 103P5

F1G. 1

1979 DRILLING

In 1979 a total of 796 metres (2610') of diamond drilling was carried out in three holes to test part of the molybdenum zone associated with the Tidewater stock. Drilling was carried out by Connors Drilling of Vancouver during the period September 28 - November 13, 1979.

Drill sites (DDH TW-79-1 to 79-3) in relation to claim boundaries are shown on Figure 2. Drill core is stored on the property (also shown on Figure 2).

Drill logs accompany this report in Appendix II. Assay results are reported on the logs.

D.G. Allen, P.Eng. (B.C.)

Gunell & allen

GEOLOGY

Regional Geology

The Tidewater property is underlain mainly by Hazelton Group sedimentary rocks (Figure 3). The property lies about 2 km east and north of the contact with the Coast Range Batholithic Complex. Sedimentary rocks of the Bowser Group lie to the west.

Bedding attitudes and contact with the Coast Complex trend northwest and prominent lineaments and dyke swarms trend northeast.

Property Geology

Hazelton Group

Hazelton Group sedimentary rocks in the claim area consist mainly of argillite, siltstone and greywacke. They are dark grey to black in colour and massive to thickly bedded. Fine grained massive tuff, light grey to purplish grey in colour, occurs locally. Feldspathic fragments in the argillite also indicate a tuffaceous component in places. The sedimentary rocks contain abundant fine grained disseminated pyrrhotite that must have been an original constituent. Bedding attitudes generally strike west-northwest and dip to the north (Figure 4b).

The intrusion of both the Coast Batholith and the Tidewater stock have affected the sedimentary rocks. Near the Coast batholith they contain disseminated black biotite and locally have a spotted texture (andalusite). Around the Tidewater stock, the sedimentary rocks have a characteristic purplish cast presumably as a result of the development of hydrothermal biotite.

Thin skarn beds (<20 cm thick) intersected in drilling indicate a minor carbonate content.

Tidewater Stock

The Tidewater stock outcrops over an area of 250 by 400 metres. It is irregular in outline and contains a number of roof pendants of hornfelsic sedimentary rocks. Drill intercepts suggest that the stock plunges steeply to the northeast.

Composition ranges from quartz monzonite to granite. Textures range from medium grained equigranular to porphyritic with quartz and feldspar phenocrysts up to 4 mm in diameter. Myrmekitic, pegmatitic and aplitic textures are locally present. Quartz feldspar porphyry with an aphanitic groundmass is also common. Biotite (0 to 5%) occurs mainly in the equigranular phases. Although textures vary markedly over short distances, no contacts or cross-cutting relationships can be established. Possibly two bodies of crystallizing magma, each with a large volatile component, were intruded at the same time into the same area.

Dykes

Dykes of varying composition are extremely abundant over the entire property and are part of a northeast trending swarm that covers a large area and extends westerly to Ketchikan (Smith, 1973). Most abundant are andesite and fine grained diorite of varying texture. Less abundant are lamprophyre, basalt and dacite. They range from 0.2 to 5.0 m wide. Average abundance is 2 per 100 m. Most of the northeasttrending topographic lineaments on the property reflect these dykes (Figure 4b).

Northwest-trending porphyritic hornblende-granodiorite dykes are sparse but persistent in the southern part of the property. Scattered white to pink felsite dykes trend east-west to northwest. Except for one quartz veined felsite dyke in the northern part of the property all dykes are fresh in appearance and are post-mineral in age.

Coast Range Intrusive Rocks

Intrusive rocks of the Coast Batholithic Complex cut across the northwest corner of the claim group and lie on the south side of Alice Arm. They consist mainly of biotitehornblende granodiorite which is coarse grained, equigranular and contains scattered poikilitic plagioclase grains up to 1 cm in diameter. Rare pegmatite and aplite dykelets and small gneissic inclusions are present.

Structure

The most prominent structural features are (1) northeast trending lineaments and basic dykes (Figure 3), and (2) a widespread zone of quartz veins that covers much of the southern part of the property (an area of 2 by 3 km).

The widespread quartz veining in sedimentary rocks shows two main trends $052^{\circ}/65^{\circ}NE$ and $142^{\circ}/41^{\circ}NW$ (Figure 4a). The veins striking 052° reflect the prominent northeast lineament trend and those striking 142° suggest an orthogonal relationship with that trend. The quartz veins range from 0.1 to 3.0 cm thick and range in abundance from 0.2 to 2.0 per metre and average about 1.0 per 2.5 metres.

A prominent quartz molybdenite vein system (object of the early work on the property) which occurs south of but does not cut the stock also trends northeast. Elsewhere in the molybdenite zone, outside the stock, quartz veins are as abundant as 15 per metre and average 2 per metre.

Quartz veins in the Tidewater stock (Figure 4a), also reflect the northeast trend $(048^{\circ}/85^{\circ}NW)$. Other trends are flat

 $(164^{\circ}/25^{\circ}E)$ and west $(000/85^{\circ}S)$ to northwest $(145^{\circ}/67^{\circ}SW)$, suggesting a flat and radial system of quartz filled fractures. Abundance in the stock ranges from 1 to 30 per metre and averages about 6 per metre.

The northeast trend is paralleled locally by the contact of the Coast Crystalline Belt west of the property and by long axes of the Tidewater stock. The northwest quartz vein trend is paralleled by the regional contact of the Coast Crystalline Belt and by some lineaments south of Alice Arm (Figure 1). The northeast structures therefore appear to have influenced much of the geologic history of the area from locally influencing the intrusion of the Coast Range batholith, intrusion of the Tidewater stock and the development of the widespread quartz vein zone.

Mineralization

Molybdenite occurs in several modes over an area of 1100 by 500 metres:

- 1) in a prominent vein system up to 5 m wide south of the Tidewater stock, where molybdenite $(1 2.65\% \text{ MoS}_2)$ occurs as layers and disseminations within the veins;
- 2) in scattered banded quartz molybdenite veins (encountered mainly in DDH-79-2);
- 3) in quartz vein stockworks in and around the Tidewater stock, both as disseminations in and as smears along quartz veinlets;
- 4) disseminations (minor amounts) in the Tidewater stock; and
- 5) fracture coatings (minor amounts).

Assays from the molybdenite zone range from 0.00X to $0.15\% \text{ MoS}_2$.

Scheelite occurs in a small percentage of the quartz veins and as disseminations in thin skarn beds in the hornfels.

Alteration around the Tidewater stock includes a strong hornfels development up to 350 m from its contact, where up to 70% of the rock may have a characteristic purplish cast (Figure 3). A weakly developed hornfels occurs as much as 450 m west of the stock contact where the purplish cast is irregularly developed along quartz veins and apparently in certain sedimentary beds. The purplish cast is a result of the development of reddish biotite which is visible locally in quartz veins. In contrast, the hornfels occurring adjacent to Coast Range granodiorite, contains black biotite, local andalusite and commonly has a spotted texture. Rare hornblende occurs on fractures in the hornfels zone around the stock. Scattered beds of garnet-diopside skarn 5 to 20 cm thick occur in the hornfels.

10

APPENDIX II - DIAMOND DRILL LOGS

1

.

APPENDIX-111

STATEMENT OF QUALIFICATIONS

NAME

D.B. Fleming

ADDRESS R.R. #4 Uplands Drive Kelowna, B.C.

EDUCATION B.Sc. Geology 1979 University of B.C. Vancouver

EXPERIENCE

....

i ca Line 1976-1977 Seumotech (64) Ltd. - Explosives assistant 1978 AMAX Minerals - Field assistant 1979 AMAX Minerals - Field assistant

APPENDIX I - STATEMENT OF COSTS

Tidewater Property

Summary of Work 795.7 m diamond drilling in three holes

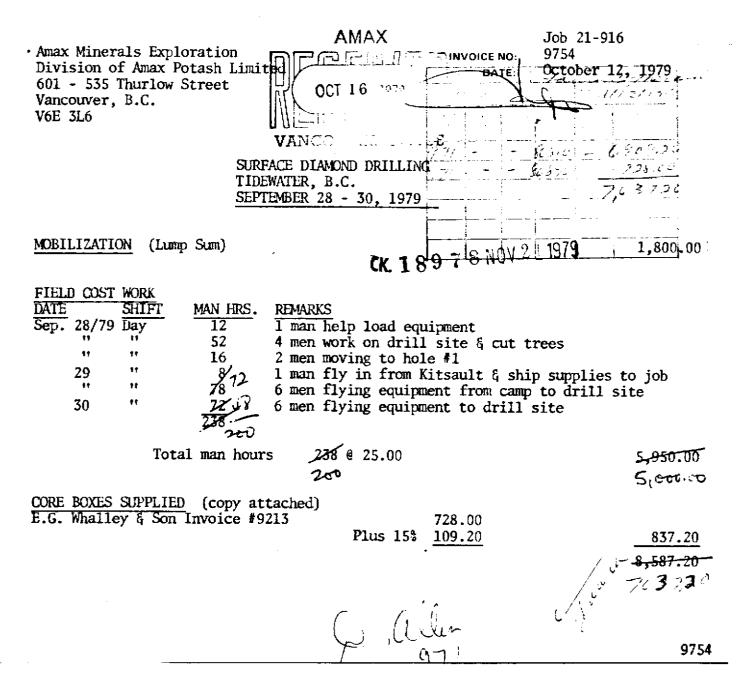
Period of Work September 28 - November 13, 1979

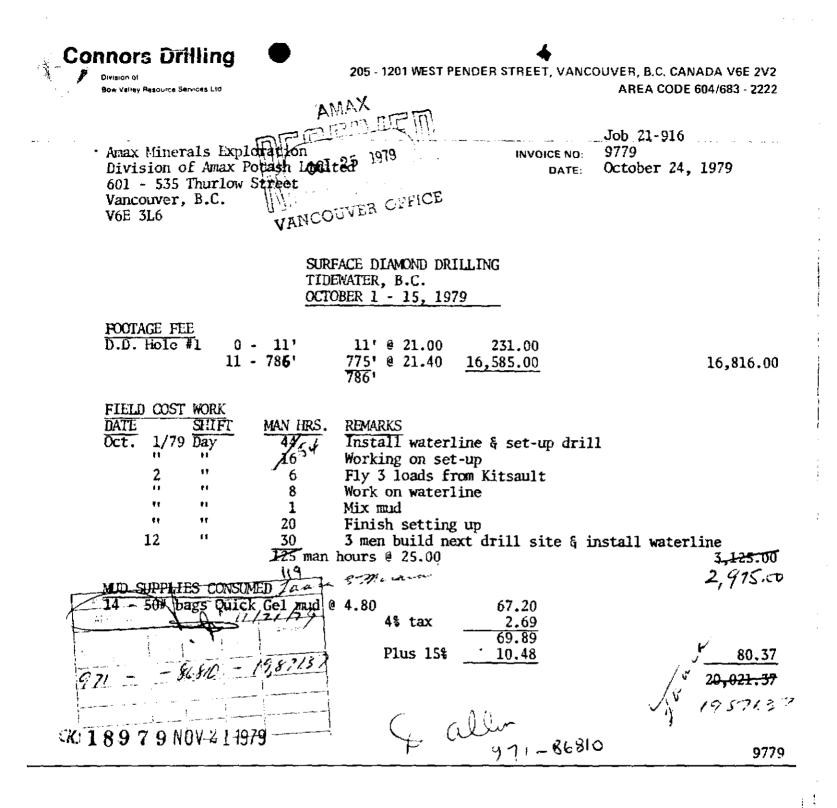
Diamond Drilling

;

.

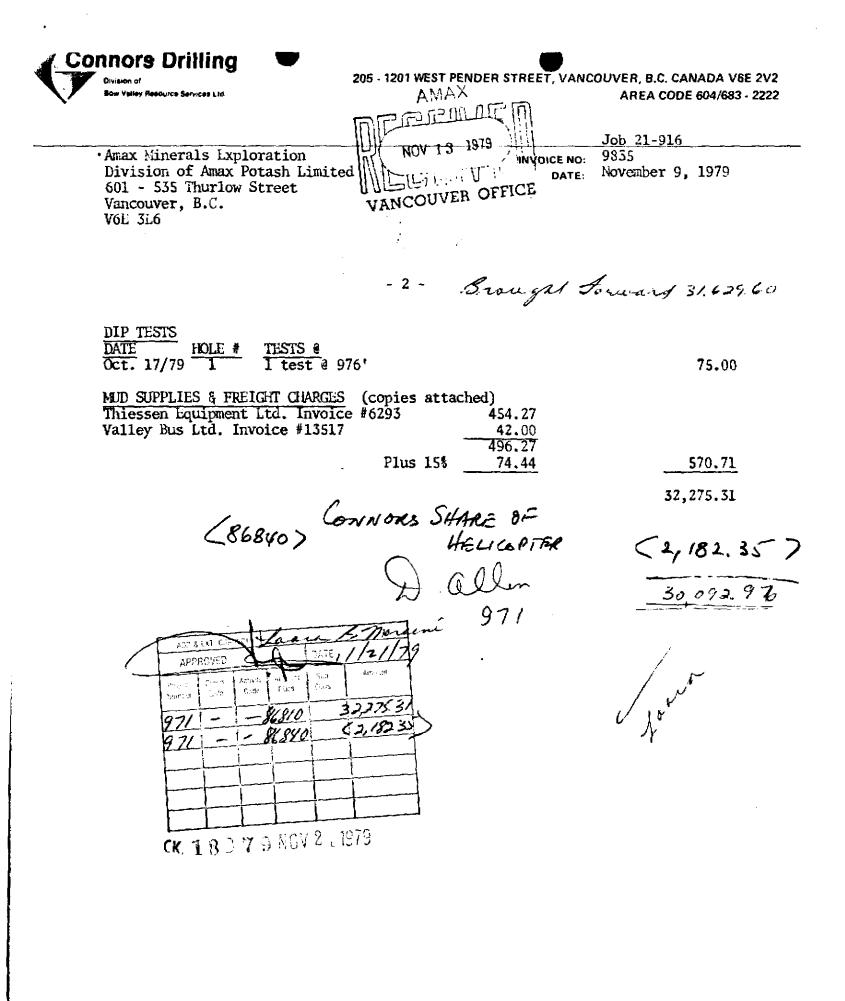
Connors Drilling - 205-1201 West Pender Street, Vancouver Inv. #9890, 9835, 9779, 9754 \$75,566.71




We wish this work applied as follows:

Tide	-	5	years
Tide II	-	5	years
Tide 3	-	6	years
Molybdenum	~	4	years
Success	-	5	years

Division of Bow Valley Resource Services Ltd 205 - 1201 WEST PENDER STREEL, VANCOUVER, B.C. CANADA V6E 2V2 AREA CODE 604/683 - 2222



Connors Drilling

	205 - 1201 WES	T PENDER STREE	T, VANCOUVER, B.C. CANADA V6E 2V2
Bow Valley Resource Services Ltd	AMA		AREA CODE 604/683 - 2222
Amax Minerals Explora Division of Amax Pota 601 - 535 Thurlow Str Vancouver, B.C. V6E 3L6	tion NOV 13		Job 21-916 Dice No: 9835 DATE: November 9, 1979
	SURFACE DIAMOND DI TIDEWATER, B.C. OCTOBER 16 - 31, 1		
FOOTAGE FEE D.D. Hole #1 786 - 9 #2 0 - 10 - #3 0 -	10' 10' 21.00 526' 516' 21.40	210.00 11,042.40	
20	528' <u>508</u> ' @ 21.40 1,244'	10,871.20	26,609.60
Oct. 18/79 Day 19 " 24 " 25 " " " 29 Night 30 Day " Night 31 Day Credit 2 moves -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 9 9 9 9 8 9 8 16 - 0 16 - 0	REMARKS Finish hole, tear down for move Move ½ mile & set-up Tear down for move & move Finish setting up Night shift help set-up drill Standby for hole test Move drill to hole #2 Help move drill Flying rods & fuel
Total man ha Total drill Total standi	hours 25 @ 18.00	3,450.00 450.00 1,120.00	5,020.00
CR. 18979 NEV 211979	Vo- (ilt		9835 Los Local 316 29.60

_ _ _

81 - 8791

٦,

· · · · ·	Drilling	-		्न	
Division of			205 - 1201	I WEST PENDER STREET, VANO	COUVER, B.C. CANADA V6E 2V2
Bow Yailey Reso	rce Services Ltd				AREA CODE 604/683 - 2222
			AM		
					21-916
	neral Expl	loration Potash Ltd	DEC 3	1979 INVOICE NO: OATE:	9890 November 28, 1979
	55 Thurlow	· Church !!	111 K	TTU LA LA DER OFFICE	
102 510					
			IDEWATER, 1	NOND DRILLING	
			OVEMBER 1 -		,
					./
DEMOBIL	ZATION	(Lump Sum)			1,000.00 V
					
FOOTAGE	FEE			./	
D.D. Ho		26' - 1000'		21.40 / 10,143.60	
<u></u>	100	00' - 1106'	<u>106'</u> e	24.00 2,544.00	12,687.60
			580'		
			300		
			390		
FIELD C	ST WORK		300		
		MAN HRS.		REMARKS	
DATE	SHIFT	MAN HRS.	DRILL HRS.		NO
DATE Nov 1/79	SHIFT Night	24	DRILL HRS.	Drill thru fault with	
DATE	SHIFT Night		DRILL HRS.	Drill thru fault with Drill thru NQ landing	
<u>DATE</u> Nov 1/79 Nov 2/79	SHIFT Night Day	24 16	DRILL HRS.	Drill thru fault with	
DATE Nov 1/79	SHIFT Night Day Night	24	DRILL HRS. 12 8 8	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlir	g ring
<u>Nov 1/79</u> Nov 2/79 Nov 2/79	SHIFT Night Day Night 9 Day	24 16 16	DRILL HRS. 12 8 8	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d	g ring
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 2/79 Nov 10/ Nov 11/	SHIFT Night Day Night 9 Day 9 "	24 16 16 2 40	DRILL HRS. 12 8 8 9 9	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out	g ring ne lismantle drill
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 2/79 Nov 10/ Nov 10/ Nov 11/	SHIFT Night Day Night 9 Day 9 "	24 16 16 2 40 40	DRILL HRS. 12 8 8 9 9 9 9	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out Tear down camp & move	g ring ne lismantle drill e out
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 2/79 Nov 10/ Nov 11/	SHIFT Night Day Night 9 Day 9 "	24 16 16 2 40	DRILL HRS. 12 8 8 9 9	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out	g ring ne dismantle drill e out
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 2/79 Nov 10/ Nov 10/ Nov 11/	SHIFT Night Day Night 9 Day 9 "	24 16 16 2 40 40	DRILL HRS. 12 8 8 9 9 9 9	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out Tear down camp & move	g ring ne lismantle drill e out
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 2/79 Nov 10/ Nov 10/ Nov 11/	SHIFT Night Day Night 9 Day 9 "	24 16 16 2 40 40 40 178	DRILL HRS. 12 8 8 9 9 28	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out Tear down camp & move Moving camp & drill 1	g ring ne lismantle drill e out
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 2/79 Nov 10/ Nov 10/ Nov 11/	SHIFT Night Day Night 9 Day 9 " 9 " 9 " 79 " 79 " 79 "	$ \begin{array}{r} 24 \\ 16 \\ 16 \\ 2 \\ 40 \\ 40 \\ 40 \\ 178 \\ 178 \\ 1man hours $	DRILL HRS. 12 8 8 9 9 28	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out Tear down camp & move Moving camp & drill 1	g ring he lismantle drill e out to Kitsault
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 10/ Nov 10/ Nov 11/ Nov 12/2 Nov 13/3	SHIFT Night Day Night 9 Day 9 " 9 " 79 " 79 " 79 " 79 " 79 " 79 "	24 16 16 2 40 40 40 178 178 1 man hours drill hour	DRILL HRS. 12 8 9 9 28 178 6 178 6 178 6 178 6 178 178 178 178 178 178 178 178	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out Tear down camp & move Moving camp & drill 1	g ring ne dismantle drill e out to Kitsault 4,954.00
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 10/ Nov 10/ Nov 11/ Nov 12/2 Nov 13/3	SHIFT Night Day Night 9 Day 9 " 9 " 79 " 79 " 79 " 79 " 79 " 79 "	$ \begin{array}{r} 24 \\ 16 \\ 16 \\ 2 \\ 40 \\ 40 \\ 40 \\ 178 \\ 178 \\ 1man hours $	DRILL HRS. 12 8 9 9 28 178 28 178 6 178 6 178 6 178 178 178 178 178 178 178 178	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out Tear down camp & move Moving camp & drill 1	g ring ne lismantle drill e out to Kitsault 4,954.00 cont'd
<u>Nov 1/79</u> Nov 2/79 Nov 2/79 Nov 10/ Nov 10/ Nov 11/ Nov 12/2 Nov 13/3	SHIFT Night Day Night 9 Day 9 " 9 " 79 " 79 " 79 " 79 " 79 " 79 "	24 16 16 2 40 40 40 178 178 1 man hours drill hour	DRILL HRS. 12 8 9 9 28 178 28 178 6 178 6 178 6 178 178 178 178 178 178 178 178	Drill thru fault with Drill thru NQ landing & lower BQ rods Lowering BQ rods Drain pump & waterlin Pull BQ & NQ rods & d for flying out Tear down camp & move Moving camp & drill 1	g ring he lismantle drill e out to Kitsault 4,954.00 cont'd 9890

nnors Drilling	205.1201	WEST PENDER STREAM	ANCOUVER, B.C. CANADA V6E 2V
Division of Bow Valley Resource Services Ltd	203-1201		AREA CODE 604/683 - 222
	А	MAX	
			21-916
'Amax Minerals Explorat	ion [U]/	INVOICE N	21-916 Io: 9890
Division of Amax Potas	h Ltd.	3 1979 DAT	E: November 28, 1979
601 - 535 Thurlow Stre Vancouver, B.C.	с. С		
V6E 3L6	VANCOUT	VER OFFICE	
	- 2 -	Crauge!	Jun 18,041.60
SUPPLIES CONSUMED ON F	IELD COST WORK		
1 - only NQ Landing r	ing	8.30	
1 - only NO Inner tub	e stabilizer	23.05	
1 - only NQ Core bit 1 - only BQ Core bit	$\{401 \text{ of } 321.28\}$	128.51 217.28	
1 - only by core pre	(10) 01 010120)		
	Tax 1.7%	377.14 6.41	
	2000 2019		
	Plus 15%	383.55 57.53	441.08
			10,000 (0
			ي 19,082.68 ي٠
		(n Ar
		(G.	Una VI
AIRCRAFT	REAL C.	792 507	971-86810
	N		9-11-800.0
FUEL Ex. From Ch		-	
China Inc.	(M_{1}) (201007	
1 thing con	(863/c) ~	224/21/	\$ 17965.1
		- 7)	
4	(1	, 117.50)	
ADD & EXT CORPORT	5 muni		
	12/2/20		
Project Group Activity Account 2015	Amising		
Number Grige Grige Guide Guides			
971 51810 -	1875868		
771 86.840 -	79352		
┟──┟╼─┼──╎──╴┝──	7965.15		
	i		
}			

G

i N

DIAMOND DRILL RECORD

•

PROPERTY	TIDEWATER	Pr	oject Number	971				
Hole No.	TW 79-2	Co-ord	linates				Bearing at Collar	
							Dip at Collar	~90 [°]
		Collar El	.evation	573 m			Commenced Drilling	October 21, 1979
			l Depth				Completed Drilling	
			ч. <u>ч. не</u> не	····· ··· ··· ·	<u> </u>		Logged By:	D. Fleming
Core Size	NQ 0-168; BQ 16	68-337 Cori	.ng Method			Drill:	ing Contractor	Connors Drilling
							· · ·	
. من ،	······································							
	Survey Summar	<u>x</u>	<u>Pertinent</u>	Assay	Data		Pertinent Geolo	Dax
Depth 1	Dip Bearing	Method	Interval	%	MoS2		Interval H	Rock Type
66			160 - 224	(82 m) (36 m) (8 m) (64 m) (62 m)	0.040) 0.078)0.04 0.076) 0.042) 0.008	$\begin{array}{r} 0 \\ - \\ 3 \\ - \\ 3 \\ - \\ 116 \\ - \\ 152 \\ - \\ 160 \\ - \\ 224 \\ 224 \\ - \\ 286 \\ - \\ 33 \end{array}$	4 Quartz monzoni porphyry 6 Hornfels, quar 62 Quartz monzoni 60 Fault 84 Quartz monzoni 66 Quartz monzoni	te

AMAX MINERALS EXPLORATION TIDEWATER PROPERTY

DDH TW 79-2 Sheet 1 of 31

—			C LOG		ن ا	A	S S A	Y D	ΑΤΑ				VE	EEN	I S								j_s	
DEPTH	LI TH.	BEDOING	FAULTS NUMBER		% RE ASSAY	SAMPLE NO	EST. MoSz	% MoSz		Qtz	Q1z Py	Qtz MoSz	Py	MoSz	Carb E)tz Y losi	Qtz Pyr) MoS2	Qtz Pyr	K-Feld	Biotite	Musc Musc	Vrite	ALLIN	NOTES
2	T																							3.05 - 14.2 - Silicified-Quartz Feldspar Porphyry - Felsite, white feldspar phenocrysts (1-2 mm) = 10% with euhedral quartz phenocrysts, gray (1-2mm)
			40		85	61220	.01	.011		3						3			5.0	0.5	500	1		= 10% Groundmass 1t gray-green aphanitic highly sericitized, silicified. Sericitization, and
- 6	1		720	Γ	94	61221	.02	.014		2	6					2			20	1	0.\$ <i>1.</i>	5		silicification produce mottled and banded textures Pyrite disseminated >5% locally - early - highly
8			7 20	1	00	61222	.05	.038		3	2	2		2		4			15	0.5	2.02	.5		silicified by low angle milky quartz vein stock- work. (barren) up to 1 cm in width late -
-10			>20	1	.00	61223	.02	.010		4	3			1		2			5	-	502	5		Qtz sericitic vein, vuggy, white at 52° and 5 cm in width. 3.7 & 5.9- Qtz MoS2-Py-Feldspar veins at 10°-30°.
			21	1	.07	61224	.04	.032		6	3			2		3			5	vS	502	.0.	ଝ	MoS2 pyrite coarsely dissem along selvage. 5.1 - Pyrite filling numerous discontinuous
-14			15		97	61225	.02	.005		10	2					1		2	5	ک	501.	.5.	\$	fractures parallel core axis - Porphyry highly siliceous, pyritized. Some MoS2 diss on fractures
- 16			9	1	.00	61226	.05	.008			2				-	6		1	5	10	251.	.0.	10	with Pyrite - numerous Qtz-Pyrite veins, banded fracture composites up to 1 cm at 50°. 7.0 - early - 25° Qtz MoS2 Pyrite stringer veins
- 18			11	1	.00	61227	.10	.032		4						7		2	x	5	2.0.	5.	os	(x2) 52 [°] MoS2 stringers also (x2) - late - 70 [°] 2 mm Qtz (MoS2 low) vein, grey high angle Qtz
- 20			9	1	.00	61228	.10	.016		6	1	1		1		2			z	5	252	0.	10	Pyrite sericite veins, sericite dk green gray - phlogopitic.
- 22			4	1	.00	61229	. 20	.088		2	2					8		3	50	5	59	d	10	7.0 - Bleaching on crosscutting veins - sericiti- zation on high angle fractures. 8.4 - Silicification extreme. Nature of original
+ 24			6	1	.00	61230	. 20	.038		2	2	2				5		1	Ь	5	32	.d.	50	texture completely masked, mottled. Banded texture due to wormy nature of qtz & feldspar and
- 26			9	Ī	98	61231	.25	.018			1					5		2	60	5	32	20	sc	to aplitic bands. 9.3 - Silicification-sericitization extreme. Galena-sphalerite-Pyrite disseminated in bands
- 28			11	T	97	61232	. 30	.020			2	2				6			60	5	3.5 2	2.0	1	up to 5 cm. PbS-ZnS-FeS2 veins at 80°. 10.0 - numerous stockwork fractures, qtz filled
- 30			12	T	97	61233	.25	.016		·				1		10			60	4	3,dz	0	1	<pre>< 1 mm. Bleached pervasively' 11.4 - MoS2-Qtz Pyrite vein (5 mm) at 20°. MoS2</pre>
	1			T	1																			diss. heavily on selvages, central fractures

TIDEWATER PROPERTY

À

DDH TW 79-2 SHEET 2 OF 31

fractures showing stockwork with bleached 11.8 - MoS2-Py-Qtz veins at 150 up to 4 mm Also grey 1 mm stringers with finely disse MOS (R) Qtz-Feldspar-Pyrite vein also at 15 - sericite coarse, green on fractures at 1 13.5 early - Qtz Pyrhotite vein (3 mm) at 16 14.2 - 34.3 - Silicified-Sericitized Subporphyr: biotite Granite - med dark gray medium grained mosaic or white feldspar (euhedral) as crowded porph Generally dk-med gray, fine grained silic biotite < 8. Pyrrhotite = 1% 14.4 - dk gray pyrrhotized. 70°, Qtz Pyrh vein. 14.6 - Garnet disseminated in dk gray ban 10cally.	GRAPHIC LOG		- C	ان	75	A	SS	SA	5 A Y	Y D	r D.	Y D	Y D	AY	SA	S A	SS A	S S	AS		5	75		Т	;	ن	ن ن	ن	ن	ن	; [15 5	2		AS	S S	SΑ	Y	D	A 1	ΤА	 	Τ					V	'E	1	N S				%	5 N	/ 1 N	ER	₹ A	LS	
 - Pyrthotite locally on fracture voids - s fractures showing stockwork with bleached il.8 - MoS2-Py-Qtz veins at 15° up to 4 mm Also grey 1 mm stringers with finely disse MoS2. Qtz-Feldspar-Pyrite vein also at 15 - sericite coarse, green on fractures at 1 il.5 early - Qtz Pyrthotite vein (3 mm) late - +5 Qtz vein (80°) barren in 10 cm. 14.2 - 34.5 - Slitcified-Sericitized Subporphyr: biotite Granite - med dark gray medium grained mosaic o white feldspar (euhedral) as crowded porphy Generally dk-med gray, fine grained silic biotite <58. Pyrthotize = 1% id.4.6 - Garnet disseminated in dk gray ban locally. 	DEPTH METRE LITH. LITH. FAULTS NUMBER	FAULTS NUNDER PIECES	PIECES	% RE	ASSAY INTERCER	SAMPLE NO AND INTERVAL	0 E S Mo	EST. MoSz	ST. 0 Sz N	•⁄₀ Mo5₂			- % Mo5z	ST. 4	EST. NoSz	EST. Moŝz	EST MoS;	D E! Mo	MPLE NO AND NTERVAL	SAN	INTERCER	ASSAY	ASSAY	ASSAY		% RE	% RE	% RE	% RE	% РЕ		ASSAY	ASSAY	INTERCE		SAMPLI ANI INTER	LE NO) E M	EST. MoSz	N		Γ				Qti	 atz Py	Q Mo	tz Sz	Py	•	vioSz	Ca	rb			K-Feld	Biotite	Musc				NOTES
5 mm. Small Pyrite MoS2 stringer are lat small Qtz Pyrite stringers arepresent with bleached halces - Biotite <pre>Sisteminate pyrite in dk gre groundmass. 15.5 - Biotite disseminated up to 20%. F unoriented<2 mm.</pre>																																																															 4.2 - 34.3 - Silicified-Sericitized Subporphyritic biotite Granite - med dark gray medium grained with biotite as 1 - 2 mm individual flakes varying from 1 - 50%. Locally medium grained mosaic of Qtz and white feldspar (euhedral) as crowded porphyry(?) Generally dk-med gray, fine grained silicified with biotite < 5%. Pyrrhotite = 1% 14.4 - dk gray pyrrhotized. 70°,Qtz Pyrh sericite vein. 14.6 - Garnet disseminated in dk gray bands. = 2% locally. 15.2 - 30-60° Qtz Feldspar pegmatitic veins up to 5 mm. Small Pyrite MoS2 stringer are later. Also small Qtz Pyrite stringers are present with bleached halœs - Biotite <5% disseminated with pyrite in dk grey groundmass. 15.5 - Biotite disseminated up to 20%. Plates unoriented < 2 mm. Garnet also <1%. Silicified dk grey mottled groundmass. 16.4 - Qtz-Feldspar pegmatite vein up to 10 cm at high angle, early with later qtz veins at 58°. Both veins with bleached halœs, 17.2 - MoS2-Pyrite-Quartz stringers up to 2 mm at 20 - 30°. slightly irregular. 60° Qtz Pyrrhotite vein (1 mm). 18.6 - Biotite disseminated up to 50% with 2 mm

ì

TIDEWATER PROPERTY

Ì

ì

TW 79-2 DDH _____ SHEET _3__ OF 31__

g g f f h f g g g g g g g g g g g g g g	┍╌╌┑	GRA	PHIC	LOG		1	5	Λ <	554	ΥD	ΑΤΑ	 [v	ΕI	N S	 	 %	Μ	INE	R A	LS	NOTES
Late 25° grey Qtz MoS2 (2 mm) - Serilor the Granite med gray with pyrrhotite and bioti with grey qtz producing dark gray motice Granite med gray with error dark with grey qtz producing dark gray motice 21.0 - 22.0 - arly - 10° qtz vein late - 5° qtz Pyrite with 25° offshoo stringers 20° MoS2 Pyrite Qtz vein with sericite dark green on selvage. 23.6 - arly - 10° qtz Pyrhotite vein. 24.0 - 26.0 - MoS2-Pyrite veins (1 arly - Qtz Feldspar-MoS2 Pyrite veins (1 arly - Qtz MoS2 Pyrite (2z vein) argle qtz vein. 26.0 - 28.0 - Numerous fractures (moderat with MoS2. Pyrite early - 2 tz MoS2 Pyrite MoS2 MoS2 Pyrite (2z vein) late - 50° Qtz Pyrite MoS2 MoS2 Pyrite (2z vein) 27.8 - Highly sericitized band (7) Lt gree 27.8 - Highly sericitized band (7) Lt gree	O E P T H ME T R E S	H.		UMBER	REC	ASSAY	ITERCEP			%		 912	Qtz MoSz	Ру	MoSz	Carb		K-Feld	Biotite	Musc			
						ASS																	<pre>late - 5° qtz-MoS2-Pyrite with 25° offshoot stringers 20° MoS2 Pyrite Qtz vein with sericite dark green on selvage. 23.5 - early - +2 45° MoS2-Pyrite-Qtz veins with selvage sericite. late - 15° 1 cm Qtz Pyrrhotite vein. 24.0 - 26.0 - MoS2-Pyrite disseminated fractures early - Qtz Feldspar-MoS2 Pyrite veins (1 cm) at 10° cut by late - 20° stringers of MoS2-Pyrite-Qtz veins. - MoS2 - Pyrite disseminated heavy on large low angle qtz vein. 26.0 - 28.0 - Numerous fractures (moderate angle with MoS2. Pyrite early - Qtz MoS2 Pyrite (x2) at 40° late - 5-50° Qtz Pyrite MoS2. MoS2 Pyrite disseminated coarsely on selvages and in envelope 70° offshoots common. 27.8 - Highly sericitized band (?) Lt green poss-</pre>
	ł			-	+	_						 +	 										 -
	ł																 	 		-			

)

.

TIDEWATER PROPERTY

ł

ì

DDH TW 79-2 SHEET 4 OF 31

– "		HC LOG		υ Γ	A	SSA	Y D	ΑΤΑ				v	EIM								a 1	AL	
DEPTH Metres	L I TH. BEDDING	FAULTS	215515	% R E ASSAY INTERCE	A SAMPLE N AND INTERVAL	0 EST. Mo 5 2	% MoSz		Qtz	Qtz Py	Qtz MoSz	Ру	MoSz	Carb N	QCZ Pyr IoS2	Otz Pyr 10S2	þ _{ýr}	K-Feld	Biotite	Musc	Pyrit	Arrise tota	NOTES
																	-						<u>28.0 - 30.0</u> - Quartz-Feldspar interlocking texture persists. Feldspar = 60-70%, euhedral with gray quartz anhedra interstitial. Biotite
- 30		10	, 1	.00	61234	. 20	.042		4						7			50	4	30	20	-	<pre>spotty with percentage content = 5% associated with disseminated Pyrite. Locally (28.2)</pre>
32		18	3	95	61235	.25	.027	,	7		<u> </u>				8			50	1,0	4.0	2,0	1	quartz dk grey dominant. Also locally feldspar 90% in response to veins.
-36-		13	1	.00	61236	.30	.088	}	8	<u> </u>	10					1		5	6 .0	1.0	20	0.5	28.5 - MoS2 - Pyrite Qtz stringer (1 mm max) parallel at about 35° (x5) early - 35° Banded MoS2-Qtz-Pyrite vein (3 mm)
-38		17	, 1	.07	61237	.50	.053		3		10		 					Ţ.	-	+-	i.0		MoS2 on selvage and central to vein. late - 20 ⁰ white Qtz vein MoS2 Pyrite disseminate
40		14		.00	61238	.60	.036	,			8					 	4	5,0	+	╋		┝─╋	$\frac{2500}{100}$ sericitized cut by grev MoS2 stringer (0 ⁰) - MoS2
-42-		22	2 1 	.03	61239	.30	.041	-		 	3	2			8			<u> </u>		┢		1.0	on dry fractures with pyrite-sericite. 30.5 - 35° white guartz veins parallel (x5) at
44 -		20	<u>, 1</u>	.00	61240	.05	.076				4				 	3			╋	╀	╉╼╴	1,0	shear fracture filling 36° white qt2-MOS2-
46		20) 1 -	.02	61241	. 20	.023		-	ļ	8			 		4		- -	+	+	+	15	early -0^0 irregular gray 1 mm quartz vein
-48 -		12	: 1	.00	61242	. 25	.007	,	3	┨	1		<u> </u>			8		30	1	1			Durite wain (white) 20 offshoots at 2 mm.
-50 -		13		98	61243	+	-	<u>+ </u>	4	-	2	<u>† </u>				9		15	┢	+	+		texture accentuated.
-52 -		13		.01	61244		.025		4		5				3		5	.05	+	+-	\vdash	┝─╂	33.4 - White Qtz Sericite vein (2 cm) at 70° wit
54				.00	61245	.25	.024		3	-					5			+-	+	╋	+	1.5	pervasive. distinguished from gray 28° MoS2-Py-
56		7	<u>'</u>	.00	61246	.05	.006		9						4		2	10.0	+	╉╾	1.5	\vdash	$33.0 - 2$ cm white Qtz-MoS2-Pyrite with MoS2 central to vein at 35°
-58 -		6	; <u>h</u> .	.00	61247	.15	. 104		16					<u> </u>	6					1		×.~	spotty. Stockwork produces evenly distributed
					<u> </u>				74		0	1 L		<u> </u>	1	<u> </u>					1		dissemination of MoS2

.

TIDEWATER PROPERTY

4

ì

TW 79-2 DDH SHEET ____ OF 31-

	GRAPH			ن ن	S	Δ	S S A	Y D	ATA	1				VE	EIN	IS				%	MI	NE	R A I	_ S	
DEPTH Metres	LI TH.	AULTS	2 1 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	% RE	A S S AY NTERCEP	SAMPLE NO AND INTERVAL	EST. Mas ₂	% MoS2			QTZ	Q tz Py	Q12 MoSz	Ру	MoSt	Carb				K-Feid	Biotite	Musc			NOTES
- •																									 34.3 - 36.8 - Purple-Brown Hornfelsic Greywacke - fine grained feldspathic, greasy with biotite barely recognizable =20%. Spotted feldspathic texture locally. 34.3 - 20% white quartz veins with pyrrhotite
																					_				MoS2 disseminated as massive clusters. Vein irregular, anastomosing. 34.3 - Otz MoS2 veins parallel to core axis up to
			_									 										-	-		3 cm with MoS2 coarsely disseminated on selvages and central fractures parallel to vein. Pyrr- botite massive locally. 20° 4 mm veins related
												 													cut earlier dark gray 2 mm Qtz MoS2 veins. 20 ⁰ Qtz Feldspar MoS2 veins cut white MoS2 veins along with 10-20 ⁰ MoS2 Pyrite fractures. Locally
							+	+																	epidote and garnet developed. 36.8 - 38.8 - Lt. Green Quartz Feldspar Porphyry. fine grained groundmass 2 mm white feldspar pheno-
																	 	 	 					-	crysts and white anhedral qtz eyes in a biotite ((-5)) qtz feldspar groundmass Qtz-MoS2 Pyrrhotite veins (1 cm) at 10-30° (x3)
															 	 	 					-		+	37.5 - 38.0 - Aplite vein 10° Garnet disseminate
- •						ļ							<u> </u>					 				-		+	38.5 - numerous 5 mm qtz MoS2 veins at 10-30°. Pyrrhotite on vein selvage. 38.8 - 46.5 - Purple-Black Hornfelsic Argillite Minor
					-										╞	 				╞			╎	+	Graywacke. Fine grained purple-silver sheer of fresh surface. Limy beds altered to diop- side-garnet, sandy beds appear spotty.
<u> </u>							-																		early - 20° gray MoS2 Qtz vein (1 mm) late - 20° - 700 MoS2 Pyrite veins (numerous) 1 cm - 2 mm (81m)
													-	 	 			-	-	-			+		<pre>later - pyrite-pyrrhotite on fractures (1 mm) 40.0 - 42.0 - MoS2 Qtz stringers (x4) & MoS2 Pyrrhotite veins 1 - 2 cm MoS2 low - small MoS2</pre>
			 									-								+-			╀	+	stockwork on fractures. Pyrrhotite interstitial early - 35° (5° offshoot) Qtz-MoS2 sericite late - 65° Otz MoS2 vein.
						<u> </u>									<u> </u>	1					1				2000 00 QC2 M032 VeIn.

4 10

TIDEWATER PROPERTY

ODH SHEET <u>6</u> OF <u>31</u>

TW 79-2

5		PHIC			از	STS	A	SSA	Y D	ΑΤΑ					V	EIN	IS		%	MIN	ER	ALS	
DEPTH METRES	LITH.	BEDDING	NUMBER OF	100	% H E	ASSAY	SAMPLE NO. AND INTERVAL	EST. MoS ₂	% MoSz			Qtz	Q tz Py	Qtz MoSz	Py	MoSz	Carb		 K-Feld	Biotife Musc			NOTES
																							42.0 - 44.0 - Patchy white-gray granular MoS2 -Qtz veins. MoS2 disseminated coarsely,Pyrrhotite - dk green sericite patchy in vein >1 cm at
										· · · · · · · · · · · · · · · · · · ·				ļ									$- \frac{1}{2} = \frac{1}{2} $
																							$46.3 - 62^{\circ}$ 3 mm white massive Qtz MoS2 vein. MoS2 on selvage and central to vein.
				Ť																			46.5 - 47.9 - Silicified, sericitized Qtz-Feldspar Porphyry - very fine grained green gray groundmass Qtz eye up to 2 mm. White euhedral feldspar
F	1			1																			less prominent. Garnet disseminated in large 2 - 5 mm crystals - biotite very fine grained
ţ	1						<u> </u>																<lw angle="" as="" disseminated="" flakes="" high="" in="" irregular<="" locally="" milky="" molybdenite="" rosettes="" sparsely.="" td=""></lw>
ľ				1																			quartz veins - Pyrrhotite sericite ± MoS2 in gray regular 30-40° quartz vein (3 mm) - Stock- work weakly developed with sericite pervasive
Ī				╏							↓	İ											providing 1t green pearly cast. Veins up to 1 cm with qtz stringer at 5°.
ł																							
ŀ				1						· · · · · · · · · · · · · · · · · · ·													
ł				1			<u> </u>				1												
ŀ				Ť							· ·												
İ	1			T																			
ľ	1			╞				1															
ľ	1			╀																			
t	1		F							1													

ì

TIDEWATER PROPERTY

à

Ϊ.

TW 79-2

DDH SHEET 7 OF 31

	HIC LO	6	U I	<u>-</u>	AS	SSA	Y D	ΑΤΑ	1			VE	ETN	IS				%	N	AT N	ER	ALS	
DEPTH METRES LITH. BEDDING	FAULTS NUMBER	1000	% RE	NTERCE	A SAMPLE NO	EST. Mos ₂	% MoSz		Qtz	Qtz Py	Qtz MoSz	Py	MoSz	Carb M	Dtz Py	Otz Po Mosi	Qtz Po	K-Feid	Biotite	Musc	ΡY	Ро	NOTES
		╡																					47.9 - 48.26 - Purple Hornfelsic Argillite - fine grained purple, shiny micas = 20% - quartz pyrrhotite veins at contact.
- 58		7	85	Ī	61248	.05	.050	D	2		3				5			5	10	25	.5	.05	early - 55° 1 mm white - grey slightly granular guartz pyrrhotite vein.
-60-		2]	LOC		61249	.05	.015	5	7			2			7			5	5	10	.5	1	late - 7° 3 mm MoS2 - white massive qtz vein. 48.26 - 48.65 - Subporphyritic Graphic Granite - highly silicified pegmatitic dyke. Partly sericitized
-62-	1	7]1	102		61250	.05	.023	3	5				3	2	10			ю	5	5,0	.5	1	light green. Garnet disseminated. 5 mm - 3 cm white massive Qtz-Pyrrhotite-Sericite MoS2 veins
-64	2	2]	100		61001	.01	.012	2	1				2		5		 		-	15.0	1,0	-	 (x3) at 35° sericite in vein and pervasive. 48.65 - 49.0 - Purple Hornfelsic Argillite - fine grained purple. Feldspar green brown greasy
-66 - -68 -	2	2]	102		61002	.01	.025	5	1	ļ	4				10			15		+	1.0	+	appearance. Biotite, pyrrhotite disseminated early - 35° gray granular gtz-MoS2-Pyrh vein (1mm
-70-	2	6	70		61003	.10	.080	0	2		4				7		-	Ľ	L		05		with 10° offshoot 40° 2 mm white-gray massive
-72-	>2	0 1	130		61004	.05	.060	0	4		7			<u> </u>	2		 	Ľ	┡	+	,d5		49.0 - 50.52 - Silicified-Sericifized Quartz relaspan Porphyry. locally fine grained granular quartz
74		8 1	103		61005	.10	.010	0	3		2	1	1	 	2	-	-		┟──	-	2.0		feldspar sericite. Predominantly lt green. gray fine grained with Quartz anhedra and Feld-
-76		-+	95		61006	.04	.006	6	1	5		<u> </u>	 		4	1	5	3.0	+	+	╉╼┥	┝─┼╸	Slightly pyritized and sericitized locally. Garnet disseminated <> 1% Low angle milky
78		1	105		61008		.006		+-		+	3			7	-					×1.5		white Qtz-Sericite-pyrite-MoS2 veins (x4) up to 10 cm and to .5 cm (x4) contact at 50.52
-80 -	╎┝	-+	99 99					<u> </u>	2		╂──				<u> </u>		3	+	╀	+	+	-+	vein
-82 -	-	+																-	┢─	╀			portions altered to diopside skarn. Locally prismatic andalusite crystals 20° (0° offshoot
84		-+						+		+	+	-							╞	\bot	╞	,05	Mos2 Pyrite Qtz vein, white granular, coeval with
-86 -		0 µ 	102		61012	.12	1.006	о 	4		4							+		+	╞		Qtz MoS2 veins - gray granular with low angle offshoots. 71 m density.
-80 - -82 - -84 -		9]	99 105 97 102		61009 61010 61011 61012	.10		7	2 3 4	10 7 2 2					2 1 8 1		3	20	×2,)2,	00.	51,0 51,0	.05 ,05	abrupt due to high angle. Pyrrhotite vein 50.52 - 52.10 - Purple Hornfelsic Argillite- portions altered to diopside skarn. prismatic andalusite crystals 20° MoS2 Pyrite Qtz vein, white granular 40° white massive 3 mm Qtz-MoS2 vein angle 2 mm white quartz veins with h Qtz MoS2 veins - gray granular with

j,

TIDEWATER PROPERTY

;

1

TW 79-2 DDH SHEET <u>8</u> OF 31

GRAPHIC LOG	ASSAY DATA	VEINS	% MINERALS	
OEPTH METRES METRES BEDDING FAULTS NUMBER PLEGES PLEGES	A DISAMPLE NO EST. % O DISAMPLE NO EST. % O DI AND NoSz Mosz INTERVAL	Qtz Qtz Qtz Py MoSz Carb Py MoSz	K-Feld Biotite Musc	NOTES
				 52.10 - 66.8 - Silicified Subporphyritic Biotite Granite. Locally dark grey -pyrrhotized with Biotite up to 30%. Quartz feldspar interstitial equigranular. Dominantly silicified, lt green- white mosaic of quartz feldspar - numerous large low angle qtz-pyrrhotite-pyrite-MoS2 - sericite veins. 1-2 cm vein locally with sphalerite on selvage, MoS2 pervasive rosettes. Locally pyrrhotizing and sericitizing host. late - low angle gray 1 mm regular quartz vein. early - 10 cm qtz vein white, MoS2 disseminated low. 52.0 - 66.8 - High angle quartz sericite veins, pyrite disseminated sericite pervasive - white massive Qtz-MoS2-Pyrite at 10-70° 1 cm - 5 cm. High pervasive silicification. MoS2 locally as rosettes up to 4 mm numerous 1-2 mm gray regular qtz veins. Small stockwork locally generally barren locally. Pyrrhotite dissemin- ated high locally with biotite. 53.0 - 5° qtz sericite MoS2 vein with high per- vasive sericitization MoS2 higher on higher angle 1 mm gray qtz offshoot. Later 2 cm Qtz vein at 50° 61.5 - MoS2-Pyrite disseminated on offshoot fractures from white qtz. MoS2-Py veins. Locally feldspars developed on selvage. white. 62.70 - 0° 1 mm gray qtz vein early. High angle pyrite MoS2 on fracture late and 20° Qtz MoS2 white later. 63.30 - Shear with C0 Qtz breccia and pyrite (galena) as thick paint of 20° shear surface. 62.0 - 64.0 - Groundmass white, feldspathized locally. High angle qtz sericite with biotite
$\left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \end{array} \right \left \left \left \begin{array}{c} \\ \\ \end{array} \right \left \left \left \begin{array}{c} \\ \\ \end{array} \right \left \left \left \left \begin{array}{c} \\ \\ \end{array} \right \left			┠┟┟┟┝┝	locally up to 10%. 64.5 - lower angle Qtz MoS2 pyrite veins with 1-2% sericite, coarse green and pyritization pervasive

Ì,

TIDEWATER PROPERTY

;

.

TW 79-2 DDH SHEET _9__ OF _31

	HIC LOG	<u>ن</u>	1s			Y D	ATA					V	EIM	N S	<u> </u>	 	%	MIN	VER	RAL	s	
DEPTH METRES LITH. BEDDING	FAULTS NUMBER	% RE	ASSAY	SAMPLE NO. AND INTERVAL	EST. Mos _z	% MoS2			Qtz	Q tz Py	Qtz MoSz	Ру	MoSe	Carb			K-Feid	Biofite				NOTES
				7	9	6		2														 65.4 - MoS2 on shear fractures heavy as powder - smear. 66.7 - Pegmatitic feldspathic at 10 m locally. General lack of quartz veins 66.8 - 67.1 - Purple Hornfelsic Argillite - very fine grained, hard grey MoS2 Qtz Pyr Sericite veins (<1 cm) parallel to contact silicifing granite but not the hornfels. Pyrrhotite-Biotite disseminated finely. 67.1 - 67.3 - Subporphyritic Biotite Granite. Highly feldspathized mosaic of quartz-feldspar. Feldspathization appears to mask early quartz veining MoS2 on fractures outlining remnant of quartz vein. 67.3 - 71.80 - Purple Hornfelsic Argillite Minor Greywacke. 68.5 - Silicified hornfels, disseminated pyrite with high angle irregular 2 mm quartz vein 70.0 - 15° Qtz MoS2 pyr vein with coarsely disseminated MoS2 (2 cm) with 1 green pervasive alteration. 69.5 - Boudined Qtz-MoS2 veins in local stockwork-apparently coeval. 69.5 - Boudined Qtz-MoS2 veins at 1 cm (21m) 71.4 - Porphyroblastic crystals, white, rounded aggregates? 71.80 - 93.0 - SubPorphyritic Biotite Granite - dominantly white-grey mottled. Pegmatitic feldspar (white) and grey quartz in linear patchy bands. Locally graphic. Streaming quartz veins (1 mm) silicifed locally and low-high angle qtz sericite ± MoS2 FeS2 veins with sericite prvasive.

, j

TIDEWATER PROPERTY

;

TW 79-2 DDH SHEET 10 OF 31

	GRA	РНІС	LOG		Т	s	Δ	S S A	Y D	ΑΤΑ		Γ			V	ΕI	V S					INE	R A	LS	NOTES
DEPTH METRES	LITH	DDING	NUMBER	% RE(ASSAY	ITERCEP	AMPLE NO. AND INTERVAL	EST. MoSz	% MoSz			Q t z	Qtz Py	Qtz MoS	Py	MoSz	Carb			K-Feld	Biotite	Musc			NUTES
																									<pre>fractures. 73.0 - 73.6 - Fault, Highly argillized sericitized Qtz-CO₃ altered. Pyrite-MoS2 disseminated. Sericitized, pyritized adjacent to garnet zone. MoS2 ground up on shears. 74.8 - Pyrrhotite-Qtz-Pyrite veins 50° - 70° with sericite pervasive.Sphalerite disseminated <<1% (1 MoS2). 75.5 - MoS2-Pyrite Qtz veins. Silicified, feld- spathized (white pegmatitic) texture mask original outline of vein. 76.9 - sericitization pervasive to Qtz MoS2 veins MoS2 as 1 mm rosettes Gray Qtz Pyrite veins * MoS2. Pegmatitic Feldspars later. 78.0 - 80.0 - Mottled pegmatitic 3 cm vein with 1 cm euhedral feldspar on selvage 79.5 - Equigranular Biotites regularly disseminat w/ pyrrhotite. 80.5 - 82.0 - 0° (parallel core axis) MoS2-Pyrite vein - Sericite pervasive cut of 80° Qtz-Sericite Pyrite. Qtz Pyrite vein (1 cm) at 50° cut by both. 82.4 - MoS2-Qtz veins, gray, numerous, parallel up to 1 cm. White veins locally sericitized and pyritized pervasively. 85.5 - silicification. MoS2 streaming, gray quartz veins, up to .5 cm. Porphyritic texture locally. Sericitization pervasive to 5° MoS2-Qtz vein.</pre>
1		1		1	- 1		l I	1		1	1			1		1		1	1				ł		

,

TIDEWATER PROPERTY

.

٠,

TW 79-2 DDH SHEET 11 OF 31

as131010101326 $2c (1) (0/c)^{4}$ 131061014.25.0301326 $2c (1) (0/c)^{4}$ 1210061015.15.025145 $20 (1) (3/c)^{4}$ $3c + 60^{5}$ $3c + 60^{5}$ 1210061015.15.025145 $20 (1) (3/c)^{4}$ $3c + 60^{5}$ $3c + 2c + 6c + 16c + 2c + 2c + $	[]	GRAPHI	C LOG	<u>ن</u>	s t	Α	S S A	Y D	ATA	 				EIN					1				ALS	s Notro	
86 19 90 61013 .02 .003 8 2 3 $20 \ 20 \ 50 \ 105$ $86 \ .005$ 86	U E P T H ME T RE	L I TH. BEDDING	FAULTS NUMBER	% RE	ASSAY INTERCEI	SAMPLE NO AND INTERVAL	EST. MoSz			Qtz			Py	MoSz	Carb M	Qtz Py oS2	Otz Po MoS	Otz Po 2	K-Feid	Biotite	Мизс	Prite	Po		
90 13 100 61014 .25 .030 1 3 2 6 $2c(r/1,0)/dr Correction pervalues and by high angular structures and struct$				T I	2	61013	.02	.003		8	2	3				3			20	2.0	0.5	1,0	.05	= 2 mm at 0 - 30° . Feldspareuhedra jutting in	ito 🗋
921210061015.15.02514520 11 solution 929361015.01.01553120 11 solution 11 solution 9479961017.10.0183464 15 solution 33.0 solution 93.8 solution $93.8 sol$			13	100		61014	. 25	.030			1	3	2			6			20	tr	1.0	1,0	61	at 45°. 0° Grey Qtz MoS2 divergent, cut by 65°	
92 16 102 61016 0.01 0.015 5 3 1 $2c_1$ $4c_1$ $4c_2$ $1d_1$ $3d_2$ <t< td=""><td>- 90</td><td></td><td>12</td><td>100</td><td></td><td>61015</td><td>.15</td><td>.025</td><td></td><td>1</td><td>4</td><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td>20</td><td>.1</td><td>es</td><td>İ,O</td><td>tr</td><td>Pyrite-Sphalerite. Chalcopyrite vein. High</td><td></td></t<>	- 90		12	100		61015	.15	.025		1	4					5			20	.1	es	İ,O	tr	Pyrite-Sphalerite. Chalcopyrite vein. High	
799 61017 $.10$ $.018$ 3 4 6 4 165.5 45.5 53.0 93.0 -93.8 -92.2 $-92igar$ $-92igar$ $-9igar$ $-10igar$ $-9igar$	- 92		16	10	2	61016	.01	.015		 5	3					1			kc	.1	که	LS	tr	Galena vein 2 mm at 90 ⁰ @ (90.0 m) Grey Qtz MoS2 veins later than 45-60 ⁰ grey Qtz	
9614 10061018.08.0152132 $ -$	- 94		7	9	- >	61017	.10	.018	+	 3	4	6				4	[15	.5	t/	1.5	.cs	93.0 - 93.8 - Qtz. Feldspar porphyry- gradational dec	reas
9815100101.01.01019 $fr locr93.8 - 95.0 - Subporphyritic Biotite Granite - dx grquartz, white feldspar, graphic locally. Bio1001710461020.05.024122fr locr93.8 - 95.0 - Subporphyritic Biotite Granite - dx grquartz, white feldspar, graphic locally. Bio1021710461020.05.024122fr locr95.5 - 95.8 - Purple Hornfelsic Argillite - 15° croqtz - MoS2 veins, white, cut barren S0 - 70°quartz veins.104209061022.10.1449991fr locr10661023.05.010392fr < fl locr$	- 96		14	10		61018	.08	.015		 		21		 	3	2			-	-	-	6	1,0	qtz anhedra. Groundmass fine grained Lt. gree	in-
1001710461020.05.024122 6 -6 -6 Large pyrite clots on fracture surface.102219261021.05.012822 6 -6 -95 .5 -95 .8 -96 .0 -5 -95 .8 -95 .8 -96 .0 -5 -95 .8 -96 .0 -5 -95 .8 -96 .0 -5 -95 .8 -96 .0 -5 -95 .8 -96 .0 -5 -95 .8 -96 .0 -5 -96 .0	- 98		15	10		61019	.01	.010		 		19							-	/	tr	1,0	t	93.8 - 95.0 - Subporphyritic Biotite Granite - dk gre guartz, white feldspar, graphic locally. Biot	ite
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100		17	10	4	61020	.05	.024		 		12	<u> </u>			2			//	-	ŧr	1,0	.05	Large pyrite clots on fracture surface.	
104 20 90 61022 $.10$ $.144$ 9 9 1 $- \frac{1}{4}\frac{1}{5}\frac{15}{15}$ $95.8 - 96.0 - $ Subporphyritic biotite granite Equidranular pegmatite quartz-feldspar. Fine graphic adjacent to hornfels. Coarse graine equigranular dominant with local green felds groundmass. 106 61023 $.05$ $.010$ 3 9 2 $4r$ $4r$ $10/6$ 108 61024 $.01$ $.036$ 4 4 1 2 $15\frac{1}{4}r$ 51.0 100 61025 $.15$ $.180$ 1 1 3 4 $220\frac{1}{6}r$ $61.05\frac{1}{5}r$ 112 100 61026 $.15$ $.232$ 3 3 5 1 $-\frac{1}{5}\frac{5}{5}r$ 96.0	102		21	9	2	61021	.05	.012				8			2	2			1	-	$\left \right $	1,0	.5	qtz - MoS2 veins, white, cut barren 50 - 70° w	nite
106 18 100 61023 $.05$ $.010$ 3 9 2 tr t $l0$ $l0$ $graphic$ $adjacent$ to hornfels.Coarse graine equigranular dominant with local green felds groundmass. 108 61023 $.05$ $.010$ 3 9 2 tr tr t $l0$ $l0$ 05 010 3 9 2 tr tr t $l0$ $l0$ 01 036 4 4 1 2 $l5$ tr 51.0 56.0 -98.0 $ Purple$ $Hornfelsic$ $Argillite$ $ very$ fi 110 100 61025 $.15$ $.180$ 1 1 3 4 2 20 tr 05.15 96.0 $ 98.0$ $ Purple$ $Hornfelsic$ $Argillite$ $ very$ fi 112 10 61025 $.15$ $.180$ 1 1 3 4 2 20 tr 05.15 $vers$ <td>104</td> <td></td> <td>20</td> <td>9</td> <td></td> <td>61022</td> <td>. 10</td> <td>.144</td> <td></td> <td>9</td> <td></td> <td>9</td> <td></td> <td><u> </u></td> <td><u> </u></td> <td>1</td> <td></td> <td></td> <td>-</td> <td>1</td> <td>£</td> <td>1.5</td> <td>1.5</td> <td>95.8 - 96.0 - Subporphyritic biotite granite Equi- granular pegmatitc quartz-feldspar. Fine grai</td> <td>ined</td>	104		20	9		61022	. 10	.144		9		9		<u> </u>	<u> </u>	1			-	1	£	1.5	1.5	95.8 - 96.0 - Subporphyritic biotite granite Equi- granular pegmatitc quartz-feldspar. Fine grai	ined
108 20 1024 01 0.36 4412 15 10 96.0 $ 98.0$	106			╁	{	61023	.05	. 010	{ 	 3		9				2			6	-	ŧ	1,0	1.0	equigranular dominant with local green feldspa	ithic
1101010010011	108		-	╉──	1				┨────┤	 4	 	4			1	2		┢	15	ťr	.5	1,0	-5	96.0 - 98.0 - Purple Hornfelsic Argillite - very fine) red
112 112	110			╉─	-		.15	. 180		 1	1			<u> </u>		3	4	2	2.0	tr	1.0	0.5	1,5	surface. 25% quartz in 2 mm - 5 cm 60° quartz veins, white with trace MoS2 x2 15° Qtz MoS2	z
114 10 87 61026 .15 .232 3 3 4 3 2 4 .5	112		-	╋	-	 				 	-					5		1	╞		.5	5	1.0	98.0 - 98.4 - Quartz feldspar porphyry. Lt green fin	ne
white relaspar educata up to 15%. Carnet of	114			╉╌	-	 	+	}		 	╂	4	3	-	-	_		-	+	ł.	.5	1.5	1.0	and slightly pyritized Grey Qtz euhedra,	
	116			-					┠	 				 	╂──	 		$\left \right $	┥	+		-	╞┼	white relaspar eunedra up to 15%. Garnet (1	

AMAX MINERALS EXPLORATION TIDEWATER PROPERTY

.

ï

÷.

TW 79-2 DDH <u>TW 79-2</u> SHEET <u>12</u> OF <u>31</u>

- 0	PHIC		ن ن	9TS	Α	S S A	Y D	ΑΤΑ	 1	<u> </u>	 V	EIN	N S	 	%	MIN	ER	ALS	
DEPTH METRES LITH.	BEDDING	NUMBER 07 7. ECES	% RE	ASSAY INTERCEI	SAMPLE NO AND INTERVAL	EST. MoS ₂	% MoSz		912	Q t z Py	 Ру	MoSz	Carb		X-Feid	Musc			NOTES
																			 <u>98.4 - 108.5</u> - Purple Hornfelsic Argillite. Minor Greywacke. Quartz vein 75% over 2 m interval, white massive at 50-60°. Minor MoS2 veins up to 1 metre. Spotted Hornfels. Elongate-Qtz Feldspar crystal aggregates. 10 cm Limy diopsidic skarn- ified bed. Garnet = 1%- 103.6 Qtz MoS2 veins at 50 - 60° are highly sericitized, mineralized with MoS2-Pyrite - Pyrrhotite in stringer and fractures adjacent to veins. 108.5 - 110.7 - Subporphyritic Biotite Granite - white-gree mottled medium-coarse grained pegmatitic mosiac of quartz (dk grey) and feldspar (white). Locally dark grey quartz interstitial to flowery, elong- ated, dendritic feldspar with quartz graphic. Moderately pyritized = .5%. Pyrite sericite on 65° fractures. Clear calcite up to 1 mm on 15° fractures. Qtz Sericite white quartz vein at 75° (sericite pervasive) later than 30° white irregular qtz MoS2-Pyrite vein. 110.7 - 114.06 - Purple Hornfelsic Argillite. Massive no bedding silver-purple sheen on fresh surface. Very fine grained. Qtz MoS2 veins parallel to core axis ± pyrite. High angle Qtz, pyrrhotite veins ± MoS2-ZnS-pyrite and locally scheelite as coarse 2 mm crystals. These veins are later than MoS2 veins @ 0°. Sericite coarse,phlogopitic locally in high angle veins. 114.06 - 114.5 - Quartz Feldspar Porphyry. Qtz and feldspar phenocrysts up to 25% and 3 mm. Lt grey off white fine grained groundmass, moderately pyritized. biotite<cl%.< li=""> 114.5 - 115.75 - Purple Hornfelsic Argillite. CO₃ epidote Lt. green on low angle sheer fractures. Quartz- Feldspar-MoS2 veins @ 114.7 65° and 1 cm white Qtz-MoS2 veins at 45° along with 15° lge MoS2- Pyrite. </cl%.<>

4

TIDEWATER PROPERTY

4

TW 79-2 DDH SHEET <u>13</u> OF <u>31</u>

$\frac{1}{126}$ $\frac{1}{126}$		RAPH				ن ن	Ĭ		AS	SSA	Y D	ΑΤΑ	T			١	VΕ	I N	s			·	%	6 1	MI N	ER	ALS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEPTH METRE	BEDDING	FAULTS	NUMBER	FLECES	% RE	ASSAY	SAN	MPLE NO. AND TERVAL	EST. Mos ₂	%		011			z P Sz	y Ma	s _z c	arb N	Qtz Py oS2	Qtz Po Mas	Qt Po	2 9 4-¥	Biotite	Musc	Ρy	Ро	NOTES
med grained pegmatitic qtz and feldspa Biotite less erratic - 5%. Feldspars	-116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136	BEDDING	ר ק ק	23 20 17 16 15 20 20 20 20 20 19		32 % 15 02 00 00 00 00 00 00 00 00 00 00 00 00		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	MPLE NO AND TERVAL 51028 51029 51030 51031 51032 51033 51034 51035 51036 51037	EST. MoS2 .01 .08 .10 .20 .08 .15 .20 .01 tr .01	% MoS2 .012 .012 .025 .040 .006 .090 .132 .012 .011 .001		10 1 7 2 4 2 4 2 6	Ру (Mo: 2 2 1 5 7 3 4 2 4		y Mc	SS₂ C		4 5 3 5 4 6 3 3 3		Qt Po	2 5 5 5 5 5 5 10 5,0 5,0 30 30		1.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	A 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	0d t t t t t t t t t t t t t	NOTES 115.75 - 127.5 - Subporphyritic Biotite Granite - mottled grey pegmatitic dark grey quartz, white feldspar Biotite locally in high concentrations. Local silicification produces fine grained white Lt. green texture. Garnet disseminated locally 1 mm Sericitization pervasive to 5 mm qtz vein at 80° @ 117.6. Later than 15° Qtz MOS2 Pyrite vein. MoS2 Pyrite on 90° fractures. Pyrite 4 mm massive on fracture @ 131.0 Highly silicified dark grey mottled, pyritized masks feldspar. Highly sericitized pervasive to high angle Q.V. 123.74 - Hybrid phase Qtz Feldspar Porphyry in with Subporphyritic phase. Argillization locally on fractures. 122.0 - 124.0 - MoS2 rosettes up to 2 mm on dry fractures and/or disseminated. Fracture density 8/10 cm locally 127.5 - 128.4 - Quartz Feldspar Porphyry. light green locally highly sericitized, fine grained. 128.4 - 129.84 - Hybrid Felsite + Qtz Feldspar Porphyry. Light green-gray very fine grained, slightly mottled, siliceous. 129.84 - 132.62 - Felsite - 1t green mottled siliceous very fine grained. White feldspar, linear and irregular produce mottled texture. Fspar locally w/graphic qtz. 131.5 - small subporphyritic granite dyke. 10 cm at 20°. Felsite relatively devoid of qtz veins.
Dyke? = 30 cm. Argillization, pyritiz 136.2 on fractures. Quartz veining do																												<pre>med grained pegmatitic qtz and feldspar. Biotite less erratic - 5%. Feldspars appear interstitial. Quartz = 50%. Felsite at 133.5. Dyke? = 30 cm. Argillization, pyritization at 136.2 on fractures. Quartz veining dominantly 1 mm grey MoS2-Pyrite at all angles. No</pre>

.

TIDEWATER PROPERTY

3

TW 79-2 DOH SHEET <u>14</u> OF <u>31</u>

_ v) G	RAPH	IC LOG	10	a La	A	155	S A `	Y D.	ΑΤΑ	Τ				VE	EIN	IS				%	⊳ №	MIN	ER	AL	s	
DEPTH	BEDDING	FAULTS	<u>гіссэ</u> % R Е	ASSAY	SAMPLE N AND INTERVAL	10. E M	EST. loSz	% Mo52		•	tz	Q t z Py	Q1z MoSz	Ру	MoSz	Carb M	Qtz Py oS2	Qtz Po MoS	Qt: Pe	K-Fed Z	Biatite	Musc	ΡY	Po		NOTES
																										137.4 - 138.4 - Hybrid Equigranular-Pegmatitic Subporph Biotite Granite & Qtz Feldspar Porphyry - gradational between fine grained equigranular
-138 -140	L I	20	8 0	5	61039		.04	.010			6		2				2			5	/		1.0	/		biotite granite to lt. green quartz feldspar Porphyry.
-140		20	010	5	61040		. 15	.055									4			10	ť	.1	30	/		138.4 - 150.9 - Quartz Feldspar Porphyry. Lt green-gray fine grained groundmass. 20% Qtz-feldspar
142		20	011	0	61041		. 20	. 174							1		4			ĸ	.5	, 1.0	1.5	-		Phenocrysts. <u>138.4 - 140.0 -</u> large qtz veins barren and numerous. White crinkly qtz veins <u>+</u> feldspar.
-144		20	010	1	61042		. 25	. 424			1				2		3			10	/	2.0)B.0	/		Porphyry groundmass locally aphanitic. lt. green-creamy.
-146		20	0 8	8	61043		.01	.120				3					1			10	/	Γ,	2.0	-		<u>141.8</u> - Later Pegmatitic Biotitic dykelet = 2 cm. Fault Highly argillized, coarsely pyritized
-148		10	610	0	61044	t	r	.008				5								10	/	Ę,	20	-		adjacent to 2° Qtz MoS2 Pyrite vein. 140.0 - 140.8 Argillization on fracture surfaces, throughout. Fault at 144 - 146 MoS2 .55 mm thick on 0-5°
150		20	010	0	61045		. 20	. 254			2						4			5	Q,	5 10	20	·		shear fractures. Pyrite in 1 mm cubes locally. Feldspar phenocrysts completely argillized
152					61046			.044												5	-	10	1.0			adjacent to fractures. Groundmass light green sericitized. Locally friable.
-154 -156			2	1	61047			.076												-	1	0	20	-	60	<u>148.4</u> - Sericite thick (lt green) or high angle fracture - Feldspar phenocrysts argillized slightly throughout.
			1	7									F	AULT						1					Ш	150.9 - ? - Equigranular biotite Granite - light green fine grained sericitized heavily soft to a
-158			Π																	¥	V		V	¥	¥	knife blade. 151.3 - Sericite-MoS2 rosettes. at 50° + Pyrite and Hyd. Biotite? 15° MoS2
160		20	0 9	0	61048		. 10	. 200			2		4		1		6			5	-	20	<i>],</i> 0	-		Qtz Py vein. MoS2 as 1 - 2 mm rosettes 5% of vein. 152.4 - Fault Friable sericite pyrite altered
162		20	0 9	8	61049		.04	.026								5				5	-	2,1) 1 .0			granite. Calcite in bits of recovered core up to 90%. Pyrite in large clots, balls.
164			1	1																						? - 162.45 - Quartz Feldspar Porphyry. Lt green highly sericitized groundmass, fine grained. MoS2 on 40° fracture, coarse. MoS2 <u>disseminated</u>
[]			Ţ	1		T						-														409 fracture, coarse. MOS2 disseminated locally in groundmass at 161.8. Feldspars soft,

4

TIDEWATER PROPERTY

à

TW 79-2 DDH SHEET 15_OF 31_

 %		APH			ن	PTS	Α	SSA	Y D	ΑΤΑ					V	EIN	N S						RAL	s	
DEPTH	LITH.	BEDDING	FAULTS	NUMBER Of Pieces	% RE	ASSAY	SAMPLE NO AND INTERVAL	EST. Mos ₂	°∕₀ MoS2			Qtz	Q tz Py	Q1z MoSz	Py	MoSz	Carb			K-Feld	Biotite	Musc			NOTES
																									argillized phenocrysts, white = 5% 162.45 - 164.8 - Subporphyritic Biotite Granite - medium
ľ																									grained dk-lt grey mottled. Mosaic intergrowth of white feldspar, dk grey quartz. Pyritized
F	1																								- 1%. Locally disseminated MoS2 and MoS2 Pyrite on numerous hairline fractures. Fractures (high angle) w/pyrite - clay minerals. Locally
Ī																									sericite on fractures at high angle.
F	1																								
ľ	1								1																
ľ	1					1							 								T				
ľ	1					1			1												T				
İ	1																								
İ	1					1																			
ŀ	1					1																			
İ			·			1	······································																		
İ	1						1	1							1										
ł										0		1		1				<u></u>							
İ	1						1				 								1						
İ	1					1								1						Π					

TIDEWATER PROPERTY

- }____

ž

DDH SHEET 0F

TW 79-2

	GRAF	рніс	LOG	1.		51S	Α	SSA	Y D	ΑΤΑ						EIN							INE		LS	NOTES
DEPTH METRES	L I TH.	E UDING	AULIS		ASSAY	NTERCE	A SAMPLE NO AND INTERVAL	EST. Mo\$2	% MoS₂			Qtz	Q tz Py	Qtz MoS ₂	Py	MoSę	Carb M	Qtz Py oS2	Qtz Po MoS	Qtz Po 2	K-Feid	Biotite	Musc	ΡΥ	or J	NOTES
				f		-																				164.8 - 169.8 - Hybrid Phase - Lt. grey-white silicified felsite w/numerous MoS2-Pyrite filling fractures parallel core. Felsite appears to cut sub-
-164			14	10	20		61050	.01	.024						nu fr	nero actu	us res	4			5.0	1.0	trli.	,d -		porphyritic qtz-feldspar mosiac medium to coarse grained. Equigranular white, fine-med
160			21	10	20		61051	.02	.014			2		1				3			D	ŧr	th.	5-		grained biotite granite cuts subporphyry also with shear contacts.
-160 _170			20	9	7.6		61052	.05	.018			1		1		nero actu	1	6					tr	_		<u>168.9</u> - Biotite 20% 1 mm flakes, chloritized. Pyrrhotite associated. <u>168.0</u> - MoS2 and Pyrite on $<5^{\circ}$ -10° fractures ±
			> 20	10	00		61053	.06	.070				2			2		4		l			tr I,		-	quartz-sericite. Fractures with light powdery clay + pyrite.
-17			>20	1	05		61054	.05	.006			1	2					9			2,0	1,0	.51,	,o (_	170.5 - Sphalerite Qtz-Pyrite veins (x2 at 70°)
-17			720	1	00		61055	.05	.010		<u> </u>	1						>10		 		_	1.01	-+-	<u></u>	169.8 - 170.8 - Equigranular Biotite Granite- white-lt grey, fine grained quartz and feldspar. Locally lt green sericitized? Pyrite disseminated <1%
17			17	9	2.5		61056	.01	.008			<u> </u>	3	1				5		ļ			1,03	_		Biotite <1% fine grained infrequent. 170.8 - Dacite Porphyry - 5 cm 10 ⁰ dikelet.
17			>20	h	02		61057	.04	.046				8		 			4		<u> </u>	Į		2.02	_		Dark-med green aphanitic with 10% biotite phenocrysts euhedral. Soft white anhedral
-18 -18			>20	1	00		61058	.05	.034				3			2		3		ļ	5,0	£	1.02	15t	x 	inclusion? 170.8 - 176.3 - Equigranular Biotite Granite. MoS2 thic on 80° & 50° shears. Granite mod. pyritized
-10															<u> </u>				<u> </u>					_		locally quartz becomes dark grey medium grained
ſ	1																<u> </u>			ļ	 				_	173.4 gericite quartz veins ± MoS2, while at 20 50° 174.5 & 176.0 - MoS2 Pyrrhotite disseminated in
	1			T																						dark gray-green silicified zones. Garnet large
Ī	1			T																<u> </u>				_		176.3 - 187.7 - Subporphyritic Biotite Granite - light
ſ	1										ļ						<u> </u>			<u> </u>					_	grained green sericitized, prophyritic. Massiv Pyrite-Qtz Pyrite vein dominant. 30° fractures argillized, pyritized.
Ī			Γ	T																						argiilized, pyricized.

TIDEWATER PROPERTY

1

.

TW 79-2 DDH ______OF _____ SHEET _____OF _____

	GR	APHI	CLOG		ا ز	ET S	A	SSA	ΥD	ΑΤΑ					V	EIM	N S	 			NER	AL		
DEPTH	LITH.	BEDDING	FAULTS NUMBER	PIECES	1 N 0/	ASSAY INTERCE	SAMPLE NO. AND INTERVAL	EST. Mosz	% MoS2			Qtz	Q tz Py	Qtz MoSz	Ру	MoSz	Carb		K-Feid	Biotite	Musc			NOTES
																							Durito	- 15 ⁰ vuggy white massive Qtz-MoS2 Pyrr vein - 186.7 - Highly sericitized, argillized. as large dissemination along qtz veins pre. Groundmass Lt. green soft. Vuggy
																							Qtz-py MoS2 - tensio	are. Groundmass Lt. green soft. Vuggy rite veins and MoS2 on 50° shears. Sericite on shear fractures. CO ₃ -Pyrite on n fractures.
								 							 			 		_				
				_	_							ļ						 		_	_			
													ļ											
												ļ	<u> </u>											
																					_			
ſ																								
ſ	1																							
Ī	1					ſ																		
İ	1					Ī																		
İ	1			T	1	ľ		 																
ł	1		F	╈	1												1						• •	·.
ł	1			╏	1		<u></u>																	-

TIDEWATER PROPERTY

÷.

TW 79-2 DDH SHEET <u>18</u> OF <u>31</u>

- L_ w H-	GRAPH		OG	j	S La	² A	ss	A	Y D	ΑΤΑ					۷	EIN	N S				%	М	IN	ERA	ALS]	
DEPTH	L I TH. BEDDING	FAULTS	NUMBER Of Pleces	% RE	ASSAY	SAMPLE N AND INTERVAL	IO. ES Mo	5T. S2	% MoS₂			Qtz	Qtz Py	Qtz MoSz	Ру	MoSz	Carb	Qtz Py MoS2	Qtz Po MoS	Ot Po 2	K-Feid	Biotite	Musc	ΡΥ	2		NOTES
																										fr	4.9 - 28° MoS2 Qtz veins later than felsite agmentation in subporphyritic Qtz-Feldspar- veins
-182		>	20	92.	5	61088		8	.016			1	2	2		3		3			10	t	1.0	1.0	-	187.7 - 1 - 9r	- 2 mm grey 89.5 - Quartz Feldspar Porphyry - lt. green fine ained groundmass. Locally, qtz and feldspar
184			18	92.	F F	61089		8	.026			2	2				 	9		1	5,0	ŧι	1.0	1.5	Ľ	to	enocrysts crowded up to 60%. Appears gradational subporphyry. Pyritized = <1% with disseminated
186 188			20	100		61090		5	.054							2		10			10			_		<u>18</u> Py	S2 locally. 8.4 - Pyrite MoS2 on 70 ^o dry fracture (tension) rite on 30 ^o fracture.
190			14	102		61091	1.0	8	.058						1			10			10	ŧ٢	tr	1.5 -	1	189.5 - 1 fe	91.7 - Subporphyritic Biotite Granite. White Idspar interstitial to qtz anhedra (1 mm) grading
192			16	102		61092	.ı	15	.075			1		1		4		8			10				-	se	phenocrysts and a crowded porphyry. Locally ricitized green, fine grained with disseminated S2. Numerous qtz-pyrite ± MoS2 gray 1 mm
194		7	20	98		61093	.	10	.050	<u></u>			-			1	 	3		1	5				+	st 19	ringers. 0.1 - Otz MoS2 Pyrite, vein, white at 15 ⁰ and
196			17	90		61094	. .	LO	.015			2	<u> </u>			2		7			10			-+		19	cm. Sericite Pervasive to .5 cm similar veins. 1.7 - Fractures appear like "stylolites" in pearance. MoS2 5 mm thick on surface, shear?
198			22	94		61095		55	.015				1			1		6			1			1.0	1	191.7 - 1	93.0 - Equigranular Biotite Granite. 2.0 - 193.0 - Lt. grey altered, very soft.
200-			16	100		61096	1.0	55	.050				1					3			┞╴┨	_	1.0			- Fi	hydrite alteration? Shear fractures argillized. ne grained feldspar barely visible, white. MoS2 rite disseminated in linear bands.
202			12	98		61097		56	.019							1		5		, ,	5			1,0 1,11		193.0 - 1 ir	95.8 - Subporphyritic Granite - biotite up to 50% linear bands (3 cm). Generally devoid of
204			12	100		61098		80	.022			<u> </u>			1	2		4			2	1.0				- Gr	otite, qtz-feldspar in angular mosaic (2 mm max) Taphic locally. Pyrrhotite and Qtz-Pyrrhotite vei
																					$\left \right $				+	195.8 - 2	ssociated with Biotitic bands. 201.65 - Crowded Porphyry - white, lt green fine- ed grained, mosaic of angular feldspar - quartz.
				 									-								$\left \right $					Fe	eldspar appears interstitial. Pegmatitic appear-
					{				E	Æ	2-	-								 				+		ad	06.5 - Galena Sphalerite, Pyrite, in 60 ⁰ vein ljacent to zone of lt. grey soft alteration nhyd?).
							<u> </u>																			``	

 C_{i}

TIDEWATER PROPERTY

DDH <u>TW 79-2</u> Sheet <u>19</u> OF <u>31</u>

	<u>s</u> –	RAPH	IC LO	G	ပ်	PTS	Α	SSA	Y D	ΑΤΑ				V	EII	1 S			%	MI	NER	AL	s	
DEPT	METRES	BEDDING	FAULTS NUMBER	PIECES	% RE	ASSAY	SAMPLE NO. AND INTERVAL	EST. Mos ₂	% MoSz		Qtz	Q12 Py	Qtz MoSz	Py	MoSz	Carb			K-Feld	Biotite	MUSC			NOTES
																	-							<u>198.8</u> - Breccia silicified with MoS2 interstitial Pyritized heavily. Sericite, Pyrite & clay minerals on fracture MoS2 disseminated locally.
				+							 													MoS2 on shears as paint, 15-30 ⁰ .3 - 1 cm grey qtz veins and Pyrite MoS2 stringers. Locally at 201.0 Qtz-Fspar veins (up to 5 mm) with MoS2 Pyrite disseminated coarsely.
Ī	-					- - -																	201	 65 - 202.65 - Biotite Quartz Feldspar Porphyry. Lt. grey fine grained groundmass, Phenocrysts up to 10%. Quartz & Biotite 1 mm, Feldspar white
				_		- - -																	_	euhedral up to 2 mm.
ł				-		- - -					 									_	_			
ŀ			-	-														 		-	-		-	
ł	1		ŀ	┨			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											 		+			-	
ĺ	1																							
			-	_							 							 		-			_	
$\left \right $			╞	_	_			-												+			_	
ł			-	-															┠┼		+			
ŀ																								,.

TIDEWATER PROPERTY

{

4

TW 79-2 DDH SHEET 20 OF 31

τg	GRAPH	HIC L	LOG	.	PTS	A	SSA	Y D	ΑΤΑ	-					EII							MH	NER	AL	s	
DEPTH Metres	L I TH. BEDDING	FAULTS	NUM BER	% RE	ASSA	SAMPLE NO AND INTERVAL	EST. Mos _r	% MoS2			Qtz	Q f z Py	Q1z MoSz	Py	MoSz	Carb	q py MoS	q po MoS	q po	K-Feld		B1011	ΡV	Po		NOTES
																										202.63 - 204.5 - Crowded porphyry & Equigranular Biotite Granite. Lt. green gray fine grained angular qtz Feldspar with biotite < 2% = .5 mm. Quartz
-204			15	100		61099		.10	.078			1			2		13			10	2.	d I.	d 1,0	ŧ		and Feldspar grades up to 2 mm in a crowded porphyry with biotite absent.
206			12	100		61100		.10	.055				1		2		6					\perp	10.8			202.8 - Massive Pyrite-MoS2 vein. Along 60 ⁰ shear.
208			15	100		61296		.10	.034			$+\frac{1}{Pbs}$					12					1) <i>1,</i> 0			204.5 - 204.88 - Subporphyritic Granite 2 mm white feld- spar dk. grey quartz, angular, in a mottled mosaic. White vuggy Qtz Pyrite vein, 2 cm
210 212			10	101		61297		.15	.136								8	<u> </u>	1		- 	+	0 1,0			along upper contact. MoS2 on selvages as thick paint and along wavy fractures.
212			13	102		61298		.10	.008			5			2		6		2	5		+				204.88 - 209.0 - Equigranular Biotite Granite - fine-med grained, lt. green grey. Biotite 2%, locally absent. Pyrite disseminated < 1%. Sericite on
214			19	95		61299		.08	.026		3	1		 			8			_		.	00.5	┟──┨		70 ⁰ fractures. Numerous Qtz-Pyrite-MoS2 grey stringers (<1 mm) at 30 - 50 ⁰ . 45 ⁰ MoS2 Qtz
218			8	100		61300 79 HRT		.05	.022		 		ļ		 	 	9			5	+	╋	st.	├ ─── 		veins (± pyrite) cut and displace each other @ 205.0 MoS2 .5 mm thick on 60 ⁰ shear fractures. 209.00 - contact, gradational? High angle
-220			11	100		886	 	.08?	.053			-			1		15			5	Ĺ	2	d1.0			fractures with sericite soapy, lt. green of surface, med green pearly pervasive to fracture
222															ļ	 		 	-	_						209.0 - 216.05 - Qtz Feldspar Porphyry - lt. grey.green fine grained groundmass. Biotite up to 1% fine
									 		-					 			-	-						grained. Little disseminated groundmass pyrite. Qtz-Feldspar phenocrysts vary from 5-50% up to 2 mm. Garnet disseminated in
								 				-			 			-				+				trace amounts. Pyrite on O ^O fractures as large flakes, masses.
							 								ļ	 		-		-	-		-			216.05 - 213.0 - Equigranular Pegmatitic Biotite Granite fine-med grained grey mottled with biotite up to 5%. Angular Qtz-Feldspar relationships.
												 						-		-		-				Pyrite and pyrrhotite disseminated <1 % MoS2 locally.
							 				 									-						<u>210.8</u> - Bleached pervasive to 2 ⁰ fracture. Sericite disseminated pervasively.
																										MoS2-Pyrite ± Pyrrhotite veins as stringers,

TIDEWATER PROPERTY

÷.

TW 79-2 DDH SHEET 21_ OF 31_

	G	RAPH	IIC L	06	ن ن	1s	A	S S A	ΥD	ΑΤΑ		1		<u>.</u>	V	EIN	I S		%	MIN	ER	ALS	
DEPTH	METRE	BEDOING	FAULTS	*U*857 0f Pleces	% RE	ASSAY	SAMPLE NO AND INTERVAL	EST. MoSt	% MoSz			Q † 2	Q tz Py	Qtz MoSz	Ру	MoSz	Carb		K-Feld	Biotite Musc			NOTES
					%								Py	Mo S ₂									<pre>fractures and .5 - 1 cm white to gray veins at 10 - 70° dominantly 40 - 45°. 70° Qtz MoS2 veins with sericite on selvage and pervasively later than 5° Qtz-Pyrite stringer ± MoS2. 213.0 - 214.9 - Crowded Porphyry - 2 mm subhedral quartz and feldspar interlocking in a lt. grey-white mosaic. While 1 cm quartz veins at 1 cm (x2) and 40° with sericite on selvage and argillized fractures adjacent. 214.9 - 215.4 - Equigranular Pegmatitic Biotite Granite. 215.4 - 220.3 - Miarolitic Alaskite - white med-fine grained angular quartz and Feldspar. Miarolitic cavitites up to 10% with 3 mm maximum width. Qtz crystals in the cavities locally. Lt green soft mineral filling cavities up to 18. Possible sericitization of Fspar. Qtz-Pyrite-MoS2 stringer numerable at 20 - 50°. MoS2 disseminated locally.</pre>
ł	1				╞	1					1												

TIDEWATER PROPERTY

1

÷.

DDH __TW_79-2 SHEET 22_ OF 31_

T 0	GRAP			ن	t st	2	AS	SA	Y D	ΑΤΑ					V	EII	N S				%	Mi	N E	RA	AL S		
DEPTH METRES	L I TH. BEDDING	FAULTS	NUMBER 01	% RE	ASSAY	SAMPLE AND INTERV	NO.	EST. Mos _z	% MoSz			Qtz	Q t z Py	Q1z MoSz		MoSz	Carb	q py 1oS2	q po MoS2	q po	K-Feid	Biotite	Musc	Py	FO		NOTES
																										Mo	20.0 - Sericite-MoS2, soft up to 2 cm thick, S2 like paste, sericite soft, friable.
-220			12	100		79 HR 88		.05	.058	·····						1		10			5	64	Er I	,0 -		Ot Ot	28.15 - Equigranular Pegmatitic Biotite Granite. zz MoS2 Pyrite stringers, dry fractures numerous. 21.4 - Dacite Porphyry. 2 mm along 0 ⁰ irregular
-222 -224			16	1.00		88	8	.08	.026			1	3		2	4		2			5	2.d1	1,0	1.0-	1	fr 22	acture. 22.2 - Pyrite massive on fractures, irregular
-226			16	101		88	9	.05	.018				1		 			5			5	2,01	1,0	1.5 -	-	ir	st'n Sericitizied zone, 20 cm with dissem- nated MoS2. Hairline fractures with MoS2 as thick wint. Sericitized zones with Biotite absent.
-228			12	101	-	89	0	.04	.015			1	2					8			Ĭ	2.02		_	1	. 22	otite locally up to 1 mm. 26.90 - Subporphyritic medium gray mottled, edium grained section. Sericitized zone separates
230			9	100		89	1	tr	.015			2	4	1					2		5			_	+	tł	nis texture from biotite granite. 228.60 - Mafic Dyke - very fine grained dark gray
-232			11	Loc		89	2	tr	.012				5							2	8	-			_	wi wł	th red and green (soft) phenocrysts along with nite - prismatic phenocrysts? Highly magnetic.
234			-	LOC	-	89	_	.01	.006			3		1				2			4,0	+			+	fi	31.5 - Equigranular pegmatitic Biotite Granite. ine-med grained, porphyritic locally with biotite - 5%, irregular distribution. Numerous hair-
236				100	┨	89	\dashv	.04	.010			3		2				4			5,0 R,0				+	li or	ine fractures with pyrite. Little MoS2 Pyrrhotit n veins and disseminated <1%? Larger Qtz veins
238				100	-	89		.01				2						3			5,0 5,0	_	_		+	231.5 - 24	ith white fspar on selvages. 42.85 - Subporphyritic Pegmatitic Granite. Local 7 coarse grained - grey mottled with angular qtz
240				100	1	89 79 HR	r	tr	.006				2					1		3	3.0	_+	_		_	_biotite fs granite √]	spar intergrowth. Generally med grained biotite 1%. High angle fractures sericitized pervasively
242			8	100		89	7	.05	.056		1	2			2						р,• 				+	gran. <u>23</u>	oS2 disseminated with sericite. 33.0 - 18 cm Qtz-MoS2-Sericite vein. Sericite ervasive.
\mathbf{F}			-		- ·		-															_				- <u>23</u> Py	33.7 - Dark grey silicified zone (20 cm) with write disseminated up to 2%.
					$\left \right $	 																	╡			pe	35.0 - White 7 cm irregular quartz feldspar egmatitic vein. 35.5 - 7 cm white Qtz MoS2 sericite vein.
\mathbf{b}			$\left \right $	$\left \right $	1	 																				- · · · · · · · · · · · · · · · · · · ·	subporphyritic medium grained rock grades im- erceptibly into a fine-med grained biotite granit

TIDEWATER PROPERTY

ł

5

DDH TW 79-2 SHEET 23 OF 31

Γ		RAP			ರ	1	Α	S S A	Y D	ΑΤΑ					V	EIN	N S		%	MI	NEF	AL	.s	
06911	METRES	BEDDING	FAULTS	NUMBER Of PIECES	% RE	ASSAY	SAMPLE NO AND INTERVAL	EST. Mos _e	% MoSz			Qtz	Qtz Py	Qtz MoS ₂	Py	MoSz	Carb		K-Feid	Biotite	Musc			NOTES
																								<pre>(236.3) - Dacite Porphyry - for 40 cm parallel to core axis. Biotite (+ hornblende?) phenocrysts as euhedral crystals. Prismatic and/or platy,</pre>
											 	ļ	 					 						<pre> mm. Lt grey - white very fine grained needles of unknown mineral. Groundmass</pre>
																								dark green aphanitic. <u>236.9</u> - Qtz MoS2 Py vein, 1 cm, at 25 ⁰ ,
ſ																								sericite pervasive. 80° Qtz vein also w/ ser- icite pervasive.
ŀ																								240.0 - 240.5 & 241.2 - 241.6 - Highly sericitized. White 1 cm 80° q.v. related? MoS2 rosettes
ſ	1																							disseminated < 1%. Possible silicification producing dark green gray color and hardness. Sericite soapy. Lt green on fractures.
Ì	1											1								1				Pyrrhotite pyrite disseminated.
ľ	1											 								┦				
ŀ	1																							
Ī	1					1																		
Ī	1																							
Ī	1																							
ſ	1																							
[
ſ	1																							

TIDEWATER PROPERTY

7

4

DDH __<u>TW 79-2</u>____ SHEET <u>24_</u> OF <u>31__</u>

+ 9	GRAPH		G	ان	STS	AS	SSA	Y D	ΑΤΑ				v	EIN	S				%	M	INE	R	ALS	
DEPTH METRES	LI TH. BEDOING	FAULTS	P1555	%	ASSAY	A SAMPLE NO. AND INTERVAL	EST. Mos _e	% MoSz		912	Q 1 z Py	Qtz MoSz	Py	MoSz			pg IoS2	q po	K-Feid	Biotite	Musc	ру	od	NOTES
																								242.85 - 245.05 - Hornfelsic Greywacke - purple fine grained. Biotite locally up to 2 mm elongated
242			161	00		79 HRT 898	tr	.012		3		1							20	ŧı	.5	5	-1	and parallel to foliation. 25° Qtz MoS2 veins at 70 and 80° 243.0 & 244.4 - Porph-Pegmatic dykes at 65° and
244			15 1	19		899	tr	. 008		1	1	1							5,0	/	10.0	.5	t/	10 cm. 245.05 - 246.9 - Feldspar Porphyry - white euhedral
246			17 1	10		900	tr	.005		1						1		1	5.0	/	10,0	1,0.	.5	feldspar phenocrysts up to 4 mm. Quartz Phenocrysts up to 2 mm. dark grey in a fine grained med gray groundmass. Phenocryst 40%
248			12 1	od		901	.01	.006		2	4	1				1			10	tr	2.01	1.2	ť	groundmass moderately pyritized. 245.5 - 246.2 - Highly sericitized. Lt green
250			15 9	95		902	.01	.014		1	2	1				1			Ю	/	10	5	1	pearly, soft. Quartz veining and/or silicific- ation, white, irregular. MoS2 disseminated
252			16 9	8		903	tr	.006								2			10	tr	5,0.	.5	tr	locally. 246.9 - 250.0 - Subporphyritic pegmatitic granite + Biotite Granite, angular quartz and feldspar
254			111	00		904	/	.001		1	3								10	3,0	2.0	,5	th	boundaries. Biotite associated with fine-med equigranular qtz and Fspar
256			101	00		9 05	tr	.002		2									5,0	4.0	2,0.	.2	th	247.2 - PbS-ZnS pyrite-Pyrrhotite vein at 80° Qtz-Sericite vein at 25° and .5 cm with sericite
258			21 1	00		906	tr	.003		4	1								10	1.0	2,01	i.0 1	tr 	pyrite pervasive. 15° Qtz Pyrite stringers bleached pervasively at 149.0. 250.0 - 251.3 - Miarolitic Alaskite - white fine-medium
260 262			16 1	00		907	.04	.020		4	4	3				1			4.0	1,0	3,0	.0	6/	grained (bleached?). Highly sericitized argillized(?). Miarolitic cavities 2 mm up to
264			181	00		908	tr	.002		10	1					1			4.0	1,0	2.01	1.01	tr	20%. Locally massive Pyrite on fractures. Extremely crystalline on fresh surface, 100% Qtz
266			11 1	00		909	tr	.003		3						1			5.0	4.0	1.01	.01	5	feldspar-sericite. 251.3 - 268.95 - S ubporphyritic Granite+ Biotite Granite mottled grey, medium grained, Highly sericitize
268			11 9	5		910	1	.001		2									$\left - \right $		tr		-+-	<pre>moderately pyritized locally. Garnets dissemin- ated<1% locally. Biotite highly erratic, local</pre>
-270			91.	02		911	/	.001		3					6				2.5	1.5	ŧη,	.5 t	51	ly in large clots up to 3 mm, pegmatitic. Pyrrhotite in trace amounts in groundmass. Qtz- Feldspar locally become very coarse, pegmatitic.
L, 1													7 (U	U									

TIDEWATER PROPERTY

4

Ì

TW 79-2 DDH ______ SHEET 25__OF31___

		APH			ن	PTS	Α	S S A	Y D	ΑΤΑ		T			V	EII	NS			 %	M	INE	RA	LS	
DEPTH	LITH.	BEDDING	FAULTS	NUMBER 01 15 15 15 15	% RE	ASSAY	SAMPLE NO AND INTERVAL	EST. MoS ₂	% MoSz			912	Q tz Py	Qtz MoSz	Py	MoSz	Carb			K-Feid	Biotite	Musc			NOTES
		10G381	FAUL			ASS IIIIE		Mo S ₂																	 (256.0) Pyrite sericite (+ chlorite?) on shea fractures ± MoS2. <u>258.6</u> - Dark Green soft alteration = sericite and/or anhydrite (?) Garnets in large clots up to 2 cm long. Pyrrhotite disseminated with biotites adjacent to Garnets. C03 on some fractures. <u>260.0</u> - sphalerite-pyrite quartz vein at 30° with MoS2 on selvages (shear) Numerous 70 qtz sericite veins with sericite halo. Serici on 30° shears. Numerous Qtz Feldspar peg- matite veins at 30 - 50° <u>264.0</u> - <u>266.4</u> - Feldspars become large prod- ucing vague porphyritic texture. Biotite 5% <u>267.0</u> - Felsite fragment up to 3 cm, angular Breccia? also large Pegmatite fragments and veins (268.4). 268.95 - 269.20 - Dacite Porphyry - biotite & soft, clear anhedra in a dark green aphanitic matrix Phenocrysts up to 10%.
1	F		1								1					Ì		1	{						

TIDEWATER PROPERTY

5

DDH <u>TW 79-2</u> SHEET <u>26</u> OF <u>31</u>

T to	GRAPH	HIC L	L0G	v	PTS	A	S S A	Y D	ΑΤΑ				v	E 1	I S				%	M	IIN	ER	ALS	
DEPTH Metres	L I TH.	FAULTS	RUN PER	% RE	ASSA	SAMPLE NO. AND INTERVAL	EST. Mos ₂	% MoSz		Qtz	Q12 Py	Qtz MoSz	Py	MoSz	Carb 1	q py IoS ₂	g po MoS ₂	q po	K-Feid	Biotite	Musc	Py	Ро	NOTES
																								269.20 - 282.7 - HYBRID SUBPORPHYRITIC - BIOTITE - PORPHYRITIC GRANITE - gradational fine-med
-270 -272			19	102		79 HRT 912	1	.002		+fe 5	1								8.0	t	2.0	,5	ŧ	grained biotite to biotite free subporphyritic mottled granite. Dark-red gray with numerous pegmatite veins. Numerous high angle veins and
-274			13	102		9 13	tr	.001		1	ļ	2	1				 		5,0	2.0	1.5	-5	ŧr	fractures with sericite pervasive, to a lt-med green fime grained pearly texture. Biotite
-276			15	99		914	tr	.001		3	2					2			5.0	20	1.0	-5	ŧr	distribution erratic. Garnet disseminated loca- lly up to 1%. - sericite on shear fracture, light green soapy
-278			18	105		915	tr	.002		3	2		5			2	 		3,0	ŧr	2.0	٦.	tr	273.8 - sphalerite-pyrite vein with dark grey fine grained silicification, sericitization.
-280			20	95		916	tr	.001					4			2			2,0					Density up to 2/m: MoS2 disseminated pervasively with galena(?) and garnet. pegmatite veins with pyrite MoS2 disseminated
-282			18	102		917	tr	.001					3				 		25		\square			3/m Low angle fractures with CO ₃ filling. 277.3 - 282.3 - dark grey-green alteration
284			7	100		918	/	.001											ļ				1.0	adjacent to numerous q-py-sp±galena veins. Feldspar argillitized intensely sericitized
-286			12	100		919	/	.001		1		 					 		-5					adjacent to sphalerite-pyrite veins. MoS ₂ local ly disseminated pervasively. Locally in highly altered zones, sphalerite and galena(?) diss-
288			20	105		920	tr	.006		6			+5?		: 				£⁄					eminated pervasively and on quartz stringers at low angles.
े. •290			20	100		921	/	.008			 				3				-	3.0	2.0	£	1	282.7 - 284.75 - DACITE PORPHYRY - fine grained dark green groundmass with biotite-feldspar up to 10% Feldspar phenocrysts euhedral up to 1 mm maxi-
																								mum. Highly magnetic. - <u>284.75 - 286.40</u> - EQUIGRANULAR BIOTITE - GRANITE - medium
																							_	grained biotite up to 5% white. Quartz-feldspar locally subporphyritic-crowded porphyritic with
																							_	biotite erratic up to 10%. <u>285.0</u> - pyrite disseminated pervasive to high angle fracture up to 5%. Quartz-feldspar
																								pegmatite with feldspar as laths. Sericite py- rite on fracture.
																								- biotite up to 10% in bands vein like. - pyrite cubes disseminated on fractures up to 2 mm.

TIDEWATER PROPERTY

4

TW 79-2 DDH ______OF _____

T 0	GR	APH	C LOG] د	P15	A	SSA	Y D	ΑΤΑ		I			V	EIN	V S	 	%	ML	ER	ALS	
DEPTH METRES	LITH.	BEDDING	FAULTS NUMBER	<u>2 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 </u>	~ Ч Г	ASSAY	SAMPLE NO AND INTERVAL	EST. Mos ₂	% MoS2			Qtz	Q f z Py	Qtz MoSz	Ру	MoSz	Carb		K-Feld	Biotite			NOTES
	LITH.	BE DOIN							% MoS2				Q + z Py	Q12 MoS2	Py	MoSz			X-Feid				<pre>286.40 - 298.2 - HORNFELSIC ARGILLITE - purple fine grain- ed massive. Green at intrusive contacts. - white 1 cm quartz veins boudined slightly and</pre>
					_																		

4

TIDEWATER PROPERTY

4

4

TW 79-2 DDH SHEET <u>28</u> OF <u>31</u>

T S	GRAP	liic T n	LOG	ú	PTS	A	SSA	YD	ΑΤΑ				V	EIN	15				•⁄~	, M	i N	ER	ALS	
DEPTH METRES	LITH.	FAULT	NUMBER 01	% RE	ASSAY	A SAMPLE NO. AND INTERVAL	EST. No S ₂	% MoSz		Qtz		Q†z MoSz	Py	Mosz	Carb	q po 10S2	q po MoS ₂	q pq	K-Feld	Biotite	Musc	ΡY	ΡQ	NOTES
-296																								290.6 - 293.5 - Subporphyritic - Porphyritic Granite. Extremely argillized, soft, friable. Lt. green- white with some visible quartz veining <u>+</u> pyrite.
292			12	625		79 HRT 922	/	.001		4									2.0	1,0		£7	4	Less argillized and slightly brecciated, towards lower contact w/ sediments.
294			12	55		923	tr	.004		4		1							1,0			ť	1	293.5 - 294.0 - Green Quartzite - medium grained, bright green with epidote(?) interstitial to quartz
296			13	102		924	tr	.006		4	1	1			4				<u> </u>			ŧr		grains interlocking 4 mm grains and foliated Bright green grains up to 4%. Brecciated with Qtz MoS2 vein cut and displaced. Cut by
290			19	100		925	.01	.003		2		3			3				Ľ	lo	\leq	Er	.5	granitic-pegmatitic dikelet. 294.0 - 295.5 - Hornfelsic Greywacke - purple medium
300	ļ		12	105		926	1	.004		2	2				10				1	10	~	ŧ	£/	grained feldspathic, granoblastic. Gradational from bright green quartzite. 10° Qtz MoS2 vein
302			16	100		927	tr	.002		2	3	2			6			1	/	10	.1	th	.10	cut by 10° fracture, bleached pervasively. 15° Quartz veins and 70° Quart-Pyrite veins also. 15° Quartz veins with pervasive bleaching.
-304			22	101		928	tr	.002			4	1			5	2		1	Ĺ	10	-1	.1	<i>,1</i> 0	295.5 - 295.8 - Dk. Green Quartzite - soft medium grained quartz and epidote(?) granoblastic, foliated.
-306			26	100		929	/	.001		7	2			 	5				1	10	.1	.2	-10	295.8 - Hornfelsic Greywacke - purple fine-medium grained granoblastic with feldspathic fragments
308			20	90		930	tr	.004		1		2						1	Ľ	8.0	5,0	2.0	£⁄	up to 2 cm. Locally light brown very fine grained (tuffaceous?). Numerous slip surfaces with CO ₃ filling. Numerous <1 mm gray
310			12	100		79 HRT 931	/	.001		4	6								[10	.1	1.0	£/	stringers + MoS2? at low angles. 301.0 - Qtz vein, massive white at 3 cm with
																								sericite on selvages. MoS2 locally in pervasive, yellow earlier than white 1 mm qtz stringer. 302.6 - Biotite visible up to 1 mm locally in
																								hornfels chert fragments = 1% also. Hornfels softer than knife blade. High angle Qtz
																								Pyrrhotite-Pyrite veins later than 15° Qtz MoS2 vein, white at .4 cm.
																								<u>304.5 - garnet on selvage of Qtz Pyrite vein -650</u> <u>306.7 - 307.2</u> - highly sericitized graywacke. <u>It. green. Broken up with C03</u> - pyrite on
																								fractures. Fault?

4

,

TIDEWATER PROPERTY

4

5

TW 79-2 DDH ______ SHEET 29_ OF _31_

	GR	APH	IC LO	G	ن	ΡTS	A	5 S A	Y D	ΑΤΑ	 1			V	EIN	١S			%	MIN	IE R	ALS	s	
DEPTH	LITH.	BEDDING	FAULTS NUMBER	FIECES	% RE	ASSAY	A SAMPLE NO. AND INTERVAL	EST. MoSz	% MoSz		Qtz	Q t z Py	Qtz MoS ₂	Py	MoSz	Carb			K-Feld	Biotite				NOTES
																								<u>308.0</u> - Grain size increases gradationally. decreases within 50 cm.
											 							 						Quartz Pyrite stringers at low angles are sericitized pervasively. Grey Qtz stringers ± MoS2.
			-								 _	 												I MOS2.
											[_	
╞			-	-							 							 						
\mathbf{F}			-	+																			4	
\mathbf{F}			-	+				: 			 							 		+	┼┈┨		-	
ŀ			+	-	_						 								┠┼	+				
ŀ														 										
ł			┢	+														 	┝╌┼		$\left\{ -\right\}$			
ł	1		-	+														 		_	$\left \right $	-		
ŀ	1			Ť	[
t	1										 									-				
Ī	1					ľ																		
[]																,							

4

. .

TIDEWATER PROPERTY

4

÷.

DDH <u>TW 79-2</u> SHEET <u>30</u> OF <u>31</u>

	GRAPH			ا ا	A	S S A	YD	ATA	 T			V	EIN	S				%	м	NE	R A	ALS	
DEPTH Metres	LITH. BEDDING	FAULTS	PIECES	VO H E ASSAY	SAMPLE NO AND INTERVAL	D. EST. Mos ₂	% MoS2		Qtz	Qtz Py	Q1z MoSz	Py	MoSz	Carb	q py MoSg	q po MoS:	q po	K-Feid	Biotite	Musc	Py 1	Po	
-310																							$\frac{311.7}{\text{pervasive at 65}^{\circ}}$ and 3 mm. 314.10 - 315.3 - Hornfelsic Argillite. fine grained
		1	4 10	20	79 HRT 932		.001		2	5	1			7				-	12	ŧĄ,		-1	black to brown. Contact sharp hand sample at 314.10 but very gradational at 315.3 meters.
-312			6 1 (00	933	tr	.002		1	2	1							/	15	t/		1	314.10 but very gradational at 515.5 meters. $314.3 - 37^{\circ}$ Qtz vein, white massive, later than 10 cm banded composite Qtz-Pyrite sericite vein
-314		1:	2 10	00	934	tr	.024		13	4	2							-	10	61.	.) -	th	at 35 [°] . * Hornfels softer than knife blade 53 [°] fracture
316		19	9 1 (00	935	1	.002		3	2							2	/	15	tr,	1	.1	later 37 [°] Qtz vein - 35 [°] Qtz Pyrite. 315.10 - Qtz minor MoS2 vein, 5 cm white massive at 20 [°]
318		14	4 µ C	00	936	1	.002		3	2								-	15		ŧłt	5/	315.3 - 317.2 - Hornfelsic Greywacke - quartz veining ceased with coarser sediments. Lithologic pre-
-320-		1	5 µ.C)1	937	.02	.006		5							4	2	/	10	1,0.	2.	.5	ference? Greywacke purple-brown, biotite up to 15%.
322			7 9	8	938	1	.005		5								2	-	10	tr .	. 1	.1	317.2 - 317.5 - Skarn Dark green, patchy, medium grained Diopside + garnet + sericite (?) - 317.5 - 324.35 - HOrnfelsic Greywacke - softer than knife
324			- 	00	939	.01	.008		2	1	2							/	10	tı.	14		blade. Purple, biotites foliated up to 15% CO ₂ on fractures. Some shears with sericite,
326		19	5 10)0	- 940	.01	.006		1							3		/	10	.5,	,1,	.5	Little quartz veining. 321.1 - 4 cm composite Quartz MoS2 pyrrhotite
328		18	8 1	od	941	.01	.001		3	 						3		/	10	ŧŧ	7 i	5	sericite vein at 70°. Pyrite locally also on selvage. Vein irregular. Sericite pervasive.
330		1:	5 1	00	942	1	.001		4	1							1		10	ŧŧ	; ; ;	2	Minor argillite-siltstone locally. 324.35 - 324.75 - Skarn - Dark Lt green and orange garnet Diopside skarn. Medium grained granoblastic.
332					943	1	.016		3	5									10	tr.	2	- -	Very hard. Qtz MoS2 veins, gray .5 cm x 2 on at 0 - 5 ⁰
334-		22	2 1	od	79 HRT 944		.010		 5	2							<u></u>			tr.			324.75 - 329.3 - Hornfelsic Greywacke. <u>326.5</u> - large white 5° MoS2-PyrrhotiteSphalerite
336-			5 10	_	34-337	1	<u>+</u>		3	†	1				1		<u></u>	$\left \right $	10	ŧ,	2	5	vein, locally with breccia fragments and fractures with chlorite-sericite. 329.3 - 329.6 - Skarn - Dark green diopsidic. Quartz-
337 ⁻ End				-			7	R															scheelite vein at 65°

1

. .

TIDEWATER PROPERTY

ł

4

TW 79-2 DDH SHEET 31 OF 31

		APH			ပ်	ST	A	SS A	Y D	ΑΤΑ		Γ			V	EIN	I S				%	MIN	IER	ALS	s	
DEPTH	METRE:	BEDDING	FAULTS	NUMBER OF PLECES	% RΕ	ASSAY	SAMPLE NO AND INTERVAL	EST. MoS ₂	% MoSz			Qtz	Q tz Py	Qtz MoSz	Py	MoSz	Carb				K-Feld	Biotite				NOTES
F																										329.6 - 331.6 - Hornfelsic Argillite - Greywacke - grain size gradational, bedding not discernible.
Ì	1		ŀ										1													329.8 - 3 Qtz Pyrrhotite MoS2 veins with sericite pyrrhotite pervasive. Feldspathic fragments 5 mm locally elongated.
Ī	1					1						1														331.6 - 331.9 - Skarn - dark-lt green diopsidic. White massive Quartz Vein at 62°. Lithological pre-
F	1				•				1											[Π					ference for veining? 331.9 - ? - Hornfelsic Greywacke Minor Argillite.
-	1					ł		<u> </u>	 			<u> </u>	 	┨──		 					$\left\{ -\right\}$	╉			-	332.9 - Low angle qtz pyrite stringer with yellow alt. Halo later than Grey high angle qtz
						1	·	ļ			ļ	ļ	ļ	 				ļ								stringer which is later than white . 5cm qtz
																{										pyrite vein at low angle.
ł	1					1		1					1													
ł	-					$\left\{ \right.$		<u> </u>		<u> </u>					 		 			-	$\left\{ \right\}$			┝┼	-	
								ļ	ļ			 	 		ļ	 	 			 		_	-			
ł	1					1			1																	
ł	1								1			F	1													
ŀ	1																									
ł	1								1					1												
ł									1			1				Ì										•
ł	1								†						1											· · ·
ł	1					1						Ī		1												

. •

.

DIAMOND DRILL RECORD

. . . .

à

PROPERTY	TIDEWATER	Project Num	ber		
Hole No.	TW 79-2	Co-ordinates		Bearing at Collar	-
				Dip at Collar	-90 ⁰
		Collar Elevation _	573 m	Commenced Drilling	October 21, 1979
		Total Depth	337 m	Completed Drilling	November 10, 1979
				Logged By:	D. Fleming
Core Size	NQ 0-168; BQ 16	8-337 Coring Method		Drilling Contractor	Connors Drilling

Survey Summary	Pertinent Assay Data	Pertinent Geology
Depth Dip Bearing Method	Interval % MoS2	Interval Rock Type
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 - 3 m Overburden 3 - 34 Quartz monzonite, quartz feldspar porphyry 34 - 116 Hornfels, quartz monzonite dikes 116 - 152 Quartz monzonite 152 - 160 Fault 160 - 224 Quartz monzonite 224 - 286 Quartz monzonite 286 - 337 Hornfels.

and the second second

TIDEWATER PROPERTY

_																								ų		SHEET _ OF _31
ĺ	тΰ	GRAPH			ပ	PTS	A	SSA	Y D	ΑΤΑ						I N							NE			
	DEPTH METRES	LI TH. BEDDING	FAULT	10 10 10 10 10 10 10 10 10 10 10 10 10 1	% RE	ASSA' INTERCE	SAMPLE NO. AND INTERVAL	E\$T. Mo 5 ₂	°∕₀ Mosz			Qtz	Qtz Py	Qtz MoSz	Py 1	MoSz	Carb	otz Y MoS2	Otz Pyrk MoS2	Qtz Pyr	K-Feld	Biotite	Musc Vrite	<u>Yrrho</u>	1	NOTES
	2 4-																									3.05 - 14.2 - Silicified-Quartz Feldspar Porphyry - Felsite, white feldspar phenocrysts (1-2 mm) = 10% with euhedral quartz phenocrysts, gray (1-2mm)
	6-			<u>10</u>	85		61220	.01	.011			3						3			5.00	55	00.	1		= 10% Groundmass 1t gray-green aphanitic highly sericitized, silicified. Sericitization, and
	8-		7	20	94		61221	.02	.014			2	6					2			20	- 0	2.52	5		silicification produce mottled and banded textures. Pyrite disseminated >5% locally - early - highly
	10-		7	20	100		61222	.05	.038			3	2	2		2		4			15	.52	2,02;	5		silicified by low angle milky quartz vein stock- work. (barren) up to 1 cm in width late -
	12		>	20	100		61223	.02	.010			4	3			1		2			5	- 5	5,02;	\$		Qtz sericitic vein, vuggy, white at 52° and 5 cm in width. 3.7 & 5.9- Qtz MoS2-Py-Feldspar veins at 10° - 30° .
	14-		ļ	21	107		61224	.04	.032			6	3			2		3			5	155	102.	0 0	6	MoS2 pyrite coarsely dissem along selvage. 5.1 - Pyrite filling numerous discontinuous
	16			15	97		61225	.02	.005			10	2					1		2	5	osk	012	5.0	\$	fractures parallel core axis - Porphyry highly siliceous, pyritized. Some MoS2 diss on fractures
	18			9	100		61226	.05	.008				2					6		1	5	02	.51.0	0.10	d	with Pyrite - numerous Qtz-Pyrite veins, banded fracture composites up to 1 cm at 50°. 7.0 - early - 25° Qtz MoS2 Pyrite stringer veins
	20-			11	100		61227	.10	.032			4						7		2	zs	5 2	,0 .9	5.0	\$	$\frac{7.0}{(x2)} = \frac{23^{\circ}}{20}$
				9	100		61228	.10	.016			6	1	1		1		2			25	52	.52	о.к	d	Pyrite sericite veins, sericite dk green gray - phlogopitic.
	22 24			4	100		61229	.20	.088			2	2					8		3	50	5	5 7.1	o ic	d	7.0 - Bleaching on crosscutting veins - sericiti- zation on high angle fractures. 8.4 - Silicification extreme. Nature of original
				6	100		61230	.20	.038			2	2	2				5		1	60	5	3 2.	<i>a.</i> 5	C	texture completely masked, mottled. Banded texture due to wormy nature of qtz & feldspar and
Ĩ	26			9	98		61231	. 25	.018				1					5		2	60	5	3 2.0	0.50	d	to aplitic bands. 9.3 - Silicification-sericitization extreme.
)	28-			11	97		61232	. 30	.020				2	2				6			60	5 3.	52.	0 -	·	Galena-sphalerite-Pyrite disseminated in bands up to 5 cm. PbS-ZnS-FeS2 veins at 80°. 10.0 - numerous stockwork fractures, qtz filled
ľ	301			12	97		61233	.25	.016				1			1		LO			6C	43	9.920	0-		<pre> 10.0 - humerous stockwork fractures, qtz fiffed </pre> <pre></pre>
ĺ											4	0														diss. heavily on selvages, central fractures

, .

1

TIDEWATER PROPERTY

v		PHIC		l o	ΪĘ	Δ	SSA	YD	ATA	I			V	EIN	S		%	MIN	IFR	ALS	s	
DEPTH	LI TH.	BEDOING	NUMBER NUMBER	% RE	ASSAY	A SAMPLE NO A N D INTERVAL	EST. Mosz	% MoS2		Qtz	Q1z Py	Qtz MoSz	1	MoS ₂ C				Biotite				NOTES
				%																		 Pyrrhotite locally on fracture voids - small fractures showing stockwork with bleached halœs. 11.8 - MoS2-Py-Qtz veins at 15° up to 4 mm. Also grey 1 mm stringers with finely disseminated MoS2. Qtz-Feldspar-Pyrite vein also at 15° - sericite coarse, green on fractures at high angle 13.5 early - Qtz Pyrrhotite vein (3 mm) at 40° late - +5 Qtz vein (80°) barren in 10 cm. 14.2 - 34.3 - Silicified-Sericitized Subporphyritic biotite Granite - med dark gray medium grained with biotite as 1 - 2 mm individual flakes varying from 1 - 50%. Locally medium grained mosaic of Qtz and white feldspar (euhedral) as crowded porphyry(?) Generally dk-med gray, fine grained silicified with biotite <5%. Pyrrhotized. 70°,Qtz Pyrh sericite vein. 14.6 - Garnet disseminated in dk gray bands. = 2% locally. 15.2 - 30-60° Qtz Feldspar pegmatitic veins up to 5 mm. Small Pyrite MoS2 stringer are later. Also small Qtz Pyrite stringers arepresent with bleached halœs - Biotite <5% disseminated with pyrite in dk grey groundmass. 15.5 - Biotite disseminated up to 20%. Plates unoriented 2 mm. Garnet also <1%. Silicified dk grey mottled groundmass. 16.4 - Qtz-Feldspar pegmatite vein up to 10 cm at high angle, early with later qtz veins at 58°. Both veins with bleached halœs, 17.2 - MoS2-Pyrite-Quartz stringers up to 2 mm at 20 - 30°. slightly irregular. 60° Qtz Pyrnhotite vein (1 mm). 18.6 - Biotite disseminated up to 50% with 2 mm unoriented plates. 19.2 - 20.0 - MoS2 1 mm thick on 25° fracture.
																						early - 12° Qtz MoS2 Pyrite (x2) stringers cut by

,

TIDEWATER PROPERTY

TW 79-2 DDH _____ SHEET _3__ OF 31__

	GRAP	нісі	.0G		5	¥.	A	SSA	Y D	ΑΤΑ					V	EIC	١S						NER	ALS	5	NOTES
DEPTH METRES	EDDING	AULTS	NUMBER	. A 4	ASSAY	NTERCEP	SAMPLE NO. AND INTERVAL	EST. MoSz	1			Qtz	Q†I Py	Qtz MoSz		MoSz	Carb				K-Feld	Biotite	DEDW			
				ľ																						late 25 ⁰ grey Qtz MoS2 (2 mm) - Sericit heavy on high angle fractures along wit Granite med gray with pyrrhotite and bi
																									_	with grey qtz producing dark gray moth <u>21.0 - 22.03-1.0 cm white and gray M</u> <u>Purite veins at 15-70⁰ with sericite as</u>
											<u> </u>					<u> </u>							+			component, patchy, and as pervasive has $22.0 - early - 10^{\circ} qtz$ vein late - 5° qtz-MoS2-Pyrite with 25° offs
				-	_						<u> </u>						-	 	+				+-			stringers 20 ⁰ MoS2 Pyrite Qtz vein ⁻ sericite dark green on selvage.
- -				-	4						<u> </u>												╞		-	23.5 - early - +2 45° MoS2-Pyrite-Qtz selvage sericite. late - 15° 1 cm Qtz Pyrrhotite vein.
			\vdash	╀	-												$\left \right $						+	$\left\{ -\right\}$		<u>24.0 - 26.0</u> - MoS2-Pyrite disseminated early - Qtz Feldspar-MoS2 Pyrite veins
r			\vdash	+-	-							<u> </u>			+		$\left\{ - \right\}$		+		1		╈			at 10 [°] cut by late - 20 [°] stringers of MoS2-Pyrite-Qt - MoS2 - Pyrite disseminated heavy on
•			$\left \right $	╁																	v					angle qtz vein. 26.0 - 28. <u>0</u> - Numerous fractures (mode
	11			┢																						with MoS2. Pyrite early - Qtz MoS2 Pyrite (x2) at 40 [°] late - 5-50 [°] Qtz Pyrite MoS2. MoS2 Py
•	1			╏																						disseminated coarsely on selvages and 70° offshoots common. 27.8 - Highly sericitized band (?) Lt
Ī	1													 		_				 			_			27.8 - Highly sericitized band (7, 20 ible addition of epidote.
Ī	1												_		_				_	<u> </u>	_	$\left \right $				
]								<u> </u>		_				-						-	$\left \right $				
							 			<u> </u>											+	┟┨				

,

j.

į

TIDEWATER PROPERTY

∏	- L	GRAPH			ပ်	PTS	A	SSA	YD.	ΑΤΑ					EIN					%	М	INE	ER	ALS	
DEPTH	METR	LI TH. BEDDING	FAULT	PIECES	% RE	ASSA' INTERCE	SAMPLE NO. AND INTERVAL	EST. Mos ₂	% MoS2		Qtz	Q1z Py	Qtz MoS ₂	Py	MoSz	Carb N	Utz Pyr IoS2I	Otz Pyr 1052	Qt# Pyrh	K-Feld	Biatite	Musc	Pyrit	Hite tre	NOTES
- 3	01																						_		<u>28.0 - 30.0</u> - Quartz-Feldspar interlocking texture persists. Feldspar = 60-70%, euhedral with gray quartz anhedra interstitial. Biotite
				10	100		61234	. 20	.042		4						7			50	4	3û-	20	-	<pre>spotty with percentage content = 5% associated with disseminated Pyrite. Locally (28.2)</pre>
3	4			18	95		61235	.25	.027		7						8			50	1,0	4.0	2.0	1	quartz dk grey dominant. Also locally feldspar 90% in response to veins.
- 3	6		1	.3	100		61236	. 30	.088		8		10					1		5	5.0	1.01	0.5).5	<u>28.5</u> - MoS2 - Pyrite Qtz stringer (1 mm max) parallel at about 35 ^o (x5) early - 35 ^o Banded MoS2-Qtz-Pyrite vein (3 mm)
			1	.7	107		61237	.50	.053		3		10							30	5.0	3,0 I	1.0	1.5	MoS2 on selvage and central to vein. late - 20° white Qtz vein MoS2 Pyrite disseminated
-3				.4	100		61238	.60	.036				8						4	5,0	10	1,01	1.01	0	< -1% (1 cm). 29.6 - 30.0 - Aplite vein at 12 ⁰ Lt green
-4) -4;			2	2	103		61239	.30	.041				3	2			8			1,0	10	0.5	05	.0	sericitized cut by grey MoS2 stringer (0°) - MoS2 on dry fractures with pyrite-sericite. 30.5 - 35° white quartz veins parallel (x5) at
- 44			2	0	100		61240	.05	.076				4					3		1,0	0	050	0.5	1,0	1 cm - barren - numerous 20-35 ⁰ grey quartz veins shear fracture filling 36 ⁰ white qtz-MoS2-
46			2	0	102		61241	.20	.023				8					4		1.0	0	0.54	0.5	1.5	Pyrite down center of vein 1.5 cm. early - 0^0 irregular gray 1 mm quartz vein
-48				2	100		61242	.25	.007		3		l					8	4		_				late - 26 [°] white qtz MoS2 Pyrite vein (1 cm). <u>31.7 - 32.75</u> - late - 0-5 [°] divergent qtz-MoS2- Pyrite vein (white) 20 offshoots at 2 mm.
-50			1	3	98		61243	.10	.036		4	<u> </u>	2					9	2	15	W.O	20.	25 (0.5	Stockwork of similar veins at $20-40^{\circ}$ (lcm) grey. 32.8 - Groundmass green aphanitic. Porphyritic
-52				3	101		61244	.10	.025		4		5				3		5	.058	90	0.5,	الك	.5	texture accentuated. 33.4 - White Qtz Sericite vein (2 cm) at 70° with
			1	0	100		61245	. 25	.024		3			_			5			5.0	10	2,0,	.5d/	5	pyrite 1 mm on selvage. Sericite pervasive. - 65 ⁰ Quartz vein (MoS2 low) at 5 mm with sericite pervasive. distinguished from gray 28 ⁰ MoS2-Py-
) 54				7	100		61246	.05	.006		9		C		6		4		2	6,0	10	2.0 L	5	.5	Qtz veins at 4 mm. No alteration. 33.0 - 2 cm white Qtz-MoS2-Pyrite with MoS2
-56 -58				6	100		61247	.15	.104		16						6			0,0	'.o	5,01	1.50),2	central to vein at 35 ⁰ <u>34.3</u> - large MoS2 white Qtz veins with MoS2
									ļ																spotty. Stockwork produces evenly distributed dissemination of MoS2

Ì

)

TIDEWATER PROPERTY

TW 79-2 DDH SHEET _____OF 31___

_ "			LOG	<u>ن</u>	t,	Α	SSA	Y D	ΑΤΑ				V	EIN	٧S			%	ML	NEF	RAL	S	
DEPTH	LITH.	BEDDING	FAULTS NUMBER OF	% RE	ASSAY	SAMPLE NO. AND INTERVAL	EST. Mos _e	% Mo52		Q f Z	Q12 Py	Qtz MoSz	Py	MoSz	Carb			K-Feid	Biotite	VIN			NOTES
									-	 													 34.3 - 36.8 - Purple-Brown Hornfelsic Greywacke - fine grained feldspathic, greasy with biotite barely recognizable =20%. Spotted feldspathic texture locally. 34.3 - 20% white quartz veins with pyrrhotite
																							MoS2 disseminated as massive clusters. Vein irregular, anastomosing. 34.3 - Qtz MoS2 veins parallel to core axis up to
$\left \right $				<u> </u>						 						 							3 cm with MoS2 coarsely disseminated on selvages and central fractures parallel to vein. Pyrr- hotite massive locally. 200 4 mm veins related
ŀ																							cut earlier dark gray 2 mm Qtz MoS2 veins. 20 [°] Qtz Feldspar MoS2 veins cut white MoS2 veins along with 10-20 [°] MoS2 Pyrite fractures. Locally
																							epidote and garnet developed. 36.8 - 38.8 - Lt. Green Quartz Feldspar Porphyry. fine grained groundmass 2 mm white feldspar pheno-
			-										 			 -			_				crysts and white anhedral qtz eyes in a biotite (\neg 1-5%) qtz feldspar groundmass Qtz-MoS2 Pyrrhotite veins (1 cm) at 10-30° (x3)
}																							37.5 - 38.0 - Aplite vein 10° Garnet disseminated 25% in with mafics. 38.5 - numerous 5 mm qtz MoS2 veins at 10-30°.
ŀ																							Pyrrhotite on vein selvage. 38.8 - 46.5 - Purple-Black Hornfelsic Argillite Minor Graywacke. Fine grained purple-silver sheer
						· · · · · · · · · · · · · · · · · · ·																	of fresh surface. Limy beds altered to diop- side-garnet, sandy beds appear spotty. early - 20° gray MoS2 Qtz vein (1 mm)
										 -									+	_			<pre>late - 20^o - 70^o MoS2 Pyrite veins (numerous) l cm - 2 mm (8lm) later - pyrite-pyrrhotite on fractures (1 mm)</pre>
•			-		-											 			+				<u>40.0 - 42.0</u> - MoS2 Qtz stringers (x4) & MoS2 Pyrrhotite veins 1 - 2 cm MoS2 low - small MoS2 stockwork on fractures. Pyrrhotite interstitial.
ŀ					1	N ites 1 11																	early - 35° (5° offshoot) Qtz-MoS2 sericite late - 65° Qtz MoS2 vein.

TIDEWATER PROPERTY

TW 79-2 DDH SHEET 6_ OF 31_

Γ_	المد	RAP		T	U.	PTS	А	SSA	Y D	ΑΤΑ					V	EIN	I S	 ····-	 %	MI	NER	AL	s	
DEPTH	METRE	BEDDING	FAULTS		% RE	ASSA	SAMPLE NO AND INTERVAL	EST. Mos _z	% MoSz			Q†2	Q tz Py	Qtz MoSz	Ру	MoSz	Carb		K-Feld	Biotite				NOTES
Ī	Ţ																							42.0 - 44.0 - Patchy white-gray granular MoS2 -Qtz veins. MoS2 disseminated coarsely,Pyrrhotite - dk green sericite patchy in vein>1 cm at
				_																				70 & 20 ⁰ (x5) - 1 cm porphyry dyke. MoS2-Garnet Sericite disseminated = 5% (35 ⁰)
																								$46.3 - 62^{\circ}$ 3 mm white massive Qtz MoS2 vein. MoS2 on selvage and central to vein.
Ţ	1			-																				46.5 - 47.9 - Silicified, sericitized Qtz-Feldspar Porphyry - very fine grained green gray groundmass
ł	1			-1																				Qtz eye up to 2 mm. White euhedral feldspar less prominent. Garnet disseminated in large
ł	1			-†																				2 - 5 mm crystals - biotite very fine grained √1% as flakes disseminated sparsely. Molybdenite rosettes locally in high angle milky irregular
ŀ				-†																+				quartz veins - Pyrrhotite sericite ± MoS2 in gray regular 30-40° quartz vein (3 mm) - Stock-
ł				-†								-							 ╏╶┤				_	work weakly developed with sericite pervasive providing 1t green pearly cast. Veins up to 1 cm
ł				-†								╂──							 ┠╌┤	-+	-		_	with qtz stringer at 5°.
ļ				_+									-					 		-		\square		
								<u> </u>				 												
ſ											•													
T	1																							
ł	1			-1																				
ł	1			-1																1				
ľ								•																

AMAX MINERALS EXPLORATION TIDEWATER PROPERTY

ſ	тü	GRAP			ပ	PTS	4	SS	ΑY	DA	TA				V	EI	V S				%	M	I N E	RA	LS	
	DEPTH METRES	LI TH. BEDDING	FAULTS	PLECES	% RE	ASSA	SAMPLE N AND INTERVAL	0. ES1 MoS	r. 9 2 Ma	% 0 S 2		Qtz	Q f z Py	Qtz MoSz	Py	MoSe	Carb	Qtz Py 552	Otz Po Mos	Qtz Po	K-Feid	Biofite	Musc	γd	2	NOTES
	- 58																									47.9 - 48.26 - Purple Hornfelsic Argillite - fine grained purple, shiny micas = 20% - quartz pyrrhotite
[60-			7	8	5	61248	.0	5.0	050		 2		3				5			5	10	25.	.5.0	ષ્ઠ	veins at contact. early - 55 ⁰ l mm white - grey slightly granular quartz pyrrhotite vein.
;	62			12	10	q	61249	0.0	5.0	015		7			2			7			5	5	10.	5 -		late - 7° 3 mm MoS2 - white massive qtz vein. 48.26 - 48.65 - Subporphyritic Graphic Granite - highly
				17	10:	2	61250	.0	5.0	023		5				3	2	10			10	5	50	.5 -		silicified pegmatitic dyke. Partly sericitized light green. Garnet disseminated. 5 mm - 3 cm white massive Qtz-Pyrrhotite-Sericite MoS2 veins
	64			22	100		61001	0	1.0	012		 1				2		5			10	1.0	5.0	0 -		(x3) at 35° sericite in vein and pervasive. 48.65 - 49.0 - Purple Hornfelsic Argillite - fine
	68			22	10:	2	61002	.0	1.0	025		 1		4	 			10			15		1,0 [,00	5	grained purple. Feldspar green brown greasy appearance. Biotite, pyrrhotite disseminated
	70 -			26	70		61003	.1	0.0	080		 2		4				7	<u> </u>			┝─┥		œ[,,		early - 35 [°] gray granular qtz-MoS2-Pyrh vein (1mm) late - 22 [°] gray granular qtz MoS2 pyrh vein (3 mm) with 10 [°] offshoot 40 [°] 2 mm white-gray massive
	72		>	20	130		61004	.0	5.0	060		 4		7				2		ļ				as1.0		quartz vein with MoS2 as 1 - 2 mm rosettes. 49.0 - 50.52 - Silicified-Sericitized Quartz Feldspar
	74			18	103	3	61005	.1	0.0	010		3		2	1	1		2			<u>5</u> 0	1,0	2.02	00	5	Porphyry. locally fine grained granular quartz feldspar sericite. Predominantly lt green. gray fine grained with Quartz anhedra and Feld-
	76 -			12	95	3	61006	.04	4.0	006		 1	5					4	1	5	<u>3</u> .0	2,0	201,	0 0.	5	spar (white) euhedra up to 2.5 mm and 20% locally. Slightly pyritized and sericitized locally.
	78			11	105		61008	.0!	5.0	06					3			7		ļ	20		_		+	Garnet disseminated $\ll 1$ % Low angle milky white Qtz-Sericite-pyrite-MoS2 veins (x4) up to
	80			10		-	61009	.00	5.0	03		 2	10					2		<u> </u>	+		+	,0,0;		10 cm and to .5 cm (x4) contact at 50.52 abrupt due to high angle. Pyrrhotite - PbS-ZnS vein
	82			9	105		61010	1.10	0.0	18			7					1			┥┤		+	,0 0:		50.52 - 52.10 - Purple Hornfelsic Argillite- some limy portions altered to diopside skarn. Locally
	84			11	97		61011	.10	0.0	07		3	2					8						,0,0		prismatic andalusite crystals 20 ⁰ (0 ⁰ offshoot) MoS2 Pyrite Qtz vein, white granular, coeval with 40 ⁰ white massive 3 mm Qtz-MoS2 veins high
	86		7	20	102		61012	1.15	5.0	06		 4	2	4				1			20	2,00	0.51, 	,0,0		angle 2 mm white quartz veins with high angle Qtz MoS2 veins - gray granular with low angle
L																										offshoots. 71 m density.

· · · · · ·

ł

)

TIDEWATER PROPERTY

TW 79-2 DDH SHEET <u>8</u> OF 31

	5 G	RAPH	C LOG	Ľ L	از	0TS	A	SSA	ΥD	ΑΤΑ					V	EII	N S		%	MI	NEF	RAL	s	
DEPTH	METRE	BEDOING	FAULTS NUMBER OF	PIÉCES 0/ 0 F	1 2 2 2 2 2	ASSAY INTERCEI	SAMPLE NO. AND INTERVAL	EST. Mos _z	% MoSz			Qtz	Q f z Py	Qtz MoSz		MoSz	Carb		K-Feid	Biotite	Musc			NOTES
		BEDOIN				ASS	SAMPLE NO. AND INTERVAL	EST. MoSz	% MoSz			0 ! 2	1			MoSz				8i09i3	WR3C			52.10 - 66.8 - Silicified Subporphyritic Biotite Granite. Locally dark grey -pyrrhotized with Biotite up to 30%. Quartz feldspar interstitial equigranular. Dominantly silicified, lt green- white mosaic of quartz feldspar - numerous large low angle qtz-pyrrhotite-pyrite-MoS2 - sericite veins. 1-2 cm vein locally with sphalerite on selvage, MoS2 pervasive rosettes. Locally pyrrhotizing and sericitizing host. late - low angle gray 1 mm regular quartz vein. early - 10 cm qtz vein white, MoS2 disseminated low. 52.0 - 66.8 - High angle quartz sericite veins, pyrite disseminated sericite pervasive - white massive Qtz-MoS2-Pyrite at 10-70° 1 cm - 5 cm. High pervasive silicification. MoS2 locally as rosettes up to 4 mm numerous 1-2 mm gray regular qtz veins. Small stockwork locally
								1	9	6	6													generally barren locally. Pyrrhotite dissemin- ated high locally with biotite. $53.0 - 5^{\circ}$ qtz sericite MoS2 vein with high per- vasive sericitization MoS2 higher on higher angle 1 mm gray qtz offshoot. Later 2 cm Qtz vein at 50° 61.5 - MoS2-Pyrite disseminated on offshoot fractures from white qtz. MoS2-Py veins. Locally feldspars developed on selvage. white. $62.70 - 0^{\circ}$ 1 mm gray qtz vein early. High angle pyrite MoS2 on fracture late and 20° Qtz MoS2 white later. 63.30 - Shear with CO ₃ Qtz breccia and pyrite (galena) as thick paint of 20° shear surface. 62.0 - 64.0 - Groundmass white, feldspathized locally. High angle qtz sericite with biotite locally up to 10%. 64.5 - lower angle Qtz MoS2 pyrite veins with 1-2% sericite, coarse green and pyritization pervasive to vein.

ł

TIDEWATER PROPERTY

TW 79-2 DDH_____OF_31

– "	1			G	ບ່	e ts	Α	SSA	Y D	ΑΤΑ	 			VE	EIN	IS	 	 %	M	INE	R 4	ALS	
DEPTH Metres	LITH.	BEDDING	FAULTS	P I E C E B	% RE	ASSAY	A SAMPLE NO. AND INTERVAL	EST. Mosz	% MoS2		 Qtz	Q I Z Py	Qtz MoSz	Py	MoSz	Carb		K-Feid	Biotite	Musc	Ţ		NOTES
																							 <u>65.4</u> - MoS2 on shear fractures heavy as powder - smear. <u>66.7</u> - Pegmatitic feldspathic at 10 m locally. General lack of quartz veins 66.8 - 67.1 - Purple Hornfelsic Argillite - very fine grained, hard grey MoS2 Qtz Pyr Sericite veins (c1 cm) parallel to contact silicifing granite but not the hornfels. Pyrrhotite-Biotite disseminated finely. 67.1 - 67.3 - Subporphyritic Biotite Granite. Highly feldspathized mosaic of quartz-feldspar. Feld-spathization appears to mask early quartz veining MoS2 on fractures outlining remnant of quartz vein. 67.3 - 71.80 - Purple Hornfelsic Argillite Minor Greywacke. <u>68.5</u> - Silicified hornfels, disseminated pyrite with high angle irregular 2 mm quartz vein 70.0 - 15° Qtz MoS2 pyr vein with coarsely disseminated MoS2 (2 cm) with 1t green pervasive alteration. <u>69.0</u> - white Qtz MoS2 veins in local stockwork-apparently coeval. <u>69.5</u> -Boudined Qtz-MoS2 veins at 1 cm (21m) 71.4 - Porphyroblastic crystals, white, rounded aggregates? 71.80 - 93.0 - SubPorphyritic Biotite Granite - dominantly white-grey mottled. Pegmatitic feldspar (white) and grey quartz in linear patchy bands. Locally graphic. Streaming quartz veins (1 mm) silicifed locally and low-high angle qtz sericite ± MoS2 FeS2 veins with sericite pervasive. Moderately pyritized and locally pyrhotized with biotite in pegmatitc form. <u>73.0</u> - Pyritized in groundmass, pyrite heavy on

, a,

Ì

TIDEWATER PROPERTY

TW 79-2 DDH SHEET <u>10</u> OF 31

		APH			റ	οTS	A	SSA	Y D.	ΑΤΑ				V	EIN	15				%	MIN	ER	ALS	s	
DEPTH	. I TH.	BEDDING	FAULTS	4 0 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	% RE	ASSAY	SAMPLE NO. AND INTERVAL	EST. Mos _r	% MoSz		Qtz	Qtz Py	Qtz MoSz	Py	MoSz	Carb				K - Feid	Biotite Musc				NOTES
																									 fractures. 73.0 - 73.6 - Fault, Highly argillized sericitized Qtz-C03 altered. Pyrite-MoS2 disseminated. Sericitized, pyritized adjacent to garnet zone. MoS2 ground up on shears. 74.8 - Pyrrhotite-Qtz-Pyrite veins 50° - 70° with sericite pervasive.Sphalerite disseminated «1% (± MoS2). 75.5 - MoS2-Pyrite Qtz veins. Silicified, feld-spathized (white pegmatitic) texture mask original outline of vein. 76.9 - sericitization pervasive to Qtz MoS2 veins. MoS2 as 1 mm rosettes Gray Qtz Pyrite veins ± MoS2. Pegmatitic Feldspars later. 78.0 - 80.0 - Mottled pegmatitic 3 cm vein with 1 cm euhedral feldspar on selvage 79.5 - Equigranular Biotites regularly disseminate w/ pyrrhotite. 80.5 - 82.0 - 0° (parallel core axis) MoS2-Pyrite vein - Sericite pervasive cut of 80° Qtz-Sericite Pyrite. Qtz Pyrite vein (1 cm) at 50° cut by both. 82.4 - MoS2-Qtz veins, gray, numerous, parallel up to 1 cm. White veins locally sericitized and pyritized pervasively. 85.5 - silicification. MoS2 streaming, gray quartz veins, up to .5 cm. Porphyritic texture locally. Sericitization pervasive to 5° MoS2-Qtz vein.
L				1	1		1	ł	1	l I				ļ			1	<u> </u>	1						

TIDEWATER PROPERTY

ſ		RAP	нісі		U U	PTS		SSA	Y D	ΑΤΑ				V	EIN	IS				%	MI	NE	RA	LS	
	DEPTH Metres	BEDDING	FAULTS	NUMBER OF	% RE	ASSAY INTERCEI	SAMPLE NO. AND INTERVAL	EST. Mos _e	% Mo\$2		Qtz	Qtz Py	Qtz MoSz	Ру	MoSz	Carb M	Qtz Py oS2	Otz Po MoS	Otz Po 2	K-Feid	Biotite	Musc	PO		NOTES
	86 88			19	90		61013	.02	.003		8	2	3				3			20	1.00	51,	0.05	5	$\frac{86.00 - 88.00}{2} - \text{numerous gray qtz veins (± MoS2)}$ = 2 mm at 0 - 30°. Feldspareuhedra jutting into
	90			13	100		61014	.25	.030			1	3	2			6			2c	6/1	,01,	ot	1	vein. <u>88.0</u> - large white barren Qtz vein, later at 45 ⁰ . 0 ⁰ Grey Qtz MoS2 divergent, cut by 65 ⁰ Qtz Pyr (sericite pervasive) and by high angle
)				12	100		61015	.15	.025		1	4					5			20	.1	os I,	otr		Pyrite-Sphalerite. Chalcopyrite vein. High Sericitization, silicification locally (88.8 - 89.4)
	92 94			16	102		61016	.01	.015		 5	3					1			20	- 1-0	05 L	56	1	Galena vein 2 mm at 90 ⁰ @ (90.0 m) Grey Qtz MoS2 veins later than 45-60 ⁰ grey Qtz
ľ				7	99		61017	.10	.018		3	4	6				4			15	56	57 I.	5.0	\$	Pyrite veins. 93.0 - 93.8 - Qtz. Feldspar porphyry- gradational decrease in biotite, white feldspar euhedral, crowded with
	96			14	100		61018	.08	.015				21			3	2			/	-	-{{	r 1,0	q	qtz anhedra. Groundmass fine grained Lt. green- white-Phenocrysts up to 2 mm.
Ĩ	98			15	100		61019	.01	.010				19							-	- (6	- - ,	.0£		93.8 - 95.0 - Subporphyritic Biotite Granite - dk grey quartz, white feldspar, graphic locally. Biotite
	100			17	104		61020	.05	.024				12				2			-	- 4	x .	0,0		x 5% - 1 mm maximum. Orange garnets disseminated Large pyrite clots on fracture surface. 95.5 - 95.8 - Purple Hornfelsic Argillite - 15 ^o crossing
	102			21	92		61021	.05	.012				8			2	2			.1	- -	ļ,	.0.5		qtz - MoS2 veins, white, cut barren 50 - 70° white quartz veins.
	104			20	90		61022	. 10	.144		9		9				1			/	- f	, .	5 1.5	5	95.8 - 96.0 - Subporphyritic biotite granite Equi- granular pegmatitc quartz-feldspar. Fine grained
	106 108			18	100		61023	.05	.010		3		9				2			ŧr	- {		01,0		graphic adjacent to hornfels. Coarse grained equigranular dominant with local green feldspathic groundmass.
			>	20	102		61024	.01	.036		4		4			1	2			15	tr.	51.	0,5	5	96.0 - 98.0 - Purple Hornfelsic Argillite - very fine grained purple, hard on both fractured and cored
	110			10	100		61025	.15	.180		1	1					3	4	2	2.0	ĻγĮ,	00.	.51,5	S	surface. 25% quartz in 2 mm - 5 cm 60 ⁰ quartz veins, white with trace MoS2 x2 15 ⁰ Qtz MoS2 (white veins - late.
	112			10	87		61026	.15	.232		3	3					5		1	/		5.4	51.0	0	98.0 - 98.4 - Quartz feldspar porphyry. Lt green fine grained groundmass, some chloritic biotites (<<1%)
	114 116			14	102		61027	.05	.032		3	3	4	3			2				6-	51.	51,0		and slightly pyritized Grey Qtz euhedra, white Feldspar euhedra up to 15%. Garnet << 1%.
	C4						•		14	V															

ý

TIDEWATER PROPERTY

DDH ______ SHEET _ <u>12</u> OF _31___

Γ					ပ်	9 T S	Α	S S A	Y D	ΑΤΑ				V	EIN	N S	 	 %	MI	NEF	RAL	_ S	
DEPT	METRES	BEDDING	FAULTS	PIECES	% RE	ASSAY INTERCEI	SAMPLE NO. AND INTERVAL	EST. Mos _e	% MoS2		Qtz	Q t z Py	Q1z MoSz	Ру	MoSz	Carb		K-Feid	Biotite	Muac			NOTES
	METR	BEDDING			2 × 5	ASSA INTERCE		EST. NoS2	% MoS2		Q t z			Py	MoSz	Carb		- T	8iotite				 <u>98.4 - 108.5</u> - Purple Hornfelsic Argillite. Minor Greywacke. Quartz vein 75% over 2 m interval, white massive at 50-60°. Minor MoS2 veins up to 1 metre. Spotted Hornfels. Elongate-Qtz Feldspar crystal aggregates. 10 cm Limy diopsidic skarnified bed. Garnet = 1% - 103.6 Qtz MoS2 veins at 50 - 60° are highly sericitized, mineralized with MoS2-Pyrite - Pyrrhotite in stringer and fractures adjacent to veins. 108.5 - 110.7 - Subporphyritic Biotite Granite - white-gree mottled medium-coarse grained pegmatitic mosiac of quartz (dk grey) and feldspar (white). Locally dark grey quartz interstitial to flowery, elongated, dendritic feldspar with quartz graphic. Moderately pyritized = .5%. Pyrite sericite on 65° fractures. Clear calcite up to 1 mm on 15° fractures. Qtz Sericite white quartz vein at 75° (sericite pervasive) later than 30° white irregular qtz MoS2-Pyrite vein. 10.7 - 114.06 - Purple Hornfelsic Argillite. Massive no bedding silver-purple sheen on fresh surface.
																							Very fine grained. Qtz MoS2 veins parallel to core axis ± pyrite. High angle Qtz, pyrrhotite veins ± MoS2-ZnS-pyrite and locally scheelite as coarse 2 mm crystals. These veins are later than MoS2 veins @ 0 ⁰ . Sericite coarse,phlogopitic
																							locally in high angle veins. 114.06 - 114.5 - Quartz Feldspar Porphyry. Qtz and feldspar phenocrysts up to 25% and 3 mm. Lt grey off white fine grained groundmass, moderately
																			-				pyritized. biotite<1%. 114.5 - 115.75 - Purple Hornfelsic Argillite. CO3 epidote Lt. green on low angle sheer fractures. Quartz- Feldspar-MoS2 veins @ 114.7 65° and 1 cm white Qtz-MoS2 veins at 45° along with 15° 1ge MoS2-
										•													Pyrite.

TIDEWATER PROPERTY

			APHI		G	ပ		S	AS	SSA	Y D	ΑΤΑ			· · · · · · · · ·	V	EII	-				1		MIN	ER	AL	LS	
	DEPTH Metres	LI TH.	BEDDING	FAULTS	PIECES	% RE	ASSA	N TERCE	A S AMPLE NO AND NTERVAL	EST. Mos _z	% MoSz		9 t z	Qtz Py	Qtz MoSz	Ру	MoSz	Carb	Qtz Py oS2	Qt2 Po Mos	2 Qt Po	Z -Feid	Biofite	Musc	Ρy	Ро		NOTES
	-116																			[115.75 - 127.5 - Subporphyritic Biotite Granite - mottled grey pegmatitic dark grey quartz, white feldspar Biotite locally in high concentrations. Local
	-118			>2	3	115			61028	.01	.012		 10		2				4	_		5	3	1.0	1,0	tr		silicification produces fine grained white Lt. green texture. Garnet disseminated locally
ļ	-120			2	0	102			61029	.08	.012		1	2	1	4			5			5	5	þ.o	2.0	ł		l mm Sericitization pervasive to 5 mm qtz vein at 80° @ 117.6. Later than 15° Qtz MoS2
				•	7	100			61030	.10	.025		7	6	7	· .			3			5	5	2.0	2.0	£⁄		Pyrite vein. MoS2 Pyrite on 90 ⁰ fractures. Pyrite 4 mm massive on fracture @ 131.0
	122				6	100			61031	. 20	.040				3		2		5	1		10	2	1,0	20	ŧ		Highly silicified dark grey mottled, pyritized masks feldspar. Highly sericitized pervasive
	124				5	101		F	61032	.08	.006			4	2				4			5,0	1.0	0.0	20	ŧ		to high angle Q.V. <u>123.74</u> - Hybrid phase Qtz Feldspar Porphyry in with Subporphyritic phase. Argillization
	-126			72			1	F	61033	.15	.090		 2		2				6			K,o	14	(5,0	2.0	.5		locally on fractures. 122.0 - 124.0 - MoS2 rosettes up to 2 mm on
	-128				0	100		┢	61034	. 20	.132		 4	2					3		+	-	1	2,0				dry fractures and/or disseminated. Fracture density 8/10 cm locally
	-130			┢		100		$\left \right $	61035		.012		 2						3		$\left \right $	+-	╂—	2.5		[127.5 - 128.4 - Quartz Feldspar Porphyry. light green locally highly sericitized, fine grained.
	132			ł	_			┢					 										+	o tr		$\left\{ - \right\}$	╉╌┥	128.4 - 129.84 - Hybrid Felsite + Qtz Feldspar Porphyry. Light green-gray very fine grained, slightly
	-134			70	0	101			61036	tr	.001		 	6								Į.	1	otr			\vdash	<pre>mottled, siliceous. 129.84 - 132.62 - Felsite - lt green mottled siliceous very fine grained. White feldspar, linear</pre>
	136			1	9	97		-	61037	.01	.004		 6	4					4		-	+	+		┢──		$\left - \right $	and irregular produce mottled texture. Fspar locally w/graphic qtz.
	-138			72	0	110			61038	.02	.016		 1	3	2				5			<u>Б,С</u>	5.0	o Er	12.0	C/		131.5 - small subporphyritic granite dyke. 10 cm at 20°. Felsite relatively devoid of qtz veins.
																			[132.62 - 137.4 - Equigranular Biotite Granite. fine - med grained pegmatitic qtz and feldspar.
)									5 																			Biotite less erratic - 5%. Feldspars appear interstitial. Quartz = 50%. Felsite at 133.5.
																												Dyke? = 30 cm. Argillization, pyritization at 136.2 on fractures. Quartz veining dominantly
	1			ſ]																					1 mm grey MoS2-Pyrite at all angles. No stockwork observed.

AMAX MINERALS EXPLORATION

TIDEWATER PROPERTY

1	- 9	GRA			10	;]	PTS	AS	SSA	Y D					V	EII	N S						IN	ERA	LS	
	DEPTH METRES	LI TH.	FALL TS	NUK	а В В В В В В	ASSAY	INTERCEI	AMPLE NO. AND INTERVAL	EST. Mos _e	% Mo\$₂	 ٩	12	Q†2 Py	Q1z MoSz	Py	MoSz	Carb M	Qtz Py oS2	Qtz Pc MoS	Qt: Po Po 2	K-Feld	Biotite	Musc	Ργ		NOTES
							T																			137.4 - 138.4 - Hybrid Equigranular-Pegmatitic Subporph. Biotite Granite & Qtz Feldspar Porphyry -
ж	-138 -140			20	8	5		61039	.04	.010		6		2				2			5	L	.	1.0 -		gradational between fine grained equigranular biotite granite to lt. green quartz feldspar Porphyry.
- 	-140			20	no:	5		61040	.15	.055							 	4			10	ł	.1	30 /	1	138.4 - 150.9 - Quartz Feldspar Porphyry. Lt green-gray fine grained grounômass. 20% Qtz-feldspar
	142			20	h 10	0		61041	. 20	.174						1		4	ļ		ю	.5	1.0	1.5 -	1	Phenocrysts. <u>138.4 - 140.0 - large qtz veins barren and</u> numerous. White crinkly qtz veins <u>+</u> feldspar.
	-144 -146			20	1.0	1		61042	. 25	. 424		1				2		3			10	\square	2.0	3.0-		Porphyry groundmass locally aphanitic. lt. green-creamy.
	-140				8			61043	.01	.120			3					1			10		5,0	2.d-	1	<u>141.8</u> - Later Pegmatitic Biotitic dykelet = 2 cm Fault Highly argillized, coarsely pyritized adjacent to 2° Qtz MoS2 Pyrite vein. 140.0 - 140
				16	100	0		61044	tr	.008		\downarrow	5								10		5.0		1	Argillization on fracture surfaces, throughout Fault at 144 - 146 MoS2 .55 mm thick on 0-5°
er eth	150 152			20	100			61045	.20	.254	 1	2						4				<i>,</i> Ø		-+-		shear fractures. Pyrite in 1 mm cubes locally. Feldspar phenocrysts completely argillized
ni Shanan Shanan Sha								61046		.044	 	_								<u> </u>	5	-	10	0		adjacent to fractures. Groundmass light green sericitized. Locally friable. 148.4 - Sericite thick (lt green) or high angle
51 g 9	154 156				¥ 20	2		61047		.076	-	-								ļ	Ľ	1	10	20 -	- 60	fracture - Feldspar phenocrysts argillized slightly throughout.
, it	158				1						 			F	AULI		-				4				₩	150.9 - ? - Equigranular biotite Granite - light gree fine grained sericitized heavily soft to a knife blade. 151.3 - Sericite-MoS2 rosettes.
	160										 -	\downarrow									┞		_	+		at 50 ⁰ + Pyrite and Hyd. Biotite? 15 ⁰ MoS2 Qtz Py vein. MoS2 as 1 - 2 mm rosettes 5% of
	162			20	90			61048	.10	. 200		2		4		1		6			5		20	_	1	vein. <u>152.4</u> - Fault Friable sericite pyrite altered
	164			20	98			61049	.04	.026		9	1			!	5				15		20	". 		<pre>granite. Calcite in bits of recovered core up to 90%. Pyrite in large clots, balls. ? - 162.45 - Quartz Feldspar Porphyry. Lt green highly</pre>
											 4	1	U		1					-	╞			_		sericitized groundmass, fine grained. MoS2 on 40° fracture, coarse. MoS2 <u>disseminated</u>
	a.		ł							<i>~.</i>	'	1	C													locally in groundmass at 161.8. Feldspars soft

.

1

we h

TIDEWATER PROPERTY

TW 79-2 DDH SHEET <u>15</u> OF <u>31</u>

Γ	. ທ 🛏			LOG		Τ	P15	AS	SSA	ΥD	ΑΤΑ		I			V	EIN	15		 %	MI	NE	RAL	LS	
1010	METRES	L I TH. Redoing	FAULTS	NUMBER C	% RE	ASSAY	NTERCE	MPLE NO. AND	EST. Mos _i	‰ MoS₂			Qtz	Qtz Py	Q12 MoS2	Py	MoSz	Carb		K - Feld	Biotite	Мизс			NOTES
Γ									i																argillized phenocrysts, white = 5% 162.45 - 164.8 - Subporphyritic Biotite Granite - medium
Ī																					1				grained dk-lt grey mottled. Mosaic intergrowth of white feldspar, dk grey quartz. Pyritized
Ī	1																		 <u> </u>						- 1%. Locally disseminated MoS2 and MoS2 Pyrite on numerous hairline fractures. Fractures
F	1					1						ł									+	+			(high angle) w/pyrite - clay minerals. Locally sericite on fractures at high angle.
ŀ	1			\vdash																$\left \right $					
ŀ	1			\vdash			-												 	 ┠╌╂		+			
\mathbf{F}	1			┝			╞												 		+	+			
\mathbf{F}	4			\vdash			-														+	+			
ŀ				-																	-				
ł				-																	_				
																						_			· · · · · · · · · · · · · · · · · · ·
ſ																									
Ī	1																								
ļ	1																				1				
Ī	1											`							 						

)

ì

TIDEWATER PROPERTY

TW 79-2 DDH SHEET ____OF

	GRAPH			0		SL	AS	SA	Y D/	ATA					EIN							NE		_s	
DEPTH METRES	LITH. BEDDING	AULTS	838%0% 00 10 10 10	% RE	ASSAY	SAMI	A D PLE NO. ND ERVAL	EST. Mos ₂	% MoSz		Qtz	Q t z Py	Qtz MoSz	Py	MoSz	Carb M	Qtz Py oS2	Qtz Po MoS	Qtz Po 2	K-Feid	Bistite	Musc	Po		NOTES
				Ť																					164.8 - 169.8 - Hybrid Phase - Lt. grey-white silicified felsite w/numerous MoS2-Pyrite filling fractures
-164			14	10	0	610	050	.01	.024						nero actu	us res	4			5.0	1.0	£~ .!	d /		parallel core. Felsite appears to cut sub- porphyritic qtz-feldspar mosiac medium to coarse grained. Equigranular white, fine-med
166			21	10	0	610	051	.02	.014		 2		1				3			10	tr	th.	5 -	Ц	grained biotite granite cuts subporphyry also with shear contacts.
-168 170			20	97	.5	610	052	.05	.018		1		1		actu	us res	6			5,0	5.0	tr.	str		<u>168.9</u> - Biotite 20% 1 mm flakes, chloritized. Pyrrhotite associated. <u>168.0</u> - MoS2 and Pyrite on $< 5^{\circ}$ -10° fractures <u>+</u>
		>	20	10	0	610	053	.06	.070			2			2	 	4			2,0	5.0	£/1,i	otr		quartz-sericite. Fractures with light powdery clay + pyrite.
172		>	20	10	5	61	054	.05	.006		1	2			 		9			2,0	1,0	.51.	ot/		<u>170.5</u> - Sphalerite Qtz-Pyrite veins (x^2 at 70°) sericite pervasive.
-174		,	20	10	0	61	055	.05	.010		1						>10			2.0	ŧ٨	1.0 1.	otr		169.8 - 170.8 - Equigranular Biotite Granite- white-lt grey, fine grained quartz and feldspar. Locally lt green sericitized? Pyrite disseminated <1%
170			17	92		61	056	.01	.008			3	1				5					1,03.			Biotite <1% fine grained infrequent. 170.8 - Dacite Porphyry - 5 cm 10° dikelet.
178		,	20	10	2	61	.057	.04	.046			8					4			5,d	ŧr	2.02	\$6		Dark-med green aphanitic with 10% biotite phenocrysts euhedral. Soft white anhedral
-180		7	20	10	0	61	058	.05	.034			3			2		3			6,0	Ł	1.02	st/		inclusion? 170.8 - 176.3 - Equigranular Biotite Granite. MoS2 thic on 80° & 50° shears. Granite mod. pyritized
-182																									locally quartz becomes dark grey medium grained
ľ	1			╏											ļ										173.4 mericite quartz veins ± MoS2, while at 20°
ŀ			F						İ		 1														174.5 & 176.0 - MoS2 Pyrrhotite disseminated in dark gray-green silicified zones. Garnet large
			╞																						also with MoS2 rosettes. 176.3 - 187.7 - Subporphyritic Biotite Granite - light gray mottled, medium grained, Locally fine
ŀ			F													1									grained green sericitized, prophyritic. Massive Pyrite-Qtz Pyrite vein dominant. 30 ⁰ fractures
ţ.			F								1														argillized, pyritized.

TIDEWATER PROPERTY

DDH TW 79-2 SHEET 17 OF 31

Γ		GRAP		LOG	U U	TS	A	SSA	ΥD	ΑΤΑ				V	EIN	I S			%	MI	NER	AL	s
	METRES	LITH. BEDDING	FAULTS		% RE	ASSAY	SAMPLE NO	EST. Mosz	% MoSz		Qtz	Q tz Py	Q1z MoSz	Py	MoSz	1			1	Biotite			NOTES
																							$\frac{177.9}{179.0}$ - 15 ⁰ vuggy white massive Qtz-MoS2 Pyrr vein $\frac{179.0}{179.0}$ - 186.7 - Highly sericitized, argillized. Pyrite as large dissemination along qtz veins
ł																							fracture. Groundmass Lt. green soft. Vuggy Qtz-pyrite veins and MoS2 on 50 ⁰ shears. MoS2 - Sericite on shear fractures. C0 ₃ -Pyrite on
ł				┝														 					tension fractures.
$\left \right $																		 					
ł				-														 					
ţ	1						····																
$\left \right $																		 		_			
$\left \right $																		 			$\left \right $		1966
ł																	-						
$\left \right $																							

. .

TIDEWATER PROPERTY

	- 00 -	GRAP	HIC L	06	ن	S S	Α	SSA	Y D	ΑΤΑ				V E	EIN	IS				%	M	INE	R #	ALS	
	DEPTH METRES	LITH. BEDDING	FAULTS	NUMBER OF Fieces	% RE	ASSAY	A SAMPLE NO AND INTERVAL	EST. MoS ₂	% MoS2		Qtz	Qtz Py	Qtz MoSz	Ру	MoSz	Carb	Qtz Py 1052	Qtz Po Mos	Ot: Po 2	K-Feid	Biotite	Musc	<u>کہ</u> ت	2	NOTES
	-182																								184.9 - 28° MoS2 Qtz veins later than felsite fragmentation in subporphyritic Qtz-Feldspar- veins 1 - 2 mm grey
	184		7	20	92.	5	61088	.08	.016		 1	2	2		3		3			10	t	1.0 .	.0	1	1 - 2 mm grey 187.7 - 189.5 - Quartz Feldspar Porphyry - lt. green fine grained groundmass. Locally, qtz and feldspar
} `				18	9 2.	5	61089	.08	.026		2	2					9		1	5.0	ŧſ	1.01.	.5	4	phenocrysts crowded up to 60%. Appears gradational to subporphyry. Pyritized = <1 % with disseminated
	186			20	100		61090	.05	.054						2		10			10	ŧ٢	ŧ۲I,	.5-	-	MoS2 locally. <u>188.4</u> - Pyrite MoS2 on 70 ⁰ dry fracture (tension) Pyrite on 30 ⁰ fracture.
	188			14	L02		61091	.08	-058					1			10			10	ŧ٢	tr li	.5 -		189.5 - 191.7 - Subporphyritic Biotite Granite. White feldspar interstitial to qtz anhedra (1 mm) grading
	190 192			16	102		61092	.15	.075		 1		1		4		8			0	ŧ٢	1.0 ,	,0	-	to phenocrysts and a crowded porphyry. Locally sericitized green, fine grained with disseminated
	194		7	20	98		61093	.10	050		 1				1		3		1	5	.5	1.01	,d,	05	MoS2. Numerous qtz-pyrite ± MoS2 gray 1 mm stringers. 190.1 - Qtz MoS2 Pyrite, vein, white at 15° and
	196			17	90		61094	.10	.015		2				2		7			10	ŧ	1.01.	,0	1	3 cm. Sericite Pervasive to .5 cm similar veins. 191.7 - Fractures appear like "stylolites" in
				22	94		61095	.05	.015			1			1		6			5	Ŀ	t/l.	.0	-	appearance. MoS2 5 mm thick on surface, shear? 191.7 - 193.0 - Equigranular Biotite Granite.
	198 200-			16	100		61096	.05	. 050			1					3			б	En	1.01.	.0	-	<u>192.0 - 193.0</u> - Lt. grey altered, very soft. anhydrite alteration? Shear fractures argillized. Fine grained feldspar barely visible, white. MoS2
	202			12	98		61097	.06	.019						1		5			5	ŧ	t I.	0	-	Pyrite disseminated in linear bands. 193.0 - 195.8 - Subporphyritic Granite - biotite up to 50%
				12	100		61098	.08	.022					1	2		4			5	1.0	- 1.	.1	5	in linear bands (3 cm). Generally devoid of biotite, qtz-feldspar in angular mosaic (2 mm max) Graphic locally. Pyrrhotite and Qtz-Pyrrhotite vein
	204							<u> </u>																	associated with Biotitic bands. 195.8 - 201.65 - Crowded Porphyry - white, lt green fine-
)																									med grained, mosaic of angular feldspar - quartz. Feldspar appears interstitial. Pegmatitic appear-
											 														ance locally. <u>196.5</u> - Galena Sphalerite, Pyrite, in 60 ⁰ vein adjacent to zone of lt. grey soft alteration
																									(anhyd?).

nta da M

TIDEWATER PROPERTY

DDH ______ TW 79-2 SHEET ______ OF __31_

1 - 9	GR T			06	ರ	l f	2	ASSAY DATA								VEINS						1%	MI	NE	2 4 1	1 5	
Ē		¥			ы С	N S			5 ST	•/•	1	Γ		1411	914			_		T	T				1	1	NOTES
H1930	E	ē	5		.0	ASS		MPLE NO. AND NTERVAL	MoS.	MoSz			912	14	Musi	Þу	MoSz	Carb				K-Feld	Biotite	2		1	NUTES
	<u> </u>	Z	<u> </u>	- 1	6		E 1	NTERVAL						<u></u>		h		L				Ī	8	ž			
														 													<u>198.8</u> - Breccia silicified with MoS2 interstitial Pyritized heavily. Sericite, Pyrite & clay
																											minerals on fracture MoS2 disseminated locally. MoS2 on shears as paint, 15-30 ⁰ .3 - 1 cm grey qtz
]]		: : : :																	\mathbf{f}	t	veins and Pyrite MoS2 stringers. Locally at 201.0 Qtz-Fspar veins (up to 5 mm) with MoS2 Pyrite
ŀ	1		ŀ			1							,,,	f								╉┥			-	╞	disseminated coarsely. 201.65 - 202.65 - Biotite Quartz Feldspar Porphyry.
															······												Lt. grey fine grained groundmass, Phenocrysts up
																										Ţ	to 10%. Quartz & Biotite 1 mm, Feldspar white euhedral up to 2 mm.
F	1		ľ				F	·		1										+-		+	+	_	$\left \right $	-	
																·											
						Į																					
Ī	1		ſ			1	-																-+	-			
ł			ŀ	-			-			<u> </u>										-	-		+	_		_	
Ļ				\square																							
ſ	1		ſ																	1		╏╎	-+			-	
ŀ	$\left \right $		┢	-			\vdash																			ļ	
							L												1								
ſ						-														1	1				Ħ		
ŀ			·				┝							No. 10 TRAINING						<u> </u>	<u> </u>		_+		Ц		
								- - 																1			
																								T			
			ŀ				F	ан 1997 - Сарана 1997 - Сарана 1997 - Сарана		÷				American Construction						<u>}</u>		╉╌╂	-+-	+-	$\left - \right $		
							L		:																		

1

1

		RAPH					5	AS	SSA	Y D	ΑΤΑ					v	EIN	N S				1%	- N	MIN	ER	ALS	s
DEPTH		BEDDING	FAULTS		а – ~	ASSAY	SAN	APLE NO. AND TERVAL	EST. Mos _z	% MoSz			Qtz	Q t z Py	Qtz MoSz	-	MoSz		q py Mos	q po MoS	q pc	2			P ⁴		NOTES
-20	4																										202.63 - 204.5 - Crowded porphyry & Equigranular Biotite Granite. Lt. green gray fine grained angular gtz Feldspar with biotite < 2% = .5 mm. Quartz
20	~			15	10	o	6	1099		.10	.078		<u> </u>	1			2		13			10	2.0	d 1,0	1.0	ŧ	and Feldspar grades up to 2 mm in a crowded porphyry with biotite absent.
20				12	10	0	6	1100		.10	.055	 			1		2		6			4			0.8		202.8 - Massive Pyrite-MoS2 vein. Along 60 ⁰ shear.
21				15	10	0	61	1296		.10	.034		 	+Pbs					12			-	 	_	1,0	_	204.5 - 204.88 - Subporphyritic Granite 2 mm white feld- spar dk. grey quartz, angular, in a mottled mosaic. White vuggy Qtz Pyrite vein, 2 cm
21				10	10	1	61	1297		.15	.136								8		1	5	1,0	1,0	1.0	tr	along upper contact. MoS2 on selvages as thick paint and along wavy fractures.
21				13	10		61	L298		.10	.008			5			2		6		2	5	1,0	0.1	I,d	5	204.88 - 209.0 - Equigranular Biotite Granite - fine-med grained, lt. green grey. Biotite 2%, locally
21				19	95		61	L299		•08	.026		3	1					8			5	0.5	\$1,0	0.5	-	absent. Pyrite disseminated < 1%. Sericite on 70° fractures. Numerous Qtz-Pyrite-MoS2 grey stringers (<1 mm) at 30 - 50°. 45° MoS2 Qtz
				8	10	0	<u>ا</u>	1300		.05	.022								9			5	1	,5	£	-	veins (± pyrite) cut and displace each other @ 205.0 MoS2 .5 mm thick on 60° shear fractures.
-21 -22	1			11	10) HRT 886		.08?	.053						1		15			5	/	2.0	1.0	1	209.00 - contact, gradational? High angle fractures with sericite soapy, lt. green of
22																											surface, med green pearly pervasive to fracture. 209.0 - 216.05 - Qtz Feldspar Porphyry - lt. grey.green
																											fine grained groundmass. Biotite up to 1% fine grained. Little disseminated groundmass pyrite. Qtz-Feldspar phenocrysts vary from
																											5-50% up to 2 mm. Garnet disseminated in trace amounts. Pyrite on 0° fractures as
																											large flakes, masses. 216.05 - 213.0 - Equigranular Pegmatitic Biotite Granite
									/											:							fine-med grained grey mottled with biotite up to 5%. Angular Qtz-Feldspar relationships. Pyrite and pyrrhotite disseminated <1% MoS2
						•																					locally. 210.8 - Bleached pervasive to 2 ⁰ fracture.
																											Sericite disseminated pervasively. MoS2-Pyrite ± Pyrrhotite veins as stringers,

À.

1

Γ,		RAP	-		с ^і	, ř	A	S S A	YD	ΑΤΑ			V	EIN	N S		 %	ML	NER	AL	s	
050	METRE	LITH. BEDDING	FAULTS	830314 6 834 Nnk	% R£	ASSAY	SAMPLE NO AND INTERVAL	0. EST. Mos _z	% MoS2		Q†z	Qtz MoSz	Ру	MoSz	Carb		K-Feld	Biotite	WUSC			NOTES
		LLTTH. BEDDING	FAULTS		ж К К К К К К	ASSAY		D. EST. MoSz	9% MoS2		Q † 2		Py	Mo S ₂	Carb		P = P					<pre>NOTES fractures and .5 - 1 cm white to gray veins at 10 - 70° dominantly 40 - 45°. 70° Qtz MoS2 veins with sericite on selvage and pervasively later than 5° Qtz-Pyrite stringer ± MoS2. 213.0 - 214.9 - Crowded Porphyry - 2 mm subhedral quartz and feldspar interlocking in a lt. grey-white mosaic. While 1 cm quartz veins at 1 cm (x2) and 40° with sericite on selvage and argillized fractures adjacent. 214.9 - 215.4 - Equigranular Pegmatitic Biotite Granite. 215.4 - 220.3 - Miarolitic Alaskite - white med-fine grained angular quartz and Feldspar. Miarolitic cavitites up to 10% with 3 mm maximum width. Qtz crystals in the cavities locally. Lt green soft mineral filling cavities up to 1%. Possible sericitization of Fspar. Qtz-Pyrite-MoS2 stringer numerable at 20 - 50°. MoS2 disseminated locally.</pre>
ł	1																	-			┨	
Į																						

ì

1

TIDEWATER PROPERTY

DDH <u>TW_79-2</u> SHEET 22_ OF <u>31</u>

Ξű					i L	PTS	AS	S S A	Y D	ΑΤΑ				V	EIN	N S				%	м	INE	ERA	ALS	1
DEPTH METRES	LITH.	BEDDING	FAULTS NUMBER		ASSAT	INTERCE	AMPLE NO. AND INTERVAL	EST. MoS ₂	% Mo S 2		Qtz	Q I Z Py	Qtz MoSz	Ру	MoSz	Carb 1	q py 10S2	q po MoS2	q po	K-Feid	Biotite	Musc	PY	0,7	NOTES
-220																									<u>220.0</u> - Sericite-MoS2, soft up to 2 cm thick, MoS2 like paste, sericite soft, friable. 220.3 - 228.15 - Equigranular Pegmatitic Biotite Granite.
-222			1	21.0	0		79 HRT 887	.05	.058						1		10			5	4	ŧ	1,0 -	/	220.3 - 228.15 - Equigranular Pegmatitic Biotite Granite. Qtz MoS2 Pyrite stringers, dry fractures numerous. 221.4 - Dacite Porphyry. 2 mm along 0° irregular
			1	610	0		888	.08	.026		1	3		2	4		2			5	2.d	1.0	1.0-		fracture. 222.2 - Pyrite massive on fractures, irregular
-224			10	610	1	ſ	889	.05	.018			1					5			5	2.0	1,0	1.5 -	-	dist'n Sericitizied zone, 20 cm with dissem- inated MoS2. Hairline fractures with MoS2 as thick
-226			12	210	1	ſ	890	.04	.015		1	2					8			5	2.0	201	1,0	1	paint. Sericitized zones with Biotite absent. Biotite locally up to 1 mm. 226.90 - Subporphyritic medium gray mottled,
-228			9	10	0	Γ	891	tr	.015		 2	4	1					2		5	20	2.0	o.st	x	medium grained section. Sericitized zone separates this texture from biotite granite.
230			11	LLO	0	ſ	892	tr	.012			5							2	8	1.5	2,0	1,0 (5	228.15 - 228.60 - Mafic Dyke - very fine grained dark gray with red and green (soft) phenocrysts along with
232			20	10	0	F	893	.01	.006		3		1				2			4,0	2.0	2,01	1.5H		white - prismatic phenocrysts? Highly magnetic. 228.6 - 231.5 - Equigranular pegmatitic Biotite Granite. fine-med grained, porphyritic locally with biotite
234			10	10	0	ſ	894	.04	.010		 3		2				4			50	3,0	1,0	1,0 (£r	2 - 5%, irregular distribution. Numerous hair- line fractures with pyrite. Little MoS2 Pyrrhotite
236			14	10	 00		895	.01	.011		 2						3			8.0	tr i	2,01	1,0 t	1	on veins and disseminated <1%? Larger Qtz veins with white fspar on selvages.
238			10	10)0	ľ	896	tr	.006			2	1				1		3	5,0	2.0	2,0.	.5,0	ষ	 231.5 - 242.85 - Subporphyritic Pegmatitic Granite. Local + ly coarse grained - grey mottled with angular qtz biotite fspar intergrowth. Generally med grained biotite
240			8	10	0	7	'9 HRT 897	.05	.056		 2			2						3.0	tr	5,0	1,0 t	x	granite <1%. High angle fractures sericitized pervasively equi- MoS2 disseminated with sericite.
242						F																			gran. <u>233.0</u> - 18 cm Qtz-MoS2-Sericite vein. Sericite pervasive.
				†-	-	F													 						$\frac{233.7}{\text{pyrite disseminated up to 2%}}$
				T		┢					 								. <u></u>			╡			<u>235.0</u> - White 7 cm irregular quartz feldspar pegmatitic vein. 235.5 - 7 cm white Qtz MoS2 sericite vein.
				\uparrow	1	F																			* subporphyritic medium grained rock grades im- perceptibly into a fine-med grained biotite granite

1

Ż

TIDEWATER PROPERTY

DDH <u>TW 79-2</u> Sheet <u>23</u> of <u>31</u>

_ v	GR		IC LO		ن ا	•TS	А	SSA	ΥD	ΑΤΑ				V	EI	NS		%	M	INEI	RAI	LS	
DEPTH Metres	LITH.	BEDDING	FAULTS	PIECES	% RE	ASSAY	SAMPLE NO AND INTERVAL	D EST. Mosz	% MoSz		Qtz	Qtz Py	Qtz MoS ₂	Py	MoSz	Carb		K-Feid	Biotite	Musc			NOTES
DEPT		BEDDIKG				ASSA		EST. MoSz	9% Mo52			Q t z Py	Q1z MoS2	Py	MoSz								<pre>(236.3) - Dacite Porphyry - for 40 cm parallel to core axis. Biotite (+ hornblende?) phenocrysts as euhedral crystals. Prismatic and/or platy, v1 mm. Lt grey - white very fine grained needles of unknown mineral. Groundmass dark green aphanitic. <u>236.9</u> - Qtz MoS2 Py vein, 1 cm, at 25°, sericite pervasive. 80° Qtz vein also w/ ser- icite pervasive. 240.0 - 240.5 & 241.2 - 241.6 - Highly sericitized. White 1 cm 80° q.v. related? MoS2 rosettes disseminated <1%. Possible silicification producing dark green gray color and hardness. Sericite soapy. Lt green on fractures. Pyrrhotite pyrite disseminated.</pre>
			-		1		44	0	K)								 $\left \right $					ŗ
·																							•

ļ,

1 _ v	RAPH		O	PTS	A	SSA	Y D	ΑΤΑ	<u> </u>	T			V	E۱۱	15				%	M	INE	ER	ALS	
DEPTH	LITH. BEDDING	FAULTS NUMBER	PIECES %	ASSAY	SAMPLE NO. AND INTERVAL	EST. Mos ₂	% MaS₂			Qtz	Q 1 Z Py	Qtz MoSz	Py	MoSz	Carb M	ру ру юS ₂ :	p8 MoS2	фо	K-Feld	Biotite	Musc	ру	bo	NOTES
																								242.85 - 245.05 - Hornfelsic Greywacke - purple fine grained. Biotite locally up to 2 mm elongated
-242 -244		1	.6 100		79 HRT 898		.012			3		1							20	ŧr	.5	.5	Er	and parallel to foliation. 25 ⁰ Qtz MoS2 veins at 70 and 80 ⁰ 243.0 & 244.4 - Porph-Pegmatic dykes at 65 ⁰ and
-246		1	.5 11		899	tr	.008			1	1	1							5,0		10.0	.5	t/	10 cm. 245.05 - 246.9 - Feldspar Porphyry - white euhedral
240		1	.7 11(900	tr	.005			1						1		1	5,0		┝──┥			grained med gray groundmass. Phenocryst 40%
250		1	.2 100		901	.01	.006			2	4	1				1			10					groundmass moderately pyritized. 245.5 - 246.2 - Highly sericitized. Lt green
252		1	.5 95		902	.01	.014			1	2	1				1	 	 	0		ļ0			pearly, soft. Quartz veining and/or silicific- ation, white, irregular. MoS2 disseminated locally.
254		1	.6 98		903	tr	.006			 	ļ					2		 	10	tr	5,0	.5	tr	246.9 - 250.0 - Subporphyritic pegmatitic granite + Biotite Granite, angular quartz and feldspar
256		1	1 100)	904	/	.001			1	3			 					10		┝─┤	-		equigranular qtz and Fspar
258			0 100)	905	tr	.002			2							ļ		5.0		$\left - \right $			247.2 - PbS-ZnS pyrite-Pyrhotite vein at 80° Qtz-Sericite vein at 25° and .5 cm with sericit pyrite pervasive. 15° Qtz Pyrite stringers
260		2	1 100	4	906	tr	.003			4	1								10			_		bleached pervasively at 149.0. 250.0 - 251.3 - Miarolitic Alaskite - white fine-medium
262			6 100		907	.04	.020			4	4	3				1			4.0	<u> </u>		-		argillized(?). Miarolitic cavities 2 mm up to
264			8 1 0 0		908	tr	.002			10	1					1		 	4.0		┝╍┨		+	Extremely crystalline on fresh surface, 100% Qt feldspar-sericite.
266			1100	1	·* 909	tr	.003			3			·			1		 	5.0 25	<u> </u>		-+	+	251.3 - 268.95 - S ubporphyritic Granite+ Biotite Granit mottled grey, medium grained, Highly sericitiz moderately pyritized locally. Garnets dissemin
268		┝┝	1 95		910		.001			2									25		┝╌┤			ated <1% locally. Biotite highly erratic, locally in large clots up to 3 mm, pegmatitic.
270			9102		911	/	.001			3	-								ř.~/				<u> </u>	Pyrrhotite in trace amounts in groundmass. Otz- Feldspar locally become very coarse, pegmatitic

÷

1

TIDEWATER PROPERTY

DDH TW 79-2 SHEET 25 OF 31

[RAPH		. U		Â	SSA	YD	ΑΤΑ	 Τ			V	EI	N S		 %	MI	NEF	RAI	LS	
DEPT	L I TH. BEDDING	FAULTS NUMBER	% R E	ASSA	SAMPLE N AND INTERVAL	O. EST. NoS ₂	% MoSz		Q 1 Z	Q t z Py	Qtz MoSz	Ру	MoSz	Carb		K-Feid	Biotite	Musc			NOTES
DEPTH	LLTTA. BEDDING		% R E			D EST. Mo\$2	% Mo52		912	Q + z Py	Q12 MoS2	Py	MoSz			K-Feid					 NOTES (256.0) Pyrite sericite (+ chlorite?) on shear fractures <u>+</u> MoS2. <u>258.6</u> - Dark Green soft alteration = sericite and/or anhydrite (?) Garnets in large clots up to 2 cm long. Pyrrhotite disseminated with biotites adjacent to Garnets. C03 on some fractures. <u>260.0</u> - sphalerite-pyrite quartz vein at 30° with MoS2 on selvages (shear) Numerous 70 qtz sericite veins with sericite halo. Sericite on 30° shears. Numerous Qtz Feldspar pegmatite veins at 30 - 50° <u>264.0 - 266.4</u> - Feldspars become large producing vague porphyritic texture. Biotite 58 <u>267.0</u> - Felsite fragment up to 3 cm, angular Breccia? also large Pegmatite fragments and veins (268.4). 268.95 - 269.20 - Dacite Porphyry - biotite & soft, clear anhedra in a dark green aphanitic matrix. Phenocrysts up to 10%.

)

1

TIDEWATER PROPERTY

DDH <u>TW 79-2</u> Sheet <u>26</u> of <u>31</u>

T 10		APHIC			ن	PTS	Α	SSI	A Y	DA	ΤΑ					V	EII	15				1.	%	MIN	IER	ALS	5
DEPTH METRES	LI TH.	BEDDING	FAULTS NUMBER OF	53312	% RE	ASSAV	SAMPLE N AND INTERVAL	O EST Mos	. 9, z Mo	% o S z		Qt	z Q P		Qtz MoSz	Py	MoSz	Carð	q py loS∕	g po MoS				Musc	Py	Po	NOTES
-270																											269.20 - 282.7 - HYBRID SUBPORPHYRITIC - BIOTITE - PORPHYRITIC GRANITE - gradational fine-med grained biotite to biotite free subporphyritic
27:			19	9 h	02		79 HRT 912		.0	02		+f(5	-									8.	٥t	(2)	-5	ŧ	mottled granite. Dark-red gray with numerous pegmatite veins. Numerous high angle veins and
274			1	31	02		913	tr	. 0	01		1			2	1						6,	c 2.	01.	5.5	ŧr	fractures with sericite pervasive, to a lt-med green fime grained pearly texture. Biotite
-276	1		1	5	99		914	tr	0	01		3		2					2			5.	02	01.0	-5	ŧr	distribution erratic. Garnet disseminated loca- lly up to 1%. - sericite on shear fracture, light green soapy
-278			1	81	.05		915	tr	. 0	02		3		2		5			2			3,	0 E	2.	٩.2	tr	273.8 - sphalerite-pyrite vein with dark grey fine grained silicification, sericitization.
-280			2	0	95		916	tr	. 0	01						4			2			2,	ot	(5.)	.5	t	Density up to 2/m: MoS2 disseminated pervasively with galena(?) and garnet.
282			1	81	.02		917	tr	.0	01						3						2.	51.	05,0	010	t	pegmatite veins with pyrite MoS ₂ disseminated 3/m Low angle fractures with CO ₃ filling. 277.3 - 282.3 - dark grey-green alteration
284				71	.00		918	/	.0	01												4	б,	oti	.5	1,0	adjacent to numerous q-py-sp [±] galena veins. Feldspar argillitized intensely sericitized
286			1	21	.00		919	/	.00	01		1	_									.5	ί Κ ,	o ti	tr	1,0	adjacent to sphalerite-pyrite veins. MoS ₂ local- ly disseminated pervasively. Locally in highly altered zones, sphalerite and galena(?) diss-
-288			2	01	.05		920	tr		06		6		-		+5?						ť	6	ť	1	6	eminated pervasively and on quartz stringers at low angles.
290			21	01	od		921	/	. 00	08								3				-	3,	d2.	۶¢،	1	282.7 - 284.75 - DACITE PORPHYRY - fine grained dark green groundmass with biotite-feldspar up to 10%
																											Feldspar phenocrysts euhedral up to 1 mm maxi- mum. Highly magnetic.
																											grained biotite up to 5% white. Quartz-feldspar locally subporphyritic-crowded porphyritic with
						Ĩ				2																	biotite erratic up to 10%. 285.0 - pyrite disseminated pervasive to high
							71	V													<u> </u>			<u> </u>			angle fracture up to <u>5%</u> . Quartz-feldspar pegmatite with feldspar as laths. Sericite py- rite on fracture.
																											- biotite up to 10% in bands vein like. - pyrite cubes disseminated on fractures up to 2 mm

)

DDH ______ TW 79-2 SHEET 27__ OF _31__

.

	<u> </u>	RAP	IC L		5	15	4	SSA	Y D	ΔΤΔ		I			V	EIT	NS				•⁄~	MI	NER	ALS	
٦ E	ű 🗌	9	L S		ш			T	<u>, , , , , , , , , , , , , , , , , , , </u>	1	<u>i</u>	· · · ·	.	<u>.</u>	Γ		T	1	· ·····		L.			, ~ L V	
L L L	티 2	Ī			œ	SS	SAMPLE N	O EST.	•%	1		Qtz	Qtz	Qtz	Py	MoSz	Carb					11 :			NOTES
^	METRES		FA	₽ -	8	< <u></u>	SAMPLE N AND INTERVAL	MoSa	MoSz		1		Ру	MoSz	l.						12	Biotite			
F	-	1				†	1			1	+	<u>†</u>							+			=		\vdash	
		{				1		1			1				1		1								286.40 - 298.2 - HORNFELSIC ARGILLITE - purple fine grain-
L]										1							1							ed massive. Green at intrusive contacts.
ſ						}						1									П	1			- white 1 cm quartz veins boudined slightly and
1										ł	{		1				1	ŧ		1					irregular.
F	1											-	+				<u> </u>	<u></u>	+	<u>}</u>	╂╌╢		-+	┝─┼─	- numerous gray stringer quartz MoS2? very fine
						1				,		Ì		(]				11	1			grained sulfides
L		1	[1	<u> </u>								L										- hornfels with little disseminated pyrrhotite
							}																		288.2 - 290.6 - DACITE PORPHYRY - highly argillized with
						[Į			1	1				}			1	}						ore CO3 brecciated zone (289.0) light green, soft
F	1					1		-		t	+		<u> </u>					<u> </u>	+		╂╴╂	+	+	\vdash	-
												1					{]		Į					
F	1					1		_	_	ļ		 					[
																	{	{			11				
I.						1		1			1						}	ĺ							
F	1					1		-	1	t	1										<u>t-</u> t	-+-	+1		
I								1	1		1		} :						{		11	(
ŀ	4					ł		<u> </u>		ļ		ļ					ļ	ļ	<u> </u>	<u> </u>	_↓		+		4
						{				1	1									1			} }		
								1			}						{		1						
ſ	1										1											Τ	\square		
	+										1	}									1				
ŀ	1					ł		+	+		ł	<u> </u>						-				+	╉╌┨		4
	I									ļ		i i							[
									_	<u> </u>															
						í			1			{													
						[1													
t	1					1		1	1												╏─┤		╈╉		-
	1					1			1																
Ļ	1					1		_ _															┶		
		{ [
1								1														1			
ł	1		ľ					1	1	*****	1											+	1-1		
1				ł				1											!			·			
ŀ	4		┝					<u> </u>	+												╞─┤	+	┼┼		4
1								1			1														}
L																1		-							
ſ	1		1	1				-													ΙΙ	Γ	T		
1								1															1		
	 I	11					l	1	1	L													1 1		

, .

)

T 1	IC LO	니이		A :	SSA	Y DA	ТА				V	EIN	IS				%	N	AIN	ER	ALS	
BEDOING	FAULTS NUMBER	PIECES	ASSAY INTERCE	SAMPLE NO. AND INTERVAL	EST. MoS _R	% MoSz		Qtz	Q tz Py	Qtz MoSz	Py	MoSz	Carb	q po 10S ₂	q po MoS ₂	q po	K-Feld	Biotite	Musc	Ρy	Po	NOTES
																	-					290.6 - 293.5 - Subporphyritic - Porphyritic Granite. Extremely argillized, soft, friable. Lt. green- white with some visible quartz veining ± pyrite.
	1	262		922	/	.001		4							 		2.0	1,0	1			Iower contact w/ sequinents.
	1	2 55		923	tr	.004		4		1							1,0			ŧ٨	1	293.5 - 294.0 - Green Quartzite - medium grained, bright green with epidote(?) interstitial to quartz
	1	310	2	924	tr	.006		4	1	1			4					6	1	1 1		with the Media with and displaced. Cut by
		910	0	925	.01	.003		2		3			3						1			granitic-pegmatitic dikelet.
		2 10	5	926	1	.004		2	2				10				/	10		Ł	£/	grained feldspathic, granoblastic. Gradational from bright green quartzite. 10 ⁰ Qtz MoS2 vein
	1	6 1 0	0	927	tr	.002		2	3	2			6			1	/	10	1	ŧ٢	.10	cut by 10° fracture, bleached pervasively. 15° Quartz veins and 70° Quart-Pyrite veins also.
	2	2 10	1 1	928	tr	.002			4	1			5	2		1	-	10	1	.1	,10	15 ⁰ Quartz veins with pervasive bleaching. 295.5 - 295.8 - Dk. Green Quartzite - soft medium grained quartz and epidote(?) granoblastic, foliated.
	2	010	0	929	,	.001		7	2				5				1	10	.1	.2	. j0	
	2	0 90		930	tr	.004		1	1	2						1	1	8.0)5.0	2.0	ŧ	up to 2 cm. Locally light brown very fine grained (tuffaceous?). Numerous slip surfaces
		2110		79 HRT 931		.001		4	6								F	10	1	1,0	6/	with CO ₃ filling. Numerous <1 mm gray stringers <u>+</u> MoS2? at low angles. 301.0 - Qtz vein, massive white at 3 cm with
		+-	1		<u> </u>			1									1					sericite on selvages. MoS2 locally in pervasive, yellow earlier than white 1 mm qtz stringer.
		╉	1					1	+								╈					<u>302.6</u> - Biotite visible up to 1 mm locally in hornfels chert fragments = 1% also. Hornfels
		╉	1					+									+	╞				softer than knife blade. High angle Qtz Pyrrhotite-Pyrite veins later than 15° Qtz
		+	-														$\frac{1}{1}$	<u> </u>				MoS2 vein, white at .4 cm. <u>304.5 - garnet on selvage of Qtz Pyrite vein -650</u> <u>306.7 - 307.2 - highly sericitized graywacke</u> .
		+	-													=	$\frac{1}{1}$					Lt. green. Broken up with CO ₃ - pyrite on fractures. Fault?
	BEDOIN		12 62 12 55 13 10 19 10 12 10 16 10 22 10 20 10 20 90	NOON Noon	12 625 79 HRT 12 55 923 13 102 924 19 100 925 12 105 926 16 100 927 22 101 928 20 100 929 20 90 930 79 HRT	12 625 79 HRT / 12 55 923 tr 13 102 924 tr 19 100 925 .01 12 105 926 / 16 100 927 tr 20 100 929 / 20 90 930 tr 79 HRT 79 HRT	12 625 79 HRT / .001 12 55 923 tr .004 13 102 924 tr .006 19 100 925 .01 .003 12 105 926 / .004 16 100 927 tr .002 22 101 928 tr .002 20 100 929 / .001 20 90 930 tr .004	12 625 79 HRT 922 / .001 12 55 923 tr .004 13 102 924 tr .006 19 100 925 .01 .003 12 105 926 / .004 16 100 927 tr .002 22 101 928 tr .002 20 100 929 / .001 20 90 930 tr .004	12 625 79 HRT 922 / .001 4 12 55 923 tr .004 4 13 102 924 tr .006 4 13 102 924 tr .006 4 19 100 925 .01 .003 2 12 105 926 / .004 2 16 100 927 tr .002 2 22 101 928 tr .002 2 20 100 929 / .001 7 20 90 930 tr .004 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12 625 79 HRT 922 / .001 4 1 12 55 923 tr .004 4 1 13 102 924 tr .006 4 1 1 13 102 924 tr .006 4 1 1 19 100 925 .01 .003 2 3 12 105 926 / .004 2 2 16 100 927 tr .002 2 3 2 16 100 928 tr .002 4 1 20 100 929 / .001 7 2 20 90 930 tr .004 1 2 79 HRT 79 HRT 79 1 2	12 625 79 HRT 922 / .001 4 1 12 55 923 tr .004 4 1 13 102 924 tr .006 4 1 1 13 102 924 tr .006 4 1 1 19 100 925 .01 .003 2 3 3 12 105 926 / .004 2 2 3 16 100 927 tr .002 2 3 2 20 101 928 tr .002 4 1 20 100 929 / .001 7 2 1 20 90 930 tr .004 1 2 1	12 625 79 HRT / .001 4 1 12 55 923 tr .004 4 1 13 102 924 tr .006 4 1 1 13 102 924 tr .006 4 1 1 19 100 925 .01 .003 2 3 . 12 105 926 / .004 2 2 . 16 100 927 tr .002 2 3 2 22 101 928 tr .002 4 1 . 20 100 929 / .001 7 2 . 79 HRT .004 1 2 . .	12 625 79 HRT 922 / .001 4 1 12 55 923 tr .004 4 1 1 13 102 924 tr .006 4 1 1 4 19 100 925 .01 .003 2 3 3 12 105 926 / .004 2 2 100 16 100 927 tr .002 2 3 2 6 22 101 928 tr .002 4 1 5 20 100 929 / .001 7 2 5 20 90 930 tr .004 1 2 5	12 625 79 HRT 922 / .001 4 1 1 12 55 923 tr .004 4 1 1 4 13 102 924 tr .006 4 1 1 4 19 100 925 .01 .003 2 3 3 12 105 926 / .004 2 2 100 16 100 927 tr .002 2 3 2 6 22 101 928 tr .002 4 1 5 2 20 100 929 / .001 7 2 5 20 90 930 tr .004 1 2 1	12 625 79 HRT 922 / .001 4 1 1 12 55 923 tr .004 4 1 1 4 13 102 924 tr .006 4 1 1 4 13 102 924 tr .006 4 1 1 4 19 100 925 .01 .003 2 3 3 3 12 105 926 / .004 2 2 100 10 16 100 927 tr .002 2 3 2 6 22 101 928 tr .002 4 1 5 2 90 929 / .001 7 2 5 5 1 20 90 930 tr .004 1 2 1 1	12 625 79 HRT 922 / .001 4 1 1 12 55 923 tr .004 4 1 1 1 13 102 924 tr .006 4 1 1 4 1 19 100 925 .01 .003 2 3 3 1 12 105 926 / .004 2 2 100 1 12 105 926 / .004 2 2 10 1 12 105 926 / .004 2 2 10 1 16 100 927 tr .002 2 3 2 6 1 20 100 928 tr .002 4 1 5 2 1 920 100 77 2 5 1 1 1 1 1 1 20 100 929 1004 1 2	12 625 79 HRT 922 / .001 4 1 20 12 55 923 tr .004 4 1 1 4 10 13 102 924 tr .006 4 1 1 4 10 19 100 925 .01 .003 2 3 3 7 12 105 926 / .004 2 2 10 7 12 105 926 / .004 2 2 10 7 16 100 927 tr .002 2 3 2 6 1 7 20 100 928 tr .002 4 1 5 2 1 7 20 100 929 / .001 7 2 5 7 7 20 100 7 2 5 7 7 7 1 7 20 100 7	12 625 79 HRT 922 / .001 4 1 20 0 12 55 923 tr .004 4 1 1 4 10 0 0 13 102 924 tr .006 4 1 1 4 10 <td< td=""><td>12 625 79 HRT 922 / .001 4 1 20 10 ? 12 55 923 tr .004 4 1 1 4 10 $20 10^7$ 13 102 924 tr .006 4 1 1 4 $10 10^7$ 13 102 924 tr .006 4 1 1 4 $10 10^7$ 19 100 925 .01 .003 2 3 3 $< 10^7$ 12 105 926 / .004 2 2 10 $< 10^7$ 12 105 926 / .004 2 2 10 $< 10^7$ 16 100 927 tr .002 2 3 2 6 1 $< 10^7$ 20 100 928 tr .002 4 1 5 2 1 $< 10^7$ 20 100 929 / .001 7 2 5 $< 10^7$ $< 10^7$ 20 100 930 tr .004 1 2 1</td></td<> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	12 625 79 HRT 922 / .001 4 1 20 10 ? 12 55 923 tr .004 4 1 1 4 10 $20 10^7$ 13 102 924 tr .006 4 1 1 4 $10 10^7$ 13 102 924 tr .006 4 1 1 4 $10 10^7$ 19 100 925 .01 .003 2 3 3 $< 10^7$ 12 105 926 / .004 2 2 10 $< 10^7$ 12 105 926 / .004 2 2 10 $< 10^7$ 16 100 927 tr .002 2 3 2 6 1 $< 10^7$ 20 100 928 tr .002 4 1 5 2 1 $< 10^7$ 20 100 929 / .001 7 2 5 $< 10^7$ $< 10^7$ 20 100 930 tr .004 1 2 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

÷ •

5

÷

TIDEWATER PROPERTY

TW 79-2 DDH _____ SHEET 29_ OF _31_

T .	GR	APH	C LO	G	с ^і	PTS	A	SSA	ΥD	ΑΤΑ				V	EIN	15		%	ML	IER	AL	.s	
DEPT	LITH.	BEDDING	FAULTS	PICCES	% RE	ASSA	A SAMPLE NO AND INTERVAL	EST. MoS ₂	% MoS₂		Qtz	Q1z Py	Q1z MoSz	Ру	MoSz	Carb		K-Feld	Biotite				NOTES
		BEDDIW			R %	ASSA INTERC		EST. MoSz	% MoS2		912	Q t z Py		Py	MoS ₂	Carb		K-Feid					NOTES <u>308.0</u> - Grain size increases gradationally. decreases within 50 cm. Quartz Pyrite stringers at low angles are sericitized pervasively. Grey Qtz stringers ± MoS2.
						1	4	2	, 0														

· · ·

TIDEWATER PROPERTY

DDH <u>TW</u> 79-2 Sheet 30 of 31

T S		APHI			ပ်		a l	Α	SS	5 A '	Y D	ΑΤΑ	 Γ			V	ΕI	NS			<u></u>	%	M	INE	RA	LS	
DEPTH METRES	LI TH.	BEDDING	FAULT	PIECES	% RE	ASSA	INTERCE	AMPLE NO AND NTERVAL	0. E M	5T. 052	% MoSz		Qtz	Q tz Py	Qtz MoSz	Ру	MoSz	Carb	q py MoS	q po 2MoS	q pc	K-Feid	Biotite	Musc	Po Po		
-316				_				79 HRT	1				 												-		<u>311.7</u> - Qtz Sericite veins with Pyrite sericite pervasive at 65 ⁰ and 3 mm. 314.10 - 315.3 - Hornfelsic Argillite. fine grained
-312				4 1	.00		Ľ	932		r	.001		2	5	1			7				/	12	ŧļ.	1.		black to brown. Contact sharp hand sample at
;				6	.00			933		r	.002		1	2	1							/	15	th.	1,1		314.10 but very gradational at 315.3 meters. $314.3 - 37^{\circ}$ Qtz vein, white massive, later than
-314				.2	.00			934	t	r	.024		13	4	2						†	-	/0	Er.	1 t.		10 cm banded composite Qtz-Pyrite sericite vein at 35 ⁰ . * Hornfels softer than knife blade 53 ⁰ fracture
316 318				.9 1	.00			935	. /	,	.002		3	2							2			tr.	1.1		later 37 ⁰ Qtz vein - 35 ⁰ Qtz Pyrite. <u>315.10</u> - Qtz minor MoS2 vein, 5 cm white massive at 20 ⁰
			1	.4 h	00			936	/	,	.002		3	2								-	15	, j E	ht		315.3 - 317.2 - Hornfelsic Greywacke - quartz veining ceased with coarser sediments. Lithologic pre-
320				.5 1	01			937	.0	2	.006		5							4	2		10	1,0.	2.5	\$	ference? Greywacke purple-brown, biotite up to
322				7 9	98			938	1		.005		5							1	2	-	10	tr.	1.1		317.2 - 317.5 - Skarn Dark green, patchy, medium grained Diopside + garnet + sericite (?)
324				9 1	00			939	.0	1	.008		2	1	2							/	10	61.1	1 tr		317.5 - 324.35 - HOrnfelsic Greywacke - softer than knife blade. Purple, biotites foliated up to 15% CO ₂ on fractures. Some shears with sericite,
326 ⁻ 328-			1	5	00			940	.0	1	.006		1							3		/	10	.5 .	1.5		Little quartz veining. <u>321.1</u> - 4 cm composite Quartz MoS2 pyrrhotite sericite vein at 70°. Pyrite locally also on
330			1	8 1	.00			941	.0	1	.001		 3							3		┟╴┟	-+	έŧ	- 		sericite vein at 70°. Fyrite locally also on selvage. Vein irregular. Sericite pervasive. Minor argillite-siltstone locally.
332			1	5 1	.00			942	/		.001		 4	1							1		101	t t	1.7		324.35 - 324.75 - Skarn - Dark Lt green and orange garnet Diopside skarn. Medium grained granoblastic.
			1	0 1	.od			9 43	//		.016		3	5								-	0	4.7	2-1		Very hard. Qtz MoS2 veins, gray .5 cm x 2 on at $0 - 5^{\circ}$
, 334- 336-			2	2 1	.00		7	9 HRT 944	1		.010		5	2								-	101	51.1	-1		324.75 - 329.3 - Hornfelsic Greywacke. <u>326.5</u> - large white 5 ^o MoS2-Pyrrhotite-Sphalerite vein, locally with breccia fragments and fractures
337				6 ₁	.00		334	-337]		02			 3		1				1			Ł	10 1	, .,	26		with chlorite-sericite. 329.3 - 329.6 - Skarn - Dark green diopsidic. Quartz- scheelite vein at 65 ⁰
End																											

. ^

÷

ï

TW 79-2 DDH SHEET <u>31</u> OF <u>31</u>

	, 61	APH	IC L	.0G	ں ن	75	A	SSA	Y D	ΑΤΑ					V	EIN	IS		 %	MIN	ER	ALS	
DEPTH	LITH.	BEDDING	FAULTS	NUMBER OF Pleces	% RE	A S S A Y INTERCE	A SAMPLE NO AND INTERVAL	EST. Mos _e	°∕₀ Mo\$2			Qtz	Qtz Py	Qtz MaS <u>e</u>	Ру	MoSz	Carb		K - Feid	Biotite			NOTES
-																		 					 329.6 - 331.6 - Hornfelsic Argillite - Greywacke - grain size gradational, bedding not discernible. <u>329.8</u> - 3 Qtz Pyrrhotite MoS2 veins with sericite pyrrhotite pervasive. Feldspathic fragments
ŀ																		 					5 mm locally elongated. 331.6 - 331.9 - Skarn - dark-lt green diopsidic. White massive Quartz Vein at 62°. Lithological pre-
t	1																	 •					ference for veining? 331.9 - ? - Hornfelsic Greywacke Minor Argillite.
																							<u>332.9</u> - Low angle qtz pyrite stringer with yellow alt. Halo later than Grey high angle qtz stringer which is later than white . 5cm qtz
								 															pyrite vein at low angle.
╞												 						 					
ŀ	ł																						-
╞											l 									+		-+-	
\mathbf{F}	1		ŀ				• · · · · · ·													+	┼╌┼		-
ŀ																							
ĺ]																						
																`		 					•
╞																							
																	· ·						

					FOLM # 1
					• •
		<u>D</u>	IAMOND DRILL RECOR	<u>0</u>	
PROPERTY _	TIDEWATER	Project Number	971		
Hole No	TW 79-3	Co-ordinates		Bearing at Collar Dip at Collar	020 ⁰ -550
		Collar Elevation	513 m	Commenced Drilling	
		Total Depth	161 m	Completed Drilling	November, 1, 1979
				Logged By:	D. G. Allen
Core Size	NQ	Coring Method		Drilling Contractor	Connors Drilling

;

ĵ

<u>Survey Summary</u>	<u>Pertinent</u>	Assay Data		<u>Pertine</u>	ent Geology
Depth Dip Bearing Method	Interval	% ^{MoS} 2		Interval	Rock Type
1966	6.7 - 42 m 42 - 161 includ 150 - 161	(119 m) 0.030 ding	0 - 6.7 6.7 - 42 42 - 161	m	Overburden Quartz monzonite Hornfels

TIDEWATER PROPERTY

DDH <u>TW 79-3</u> Sheet <u>1</u> of <u>5</u>

ĺ		GRAPHI		0	PTS	Α	SSA	Y D	ΑΤΑ				V	EIN	15			T	%	MI	NE	RAL	- 8	
	DEPTH Metres	L I TH. BEDDING	FAULTS NUMBER Offe	% RE	ASSAY	SAMPLE NO AND INTERVAL	EST. Mos ₂	% Mo\$₂		Qtz	Qtz Py	Qtz MoSz	Py	MoSz	Corb	Qtz Po s	Gal phd		K-Feid	Biotite	Ouart	Garne	Pyrit	NOTES
	0 - 2 -																							0 - 6.7 - Overburden 6.7 - 8.9 - Quartz vein - a few relict fragments 6.7 - 6.8 and 8.3 - 8.9. Cut by a few 0.5 - 2 cm aplitic dikelets. Scattered
	-4 -																							fractures coated with musc. $\frac{8.0}{MoS_2}$ - Irreg. fractured coated with musc. and
6.7	0 - -8 -		7	97	7	61101 6.7-8.0		.006		 									_					8.9 - 12.7 - Felsite - locally banded @ 030 ^o - light grey aphanitic. Sharp contact @ 12.7 @ 45 ^o with OFP (younger). Irreg slip planes
	-10-			102				.014		 1		5		2					+		5 95 5 1.	5 70	0.1	@ 12.2 - 12.4 12.7 - 15.2 - Ouartz - feldspar - porphyry - abundant
	- 12-		19	98 100	1	61103 61104				 7 23	3	4		2					+	-†-	55	+	0.3	feldspar phenocrysts 0.2 - 2 mm in light grey aphanitic groundmass. Muscovite
	14 16			101	1	61105				 10	4	4		4		1	1				c 8			margins of quartz veins. 15.2 - 22.4 - Equigranular biotite qtz monzonite - med grained (1 mm) with irreg dissem biotite
	- 18-		20	96		61106	0.05	.030		 15	1	3		1			1		+	5 5.0	+	+	0.3	groundmass locally fine grained and aplitic.
	- 20-			97	1 1	61107				 11	5	7		1					\rightarrow	5 5.	-	$\left \right $	0.3 0.3	14.6 - 5 cm qtz ⁻ py - galena vein @ 090 cut? by 3 cm qtz-po vein @~0550
	• 22•		720	100 100	1		0.10 0.04	.085		 <u>11</u> 12	3	5 5		_1		1			-	FF 2.1	08		03	scheelite. Minor amounts white kaolinite?
	- 24 26		720	106		61110	0.05	.012		 6	1	5	1		1					5,0	0 10	┼╍┨	0.4	22.4 - 30.4 - Quartz-feldspar-porphyry - abundant rounded quartz and subhedral white feldspar phenocrysts in light grey aphanitic ground-
)	- 28-		15			61111				 8	3	4							+	,03,0 ,03,0			03 03	mass. 29.3 - 29.4 - 1.5.3 cm aplite and permatite
	30-		>20 10	98 100		61112 61113				15 12	1 6	3							+	.52,		╉╾╌╋	0.5	30.4 - Hybrid zone - porphyry texture alternates equigranular texture - contact relationships

•

•

	T S	_			t a	A	SSA	Y D	ATA					V	EIM	15			. 1	%	MI	NEF	R A	LS		
	DEPTH METRE	LI TH.	FAULTS	NUMBER OF PIECES	% R E	ASSAY	SAMPLE NO AND INTERVAL	EST. Mosz	*/6 MoS2		0	tz	Q12 Py	Qtz MoSz	Py	MoSz	Carb	Qtz Po		Pyrrh	K-Fetd	Biotite	Musc Quartz	arner	yrit e	NOTES
1	32 -34 -			17	100		61114	0.10	.009		1	1	1	7			1				1	<u> </u>	57	'	0.3	veining & sericite development, and local
	-36 -			7	100		61115	0.08	.024			7	3	6							2.	,c (+ 7	Tr	03	aplitic and graphic zones. 330.4 - 41.8 - Hybrid phase - appear to be dykes of one phase cutting the other - quartz feldspar
<u>)</u> .	-38			11	95		61116	0.05	.024		1	3	1	4							3.	04	+ 4	1.0	c.3	
	40 -			11	96		61117	0.05	.015			7	2	7							<u>_</u>	55	5 5.5	51.0	03	Granite appears to cut porphyry. WK irreg
	42			16	99		61118	0.02	.010			6		3							0	52	3		0,3	dissem garnet mainly in porphyritic phase. Contact @ 41.8 @ 37 ⁰ 33.5 - 1 cm qtz vein with po, sphal & tr
	-44			18	98		61119	0.03	.014			5	1	4			3			1.0	17	ŕ O.	57		c.z	z scheelite 36.7 - 2 mm qtz-musc-py vein with MoS ₂ and
	-46			20	100		61120	0.10	.062			3	2	3		1	1			0.5	.	52,	d 5		0,2	41.8 - Grey to purplish grey hornfelsic argillite Massive with no bedding.
	48		7	20	94		61121	0.15	.045		:	2		7		2	1).7	Ţ,	; ,=	s 4	05	Tr	$\frac{42.8-43.1}{43.1-43.15}$) aplite and pegmatite
	.50			15	99		61122	0.05	.070		1			4						1.5	Tr	: 2,	d 2			43.4-43.5) Fine dissem pyrrhotite in hornfels and in
	-52			18	100		61123	0.05	.040			3		5		1				2.0	11	2.0	025			qtz veinlets. <u>44.4</u> - 2 cm qtz-scheelite, py, po, muscovite qtz vein @ 25 ⁰
	54		>	20	98		61124	0.05	.015			2	1	5						2.0	Tr	2,	02	Tr		$\frac{47.2-47.4}{48.2-1}$ - Diopside-garnet skarn zone @ 53 48.2 - 1 cm musc. pegmatite dikelet @ 53 ⁰
ĺ	56		>	20	100		61125	0.17	.057		2	2		14			1					-	o 3	.	0.Z	Sericite commonly developed along qtz veins and fractures. 53.6 - 5 cm garnet-diopside skarn
ł	58		7	20	110		61126	0.08	.050		3		\square	7		1	1			.5	17	- 2.0	o 4		0.2	53.6 - 5 cm garnet-utopside skarn 54.5 - 1 cm qtz vein @ 57° with scheelite, MoS ₂ and muscovite.
ľ Í	60			20	90		61127	o.ío	.024		5	; 		6				1		.5		╋	3		05	56-58 - Hornfels pervasively silicified 58.7 - 10 cm diopside garnet skarn band with
	62 -		7	20	95		61128	0.04	.008		3		\square	3				2	2	.5	Tr	-Tr	- 3,5		Tr	. 59.0 - 5 cm garnet bearing zone with tr
	64			13	100		61129		.014		4			7						.5	Tr	- 7,	45		Tr	scheelite.

TIDEWATER PROPERTY

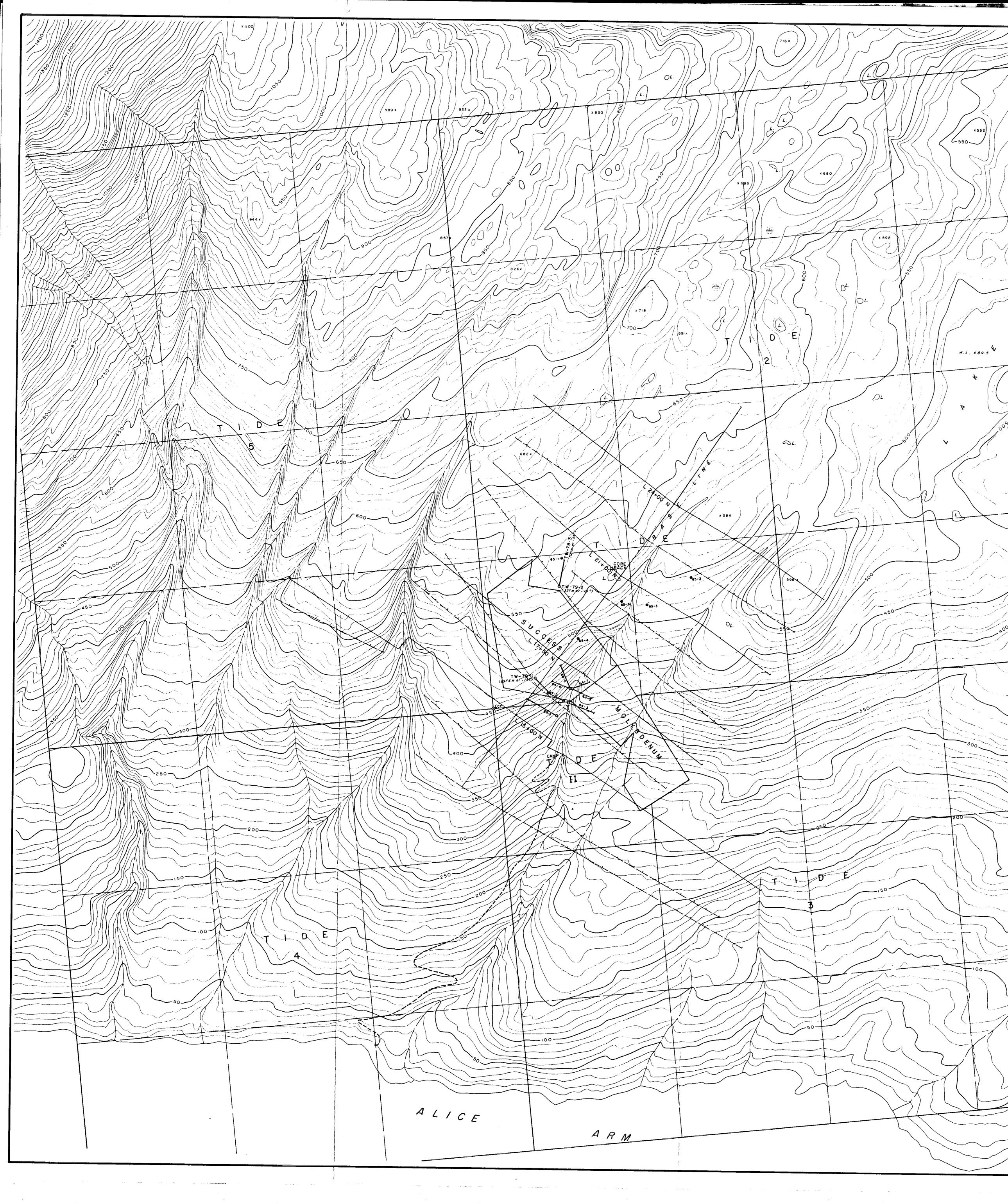
ODH TW 79-3 SHEET 3_ OF 5_

	Γı						ASS.	AY [ATA		1			v	Ξ.Ι	N S			Т	%	MIN	FR	ALS,	<u> </u>	
	DEPTH METRES	LITH. BEDOING		FAULTS NUMBER	2 Y E	ASSA	SAMPLE N AND INTERVAL	10. EST Mos	z MoS	2		Qtz		Q 1 z Mo S _z	Py		Carb	Otz. Po			K-Feld			arnet	
	64 -66			> 20	11		61130	0.0	2.00	7		2	1	1						2		1		0.1 Tr	41.8 - Dark grey hornfelsic argillite - massive, locally and weakly foliated. Abundant pyrrhotite finely
	68.			20	10	2	61131	0.0	2.00	4		3		3			1	1	2.	5	1.	1.0	2	T,	dissem and in seams parallel to foliation and /or bedding.
) ;	70		-	20	10	<u>i</u> d	61132	0.0	2.00	2		2		2				2	3.9	5	T,	د.	0.5	T,	Purple cast developed along some quartz veinlets & fractures. Scattered narrow (5-20 cm) garnet diopside skarnzone.
	.72			11	9		61133	0.0	3.01	2		4	1	1				5	2.0	5	T	1	4.0		76.4 - 5 cm silicified zone. 79.2 - 0.5 cm qtz-po-scheelite veinlet.
	-74			12	10		61136	0.1	1.05	7		2		3		1			p.,	5	T	20	2.50	.5	83.5 - 10cm qtz vein with dissem flakes $MoS_2 \ 0 \ 20^{\circ}$ 85.6 - Slip plane $\ 0 \ 65^{\circ}$ 87.1 - 1 cm qtz vein with MoS_2 and unknown lt
	-76			15	10		61137	0.07	7 . 01	7		1		7					p.9	5		25	25	Tr	brown mineral and white fibrous mineral. 87.7 - 87.9 - Porphyritic museovite qtz monzonite
	- 78 -		7	20	9.	4	61138	0.02	2.010	2		3		3				2	1.5	;		2	2.5	T,	dike @ 63 ⁰ 90.3 - 10cm qtz vein with dissem flakes MoS ₂ @ 45 ⁰
	-80 -			8	10		61139	0.02	2 . 008	\$ 		4		2				3	2.0	,		1	3,0 c	2 Tr	
	82 -			7	100		61140	0.07	.016			3		6				1	2.0			3 4	ک		
	84			10	100		61141	0.08	.022			4		7				3	1.0			5 1	3.	T,	
	86		7	20	100		61142	0.07	.016			5		7				2	2.0			13	.00.	\$	
	- 88 -			14	99		61143	0.06	.024		1	12		5		1			1.0			2.05	5		1966
	90			18	95		61144	0.04	.015			7		4					0.5			2.0 6	.0 1,		
	92			16	100		61145	0.05	.029			3		4		1		2	2.0			1,0 10	0 1		
	94			10	98		61146	0.08	.030		þ	1	-	9		_			0.5			,o <u>£</u>	5 17		
	96			10	100		61147	0.07	.027		<u>h</u>	1		7				1	2.0			,0 (3	s Tr		

DDH TW 79-3 SHEET 4 OF 5

ſ.		GRAP			ပ	PTS	Α	SSA	Y D	ATA	T				v	EII	v s		 	%	MI	NE	R AI	LS									
1000	METRES	LITH. BEDDING	FAULTS	PLECES	% RE	ASSAY INTERCE	SAMPLE NO AND INTERVAL	EST. Mosz	% MoS ₂		•	t z	Q tz Py	Qtz MoSz	Py	MoSz	Corb	Qtz Po	yrrh.	K-Feid	Biotite	Duartz	Garnet	Pyrite	NOTES								
	96 98-			10	100		61148	0.07	.027			11		7				1	2.0			0 13	+	1 1	97.6 - Fracture with 2 cm halo green clay altn" halo								
	10-			20	10:		6114 9	0.07	.055			17		8					1.5		Į.:	5 10			97.6 - Fracture with 2 cm halo green clay altn" halo $\frac{97.6}{2420}$								
; 10)2-			20	100		61150	0.05	.013			15		6					2.0		Ŀ	51.0		Tr	Dark grey hornfelsic argillite - massive. Locally has a spotted texture and weak foliation.								
	4			20	9		61059	0.01	.020			3							1.0		T,	- 0.5	20		Pyrrhotite locally disseminated and locally on fractures; well developed purplish-brown halo up to 2 cm wide along quartz veins. Quartz veins								
10				20	95		61060	0.03	.016			2		3					2.0		T,	3.0	,		vary in width from 1mm-15cm. 101.2 - 10 cm qtz pyrrhotite breccia zone								
10				13	102		61061	D.05	.012			6		4		_			2.0		0.	58.0	×		102-104 - Pods of garnet (epidote?) diopside skarn up to 10cm wide.								
1				13	107		61062	0.07	.037			3		7					 2.5		Tr	6,0	Ŧ,		<u>103-110</u> - Siltstone layers in massive hornfelsic argillite @ 80 ⁰ 110 - Calcite common as 1 mm coatings on fracts								
11				20	97		61063	0.06	. 020			7		4				3	2.0		7,	2.5			$\frac{110}{112} - \frac{114}{112} - $								
11				0	99		61064	0.01	.006			3		1					 0.7		T,	0.5	Tr		<u>114.6</u> - Tr scheelite on fracture with pyrrhotite <u>117.7-118</u> - weak pervasive silicification								
				20	95		61065	0.07	.019			9		7				3	 1.5		T,	5.5	T,		<u>118-120</u> - Several calcite coated slip planes 0.68° <u>120.4</u> - Carb coated slip plane 0.20°								
. 11				20	97		61066	0.04	.010			4		3					0.7		T,	25			e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l								
12				20	98		61067	0.01	.003			3		1			•		0.7		+	1.5	┞─┤		126.3-126.8 - Strongly feldspathized section								
, 12				:0	100		61068	0.07	.016			2	\square	5		1		1	0.7		Ţ,	3,c	0,2		related to 5cm qtz MoS_2 vein @ 126.7 127.0 - 5 cm dacite? dike @ 55								
12				0	95		61069	5. 10	.028			2		3			2		 0.7		F	1.5			127.5-128 - Weakly feldspathized								
1.2			k	0	100		61070	0.17	. 056			3		5					 0.7		Tr	3,0	Tr										
12	1		k	0	.00		61071).13	.075					3		1	3		0.5		Tr	3,0											

· -


•

.

TIDEWATER PROPERTY

DDH _TW 79-3 SHEET _5_ OF _5_

	_	GRAPHIC LOG		U	1s	A	SS A	Y D	ΑΤΑ	T	F			v	ΕI	NS		 	%	MI	NE	RA	LS	· · · · · · · · · · · · · · · · · · ·	
	DEPTH Metres	LITH.	BEDDING FAULTS	5 10 10 10 10 10 10 10 10 10 10 10 10 10	% RE(ASSAY	SAMPLE NO AND INTERVAL	EST. Mosz	% MoS2			212	Q tz Py	Q12 MoSz	Py	MoS	Carb	Qt2 Po	Pyrrh			Ouarts			NOTES
	128 -130		-	20	100		61072	0.05	.007			1		5			6		0.7	2		Fr 1.0			149 -Dark Grey hornfelsic argillite - massive but locally bedded. Garnet-diopside skarn developed along some thin beds (K 10cm wide)
			7	20	100		61073	0.04	.010			1		1		2	6		1.0	5	h	70.5	5		<u>127-140</u> - Weak feldspathization and/or bleaching locally.
	132		,	20	100		61074	0.06	.030			1		5			6		1.5	1,	1	71.5			<u>131.4-132</u> - Strongly feldspathized. 131 - MoS ₂ coated slip plane @ 40
	-134		-	20	100		61075	0.05	.032			1	1	3			2	2	L.5	Tr		3,5	1.0	Τv	Purple color developed adjacent to quartz vein margins and fractures. 136.0-136.2 - Abundant fine MoS ₂ and gal? on fract-
	136 138		7	20	98		61076	0.12	.012				2	3			4		L.5	17		1.5		0.5	ures and in qtz veins in feldspathized zone with pyrite and sphal.
	130			18	95		61077	0.01	. 003			1		1			1		2.5	1,		0.5			<u>$144.9-145.1$</u> - Greywache with greenish fine grained diopside in groundmass.
				15	100		61078	0.06	.023			2	1	2				2	2.5			C.5		Tı	149-155 - Dark grey - locally purplish grey hornfelsic greywacke. Rock and feldspar fragments up to 1mm. Rare rock fragments up to 1 cm.
,	142		7	20	102		61079	0.09	.022			1		2					L.5			15			<u>150.7</u> - 10 cm qtz vein 0.55° with MoS ₂ along margin and as wavey streaks through centre of vein.
	146			17	100		61080	0.02	.008			•		1					2.0			<u> </u>	Tr		<u>154-154.4</u> - Intensely pyritized (and feldspathized) section. Pyrite finely dissem and along margins
ана. 1941 г. – 1	148			16	100		61081	0.15	.018		!	11		6				2	1.5			3.0			of quartz veins. <u>154.5</u> - 10cm banded quartz-MoS ₂ veins @ 52 ⁰ 155-157 - Black spotted hornfels - locally altered to
	150		7	20	110		61082	0.12	.028			3		5				1	2.0			5,0			brownish grey color. 157-160.75 - Brownish grey hornfelsic siltstone
	152		7	20	95		61083	0.18	.140			2		3			3		5			7,0	Tr		16C.75 END OF HOLE
	154		7	20	100		61084	0.12	.068					5				2	5			4.5		Tr	
and I	156		>	20	100		61085	0.12	.050				4	3	1			2	0			7.5		5,0	
	158		7	20	100		61086	0.12	.094			5		2				2	.5			4.5			
			7	20	100		61087 158-160	0.20	. 124		4			14		1			.5			6.0	Tr		

L A K E W.L.484

-500----

526 X

â	Diamond drill hole (AMAX 1979).
	Grid lines (picketed, flagged).
65-1● €4-5	Diamond drill hole (Canex-Placer 1964, 1965).
-	Adit portal location.
0 ^{LCP}	Legal corner post, claim boundary .
<u> </u>	Claim unit boundary.
	Boundary of crown grant.
\sim	Stream.
	Swamp.
	Trail.
150	Topographic contour (contour interval 10 metres).

AMAX OF CANADA LIMITED TIDEWATER PROPERTY SKEENA MINING DIVISION - BRITISH COLUMBIA

DRILL HOLE LOCATION

500 0 500 i : 5,000

Vancouver —

The All allows,

·· • · · ·

COLUMN S

11.11

· · · · · · · · · · · · · · · · · ·

To accompany 1979 Assessment Report by: D. G. Allen.

HI