180-#171-# 7974

SAWYER CONSULTANTS INC.

on the

ASH 1 and 2, ASH 9 to 12 incl. CLAIMS

Similkameen Mining Division, B.C.

NTS 92 H/7₩ Lat. 49⁰23' N Long. 120⁰55' W

Owner: GEORGIA RESOURCES INC.

Operator: CANADIAN NATURAL RESOURCES LTD.

by

J.B.P. SAWYER, P.Eng.

NOVEMBER 30th, 1979

TABLE OF CONTENTS

INTRODUCTION	1
PROPERTY	3
HISTORY AND PREVIOUS WORK	3
1979 WORK PROGRAM	5
GEOLOGY	6
Regional Geology	6
Local Geology	6
GEOCHEMISTRY	7
GEOPHYSICS	8
Magnetometer Survey	8
Induced Polarization Survey	8
CONCLUSIONS	9
RECOMMENDATIONS	10
CERTIFICATE	12
APPENDIX A - Copies of Geochemical Laboratory Reportsin APPENDIX B - Statement of Personnel Employed	pocket
APPENDIX C - Statement of Expenditures	

List of Illustrations

Fig. 1	General Location Sketch, 1" = 125 miles 2
Fig. 2	Claim Sketch, 1:50,000 4
Map l	Geology - East and West Sheets, 1" = 100 metres in pocket
Map 2	Soil Geochemistry, Copper - East and West Sheets, 1" = 100 metres in pocket
Map 3	Soil Geochemistry, Molybdenum - East and West Sheets, 1" = 100 metres in pocket

_ SAWYER CONSULTANTS INC.

INTRODUCTION

In the spring of 1979 Canadian Natural Resources Ltd. negotiated an option from Karma Ventures Ltd. to explore the Ash Claim Group located in the Wells Lake area, some 20 miles west of Princeton, in the Similkameen Mining Division, British Columbia.

Sawyer Consultants Inc. was retained to carry out an exploration program on this property for Canadian Natural Resources Ltd. In the period July 15th, 1979 to September 30th, 1979, a work program consisting of line cutting, geological mapping, geochemical soil sampling, a ground magnetometer survey, and induced polarization surveying over selected parts of the grid was completed. This brief report summarizes the work done and its results.

SAWYER CONSULTANTS INC.

SCALE: 1" = 125 MILES

PROPERTY

The property is comprised of a total of six claims. Four of these, Ash 9, 10, 11, and 12, were staked under the old two-post system and date from 1969. The other two claims were staked early in 1979 on the new British Columbia modified grid system and include a total of 30 units. These two later grid claims, named Ash 1 and Ash 2, completely surround the earlier Ash 9 to 12 claims. Total acreage involved in the property is approximately 2037 acres. Ash 2 and the eastern edge of Ash 1 claims partly overlap existing grid staked claims owned by Canadian Occidental Minerals Corporation which take precedence by virtue of their earlier recording date.

The following table summarizes the pertinent claim data.

<u>Claim</u>	Record <u>No.</u> .	Recorded	Expiry Date	Registered Owner
Ash 9	25482	July 22, 1969	July 22, 1980	S.J. Young
Ash 10	25483	July 22, 1969	July 22, 1980	S.J. Young
Ash 11	25484	July 22, 1969	July 22, 1980	S.J. Young
Ash 12	25485	July 22, 1967	July 22, 1980	S.J. Young
Ash l	558	April 30, 1979	April 30, 1980	David O'Sullivan
Ash 2	559	April 30, 1979	April 30, 1980	David O'Sullivan

The claims lie to the east of the Tulameen River and are centred just to the west of a small lake, Wells Lake, which lies approximately 3.5 miles north of Granite Mountain. The area is approximately 20 miles west of the town of Princeton, British Columbia, whence access to the property is possible by two routes. The northerly route is along the road from Princeton to Coalmont thence south through Lodestone Lake to the Wells Lake area. The more southerly route leaves Highway #3 approximately 9 miles west of Princeton and travels via Whipsaw Creek past Skaist and Granite Mountains to Wells Lake. In the property area these roads are very poorly maintained and are passable only with difficulty to four-wheel drive vehicles for a distance of approximately 5 miles in either direction from Wells Lake. The property lies within NTS map sheet 92H, Hope, British Columbia, on the 1:250,000 scale, and map sheet 92H/7, Princeton, British Columbia, on the 1:50,000 scale.

HISTORY AND PREVIOUS WORK

The general area within which the Ash claims lie has attracted the attention of prospectors over many years, the earlier work being directed towards both lode and placer occurrences of gold and other precious metals. More recently the area has been covered by at least two major mining companies as part

SAWYER CONSULTANTS INC. .

of a regional geochemical program and anomalous values in copper and molybdenum have been detected in the immediate claims area. The only detailed follow-up work which appears to have been done was a very limited program in the 1960's by Copper Range Exploration and by Hanna Mining who optioned the property from Copper Range Explorations, and later by Canadian Occidental Minerals Ltd., in the 1970's to the present. The latter work, by Canadian Occidental Minerals Ltd., and that carried out for Canadian Natural Resources Ltd. in 1979, described in this report, appear to have been the most detailed.

1979 WORK PROGRAM

The work program carried out under the general direction of Sawyer Consultants Inc., on behalf of Canadian Natural Resources Ltd., in the period June to October 1979 consisted of the following.

(a) Establishment of a control grid of base line and picket lines. Lines were spaced 100 metres apart and stations along these lines were flagged at 50 metre intervals. The base line was picketed at 100 metre intervals.

(b) Geological mapping using the picket line grid for control. The mapping was carried out by Dr. A. M. deQuadros, assisted for a limited period by Mr. T.G. Hawkins, of Sawyer Consultants Inc.

(c) Geochemical soil sampling. A total of 1480 soil samples were collected at 50 metre intervals along all of the grid lines. The samples were submitted to the Vancouver Laboratories of Bondar-Clegg & Co. Ltd. where they were analysed for total copper and total molybdenum content. The results for each of these metals were treated by standard statistical techniques to determine threshold values and the individual values were plotted on a base map at a scale of 1'' = 100 metres. The plotted values were contoured on a statistical basis. In addition, a limited amount of profile sampling at selected locations was also carried out to attempt to determine the source of the metals and to what degree, if any, the anomalies were transported.

(d) A ground magnetometer survey using the picket line grid for control was carried out under contract by Peter E. Walcott & Associates. Corrected values for the vertical component of the earth's magnetic field were plotted and contoured.

(e) 14.45 kilometres of induced polarization surveying were carried out under contract by Peter E. Walcott & Associates over selected parts of the grid to investigate geochemical and/or geological features.

The results of all of this work are briefly described below.

GEOLOGY

Regional Geology

Regionally, the Ash claims are underlain by the Eagle Granodiorite Complex, part of the Jurassic Coast intrusives. This complex consists of a highly folded series of granodiorite gneisses, biotite gneisses and biotite hornblende gneisses intruded by both concordant and discordant quartz rich veins and pegmatites. The gneisses show both meta-sedimentary intrusive and anatectic features and are, in general, highly folded, mostly isoclinally but also ptygmatically, and exhibit strong foliation. In general it appears that intrusive elements predominate.

The significant mineralization occurring in the area consists of pyritemolybdenite in quartz veins and large irregular quartz intrusions, sometimes accompanied by chalcopyrite. It is not clear whether these represent a high level expression of a molybdenum porphyry system at depth but this was the early impression from previous work in the area and personal observation. The more detailed work concluded during the past field season has not eliminated this possibility.

Local Geology

Mapping by Sawyer Consultants Inc. in July and August 1979 led to the following classification of rock units in the area.

<u>Biotite Gneiss</u> - this is the most common sedimentary rock unit occurring on the property. It is a well foliated rock with quite intensive layering of varying thicknesses being developed. The main component is biotite with varying content of plagioclase and relatively minor development of garnet and sulphides. In parts of the property the biotite gneiss tends to grade into the granodiorite gneiss.

<u>Biotite - Hornblende Gneiss</u> - this is also well foliated, and thinly layered. Component minerals include biotite, hornblende, quartz, and plagioclase with minor garnet and epidote. Some of the layers are composed almost entirely of hornblende. In general the biotite hornblende gneiss tends to occur in irregular, thin, unmappable units in both the biotite gneisses and granodiorite gneisses.

<u>Granodiorite Gneiss</u> - this rock unit occurs throughout the property having a generally gradational relationship to the biotite-gneisses. It exhibits a strong mineral banding which makes minor folds, commonly tightly isoclinal, easily visible. deQuadros has described the rock as being generally "a biotitegranodiorite, medium to coarse grained, with strong jointing, distinctive foliation, and blocky", composed essentially of biotite, plagioclase, quartz, and accessory hornblende.

SAWYER CONSULTANTS INC.

<u>Veins and Dykes</u> - late differentiates, evident as veins and dykes which appear to occur randomly throughout the property having no preferred orientation. They may be either concordant or discordant and, compositionally, range from felsites, and micro-granodiorites to various quartz-rich rocks. They may range in width from a few centimetres to tens of metres and in general consist of quartz \pm muscovite, \pm orthoclase, \pm epidote, \pm garnet, with accessory minerals which may include magnetite, pyrite, chalcopyrite, and molybdenite. Frequently a thin envelope of alteration, of kaolin and/or chloritized-epidotized rock, can be recognized in association with these late intrusives.

The grade or metamorphism to which most of the rocks of the area have been elevated may be classified as mid-range garnet-amphibolite facies, based on the mineralogy observed which includes quartz, biotite, hornblende and garnet. deQuadros has commented that the granodiorite, with its similar mineralogy, may be an anatectic equivalent of the sediments but the origin of the late quartz rich veins has not been defined with certainty. Some particular attention was paid to alteration because of the clues which this might afford with regard to the possible high level porphyry system environment. Unfortunately the alteration observed was relatively restricted and erratic. Some chloritization of biotite is evident throughout the property and films of epidote are present on many fracture surfaces. As mentioned above, kaolinization is evident in rocks close to the quartz veins. There appears to be no definable zonal arrangement to the alteration.

Mineralization observed includes scattered occurrences of pyrite in the biotite gneisses which are not considered to be of any economic significance. The significant mineralization is the association of pyrite-molybdenite, sometimes with chalcopyrite, in quartz veins. The extent locally of these quartz masses and the degree of concentration of molybdenite in association with them is in places quite spectacular and the possibility remains that a stockwork of such quartz veins may be developed in and around the showings. A lack of exposure prevents extensive mapping of this at the present.

GEOCHEMISTRY

soils are poorly developed / B or C horizon was sampled mean surface of pround.

Concentrations of molybdenum and copper in soils over the more westerly and northwesterly parts of the property, essentially in the area of the original four Ash claims (Ash 9-12 inclusive) and extending beyond the limits of these claims to the northwestern part of the Ash claim 1 are strongly anomalous. These anomalous values confirm the indications of above background concentration of these metals detected in regional silt sampling programs carried out by Rio Tinto Exploration and others in earlier years. The highest values occur in the area of the presently known showings of molybdenite in quartz with normal dispersion downslope from these. The actual area of these strong anomalies does extend slightly beyond the mapped main showing but is thought in general to

7

SAWYER CONSULTANTS INC.

be reflecting the same style of mineralization in relatively restricted source areas at surface. The profile sampling which was carried out in general confirmed the validity of these anomalies as reflecting immediately underlying bedrock geology. In one profile sample location, in a swamp, the results of the profiling, as would be expected in this environment, showed the highest values, being near surface. In the other locations the reverse was true.

Towards the end of the program, while the IP surveys were in progress, the writer extended the area of the geochemical soil sampling off the grid and essentially just beyond the property limits to the northwest and again a zone of anomalous values in molybdenum was detected, although due to the limited extent of this additional sampling it was not completely defined. Study of the topography in the area indicates that the source of these anomalous amounts of molybdenum in these most northwesterly lines cannot be the mineralization in the known showings on the Ash claims, and the most likely source is the rocks occupying the higher ridges to the northwest. Limited observations of geology during this extended geochemical sampling indicated alteration in granodioritic and intrusive rocks and a generally higher sulphide content, predominantly pyrite. This data is in our opinion important and is a clear indication that the extent of the permissive area for porphyry molybdenum mineralization in the vicinity of the Ash claims has not been fully defined. Additional sampling to close off the area of these anomalous values would be desirable.

GEOPHYSICS

1

For detail and data on the geophysical work carried out by Peter E. Walcott & Associates, the reader is referred to the report dated November 1979 by Peter E. Walcott, P. Eng., on "A Magnetic and Induced Polarization Survey, Ash Claims, Princeton area, British Columbia." The work completed and the results are briefly discussed below.

Magnetometer Survey

The principal object of this survey was to provide, if possible, some aid in differentiation of various rock types to assist in mapping in overburden covered areas. Unfortunately, the survey proved of little assistance in this regard and although the appearance of the contoured map is different in the most northeasterly part of the grid this is attributed, by Walcott, primarily to the fact that there is an increase in the density of the readings in this area. In general, readings exhibit locally steep gradients suggesting shallow overburden for the most of the area, except in the valley bottoms.

Induced Polarization Survey

The survey was read using McPhar equipment in a dipole-dipole array initially, and for most of the survey, with a 75 metre dipole. The initial lines

read, 3N and 4N, over the main showings failed to give any pronounced response with the above array however a moderately anomalous zone was detected on n=1 and n=2 separations in a swampy area to the west of the showing on line 4. In order to try to ascertain the probable source of the anomaly in the swamp area, a smaller dipole, 25 metres, was used over the main showings. A very weak response was obtained on the first separation over the showings and the best readings on subsequent separations migrated westwards to correspond with the results from the initial work using the 75 metre dipole. Walcott has interpreted this as meaning that the responses obtained are related to the main showing and thus have molybdenum sulphide mineralization as a probable causative source. Extension of the survey to the north defined a moderately anomalous area of similar characteristics. It is assumed therefore that this anomalous zone has a similar source, i.e. molybdenum sulphide mineralization. The location of this anomalous IP zone is west of the main geochemical anomaly which, as described above, appears to be directly related to the known surface showings.

A second anomalous IP effect was detected further east, around 10E to 12E, across lines 3N to 6N, corresponding to some geochemical copper/molybdenum highs.

CONCLUSIONS

The following conclusions are drawn from the work completed, which is described in brief in the foregoing report.

(1) Molybdenite and minor copper mineralization occurs in association with quartz veins and quartz intrusions which cut gneissic rocks of the Eagle Granodiorite Complex, in the northwestern part of the Ash Claims Group.

(2) The most prominent geochemical anomalies are related to the known surface showings, which in places are quite spectacular, and the pattern of these anomalous values, both in copper and in molybdenum, fairly accurately reflect the limited extent of the known showings.

(3) Other anomalous values in molybdenum in soils have been detected at the extreme northwestern part of the property and beyond the property boundary This zone of anomalous molybdenum values has not been completely defined and will require further work to establish its limits and significance.

(4) The source of the anomalous molybdenum in these most northwesterly soils cannot be the known showings on the Ash claims, because of considerations of topography and drainage. The most likely source for these anomalous values is the rocks occupying the higher ridge to the northwest of the property.

SAWYER CONSULTANTS INC.

(5) Limited geological observation in the area of these geochemical values suggest an increase in the amount of alteration in the granodiorite gneisses and other rocks and an increase in general sulphide content.

(6) The magnetic survey was of little use in adding to our knowledge with regard to the mineralization and as an aid to mapping.

(7) The IP survey results were in one sense disappointing in that the amplitude of the responses obtained was low. However the weak responses obtained are thought to be due to the same type of mineralization that is exposed in the main showings, i.e. predominantly molybenite mineralization in quartz which, because of its physical characteristics, would not be expected to give a strong response.

(8) The anomalous zone indicated by the IP survey to the west and northwest of the main showings and geochemically anomalous zones is probably caused by molybdenite mineralization in quartz veins or a quartz vein stockwork and as such may be part of a general porphyry molybdenum system.

(9) Some further exploration more fully to investigate this possibility is warranted, but is perhaps better carried out by a group whose resources are more oriented towards primary exploration.

RECOMMENDATIONS

The decision has already been made by Canadian Natural Resources Ltd. not to carry out further exploration on the Ash claims. While the writer has no quarrel with this decision, which reflects the priorities of Canadian Natural Resources Ltd., we would recommend some further exploration more fully to investigate the molybdenum mineralization in the Ash claims area and the area to the northwest of this property. As a first stage, a limited amount of drilling on the IP anomaly zone would serve to verify the conclusions reached above with regard to its source and to establish some indication of the tenor of mineralization which might be expected.

Unless the results of this work are entirely negative, further geochemical prospecting and mapping more completely to define the zone of anomalous molybdenum values in soils detected by the writer at the end of the season should be carried out. Later, further IP surveying over this zone, if warranted, would be desirable and interpretation of the results of such a survey would be able to take advantage of the information gained by the sub-surface investigation of the already indicated anomaly on the Ash claims, suggested above.

Respectfully submitted,

.

4

~

it may not he report in t

SAWYER CONSULTANTS INC.

Sawyer, P Eng.

SAWYER CONSULTANTS INC.

CERTIFICATE

I, J.B.P. Sawyer, DO HEREBY CERTIFY:

- That I am a consulting geologist with business office at 1 425 Howe Street, Vancouver, B.C., V6C 2A9, and President of Sawyer Consultants Inc.
- (2) That I am a graduate in geology of Manchester University (B.Sc. -1953) and of the University of Western Ontario (M.Sc. - 1957).
- (3) That I am a Registered Professional Engineer (geological) in the Association of Professional Engineers of the Province of British Columbia, and a Registered Chartered Engineer with the Council of Engineering Professions, London.
- (4) That I am a Fellow of the Geological Association of Canada, a Member of the Canadian Institute of Mining & Metallurgy, a Fellow of the Geological Society of London, and Fellow of the Institution of Mining & Metallurgy, London.
- (5) That I have practised my profession as a geologist for the past twenty-six years.
- (6) That the information, opinions, and recommendations in the attached report are based on personal observations on the property in the period July 15th to September 30th, 1979, and personal supervision of the overall work program.
- (7) That I own no interest in the Ash claims nor in the shares or securities of Canadian Natural Resources Ltd., nor do I expect to receive any such interest.

Sawver P.Eng.

Dated at Vancouver, British Columbia, this 30th day of November, 1979.

SAWYER CONSULTANTS INC.

APPENDIX B

.

.

Statement of Personnel Employed

_ SAWYER CONSULTANTS INC.

This report may not be reproduced in whole or in part without the written permission of Sawyer Consultants Inc.

LIST OF PERSONNEL

Sawyer Consultants Inc. re Geological/Geochemical Work:

A.M. deQuadros, Ph.D. 32 days - July 16 to Aug. 15, 1979

T.E.G. Hawkins, M.Sc. 16 1/2 days - July 17-20, Aug. 1-10, Aug. 15, Aug. 27-28, 1979

J.B.P. Sawyer, P.Eng. 15 1/2 days within period May 20 to Sept. 30, 1979

J. Randa

19 1/2 days - Aug. 10-24 and Sept. 11-15, 1979

L. Shelley

36 days - July 17 to Aug. 21, 1979

For list of personnel engaged as geophysical crew please refer to the accompanying Geophysical Report by Peter E. Walcott, P. Eng. - Appendix (ii).

SAWYER CONSULTANTS INC.

APPENDIX C

.

.

•

Statement of Expenditures

_ SAWYER CONSULTANTS INC. .

STATEMENT OF COSTS

The following expenditures were made by Canadian Natural Resources Ltd. in connection with the geological, geochemical, and geophysical work programs carried out on the ASH CLAIMS, Similkameen Mining Division, British Columbia by Sawyer Consultants Inc. and Peter E. Walcott & Associates, under the general supervision of J.B.P. Sawyer, P.Eng. in the period May 15th, 1979 to September 30th, 1979.

Sawyer Consultants Inc.

Peter

Invoice August 28th, 1979	\$26,863.92	
Less, not applicable for assessment credit	1,129.45	
•	\$25,734.47	\$25,734.47
Invoice December 13th, 1979	\$20,253.73	
Less advances to Peter E. Walcott & Associates included in this figure	5,757.27	
	\$14,496.46	14,496.46
	Sub Total	\$40,230.93
E. Walcott & Associates Ltd.		
Total cost of services provided as per		

Total Expenditures applicable for assessment credit \$65,477.84

report by Peter E. Walcott, P.Eng.

25,246.91

SAWYER CONSULTANTS INC.

August 28th, 1979

Canadian Natural Resources Limited, 680 - One Calgary Place, 330 Fifth Avenue S. W., Calgary, Alberta. T2P 0L4

in account with Sawyer Consultants Inc.

INTERIM INVOICE

To Professional Services.

Re Ash Claims Work Program, Similkameen Mining District, British Columbia

Labour Costs to August 28th, 1979

T.G. Hawkins - 16 1/2 days @ \$200.00	\$ 3,300.00	∽.
L. Shelley - 36 days @ \$90.00	3, 240. 00	N -
J. Randa - 12 field + 2 1/2 office days @ \$10	0.00 1,450.00	۸.
A. M. deQuadros - 32 days @ \$150.00	4,800.00	n
J.B.P. Sawyer - 6 days 🤤 \$250.00	1,500.00	۴.,
Equipment Rental - 2 months @ \$75.00	150.00	N
Disbursements as per attached list	\$11,294.47	
10% on Disbursements	$\frac{1,129.45}{$12,423.92}$ \wedge <u>12,423.92</u>	
Total	\$26, 863. 92	
Less Advance	_15,000,00	
Balance Due	\$11,863.92	

12 1 SEPT. 12/79

the de con co advance

Canadian Natural Resources Limited - Ash Claims

Disbursements:

-

Total Disbursements	MAG	\$11, 394.4 7
•••••• ha	\$274.95	274.95
B. C. Government Recording rees	1.00 -	、
Film P.C. Comment Recenting Free	· 86.1	~
Postage	1.62	
Miss J. Farquharson	\$230.75	~
Office assistance and miscellaneous office costs		•
	\$158.19	158.19 M
Versatile Industries - invoice 28/8/79	55.55	
#R83217	80.65	
#R82626	17.46	
invoice #R82872	\$ 4.53	
Superior Reproductions - man printing, conving		
Draughting - C. L. Cory		140.00 N-
Bondar-Clegg & Co geochemical analyses		3, 179. 61
Nielsen Geophysics - advance re line cutting contract		3,000.00 🔨
Mileage - Vancouver-Princeton, 381 miles @ 129	\$1,155.83	1,155.83 🔨
Canuck Truck Rental - advance	800,00	
Vehicle rental, repairs, gasoline, etc.	\$310, 11	
	\$301, 92	301.92
Radio License	26.00	2(1 02 1
Radio Lease - split cost - 50% of \$671.84	\$335.92	
*Note: Credit will be made later for part of these amount	nts.	
	\$1,423.84	1,423.84 🔍
#33213	320.93	
#32903	711.95	
Split of invoices #32127, #32130, #32131	\$ 350.91	
Field Supplies & Equipment - Deakin Equipment*		
	\$1,600.13	\$ 1,600.13 K
L. Sheney I. Banda	98.94	
A. M. dely:adros	271.97	sparting
T.G. Hawkins	310.20 846 13 -	540 - July 11 286.13
J.B.P. Sawyer	\$ 66.83	
and miscellaneous camp supplies)		
Expenses - field personnel (includes groceries		

December 13th, 1979

Canadian Natural Resources Ltd., Fourth Floor, 300 - 5th Ave. S.W., Calgary, Alberta. T2P 3C4 in account with Sawyer Consultants Inc. To Professional Services. Re Ash Claims Work Program, Similkameen Mining District, British Columbia. Period August 29th to December 13th, 1979. J.B.P. Sawyer, P.Eng. Field time - Sept. 1-15/79 days 4 Sept. 29-Oct. 1/79 2.5 days \$ 1,625.00 6.5 days @ \$250.00 Office time - Sept. 21-28/79 5 hours Oct. 6-9/79 10 hours Dec. 5-11/79 9 hours 24 hours 750.00 billed **as** 3 days @ \$250.00 J. Randa, Sept. 11-15/79, 5 field days @ \$100.00 500.00 \$ 2,875.00 Sub Total Disbursements as per attached list \$17,678.73 (with back-up documentation) Less credit re Deakin Equipment Ltd. 300.00 \$17,378.73 17,378.73 \$20,253.73 Less Advance 10,000.00 Balance due Sawyer Consultants Inc. \$10,253.73 Balance due to Peter E. Walcott & Associates as per attached invoices and statement 19,489.64 \$29,743.37 TOTAL

PAID JAN. 10, 1980

Disbursements	re Canadian	Natural 3	Resources	Ltd. A	sh Claims
			ي فالمبيدة	and the second data and the se	

J.B.P. Sawyer, P. Eng., statements of expenses		
August 29-30, 1979	\$159.00	
September 11-15, 1979	173.28	
September 29-30, 1979	46.20	
	\$378.48	\$ 378.48
	4	•
Nielsen Geophysics Ltd., balance of line -cutting		
invoice #213		4,670.00
Canuck Truck Rental Ltd., vehicle rental		
invoice August 31/79	\$ 434.64	
invoice September/79	832.00	
invoice October/79	1,241.58	
	\$2,508.22	2,508.22
		·
Deakin Equipment Ltd., field supplies		
invoice #33314	\$ 88.66	
invoice #33551	28.08	
invoice $#37767$	14.35	
	\$131.09	131.09
	•••••	
Avis Rent-a-Truck, vehicle rental		1,157,00
·····		, -
Bondar-Clegg & Co. Ltd., geochemical analyses		
invoice #3807	\$236.86	
invoice #4147	43.27	
	\$280.13	280.13
Superior Reproductions & Printing man printing	etc	
invoice #R82776	\$244 40	
invoice #R83090	17 68	
invoice #R83303	201.97	
invoice #R93453	20.75	
	\$484.80	484.80
Western Reproducers Ltd man printing etc		
invoice #H51681	\$ 44 89	
invoice #H52069	φ 44.07 01.87	
invoice #H52325	132 90	
	23 17	
	\$292.78	292.78
	, - , · · · -	
K.D.H. Holdings Ltd., map printing		
invoice #79-163		6.34
Copy Time, xeroxing report		1.53
C. L. Cory, draughting		
invoice Oct. 977		220.00
Page Total (carried form	vard)	\$10,130.37

Disbursements (cont.)	(Brought Forward)	\$10,130.37
J. Farquharson, office assistance		273.00
 B.C. Telephone Company, long dist May 24/79 billing June 23/79 billing July 24/79 billing Aug. 23/79 billing Sept. 1/79 billing (radio telep Sept. 24/79 billing Oct. 24/79 billing Oct. 7 & Nov. 1/79 (radio telep 	cance tolls \$ 15.16 7.47 56.98 147.67 72.68 61.53 11.41 ephone) <u>8.79</u> \$381.69	381.69
Shell Canada Limited, gasoline		17.34
CBA Parcel Service		9.00
Greyhound shipping charges		3.65
Totemcolor, photos		1.19
In-office copying		21.45
Total Disbursements 10% on Disbursements		\$10,837.69 <u>1,083.77</u> \$11,921.46
Aug. 31/79 - Peter E. Walcott & A Invoice #1443	880C.	3,257.27
Sept. 21/79 - Peter E. Walcott & As advance re IP Survey, invoice	вос. ; #1452	2,500.00
	Total Disbursements	\$17,678.73

;

1500 PEMBERTON AVE, NORTH VANCOUVER, B.C. PHONE: 985-0681 TELEX: 04-54554

CLEGG & COMPA

Geochemical Lab Report

Extraction Hot Aqua Regia

29 - 1057 PROJECT: PRINCETON Report No

Method_____Atomic Absorption

From Sawyer Consultants

Fraction Used _____

·-----

DAR

Date ______ July 31, 19 ____9

SAMPLE N	0.	Cu ppm	Mo ppm		S/	MPLE NO.	Cu ppm	Mo ppm		
3N 1150	E	39	5		3N	350W	17	1		
1100)E	16	5			400W	17	1		
1050)E	28	3			450W	8	2		
1000)E	43	5			500W	18	2		
950)E	100	6			550W	13	1		
900)E	100	6			600W	17	1		
850	DE	38	3			650W	19	2		
8001	3	93	8		4N	50W	21	2		
7 50)E	103	12			100W	18	2		
700	DE	47	34			150W	17	2		
65(DE	19	3			200W	15	1		
600)E	22	2			250W	18	3		
550	DE	10	1			300W	21	3		
50	DE	19	3			350W	13	2		
45	0E	69	14		_	400W	39	3		
40	0E	37	3			450W	29	3		
35	0E	42	5			500W	45	. 4		
30	0E	45	4			550W	14	2		
25	0E	17	3			600W	19	2		
20	0E	25	1		5N	50W	12	2		
15	0E	41	3			100W	17	6		
10	OE	24	2			150W	12	2		
5	OE	26	2			200W	18	1		
	OM	18	2			250W	41	2		
5	OW	18	2			300W	21	1		
10	OW	20	2			350W	43	2		
15	OW	32	1	 		400W	21	2		
20	W	37	2			450W	59	2		
25	50W	15	2			500W	66	7		
30	W	14	2		_	550W	39	4		`
			l							

Geochemical Lab Report

Report No. 29 - 1057

Pige No _____2

SA	MPLE NO.	Cu ppm	Mo ppm	SAMPLE NO	Cu ppm	Mo ppm		
5N	600W	9	1	6n 500W	21	3		
6N	1300E	29	3	550W	14	4		
	1250E	34	4	7N 1400E	16	1		
	1150E	83	6	1350E	12	L 1		
	1100E	88	35	1300E	25	1		
	1050E	15	21	1250E	16	L 1		
	950E	21	4	1200E	11	L 1		
	900E	51	32	1150E	32	1		
	850E	13	6	1100E	31	L 1		
	800E	16	1	1050E	17	1		
	7 50E	35	10	1000E	22	1		
	700E	12	6	850E	11	1		
	650E	115	12	800E	14	1		
	600E	50	9	7 5 0E	9	2		
	550E	10	11	7 0 0E	64	6		
	500E	20	7	650E	21	2		
	450E	21	6	600E	141	11		
	400E	6900	24	550E	26	70		
	350E	92	14	500E	16	3		
L	300E	23	3	450E	6	L1_		
	250E	88	9	400E	1430	26		
	200E	57	3	350E	26	6		
	150E	13	2	300E	60	8		
	100E	18	1	250E	15	2		
	50E	27	1	200E	13	2		
	OW	17	2	100E	13	L 1		
	5 0 ₩	11	2	50E	8	L 1		
	100W	18	2	OE	16	1		
	150W	11	2	50W	19	1		
	200W	13	1	100W	27	4		
	25 0 ₩	19	1	150W	14	2		
	300W	10	1	200W	12	1		
_	350W	15	1	250W	14	1		
ļ	400W	22	3	300W	11	1		
	450W	17	2	350W	2	2		
L					_			

-

Report No. 29 - 1057

Geochemical Lab Report

Page No.____3

SAMPLE NO.	Cu ppm	Mo p p m	SANPLE NO	Cu ppm	Mo ppm	
7 n 400W	11	1	8N 300W	14	L 1	
450W	20	1	350W	13	1	
8N 1450E	27	L 1	400W	15	2	
1400E	28	1	450W	9	1	
1350E	11	L1	9N 1350E	12	L 1	
1300E	11	L 1	1300E	16	1	
1250E	26	19	1250E	8	1	
1200E	29	L 1	1200E	12	2	
1150E	47	1	1150E	14	1	
1100E	21	L 1	1100E	22	2	
1050E	22	2	1050E	12	3	
1000E	12	L 1	1000E	16	3	
950E	10	L 1	900E	13	2	
900E	12	L 1	850E	12	1	
850E	11	1	800E	22	2	
800E	10	1	750E	16	2	
700E	45	3	700E	13	2	
650E	20	2	650E	12	1	
550E	30	10	600E	17	2	
500E	11	8	550E	10	2	
450E	94	15	500E	12	1	
400E	32	8	450E	12	1	
350E	274	5	400e	9	1	
300E	18	3	350E	2	2	
250E	20	2	300E	22	L 1	
200E	14	L1	250E	14	6	
150E	11	2	200E	39	4	
100E	15	2	150E	40	5	
50E	11	2	100E	23	2	
OE	16	L 1	50E	22	4	
50W	14	2	OW	13	2	
100₩	15	2	50W	11	2	
150W	13	2	100₩	20	3	
200₩	21	3	150W	18	2	
250W	16	4	200W	16	2	
L						

Report No. 29 - 1057

Geochemical Lab Report

Page No ------ 4

:

ł

•

SAMPLE NO.	ppm	ppm	SAMPLE NO	Cu ppm	Mo ppm		
9N 250W	62		11N 900E	14	1		
300₩	10	1	850E	18	1		
350W	11	1	800E		1		
ON 1100E	20	1	7.50E	18	1		
1050E	22	1	700E	14	L.1		
1000E	11	1	650E	11	L 1		
9 0 0E	18	2	600E	12	1		
850E	19	2	550E	12	L 1		
800E	19	1	500E	14	1		
7 50E	15	1	450E	10	1		
700E	20	2	400E	12	1		
650E	21	1	350E	13	1		
600E	20	2	300E	8	2		
550E	12	1	250E	12	L 1	F	
500F	17		2005	10	2		
<u> </u>	1.5		1500	10			
400E	12	1	100E				
2505	10	2	505	17	1		
350E	10	2	JOE	1/			
<u>300E</u>	12	1	0W 50W	25			
2005	10	2	1004	20			
2008	10		100w	29			
<u>150E</u>	12	2	150W	24	2		
1002	15		200W	23			
50E	10	2	250W	15			
OW	16	1	300W	23			
50W	20	1	350W	29	1		
100₩						╞	
150W	19		750E	15		 	
200W	17	1	700E	14	L 1	<u> </u>	
250W	25	3	650E	12	1	 -	
300W	21	2	600E	15	L 1	<u>↓</u>	
350W	14	L 1	550E	19	L 1		<u> </u>
11N 1100E	17		500E	18	L 1	<u> </u>	
1050E	18	1	450E	21	L 1		
1000E	13	1	400E	16	L 1		

1500 PEMBERTON AVE., NORTH VANCOUVER, B.C. PHONE 985-0681 TELEX: 04-54554

NDAR-CLEGG & COMPANY

Geochemical Lab Report

Extraction _____ Hot_Aqua_Regia _____ Report No

Method______Atomic Absorption ______From Sawyer Consultants, Inc.

Fraction Used

Date _____ July 25_1979____

_ .__.

SAMPLE NO.	Cu ppm	Mo ppm			SAMPLE NO	Cu ppm	Mo ppm		
L4N - 0+00E	14	< 1			L5N - 3+00E	13	8		
0 +50 E	13	< 1			3 + 50E	22	5		
1+00E	21	2			4+00E	81	10		
1+50E	16	2			4+50E	430	57		
2+00E	28	6			5+50E	19	17		
2+50E	25	7			6+00E	55	15		
3+00E	35	15			6+50E	910	14		
4+00E	425	240			7+00E	90	9		
4+50E	20	7			7+50E	_ 40	17		
5+00E	83	8			8+00E	42	23		
5+50E	13	6		- · · · · · · · · · · · · · · · · · · ·	8+50E	72	32		
6+00E	198	19	-		9+00E -	366	23		
6+50E	145	10			10 + 00E	19	12		
7 +0 0e	33	15			10+50E	15	9		
7+50E	33	13			11+00E	14	5		
8 +00E	46	17			11+50E	22	10		m.)
8+50E	18	4			1.2+00E	27	. 9		
9 + 00E	25	13			1.2+50E	16	3		
9 +50E	935	15			13+00E	13	1		
10 + 00E	35	8			17074 ROCKS	8	36		
10+50E	256	28			17075	15	29		
11+00E	1200	19							
-20 11+50E	M 87	6				1	Ц		
12+00E	23	2						-	
L5N - 0+00E	17	1				-		2	
0+50E	40	3							1
1+00E	14	2					-		
1+50E	23	5		- +					
2+00E	37	13		_					
2 + 50E	37	9							

29 - 972

29 - 1057 Report No:

٠

.

Geochemical Lab Report

SAMPLE NO.	Cu ppm	Mo		the type of the second second	,	1 1 1	•• •••• ••• ••• ••• • • •	
12N 350E	11	1		 · · · ·	I.			
300E	6	2				•	•	
250F	4	τ 1			1			
200E	16	1						
150E	6	L 1		 			• ··	
1005	7	<u>г</u> т			-	· · · · · ·		
	<i>'</i>							•
OE OE	11	1		 *				+
13N 700E	18	т. 1		 	-			
6505	11	T 1		 • •				
600E	8	1	n	 			· · · · · · · · · · · · · · · · · · ·	
550E	18	1				•••		
5001	10	т 1		 				
450E	13			 				
400E	12	2		 				
350F	15			 				
<u>350E</u>								
250E	7	1						
200E	7	2		 				
150F	8	1		 n entenderstanden en e				
1005	0							
50E	10			 				
0E.	26	2		 		• •···		
1/1N / 00F		T 1		 ••••• • • • • • • • • • • • • • • • •				
350E	10	L 1						
300E	11	L 1		 				
250E	11	L 1		 	·			
200F	13	T. 1						
150E	12	L 1		 				
100E	4	L 1		 and and a second se				
50E	16	L 1		L denotes 'less t	han'			
OE	9	1						

DAR-CLEGG & COMPAN

1500 PEMBERTON AVE., NORTH VANCOUVER, B.C. PHONE: 985-0681 TELEX: 04-54554

Geochemical Lab Report

Extraction _____ Hot Aqua Regia _____ Report No 29 - 1099 PROJECT: ASH

Method _____ Atomic Absorption From Sawyer Consultants, Inc.

Fraction Used

Date _____ August 3 19 79

SAMPI	LE NO.	Cu ppm	Mo ppm	SAMPLE	e no.	Cu ppm	Mo ppm		
LO	- 950W	28	1	 L0 -	550E	95	5	-	
	90 0 w	44	1		600E	57	25		
	850W	45	1	 	650E	53	25		
	800W	58	2	 	700E	33	7		
	750W	61	3		750E	21	8		
	700W	34	4	 -	800E	53	20		
	650W	45	3	 	850E	25	5		
	600W	60	6	 	900E	26	4		
	550W	25	7	 	950E	24	5		
	500W	19	4	 L 15 -	1050W	91	5		
	450W	33	8	 	1000W	101	5		
	400W	36	3	 	950 W	102	5		
	350W	27	2	 	900W	68	4		
	300W	23	3	 	850W	42	3		
	250W	18	2		800W	93	6		
	200W	22	3		750W	44	4		
	150W	16	1	 	700W	40	. 3		
	10 0W	31	1	 	650W	33	3		
	50W	30	3	 	600W	31	6		
	0	37	2	 	550W	45	4		
	50E	39	2	 	500W	45	4		
	100E	27	2	 	450W	37	2		
	150E	13	1		400W	22	1		
	200E	22	1	 	350W	23	2		
	250E	11	2	 	300W	38	2		
	300E	24	1	 	250W	43	2		
	350E	24	1	 	200W	16	2		
	400E	138	4	 	150W	54	5		
	450E	198	4	 	100W	29	2		
	500E	57	3		50W	39	3		

Geochemical Lab Report

Report No. 29 - 1099

Page No _____2

SAMPLE NO.	Cu ppm	Mo ppm		SAMPLE NO.	Cu ppm	Mo ppm		
L 15 - 0	29	2		L 1N - 0	17	3		
50E	46	3		100E	33	2		
100E	41	3		150E	32	3		
150E	43	3		200E	23	2		
200E	41	4		250E	22	1		
250E	35	5		300E	37	3		
300E	25	3		350E	63	4		
350E	39	2		400E	27	2		
400E	44	3		450E	18	2		
450E	18	2		500E	27	3		
500E	20	6		550E	19	4		
550E	52	6		600E	73	18		
600E	36	11		650E	7	6		
650E	58	7		700E	49	8		
700E	56	8		750E	52	7		
750E	20	7		80 0E	785	25		
800E	760	25		850E	860	27		
850E	28	5		900E	850	27		
900E	19	5		950E	22	10		
950E	30	6		1000E	15	10		
L 1N - 850W	14	1		1050E	20	1		
800W	13	1	·	L 2S - 1050W	11	< 1		
750W	16	1		1000₩	20	< 1		
700₩	21	2		950W	26	2		
650W	12	2		900W	14	2		
600W	16	1		850W	25	2		
550₩	14	11		800W	36	2		
500W	24	2		750W	32	2		
400₩	20	2		700₩	28	2		
350W	33	3		650W	17	1		
300W	24	3		600W	24	2		
200W	23	2		500W	65	2	ļ	
150W	19	3		450W	34	2		
100W	27	3		400W	18	3		
50W	21	2		350W	49	4		

., ···

Report No:

29 - 1099

Geochemical Lab Report

Page No.____

SAMPLE NO.	Cu ppm	Mo ppm	SAMPLE NO.	ppm	Mo ppm	
L 2S - 300W	43	4	L 2N - 150W	20	4	
200S	22	3	100W	20	3	
150S	29	3	50W	18	3	
1005	48	2	0	21	2	
50S	14	2	50E	16	2	
0	14	2	100E	24	3	
50E	26	3	150E	26	2	
100E	19	2	250E	22	2	
150E	9	1	300E	13	2	
200E	15	3	400E	15	2	
250E	18	2	450E	53	2	
300E	26	7	500E	59	6	
400E	45	7	550E	59	7	
	20	3	600E	61	5	
500E	34	8		22	2	
550E	32	9	700E	28	8	
<u>550E</u> 600E	75	9	750E	52	27	
650E	77	10	800E	221	27	
	65	7	850E	55	25	
750E	61	15	9005	59	25	
800E	99	20	1100E	52	41	
850F	33	4	L 35 - 1100W	31	2	
900E	43	6	1050₩	29	1	
I. 2N - 750W	47	2	1000W	24	2	
7004	40	2	950₩	25	2	
////	40	2	9004	17	2	-
650W	32	3	850W	15	< 1	
60011	29	2	800₩	10	1	
	20	2	7500	14	2	
500W	32	2	750W	12	2	++
	14			11	2	+
350W	24	2	6001	25	-	+
3000	26	1	600w	25	2	+
	17		550W500w	17	2	++
250W	1/	2		16	2	
200W	24	6	450W	10	2	++

Geochemical Lab Report

29 - 1099

Report No.-

Cu ppm Mo ppm SAMPLE NO. SAMPLE NO L 3S - 400W 350W 300W 250W 200W 150W **0**W 50W 50E 100E 150E 200E 250E 300E 400E 450E 500E 550E 600E 650E 700E 750E 800E

1500 PEMBERTON AVE., NORTH VANCOUVER, B.C. PHONE: 985-0681 TELEX: 04-54554

Geochemical Lab Report

Extraction Hot Aqua Regia

Fraction Used _____

Report 1. 29 - 1196

R-CLEGG & COMPANY L

Method Atomic Absorption

Date _____ 19 79 _____ 19 79 _____

SAMPLE N	0.	Cu ppm	Mo ppm			SAMPLE NO	D.	Cu ppm	Mo ppm		
Line 4 -	700E	680	17			Line 4 -	850W	14	2		
	650E	222	10			•	900W	18	1		
	600E	22	5				9 50 W	21	2		
	550E	21	5				1050 W	20	5		
	500E	17	4	L .			1100W	22	2		
	450E	28	. 7				1150W	17	1	··· ··. <u></u>	
	400E	27	3				1200W	26			
	3 50E	25	2				1250W	25	2		
	300E	20	3				1300W	19	2		
	250E	55	3			Line 5 -	700E	21	2		ļ
	200E	45	2	.			650E	19	2		
	1 50E	21	4				600E	26	3	1. and	
	100E	26	4			· · · · · · · · · · · ·	550E	51	_ 3_		
	50E	18	4				500E	26	4_		
	0	53	5	· · · · · · · · · · · · · · · · · · ·			450E	.34	7		
	50W	107	8				400E	16	2		
1 1 1	1 50 W	47	44				3 50E	33	.3	-	
	200W	13	2				300E	33	. 4		
	250W	141	9			1	250E	6 2	2.3		
	300W	38	3				200E	64	25		
	<u>350W</u>	10	2				100E	. 7.	2		
	400W	38	4		- · · · · ·		50E	15	2		+ · · ·
	450W	15	2	······	• • • • • • • • • • • • • • • • • • •		, Q	61	10		
	50 0₩	22	2				50W	10	2		
	550 W	13	2			- · ·	100W	21	3		
	600W	15	2				150W	37	7		
	650W	12	2				200W	39	10		
	700W	12	2			· · · · · · ·	2.50W	15	2		
	750 W	15	2				300W	33	3		
	800W	33	1				3 50W	27	3		
L		l	1	1	1	<u> </u>			L		<u> </u>

From Sawyer Consultants Inc.

.

Report No. 29 - 1196

Geochemical Lab Report

Page No _____2

Report No. 29 - 1196

Geochemical Lab Report

Page No._____3

SAMPLE NO.	Cu ppm	Mo ppm		SAMPLE NO	Cu ppm	Mo ppm		
Line 7 - 300W	22	2		Line 8 - 100W	19	1		
3 50W	20	3		1 30W	22	7		
4000	2 0	2		2000	36	1		
450W	19	5		250W	19	1		
500W	28	4		300W	17	1		
550W	31	4		3 50 W	17	1		
600W	13	77		400W	.15	11		
650W	34	6		4 50 W	29	1		
700W	11	4		500W	25	5		
7 50W	49	3		550 <u>W</u>	2 2	2		
8000	47	4		600W	73	3		
850W	11	2		650W	15	1 1		
900W	27	3		700₩	23	l L		
9 50W	26	2		7.50		ļL		
1000₩	36	2		800₩	13	1		
1050W	20	2		850W	13	< 1		
1100W	19	1		9000	12	< 1		
1150W		2		<u>95</u> 0W	15	<u></u>		
12000	21	2		1000	15	< 1)
1250W	20	< 1		10501	18	1		
1300₩	22	1			16	<u></u>		+
13500	37	< 1		11500	10	↓ <u>1</u>		
1400	36	< 1		12001	25	1		
14506	40	1		12501	12	2		
Line 8 - 500E	79	11		13000	1 22	1		
450E	69	10		13500	61	2		
400E	36	4		14000	17			
3 508	72	16		1450	14	1		
3008	22	4		Line 9 - 450F	58	32		
2508	21	2		4001	49	13		
2008	14	2		3 501	12	4		+
1008	24	2		3001	E 80	8		+
501	7	1		2501	32	4		
0	17	1		2001	<u> </u>	3		+
500	20	2	<u> </u>	1501	4	2	+	
							1	1
	7	q –	11.1 P	$\pi + 1$	A	レフ)	
	L				\sim			

29 - 1196 Report No.

• .

Geochemical Lab Report

SAMPLE NO.	Cu	Mo ppm			SAMPLE NO				
Line 9 - 100E	7	1							
50E	10	1							
0	8	3							
50W	6	1							
100₩	9	2							
150W	10	2							
200W	23	3		+					
250W	27	1							
300 W	27	1							
3 50W	64	2				· · · · · · · · · · · · · · · · · · ·			
400₩	29	2							
450W	19	2							
500 W	20	1							
550W	45	11	L						
-600W	35	6							
650W	26	2							
700₩	34	1							
7 50	20	11				+		<u></u>	
800%	66	2							
900	41	1							
950		< 1						 	
1000	115	< 1							
10500	55	< 1							
11000	46	1							
1150	28	2							
12000	27	2				+	+		
1250	4 0	1							
									+
						_			
	+								
	+		+	.					
		+	-			-			
	-		-						
					A araan ahaa ahaa ahaa ahaa ahaa ahaa ahaa				

1500 PEMBERTON AVE., NORTH VANCOUVER, B.C. PHONE: 985-0681 TELEX: 04-54554

Geochemical Lab Report

Extraction	Hot A Atomi	Aqua Regia .c Absorption	Report No. Sawye	29 - 134 r Consult	5 ants In	с.
Fraction Used			Date		Augu	st 17 19 79
SAMPLE NO.	Cu ppm	Mo ppm	SAMPLE NO.	Cu ppm	Mo ppm	
10/S-1100W	45	2	11/S- 850W	26	1	
1050W	39	3	800W	12	2	
1000W	62	3	750W	30	3	
9 5 OW	36	3	700₩	27	2	
900 w	149	4	650W	55	6	
850W	46	3	600 W	64	3	
800 w	181	3	5 50W	13	1	
750W	51	5	500W	16	2	
700W	42	2	450W	15	2	
650 W	77	3	400W	19	3	
600W	18	3	350W	21	4	
550 W	33	2	300W	31	3	
500 W	23	3	250W	22	2	
400W	18	1	200W	16	3	
3 50W	11	2	150W	15	2	
300W	19	2	100W	22	2	
250W	22	2	50W	13	· 3	
200W	16	2	0	12	3	
150 W	20	2	50E	28	3_	
100W	23	3	100E	37	3_	
50W	24	3	150E	19	3_	
0	30	4	200E	19	3	
50E	23	3	250E	37	4	
100E	41	5	300E	22	3	
1 50E	22	4	12/S- 800W	23	2	
250E	19	9	7 5 OW	17	2	
300E	50	7	700₩	20	2	
400E	940	28	650W	13	3	
11/S- 950W	120	3	600W	36	2	
900W	28	3	550W	54	3	

Geochemical Lab Report

Report No. 29 - 1345

: *

Page No._____2

SAMPLE NO.	Cu ppm	Mo ppm		SAMPI E NO	C u ppm	Mo ppm		
12/S- 500W	25	3		13/S- 250E	176	28		
.450W	60	4		14/S- 500W	21	3		
400₩	35	3		450W	37	2		
350W	14	1		400W	20	1		
300W	40	4		300W	24	1		
250W	29	2		250W	34	2		
200₩	22	2		150W	. 25	3		
150₩	23	4		100W	9	2		
100W	19	5		50W	27	5		
50W	19	3_		Ω	. 25	3		
0	16	2		50E	105	10		
50E	16	2		100E	33	4		
100E	18	3		150E	39	5		
150E	37	9		200E	64	2		
200E	32	10		250E	91	3		
250E	29	3		15/S- 400W	18	< 1		
300E	41	13		350W	10	11		
13/S- 650W	21	2		30 0W	24	2		
600W	39	1		250W	19	11		
550W	51	3		200W	12	2		
500w	44	3		150W	20	1		
450W	12	2		100W	19	< 1		
400W	14	2		50W	79	20		
350W	28	3		0	21	1		
300W	20	1		50E	19	3		
250W	14	2		150E	204	26		
200W	19	5		200E	171	28		
150W	17	2						
100W	14	1						
50W	14	3						[
Q	26	4						[
50E	9	3						
100E	29	3	ļ					
150E	26	2	ļ					
200E	40	5						
				l		[

-CLEGG & COMPAI BONDAR

1500 PEMBERTON AVE., NORTH VANCOUVER, B.C. PHONE: 985-0681 TELEX: 04-54554

Geochemical Lab Report

Extraction	Hot Aq	ia Reg
Method	Atomic	Absor

Fraction Used _____

ia_____ Report No.

29 - 1544

ption

From Sawyer Consultants Inc.

Date______August 25 19 79

SAMPLE NO.	Cu ppm	Mo ppm	SAMPLE NO.	C u ppm	Mo ppm		
5N - 13+50E	12	1	3N - 12+50E	14	3		
14+00E	22	2	13+00E	21	2		
14+50E	28	1	13+50E	6	1		
15+00E	16	1	14 + 00E	22	2		
1 5+50E	17	1	14+50E	11	3		
16+00E	8	1	 1 5+00E	21	3		
16+50E	13	1	 1 5+50E	21	5		
17+00E	14	2	 16 + 00E	52	3		
17+50E	10	2	 16 + 50E	16	1		
18+00E	12	1	 17+50E	12	3		
18+50E	13	1	 18+00E	6	1	at one - Lawranders in case of a local state	
19+00E	18	1	 18+50E	12	1		
4N - 12+50E	17	2	 19+00E	5	1		
13 + 00E	18	2	 19+50E	14	2		
13 + 50E	27	1	 20+00E	12	1		
14+00E	15	2	 20+50E	10	1		
14+50E	5	1	 21+00E	8	· <u>1</u>		
15+00E	19	2	 21+50E	10	.1		
15+50E	12	2	 22+00E	13	1		
16+00E	8	< 1	 2N - 11+00E	10	< 1		
16+50E	27	2	 11+50E	37	1		
17+00E	25	2	 12+00E	23	1		
17+50E	10	1	 12+50E	13	2		
18+00E	67	4	 13+00E	12	3		
18+50E	10	2	 13+50E	19	1		
19+00E	35	4	 14+00E	32	2		
19+50E	13	2	 14+50E	15	2		
20+00E	10	2	 15+00E	9	2		
20+50E	8	2	 1.6+00E	18	2		
<u>3N - 12+00E</u>	20	3	 16+50E	9	11		

7974 Part 10f2

Report No. 29 - 1544

Geochemical Lab Report

Pig- No _____2

,

SAMPLE NO.	ppm	Mo ppm		SAMPLE NO	Cu ppm	Mo ppm		
2N - 17+00E	21	1		1N - 20+00E	16	1		
17+50E	7	1		20+50E	20	< 1		
18+00E	18	2		21+00E	20	1		
18+50E	62	2		21+50E	17	2		
19+00E	8	1		22 + 00E	18	2		
19+50E	11	11		22+50E	11	1		
20 +00 E	12	2		23+00E	43	66		
20+50E	3	1		23+50E	18	1		
21 +00E	4	< 1		24+00E	15	1		
21+50E	14	1		24+50E	11	11		
22+00E	10	< 1	·	25+00E	21	< 1		
22+50E	22	< 1		25+50E	53	1		ļ
23 +0 0E	37	3		26+00E	13	1		
23+50E	19	3		ON - 10+00E	95	16		
24+00E	30	4		10+50E	26	9		
24+50E	16	2		11+00E	22	2		
1N - 10+50E	13	4		11+50E	24	4		
11+00E	23	3		12+00E	46	5		
11+50E	17	2		12+50E	20	3		
12+00E	12	4		13+00E	45	3		
12+50E	8	3		13+50E	11	2		
13+00E	21	3		14+00E	22	2		
13+50E	5	2		14+50E	13	1		
14+00E	12	2		15+00E	11	2	ļ	
14+50E	46	4		15+50E	14	2		
15+00E	17	2		16+00E	4	1		
15+50E	6	2		16+50E	13	1		
16+00E	12	2		17+00E	6	< 1		
16 +50E	10	2		17+50E	14	1		
17+00E	5	2		18+00E	3	< 1		L
17+50E	7	2		18+50E	27	2		
18+00E	10	2		19+00E	17	1		
18+50E	15	2		19+50E	19	1		
19+00E	8	2		20+00E	13	1		ļ
19+50E	3	< 1		20 + 50E	15	< 1		

Geochemical Lab Report

Report No. 29 - 1544

Page No _____3____

-

SAMPLE NO.	Cu ppm	Mo ppm	SAMPL	ENO	Cu ppm	Mo ppm		
ON - 21+00E	10	1	1S - 18	3+50E	1.4	< 1		
21+50E	10	1	19	9+00E	12	< 1		
22+00E	28	3	19	9+50E	8	< 1		·
22+50E	5	1	20	0+00E	23	1		
23+00E	3	< 1	2	0+50E	20	< 1		
23+50E	9	1	2	1+00E	-15	1		
24+00E	11	1	2	1+50E	13	1		
24+50E	11	1	2	2+00E	_13	1		·
25+00E	13	1	2	2+50E	. 17			
25+50E	23	2	2	3+00E-	-17			
26+00E	18	1	2	3+50E	14	1		
26+50E	13	1	2	4+00E	13	2		
27+00E	10	1	- 2	4+50E	12	1		
27+50E	10	< 1	2	5+00E	12	2		
28+00E	12	< 1	2	5+50E	17	2		
28+50	6	1	2	6+00E	10	1		
29+00E	25	1	2	6+50E	19	1		
1S - 9+50E	21	3	2	7+00E	12	1		
10 +00 E	30	7	2	7+50E	33	2		
10+50E	14	5	2	8+00E	6	1	 	
11+00E	27	3	2	9+00E	19	3		
11+50E	16	6		0+00E	15	1		
<u>12+00E</u>	23	2_	3	0+50E	17	< 1		
12+50E	18-	 	25 -	9+50E	59	24		
13+00E	_48	2		0+00E	27	8_		
13+50E	20	1	1	0+50E	32	7		
14+00E	15	1	1	L1+00E	30	5		
14+50E	22	1		L1+50E	54	18		
15+0Œ	19	1		2+00E	44	7		
15+50E	28	1		12+50E	19	1		
16+00E	10	< 1		13+00E	36	1		
16+50E	16	< 1		13+50E	29	3		
17+00E	7	< 1		14+00E	19	1		
17+50E	9	< 1		14+50E	16	< 1	 	
18+00E	11	< 1		15+00E	12	11		ļ

• • • • · ·

29 - 1544 Report No.

•

Geochemical Lab Report

Page No.

SAMPLE NO.	Cu ppm	Mo ppm	SAMPLE NO	Cu ppm	Mo ppm	
25 - 15+50E	9	< 1	3S - 11+00E	440	40	
<u>1</u> 6+00E	12	< 1	11+50E	775	81	
16 + 50E	7	< 1	12+00E	37	7	
17+00E	15	1	12+50E	50	4	
17 + 50E	13	1	13+00 _E	22	4	
18+00E	6	< 1	13+50E	16	3	
18+50E	.8	< 1	14+50E	28	5	
19+00E	7	1	15+00E	13	5	
19+50E	20	< 1	15+50E	28	4	
20+00E	21	1	16+00E	13	1	
20+50E	28	4	16+50E	15	2	
21+00E	18	< 1	17+00E	11	2	
21+50E	24	< 1	17+50E	21	2	
22+00E	24	1	18+QQE	28	3	
22 + 50E	37	< 1	18+50E	14	2	
23+00E	20	< 1	19+00E	3	2	
23+50E	9	< 1	19+50E	11	1	
24+00E	16	<1	20+00E	16	1	
24+50E	8	< 1	21+00E	12	2	
<u>25+00E</u>	21	< 1	21+50E	22	2	
2 5+50E	12	< 1	22+00E	11	2	
26 + 00E	19	< 1	22+50E	21	3	
26+50E	18	3	23+00E	16	3	
27+00E	16	1	23+50E	14	1	
27 + 50E	15	3	24+00E	14	< 1	
28+00E	18	2	24+50E	13	1	
28+50 ^E	16	2	25+00E	13	1	
29+00E	6	2	25+50E	13	1	
29 150E	8	2	26+00E	14	1	
30+50E	9	2	26+50E	18	2	
31 + 00E	17	2	27+00E	12	1	
3S - 8+50E	505	14	27+50E	8	1	
9+00E	53	9	28+00E	10	1	
9+50E	137	15	28+50E	13_	< 1	
10+00E	68	6	29+00E	13	1	
10+50E	222	4		<u> </u>		

- - - -

Report No. _____ 29 -1544

Geochemical Lab Report

Page No _____5

3S - 29+50E 30+00E 30+50E 31+00E 4S - 7+50E	16 12 36	1	45 - 23+50E	12	1	
30+00E 30+50E 31+00E 4S - 7+50E	12 36	1			The second	
30+50E 31+00E 4S - 7+50E	36	1 1	24+00E	16	< 1	
31+00E 4S - 7+50E		2	24+50E	13	1	
4S - 7+50E	12	1	25+00E	8	1	
	1125	21	25+50E	12	< 1	
8+00E	77	7	26 +00 E	16	< 1	
8+50E	12	1	26+50E	13	< 1	
9+00E	281	11	27 + 00E	18	1	
9+50E	570	16	27+50E	14	< 1	
10 +00E	67	11	29 + 00E	24	< 1	
10+50E	24	3	29+50E	15	1	
11+00E	27	3	30+00E	11	< 1	
11+500	26	2	5S - 11+50E	23	4	
12+00E	29		12+00E	49	9	
12 + 50E	17	1	12+50E	37	7	
13+00E	15	2	13+00E	20	2	
13+50E	38	3	13+50E	53	3	
14+00E	35	3	14+00E	9	1	
14+50E	10	1	14+50 _E	14	2	
15+00E	112	1	15+00E	35	1	
15+50E	31	1	15+50E	84	3	
16+00E	21	3	1 6+50E	20	1	
16 1 50E	51	1	17+00E	18	1	
17+50E	14	1	17+50E	14	1	
18+00E	8	1	18+00E	2	<1	
18+50E	14	1	18+50E	13	< 1	
19+00E	13	< 1	19+00E	4	< 1	
19+50E	16	1	19+50E	10	2	
20+00E	19	2	20+00E	5	2	
20+50E	13		20+50E	6	1	
21+00E	2	1	21+00E	25	4	
21+50E	6	<1	21+50E	1	<1	
22+00E	11		22+00E	42	4	
22+50E	14	< 1	22+50E	13	2	
23+00E	12	< 1	23+00E	13	< 1	· · · · · · · · · · · · · · · · · · ·

Geochemical Lab Report

Report No. _____ 29 - 1544

SAMPLE NO.	Cu ppm	Mo ppm		SAMPLE NO	Cu ppm	Mo ppm		
59 - 23+50F	37	2		7S - 19+50E	25	4		
<u> </u>	27	1	 	20 1 00E	13	2		
24+00E	17	1	 	20+50E	13	3		
<u>24+50E</u> 25+00E	15	1	 	21+00E	8	2		
25+50F	17	1	 	21 + 50 _E	11	2		
23130E	13	< 1	 	22 10 0E	11	3		
26+00E	33	1		22+50E	7	2		
27+00E	20	1		23+00E	13	3		
27+505	11	1		23+50E	5	2		
27+30E	12	1		24+00E	44	5		
28+00E	15		 	24+50E	12	2		
28+50E	12	1		25+00E	8	2		
29100E	7	3		25+50E	8	2		
65 - 19400E	12	3		26+00E	24	3		
19+50E	12	2	 	2 6+50E	8	3		
20+50F	12	3	 	27+00E	23	4		
201305	10	2		27 + 50E	19	3		
21+00E 21+50E	16	2	 	28+00E	20	2		
22+00E	4	2		28+50E	14	3		
22+50E	5	2		29+00E	10	2		
23+00E	6	2			14	2		
23 + 50E	4	2		20+00E	16	4		
24+00E	6	1		20+50E	10	2		
24+50E	22	2		21+00E	10	3		
251005	20	3		21+50E	7	2		
25+50E	18	2		22 +0 0E	6	<1	+	<u> </u>
26+00E	22	2		22 + 50E	9	2		
26+50E	7	2		23+00E	14	1		+
27+00E	19	3		23+50E	7	1		
27+50E	14	3		24+00E		2		
28+00F	14	3		24+50E		2		_
28+50E	26	2		2 5+00E		3 < 1		_
29+00E	20	3		25+50E		3 1		
29+50E	64	3		26+00E	1	0 < 1		
7S - 19+00E	16	5 2		26+50E	1	7 < 1		

Report No. 29 - 1544

Geochemical Lab Report

SAMPLE NO.	ppm	Mo ppm		SAMPLE NO	PI'm	Mo ppm	
85 - 27+00E	18	< 1		105 - 26+00E	1.2	l	
27+50E	13	1		26+501:	13	1	
28+00E	13	1		27+00E	12	I .	
28+50E	31	1		27+50E	10	1	
9S - 19+00E	8	< 1		11S - 19+00E	25	4	
19+50E	5	< 1		20+00E	15	2	
20+00E	8	11		20+50E	12	1	
20 +50 E	6	<1		21+00E	6	L	
21+00E	3	< 1	 	21+50E	9	. 2	
21+50E	7	< 1		22+00E	5	2	
22+00E	77	<1	 	22+50E	20	3	
22+50E	12	< 1		23 +00E	5	1	
23+00E	5	< 1		23+50E	90	3	
23+50E	10	< 1		24+00E	7	< 1	
24+00E	9	< 1		24+50E	13	1	
24+50E	8	< 1		25+00E	27	2	
25+00E	14	< 1		25+50E	8	3	
25+50E	11	< 1		26+00E	20	3	
26 + 00E	17	< 1		26+50E	10	2	
26+50E	12	< 1		27+00E	8	2	
27 1 00E	10	< 1					
27+50E	8	< 1					
28+00E	4	< 1					
105 - 20+00E	13	1					
20+50E	3	<1					
21+00E		<1					
21+50E	-10						
22+00E	10	2					
22+50E	12	1					
23+00E	14	2					
23+50E	11	1					
24+00E	14	1					
24+50E	< 1	< 1					
25+00E	23	2					
25+50E	8	2					

- -

130 PEMBERTON AVE., NORTH VANCOUVER, B.C. PHONE 985-0681 TELEX: 04-352667

Geochemical Lab Report

NDAR-CLEGG & COMPANY

Fraction Used

Extraction _____ Hot Aqua Regia _____ Report No. 29 - 1934 PROJECT: CNR-ASH

Method Atomic Absorption

From _____Sawyer_Consultants Date

September 21, 19-79

·		· · · · · · · · · · · · · · · · · · ·	· ····································						
SAMPLE NO.	Cu ppm	Mo ppm		SAMPI	_E NO	Cu ppm	Mo ppm		
L3N - 11+00E A	234	21		L14N -	4+50E	29	1		
11+00E B	239	18			5+00E	10	2		
11+00E C	213	14			5+50E	12	1		
11+00E D	515	26		ļ	4+00W	41	4		
L4N - 4+00E A	730	5 9 0			3+50W	4 i	4		
4+00E B	510	115			3+00 W	9	2		
4+00E C	304	37			2+50W	14	2		
4+00E D	465	130			2+00W	11	2		
10+50E A	327	31			1+50W	7	3		
10+50E B	495	14			1+00W	18	1		
10+50E C	382	10			0 +50W	16.	2		
10+50E D	341	7		L15N -	BL	8	2		
L5N - 4+50E A	1 59	101			0+50E	10	1		
4+50E B	204	144			1+00E	10	2		
4+50E C	1035	405			1+50E	11	2		
4+50E D	1080	580			2+00E	15	22		
L12N - 3+00W	62 v	8			2+50E	13	<u> </u>	-	
2+50W	<u>25 </u> (3			3+00E	17	2		
2+00W	21 .	1			3 + 50E	19	2		
1+50W	18	1			4+00E	22	2		
1+00W	18 .	2			4+50E	13	2		
0+50W	22	2			5+00E	9	2		
L13N - 4+00W	70,	5			5+50E	10	2		
3+50W	73	3			6+00E	13	2		· · ·
3+00W	18	2		,	4+00₩	26	3		
2+50W	14	2			3+50W	14	7		
2+00W	12	2			3+00W	25	4		
1+50W	15	1			2+50W	10	1		
1+00W	13	2	 		2 + 00W	13	1		
0 +50 ₩	17	1			1+50W	10,	1		
									1

Geochemical Lab Report

29 - 1934 Report No.------

Page No _____2

SAMPL	E NO.	Cu ppm	Mo ppm		SAMPL	ENO	Cu ppm	Мо ррпі		
L15N -	1+00W	10	1		L17N -	BL	9	2		
	0+50W	11	1			4+00W	21	6		
L16N -	0 +50E	9	1			3+50W	18	3		
	1+00E	11	1			3+00W	13	3		
	1+50E	9	< 1			2+50W	13	4		
	2+00E	5	1			2+00W	14	2		
	2+50E	12	< 1			1+50W	16	1		
	3+00E	8	1			1+00W	12	1		
	3+50E	13	< 1			0+50W	9	2		
	4+00E	9	1			······································				
	4+50E	5	1							
	5+00E	18	1							
	5+50E	7	1							
	6+00E	10	2							
	BL	9	2							
	4+00W	28	4							
	3+50W	38	4							
	3+00W	9	4							
	2+50W	17	2							
	2+00 W	17	2					ļ		ļ
	1+50W	10	2						 	
	1+00W	8	1							
	0 +50W	6	2				+			
L17N -	0+50E	9	2		ļ					
	1+00E	7	1							
	1+50E	10	2				 	 		
ļ	2+00E	14	1				ļ	ļ		ļ
	2+50E	7	1							
	3+00E	7	1							
	3+50E	13	1							
	4+00E	11	1				<u> </u>			
	4+50E	9	< 1	 			ļ			ļ
	5+00E	7	2							ļ
	5+50E	8	2		ļ		ļ			
	6+00E	12	2				l			ļ
		<u> </u>	l							<u> </u>
			10	7//				\frown	N 2	7
		-		17	10					

1500 PEMBERTON AVE., NORTH VANCOUVER, B.C. PHONE: 985-0681 TELEX: 04-54554

Geochemical Lab Report

Extraction		Hot A	qua Reg	ia		Report No. 29 -	2107 PRC	JECT: (<u>CNR - AS</u>	н
Method		Atomic	Absorpt	ion		FromSawyer	Consulta	ints		
Fraction Used .					<u></u>	Date	Octo	ober 4	1	9
SAMPLE	NO.	Cu ppm	Mo ppm	[SAMPLE NO.			·	
14N -	4+00W	37	4							
	4+50W	42	4			· •				
	5W	36	5							
······	5+50W	19	6						, ,	
	6W	13	7					1 1 1	5 - y	
15N -	4W	37	4							
	4+50₩	49	7							
	5W	5	.7							
	5+50W	57	10							-*
	6W	14	12							
16N -	4+50W	(ast)								
	5W	53	16							13.1
27N.										
	51768) 									
								<u>}</u>		
	2									
								·		
	·	1								a
	·		· · ·					_		+
								_		
			_							
			1		1				1	

.

هد

