An Assessment Report Detailing Physical Work, Geophysical Survey and Diamond Drilling in 1979 on the BET 1, CAT 1 & 2 Mineral Claims

3

1

Located at

56⁰ 03' North Latitude; 125⁰ 22' West Longitude in the Omineca Mining Division (94C/3)

by

M.D. Bradley (Geologist, BP Minerals Limited) W.R. Clark

April 1, 1980.

TABLE OF CONTENTS

۱

1.	SUMM	<u>Page No</u> . 1 - 1	
2.	INTRO	2 - 1	
	i)	Economic Interest, Objective and Approach	2 - 1
	ii)	Location and Access	2 - 3
	iii)	Claims Ownership, Claims Status, Application of Assessment Work	2 - 3
	iv)	General Geology	2 - 5
3.	SUMMA	ARY OF WORK - 1979	3 - 1
	i)	Physical Work	3 - 1
	ii)	Diamond Drilling	3 - 2
	iii)	Geophysical Surveys	3 - 3
4.	GEOPH	YSICAL REPORT	4 - 1
	i)	Instrumentation Specifications	4 - 1
	ii)	Survey Specifications and Methodology	4 - 2
	iii)	Geophysical Theory	4 - 4
	iv)	Interpretation	4 - 6
5.	DIAMO	ND DRILLING REPORT	5 - 1
	i)	Drilling Equipment	5 - 1
	ii)	Geology of Diamond Drill Holes CDH 79-1 to 7	5 - 1
	iii)	Discussion of Results	5 - 23
6.	CONCL	6 - 1	
7.	RECOM	7 - 1	

LIST OF FIGURES

Page No.

ŧ

Figure	1.	CAT Claims Regional Location Map						2	- 2
	2.	CAT-BET Claims Location Map (1:50,000)						2	- 4
	3.	Geology Map of the CAT Claims showing Trenches, Roads and Diamond Drill Holes (1:12,000)						in	pocket
	4.	1979 Diamond Drill Hole Location Map - Trench Area, Northern CAT Claims (1:1,200)							pocket
	5.	Southern CAT Claims - Ground E.M.16 Survey (1:2,400)							pocket
	6.	Southerr	n CAT CI	laims - (1:2,4	Ground N 00)	Magne	tic Survey	in	pocket
	7.	Detailed	i Ground	i Magnet (1:305	ics - Ti)	rench	3	4	- 3
	8.	Geology	of Trem	nch 3 (1:305)			4	- 7
	9.	Summary	of Geol	logical	Log -	CDH	79-1	in	pocket
	10.	11	83	ŧt	H	CDH	79-2	in	pocket
	11.	н	n	Ð	ŋ	CDH	79-3	in	pocket
	12.	11	11	H	41	CDH	79-4;6	in	pocket
	13.	at	84	ti	11	CDH	79-5	in	pocket
	14.	n	n	11	H	CDH	79-7	in	pocket

LIST OF APPENDICES

ł

APPENDIX	1.	Statement of Costs	A 1-1
	2.	Statement of Qualifications	A 2-1
	3.	Assay Data of Selected Diamond Drill Core from Holes CDH 79-1 to CDH 79-7	A 3-1
	4.	Detailed Geological Logs for Diamond Drill Holes #CDH 79-1 to CDH 79-7	in pockets
	5.	Appended Maps	in pockets

1. SUMMARY CONCLUSIONS:

During the period July 24 to October 8, 1979, 7 I-Ex diameter drill holes were cored to an aggregate depth of 214m in the upper and lower trench areas of the CAT claims.

Geophysical surveys located the priminent magnetic linear in the southern cliams area. The magnetic anomaly was excavated by Trench #3 and drill test by diamond drill holes CDH 79-6 and 7.

The magnetic linear is explained by a magnetic-pyrrhotite rich, biotite hornfelsed volcanic rock which apparently marks the contact zone between monzo-diorite intrusion to the west and Takla volcanics to the east. The hornfels is intimately intruded by k-feldspar veinlets and narrow granite dykes. It contains an average of 6%, fine-grained disseminated, occasionally massive, pyrite-pyrrhotitechalcopyrite which returned low-level assays for copper and gold.

Holes CDH 79-1 and 2 tested the southwestern and southeastern contact area of the syenite porphyry, located in the upper trench. The syenite porphyry contains up to 6% pyrite with lesser chalcopyrite and returned low-level grades in copper and gold. The contact volcanics adjacent to the porphyry are weakly altered to chlorite and epidote and are enriched in pyrite.

Holes CDH 79-3 and 4 confirm the continuity at a depth of 9.5m of the "No. 1" magnetite vein. Persistence of copper-gold surface assays on this vein are indicated at depth.

Hole 79-5 did not intersect the "B-5" vein.

The potential of a porphyry copper-gold in the valleys surrounding CAT Hill, particularly west and south of Trench #3, is untested. Induced polarization surveys are recommended for the southern CAT claims area to indicate sulphide rich zones.

ł

2. INTRODUCTION:

During the period July 24 to October 8, 1979 - 4 men established 10.72 km of topofil-compass grid in the southern claims area and conducted ground magnetic and E.M.-16 surveys. A 1.58 km long tote trail was constructed in the south of CAT claim 2, to access magnetic anomalies located in areas of overburden cover. Three 30m x 10m trenches were excavated by bulldozer over these anomalies, in search of bedrock. Seven I-Ex diamater diamond drill holes were completed on the property, to an aggregate depth of 214m.

i) Economic Interest, Objective and Approach:

Previous interest in the CAT claims was confined to the sulphide copper (gold) potential of the syenite porphyry mass exposed in trenches near 100N, 93E. The 1979 program was designed to test: 1) the southern contact area of the syenite porphyry for disseminated copper and fracture-fill, magnetite-copper-gold, 2) the continuity of structure and grade, at depth, of the "No. 1 Vein", containing magnetite-Au-Ag-Cu values and 3) to expose and drill test the source lithology of a prominent ground and aeromagnetic anomaly trending northwest through the south of the claims. The magnetic anomaly was suspected to reflect magnetite concentrations possibly containing Au-Ag-Cu values, such as indicated in the "No. 1" vein.

Drill holes CDH 79-1 and CDH 79-2 tested the south contact area of the syenite porphyry near 96N, 93E; subadjacent to magnetite-copper veins. Drill holes CDH 79-3 and CDH 79-4 were drilled to test the depth and grade continuity of the "No. 1 Vein". Hole CDH 79-5 tested the depth and grade continuity of the "B-5", magnetite-Ag-Au-Cu vein.

The prominent linear magnetic anomaly in the southern claims area was relocated by geophysical survey and trenched in three locations to expose a source lithology. A highly magnetic metavolcanic source was located in trench #3. The metabasalt contained visible magnetite, chalcopyrite, pyrite and trace gold as disseminations in highly fractured and altered zones. Holes CDH 79-6 and CDH 79-7 tested the economic potential of Au-Cu mineralization in the Trench 3 zone.

ii) Location and Access:

The CAT claims are located in the Omineca Mining Division, 150 km northwest of Mackenzie and 9.5 km west-southwest of Usilika Lake, B.C.

Access to the claims is by a 12.3 km long, 4 wheel drive quality road, which trends westerly, 5.3 km from the Osilinka River Bridge, then north 7 km to the upper drill camp. The upper 4 km of this road is passable only in dry weather and is subject to rock fall.

The Osilinka Bridge is located 6 km south of Uslika Lake on the Omineca road, which connects Fort St. James with Moose Valley near Sustut Peak.

iii) Claims Ownership, Claims Status, Application of Assessment Work:

The CAT Group of Mineral claims comprises CAT claim 1 and CAT claim 2, each containing 14 units and BET claim 1 containing 1 unit.

The CAT 1 and 2 claims are wholly owned by BP Minerals Limited of Vancouver, B.C. The BET 1 claim is owned by Mr. A. Gerun of Nelson and held under option agreement by BP Minerals Limited.

.

É

•

.

The following information is pertinent to the status of these claims:

<u>Clai</u>	m	<u>No. Units</u>	Record No.	Anniversary Date	Expiry Date	Assessment Credit 1979	New Expiry Date
CAT	1	14	4	April	1983	7 yrs.	1990
CAT	2	14	5	April	1983	7 yrs.	1990
BET	1	1	119418	November	1982	7 yrs.	19 89

۱

This report covers 1979 assessment work in the amount of \$41,717.00, which is applied to the claims group as in the table above.

iv) General Geology: (See Figure 3)

The CAT Group of mineral claims encompass a conical mountain and contiguous ground to the south, covering the north flank of the Osilinka River Valley. The claims are underlain by magnetic and basaltic pyroclastics, intercalated volcanic clastics and augite porphyry flows. These units are intruded by syenite porphyry near the centre of the claims.

The southwestern area of the claims is recessive weathering. The area contains sparse and erratic outcrop of fine to medium-grained hornblende diorite and light pink, medium-grained, equigranular granite, along a crudely defined, northwesterly trend. Dykes of granite (?) were noted in diorite near the southeastern boundary of the claims. It is hypothesized that the diorite represents an edge phase of a granite to granodiorite mass (?) underlying the southwestern area of the claims. Late stage intrusion of the granite would be controlled by zones of weakness in the volcanics and contact diorite.

A prominent west trending magnetic high located in the south of the claims is thought to mark the intrusive - volcanic contact.

A major northeast striking fault transects the CAT claims. The fault zone is marked by a mjor creek channel trending northeast from the upper drill camp on CAT mountain. Scattered outcrop of pyroclastics seen on the southeast wall of the fault are highly fractured and contain erratic but occasionally high concentrations of pyrite.

Less prominent faults and shear zones, in and west of the upper trench area, strike north and northwest. These faults are healed by magnetite-quartz ⁺/₋ calcite ⁺/₋ pyrite ⁺/₋ specular hematite veins containing copper-silver and gold values. Copper minerals include native copper, cuprite, chalcopyrite, tetrahedrite, bornite, chrysocolla, azurite and malachite. Silver values are thought to be associated with tetrahedrite. Gold occurs as macroscopic blebs in massive magnetite-limonite boxwork and less commonly in quartz gangue. The "No. 1" and "No. 2" magnetite veins are located on a ridge 200m northwest of the upper trench area. The veins are upto 0.6m wide,

3. SUMMARY OF WORK:

i) Physical Work: (See Figure 3)

During the latter part of July and in early August 1979, 10.72 km of topofil-compass grid was established over the southern claims area in the Osilinka River Valley. The linear magnetic high was located on this grid by geophysical survey. Three areas of trenching were located over magnetic highs in locales which appeared to have a relatively thin mantling of overburden. A trail was flagged along the magnetic high connecting the proposed trenches with the Osilinka River 4 wheel drive road.

During the first week of August, 1979 a D-8 buildozer was contracted from Neilson Equipment Rentals Ltd., of Fort St. James, B.C. The bulldozer opened up the Osilinka River road from the Omineca Road 7 km west to the start of the trail to the trench areas. The lower 3 km of the CAT claims 4 wheel drive access road was bladed smooth at this time.

A 3.5m wide tote trail was constructed from the Osilinka River road north and west to Trench #3, located at line 61N, 99+50E. The timber felled along the trenches and tote trail was slashed and/or buried.

Trench 1 is located at line 52N, 109+50E and trends northwest for 76.2m. The trench is 3.5m deep and 12.2m wide and uncovered rounded cobbles and boulders of moderately magnetic hornblended diorite and minor gabbro in a sandy matrix. The trench did not reach bedrock and the area has been recontoured and water bars have been errected. Trench 2 is centered at line 60N, 102E and trends northwest for 39.6m. The trench is 3.7m deep and 18m wide at its widest points. Bedrock was not uncovered below the medium to coarse grained sands encountered in the area. The trench was recontoured and water bars were errected.

Trench 3 is located 61m northwest of Trench 2. The trench runs due north for 61m, is 15m wide and 3m deep. The area was selected on the basis of high magnetic response and the proximity of angular float of a pyroxene-magnetite rich, fine to medium-grained rock, containing minor disseminated chalcopyrite and pyrite. Outcrop of light pink, fine to medium-grained, hornblende-bearing monzonite occurs nearby on the west bank of a swamp at line 63N, 94E. The monzonite is well jointed and contains chalcopyrite $\frac{+}{2}$ pyrite $\frac{+}{2}$ epidote on a few fractures.

Trench 3 uncovered hornfelsed volcanic bedrock cut by numerous narrow k-feldspar $\stackrel{+}{-}$ quartz veins and pink granite dykes. Disseminated net-like concentrations of fine-grained pyrite-pyrrhotite-chalcopyrite are often found in association with veins and dykes.

ii) Diamond Drilling:

A total of 214m of I-Ex diameter coring was completed by Drilcor Industries of Richmond, B.C., in 7 Winkie diamond drill holes on the property. Holes CDH 79-1 to CDH 79-5 were drilled in the upper trench area and holes CDH 79-6 and 7 were drilled in Trench #3, in the south of the claims area. The drill program was hampered by fractured ground which slowed drilling progress and contributed to poor recovery, particularly in mineralized zones. Diamond drill holes

CDH 79-4, 5 and 6 had to be abandoned due to poor ground conditions.

iii) Geophysical Surveys:

Ground magnetic and E.M.-16 surveys were completed over 10.72 km of topofil grid in the south of the claims area. The magnetic survey was conducted to define a northwest trending linear magnetic high located in previous airborne and ground magnetic surveys.

The magnetic survey successfully located the main anomaly as well as a 5600 gamma magnetic high on line 48.5N, 88E.

The E.M.-16 survey was completed over the magnetic anomaly to detect changes in conductivity which would reflect changes in rock type, structure and massive sulphide mineralization. The survey indicates the presence of a conductive mantling overburden over most of the area. The main magnetic anomalies show as somewhat more conductive zones, suggesting a change in conductivity due to variation in lithologies.

4. GEOPHYSICAL REPORT: (See Figures 5-7).

i) Instrument Specifications:

a) <u>Magnetometer</u>: The magnetometer used to complete the CAT claims survey, was a direct reading, McPhar M700, flux-gate magnetometer serial number 6931. This instrument measures variations in the vertical component of the earth's magnetic field to a resolution of $\frac{+}{-}$ 10 gammas, on the most sensitive scale. The magnetometer has a graduated meter-dial readout with a 5 scale selection from 100 to 100,000 gammas. Levelling of the unit is by a "bulls-eye" bubble located below the readout meter. The McPhar 700 weighs approximately 5 kg and has dimensions of 22 x 10 x 26 cm. The instrument was rented from Phoenix Geophysics, 885 Dunsmuir Street, Vancouver, B.C.

b) <u>V.L.F. E.M.-16 Unit</u>: The receiver unit in the E.M.-16 method measures the "in phase" and "quad phase" (out phase) components of vertical magnetic field, as a percentage of horizontal primary field. The instrument has a sensitivity of $\frac{+}{-}$ 150% on the in phase and $\frac{+}{-}$ 40% on the quad phase readout, to a resolution of $\frac{+}{-}$ 1%. Operational frequency is in the 15-25 kHz V.L.F. radio band and station selection is accomplished with plug in crystals. Signal output is an audible tone and in phase - quad phase components are determined by selective nullings of the tone. The in phase readout is from a mechanical inclinometer while quad phase is read from a graduated dial. The unit has a weight of 1.6 kg and dimensions of 42 x 14 x 9 cm.

The E.M.-16 unit is manufactured and leased by Geonics Limited, 1745 Meyerside Drive, Unit 8, Mississauga, Ontario, Canada, L5T 1C5.

ii) Survey Specifications and Methodology:

The ground magnetometer and E.M.-16 surveys were carried out on 10.72 km of compass-topofil grid. The lines trend east-west and are space 61m apart. The station interval is 30.5m except 15.2m in certain areas of magnetic anomaly.

a) <u>Ground Magnetometer Survey</u>: A base station was established at the intersection of line 100E with the Osilinka River road. After a brief orientation survey, the base was assigned an arbitrary value of O gammas. The instrument was "rezeroed" each day at the base station before beginning traverses. Survey traverses were conducted in loop configurations and check readings were made at previously established, temporary base stations at approximately 3 hour intervals. Corrections for diurnal variations of the earth's magnetic field were made to the data knowing the check readings on tying-in temporary base stations. Diurnal variations were found to be on the order of 0-5 gammas each 3 hour interval.

Measurements were made at each station with the operator and magnetometer facing north and the instrument levelled.

b) <u>E.M.-16 Survey</u>: The receiver was tuned to the V.L.F. transmitter located in Seattle, Washington - station NLK at 121° 55' West Longitude, 48° 12' North Latitude which broadcasts at 18.6 k Hz with radiated power of 300 kilowatts.

The choice of Seattle as the transmitter station was dictated by the local strike of geological structure, which subparellels the direction to the transmitter from the CAT claims. The object of this exercise is to have the magnetic field from the station, (at right

angles to the direction of the station) at approximately right angles to the main strike of the ore bodies or geological structure of the survey area.

ļ

All readings were made with <u>operator facing east</u> along the eastwest survey lines. To take a reading at each survey station, the operator first assured that the receiver was tuned to station NLK, faced east on the lines and adjusted the volume control for comfortable listening. To take the in-phase readings, the instrument was swung back and forth in the vertical plane to a position of minimum sound intensity. At this position, the quadrature dial was adjusted to further minimize or "null" the sound. When minimum signal strength was achieved <u>on both</u> adjustments, the inclinometer (in phase) and quadrature (out of phase) readings were recorded.

The instrument is calibrated so that, when approaching the conductor, the inclinometer angles are positive, in the in-phase component.

iii) Geophysical Theory:

a) <u>Magnetometer Survey</u>: The magnetism of all rocks is controlled by their content of ferromagnetic materials, that is, substances possessing a relatively high susceptibility and capable of acquiring permanent magnetization. Intrusions often have associated hydrothermal alteration zones in which ferromagnetic minerals, predominantly magnitite, maybe redistributed in such a way that the altered zone is characterized by a distinctive magnetic signature. Variations in magnetic contrast may also be due to changes in lithologies,

magnetic skarns, structure, ore, etc. Highly sheared or fractured zones (faults) generally have a high porosity for groundwater movement, resulting in leaching of ferromagnetic minerals and therefore, a "low", generally linear, magnetic signature.

b) <u>E.M.-16 Survey</u>: The V.L.F. E.M.-16 is a passive method of measuring secondary fields generated by conducting bodies in the ground, when subjected to a primary electromagnetic (E.M.) signal. In the E.M.-16 system, the primary E.M. signal is generated by powerful military transmitters (shore to submarine), broadcasting in the 15 to 25 kHz radio band, from fixed locations on the earth.

The E.M.-16 field unit is a receiver which picks up the vertical magnetic component of the transmitted E.M. signal. The magnetic signal component carries the bulk of signal energy beneath the ground surface and is distorted by attenuation (weakening of signal strength = α = .29 $\sqrt{\sigma}$ nepers/metre) and phase shift (\emptyset = -.29 $\sqrt{\sigma}$ radians/metre). The conductivity of a rock medium is equal to 10⁻³ mho/metre in relatively nonconductive rock. Attenuation cannot be overcome and is a limiting factor in the use of the V.L.F. method in conductive country rock or overburden. Secondary fields, generated by buried conductors are further attenuated in their vertical passage to the receiver.

Transmitter stations have vertical antennae, thus antennae current is vertical, creating a concentric, horizontal magnetic field around them. This field travelling through the ground, will encounter conductive areas which generate and radiate secondary fields.

A vertically and a horizontally oriented receiver coil are built into the E.M.-16 receiver. Signal input from the vertical (signal) coil is minimized by tiliting the instrument; the angle of tilt is calibrated in percentage. Remaining signal from the vertical coil is balanced by a measured percentage of signal from the horizontal (reference) coil (after a 90° phase shift) which is parallel to the primary field.

Where secondary signals are small compared to the primary horizontal field, the angle of tilt of the instrument is an accurate measurement of the vertical real-component. The compensating 90⁰ shifted signal from the horizontal coil, is a measure of the quadrature vertical signal.

A more complete explanation of the E.M. theory is outlined in the following reference paper: Patterson, N.R. and Ronka, V.; 1971: Five Years of Surveying with the V.L.F. E.M. Method; Geoexplanation v.9, pp. 7-26.

iv) Interpretation:

The magnetic survey data is presented in Figure 6 and 7. A linear northwest trending zone is clearly outlined by the 1000 gamma contour line between line 50N, 112E and line 69N, 92E. A small, irregular, 5600 gamma magnetic high is located on line 48-5N, 88E. North-northwest trending, 1000-1250 gamma magnetic highs are located on lines 41N and 44N at 109E and on line 36N at 97E and 85E.

The above magnetic highs occur within an elliptical zone outlined by the 500 gamma contour which encloses a central magnetic low con-

_ براحــــ

taining values less than 500 gamma.

Trenching and diamond drilling near line 60+50N, 99+50E indicate that the linear magnetic high, trending northwest through the southern claims area, is reflecting a magnetite-pyrrhotite rich, altered contact zone between monzonite-granite instrusion and basalt. The central, elliptical, magnetic low is thought to overlie a monzonite intrusion, exposed in sparce outcrop on line 63N at 94E.

The smaller magnetic highs indicate magnetite concentrations which may occur along north trending strucure or in rafts of metavolcanic within monzonite intrusion.

The E.M.-16 data is dominated by the effect of conductive overburden as indicated where quadrature values mimic the trend of in-phase data. The zone of positive quadrature and negative in-phase data east of line 100E and south of line 63N closely approximates the 800 gamma magnetic envelope and indicates a relatively non conductive zone immediately west of the intrusive-volcanic contact.

5. DIAMOND DRILLING REPORT:

i) <u>Drilling Equipment</u>: The 1979 drilling program utilized a Winkie Diamond Drill, recovering I-Ex diameter core. The drill, equipment, camp, driller and helper were contracted from Drilcor Industries Ltd., of Richmond, B.C.

•

The drill was mobilized to the upper trench area by pickup truck. Drill moves from CDH 79-2 to CDH 79-3 and of camp and drill from CDH 79-5 to CDH 79-6 were by Bell 206 helicopter operating out of Takla Landing.

As the rock was commonly too fractured to hold a rock bolt, the drill was stabilized on each hole by weighting the drill skids with four 45 gallon barrels containing water.

Drilling progress was commonly slow in fractured ground due to very short runs. In highly fractured zones healed by magnetitequartz veins, core recovery was very poor. The program did not run mud in fractured zones and no provision was made for sludge recovery.

Several targets suitable for short hole drill testing were not attempted due to fractured bedrock or overburden conditions.

ii) Geology of Diamond Drill Holes CDH 79-1 to CDH 79-7:

a) <u>CDH 79-1</u>: (See Figure 9) This hole was located near 94+90N, 91+60E at 1676.8m elevation above sea-level (e.a.s.l.),

LEGEND FOR CAT DRILL HOLE CROSS - SECTIONS

GEOLOGY - ROCK TYPE

FINE GRAINED ANDEBASALTIC FLOW OR DYKE

AUGITE PORPHYRY

AUGITE - FELDSPAR PORPHYRY, AGGLOMERATIC?

VOLCANICLASTIC - SANDSTONE, TURBIDITE

SYENITE PORPHY DYKE

HORNFELSED VOLCANICLASTIC

GEOLOGY - STRUCTURE

1///// SHEAR ZONES

AVA FLOW BRECCIA

PORPHYRY

FRACTURES

ALTERATIONS

ALTERATIONS	CHLORITE ALT. OF MAFICS	KSPAR VEINS AND DYKES	EPIDOTE VEINS	EPIDOTE PERVASIVE
D BLANK	NIL	Tr. 1/metra	NIL	· NIL
3	WEAK	minor veins + dykes 1-2	0-2%	WEAK
		3-4/metre	2-5%	
	MODERATE	5-6/metre	5-10%	MODERATE
		7-8/metra	10-25%	
2253990	INTENSE	Intense flooding or dyke	25%	INTENSE
ALTERATIONS	BIOTITE PERVASIVE	<u>MINE</u> % Py, Po,	RALS cp/METRE	STRUCTURE VEINS/METRE FRACTURES/METRE
I BLANK	NIL	N	IL.	0-5
d	WEAK	1	r.	6 - 10
		Tr.	-1/2%	11 - 15
1251	MODERATE	1/2	-1%	16 -20
		1	- 2.5%	21 - 25
E	INTENSE	2.5	- 5%	26 - 30

11

at the southern edge of CAT mountain. The hole is 7.6m vertically above and 15.2m due north of DDH-1 drilled by Croydon Mines. CDH 79-1 is sited 21.3m east of a quartz-calcite-magnetite vein containing copper and silver and 18.2m west of the sympite porphyryaugite porphyry contact.

The hole was drilled vertically and cored 36.7m of dark green, magnetic, and basaltic augite porphyry. The porphyry contains an intercalated fine-grained and basaltic flow from 18.6 to 20.1m. A syenite porphyry dyke intrudes the fine-grained flow band and augite porphyry between 20.1 and 23m. The dyke has intensively chloritized augite porphyry for 1m on the lower contact.

A narrow, fine-grained, andesite dyke cuts augite porphyry at 60⁰ to the core axis (t.c.a.) near 28.3m depth. A breccia zone in augite porphyry from 4m to 5m is healed with calcite and probably records slumping along a flow top.

The volocanic rocks are commonly moderately to intensively fractured below 13m depth in the hole. The syenite porphyry dyke is only weakly fractured. Calcite veins occur on angles of 0° throughout the volcanic section but are most common in the intervals 8m to 18m and 22m to 35m. Narrow k-feldspar veins occur at 25° t.c.a. in the interval 12.4m to 18.3m in augite porphyry and from 20.1m to 21m and 22m to 23m in the syenite dyke. The k-feldspar veins contain minor amounts of specularite and, epidote and have bleached the augite porphyry to an orange-yellow-green colouration in 1cm wide alteration envelopes. The veins are the cause of intense chlorite alteration in the syenite dyke.

The augite porphyry is weakly chloritized throughout the hole. Epidote alteration of the porphyry occurs in 1cm alteration envelopes to the k-feldspar veinlets and as a weak to moderately pervasive alteration in the intervals 25.1m to 31m and 33.9m to 35.8m.

Disseminated fine-grained pyrite occurs in the breccia zone at 4m in amounts in excess of 5% with 1/4% chalcopyrite. The augite porphyry contains 1/2% to 1% disseminated pyrite in the interval 12.5m to 20.1m and 30m to 36.7m. The syenite dyke and lower contact zone contains in excess of 5% disseminated pyrite.

A zone of 5% banded pyrite at 70⁰ t.c.a. contains 5% disseminated chalcopyrite in the interval 26.6m to 27.1m. Trace fine-grained chalcopyrite occurs with pyrite in veinlets and as disseminations from 31m to the end of the hole.

b) CDH 79-2: (See Figure 10) This diamond drill hole is located at 96+20N, 97+90E east-southeast of the upper trench area, near the southeastern contact zone of syenite porphyry and augite prophyry. The hole collared in augite porphyry at an approximate elevation of 1699.7m and drilled 64.0m of andebasaltic augite prophyry flows with minor feldspar lath porphyry.

The porphyry is moderately fractured with numerous intervals of intense fracturing above 50m and is weakly fractured thereafter. Calcite veins occur throughout the section on core angles of from $20-25^{\circ}$ t.c.a.

The section is pervasively moderately chloritized throughout.

LEGEND FOR CAT DRILL HOLE CROSS - SECTIONS

GEOLOGY - ROCK TYPE

FINE GRAINED ANDEBASALTIC FLOW OR DYKE

AUGITE PORPHYRY

AUGITE - FELDSPAR PORPHYRY, AGGLOMERATIC ?

VOLCANICLASTIC - SANDSTONE, TURBIDITE

SYENITE PORPHY DYKE

HORNFELSED VOLCANICLASTIC

GEOLOGY - STRUCTURE

1///// SHEAR ZONES

AVA FLOW BRECCIA

. 75

PORPHYRY

FRACTURES

ALTERATIONS

	CHLORITE ALT. OF MAFICS	KSPAR VEINS AND DYKES	EPIDOTE VEINS AND ENVELOPES	EPIDOTE PERVASIVE	
D BLANK	NIL	Tr. I/metra	NIL	NIL	
¤	WEAK	minor veins + dykes 1-2	0-2%	WEAK	
		3-4/metre	2-5%	•	
222	MODERATE	5-6/metre	5-10%	MODERATE	
		7-8/metra	10-25%		
	INTENSE	Intense flooding or dyke	25%	INTENSE	
ALTERATIONS	BIOTITE PERVASIVE	MINERALS % Py, Po, cp/METRE		STRUCTURE VEINS/METRE FRACTURES/METRE	
D BLANK	NIL	Δ	IIL	0 - 5	
E	WEAK	1	îr.	6 - 10	
23	•	۲r.	-1/2%	.11 - 15	
1993	MODERATE	1/2	- 1%	16 - 20	
		I - 2.5%		21 - 25	
	INTENSE	2,5	- 5%	26 - 30	

Concentrations of k-feldspar veins and dykes $\stackrel{+}{-}$ epidote $\stackrel{+}{-}$ quartz $\stackrel{+}{-}$ po, py, cp occur over narrow intervals above 39m. Epidote veinlets and fracture envelopes commonly occur with k-feldspar veinlets but are most prevalent in the intervals 24.5m to 34.5m, 37.6m to 43.6m and 50.8m to 56.4m. Weakly pervasively disseminated quantities of epidote are noted at 20m to 21.2m, 25.7m, 28.8 to 29.8m with moderate quantities at 46.9m and 48m.

Disseminated fine-grained pyrite occurs in rock matrix, fracture and alteration envelopes in amounts up to 1% above 28m, thereafter concentrations are erratic in narrow zones. Pyrite is not present below 52m depth. Disseminated pyrrhotite + trace chalcopyrite ⁺ pyrite occurs in alteration envelopes and rock matrix in the intervals 4m to 8m and 18m to 34m. Disseminated and fine-grained blebby chalcopyrite in concentrations of up to 1% occurs with pyrite and pyrrhotite in the interval 4m to 8m. Trace amounts of chalcopyrite are noted from 24m to 28m, 30m to 34m and 44m to 46m.

c) <u>CDH 79-3</u>: (See Figure 4, 11) Diamond drill holes CDH 79-3 and 4 were designed to test the Au-Ag-Cu grade continuity at depth of the "No. 1" vein. The hole is located 9.45m northeast of the vein at 103+65N, 86+40E and at elevation 1753m. The hole is angled toward the vein at - 49° on a bearing of azimuth 252° . The vein at surface apparently dips northeast at 77° .

Hole CDH 79-3 cored 21.5m of weakly chloritized, weak to moderately fractured, andebasaltic augite porphyry. Core recovery was poor throughout the section, less than 30% from 12m to 16m and less than 13% from 18m to 20.5. There was no core recovered from

LEGEND FOR CAT DRILL HOLE CROSS - SECTIONS

EOLOGY - ROCK TYPE

FINE GRAINED ANDEBASALTIC FLOW OR DYKE

AUGITE PORPHYRY

AUGITE - FELDSPAR PORPHYRY, AGGLOMERATIC?

VOLCANICLASTIC - SANDSTONE, TURBIDITE

SYENITE PORPHY DYKE

HORNFELSED VOLCANICLASTIC

GEOLOGY - STRUCTURE

1////, SHEAR ZONES

FRACTURES

ALTERATIONS

	CHLORITE ALT. OF MAFICS	KSPAR VEINS AND DYKES	EPIDOTE VEINS	EPIDOTE PERVASIVE
D BLANK	NIL	Tr. 1/metre	NIL	NIL
3	WEAK	minor veins + dykes 1-2	0-2%	WEAK
127		3-4/metre	2-5%	
1258	MODERATE	5-6/metre	5-10%	MODERATE
222000		7-8/metre	10-25%	•
	INTENSE	Intense flooding or dyke	25%	INTENSE
ALTERATIONS	BIOTITE	<u>MINE</u> % Py, Po,	RALS cp/metre	STRUCTURE VEINS/METRE FRACTURES/METRE
I BLANK	NIL	N	IL	0 - 5
A	WEAK	1	r.	6 - 10
Ħ		Tr.	-1/2%	11 - 15
533	MODERATE	1/2	-1%	16 -20
	. .	1	- 2.5%	21 - 25
· west	INTENSE	2.5	- 5%	26 - 30

15

PORPHYRY

20.5m to 21.5m at which point, the hole was abandoned. Fracturing is suspected to be intense in areas of poor recovery.

The augite porphyry is cut at 20° and 30° to the core axis by 4 fine-grained, dark green volcanic dykes in the upper 6m of the hole. Quartz-feldspar veins $\frac{1}{2}$ magnetite $\frac{1}{2}$ pyrite are found singly on angles of 20° and 45° t.c.a. throughout the section and concentrated in a narrow zone trending 70° t.c.a. at 12m.

Narrow k-feldspar veins with epidote $\frac{+}{-}$ pyrite in alteration envelopes occur at 4.2m and 8.0m to 8.5m. Epidote veins $\frac{+}{-}$ magnetite $\frac{+}{-}$ chrysocolla are noted at 11.9m to 12.4m; 13m-13.2m and at 15.8m. Strongly chloritized augite porphyry was intersected from 9.8m to 11.6m.

Trace quantities of disseminated, fine-grained pyrite are noted in rock matrix and veins from 0-2m and 6m-10m. Trace chalcopyrite occurs with epidote in veinlets from 12 to 14m. Trace amounts of chrysocolla are found in hairline fractures ⁺ epidote from 8.4m to 16m.

The "No. 1" vein strikes approximately 315⁰ and dips 77⁰ northeast. The vein is composed of magnetitie-quartz with limonite boxwork and contains blebby visible, gold, chalcopyrite, tetrahedrite (?), and cuprite. The walls of the vein are strongly chloritized, grading outward into epidote veinlets containing chrysocolla and peripheral propylitically altered augite porphyry.

The exact intersection of the "No. 1" vein in hole 3 is not known due to cave and poor core recovery. Its position is tentatively placed at 13.0-13.2m. The presence of chrysocalla, intense chloritization and epidote veinlets above this interval probably indicates the eastern hanging wall of the vein. Pebbles of magnetite at 13.0 probably mark the vein itself. A pebble of magnetite plus epidote at 15.8m is thought to be core from the vein above. A cross-section of the vein and hole follows:

d) <u>CDH 79-4</u>: (See Figure 4, 12) This hole was located 4.88m southwest of the "No. 1" vein. It was hoped that the new setup would improve core recovery penetrating footwall of the vein thus achieving a better estimate of the vein depth, width and grade.

The upper 6.5m of hole CDH 79-4 cored fine to medium-grained volcanic sandstone and turbidite cut by several narrow augite porphyry dykes at 30° , 45° and 60° t.c.a. The turbide is in sharp $(90^{\circ}$ t.c.a.) contact with aguite porphyry flows at 6.5m which comprise the total section down to hole end at 13.1m.

LEGEND FOR CAT DRILL HOLE CROSS - SECTIONS

JEOLOGY - ROCK TYPE

FINE GRAINED ANDEBASALTIC FLOW OR DYKE

AUGITE PORPHYRY

AUGITE - FELDSPAR PORPHYRY, AGGLOMERATIC?

VOLCANICLASTIC - SANDSTONE, TURBIDITE

SYENITE PORPHY DYKE

HORNFELSED VOLCANICLASTIC

GEOLOGY - STRUCTURE

////// SHEAR ZONES

AVA FLOW BRECCIA

PORPHYRY

FRACTURES

ALTERATIONS

+

•	CHLORITE ALT. OF MAFICS	KSPAR VEINS AND DYKES	EPIDOTE VEINS AND ENVELOPES	EPIDOTE PERVASIVE
D BLANK	NIL	Tr. 1/metre	NIL	NIL
B	WEAK	minor veins + dykes 1-2	0-2%	WEAK
		3-4/metre	2-5%	•
	MODERATE	5-6/metre	5-10%	MODERATE
		7-8/metre	10-25%	
	INTENSE	Intense flooding or dyke	25%	INTENSE
ALTERATIONS	BIOTITE PERVASIVE	<u>MIN</u> % Py, Pc	ERALS	STRUCTURE- VEINS/METRE FRACTURES/METRE
D BLANK	NIL		NIL	0 - 5
Ħ	WEAK		Tr.	6 - 10
	· ·	· T	r1/2%	11 - 15
	MODERATE	1/2	-1%	16 -20
	· · ·	 	- 2.5%	21 - 25
***	INTENSE	2.5	5 - 5%	26 - 30

5 - 15

The volcanics are weakly chloritized throughout and cut by k-feldspar veins containing epidote at 5.1m. Epidote fracture fill and envelopes to magnetite net-like veins occurs from 11.1m - 11.6m.

Chrysocolla was found on a few fractures trending 20⁰ and 35⁰ t.c.a. from 7.2m to 12.3m. Chrysocolla, native copper and minor cuprite are found with epidote on numerous fractures from 10.4m-11.0m and 11.6m-12.3m. These cupriferous veins are thought to mark the "No. 1" vein footwall and hanging wall.

Fragments of the target magnetite-quartz-epidote vein were found in a zone of poor recovery from 11.1m to 11.6m. A cross section showing the vein and drill hole, follows:

CROSS - SECTION FACING N.W.

e) <u>CDH 79-5</u>: (See Figure 4, 13) The drill hole was sited 9.76m northeast of the "B-5" vein located west of the upper trench area at 100+60N, 87+60E, elevation 1676.8m. The purpose of the hole was to test Au, Ag, Cu grade continuity with depth. The "B-5" magnetite vein follows a highly fractured zone (in flow breccia) which trends azimuth 18° and dips 70° to 85° west. The hole was drilled on a bearing of azimuth 235° , declined 50° southwest.

LEGEND FOR CAT DRILL HOLE CROSS - SECTIONS

-EOLOGY - ROCK TYPE

FINE GRAINED ANDEBASALTIC FLOW OR DYKE

AUGITE PORPHYRY

AUGITE - FELDSPAR PORPHYRY, AGGLOMERATIC?

VOLCANICLASTIC - SANDSTONE, TURBIDITE

SYENITE PORPHY DYKE

HORNFELSED VOLCANICLASTIC

GEOLOGY - STRUCTURE

1///// SHEAR ZONES

AVA FLOW BRECCIA

PORPHYRY

75

FRACTURES

TERATIONS

	CHLORITE ALT. OF MAFICS	KSPAR VEINS AND DYKES	EPIDOTE VEINS	EPIDOTE PERVASIVE
D BLANK	NIL.	Tr. 1/metre	NIL	NIL
E	WEAK	minor veins + dykes 1-2	0-2%	WEAK
	•	3-4/metre	2-5%	
	MODERATE	5-6/metre	5-10%	MODERATE
5	•	7-8/metre	10-25%	
	INTENSE	Intense flooding or dyke	25%	INTENSE
ALTERATIONS	BIOTITE	<u>MINE</u> % Py, Po		STRUCTURE- VEINS/METRE FRACTURES/METRE
D BLANK	NIL	1	JIL.	0 - 5
Ħ	WEAK		Tr.	6 - 10
-	•	Tr	-1/2%	11 - 15
1993	MODERATE	1/2	-1%	16 - 20
		l I	- 2.5%	21 - 25
-	INTENSE	2.5	- 5%	26 - 30

Hole CDH 79-5 cored 23.2m of andebasaltic volcanics comprised of an upper 5.8m thickness of flow breccia welded by augite-feldspar porphyry, underlain by turbidite from 5.8m to 8.8m which is in turn underlain by a basal thickness of massive augite-feldspar porphyry. The contact between turbidite and augite-feldspar porphyry is obscured by an 0.4m wide feldspar-augite porphyry dyke. Syenite dykes upto 0.4m wide cut augite-feldspar porphyry at 18.8m and 20m on angles of 35⁰ t.c.a. The lower dyke occurs in a highly fractured zone containing epidote veinlets and epidote fracture envelopes.

The whole section is pervasively moderately chloritized. Narrow zones of k-feldspar veining with accompanying minor amounts of epidote, occur between 3.8m and 20.3m. Quartz veins carrying trace amounts of pyrite, pyrrhotite and chalcopyrite are common in the intervals 8m-12m and 14m-15m at angles of 30° and 35° t.c.a.

The target vein is not directly indicated in the core but may have been intersected in sections of poor core recovery at 20.2m to 20.8m in the area of syenite dyking, or at 22.9m to 23.2m. The hole was abandoned at 23.2m due to conditions of cave in broken ground.

f) <u>CDH 79-6 and 7</u>: (See Figures 3,8,12,14) The holes were drilled in Trench #3 located in the southwestern corner of CAT claim #2 at 60+83N, 99+70E (CDH 79-6) and 60+82N, 99+73E.

Hole CDH 79-6 was abandoned at 3.4m, in highly fractured biotite hornfels, due to poor ground conditions.

Hole CDH 79-6 was drilled 0.91m southeast of hole 6 and cored 52.1m of biotite hornfels on a bearing of azimuth 30° , declined 70° N.E. The hole was sited in Trench #3 in a zone of relatively competent metalvolcanics, cut by numerous k-feldspar veinlets, quartz veins and granite dykes. A few veinlets of chalcopyrite-Pyrrhotite-pyrite [±] sphalerite ⁺ trace visible gold, were found in the hornfels volcanic bedrock. A zone of shattered metavolcanics bounds the drill hole sites on the west, toward outcrop of monzonite intrusive. To avoid poor ground conditions the hole was angled away from the contact zone.

Throughout the cored section, metavolcanic is moderately altered to chlorite and biotite. The unit is cut at angles of 35° to 45° t.c.a, by numerous, at times close spaced k-feldspar veinlets, granite dykes and floodings with rather diffuse k-feldspar-epidote $\stackrel{+}{=}$ quartz $\stackrel{+}{=}$ biotite $\stackrel{+}{=}$ sulphide alteration envelopes. In an examination of split core, epidote and coarse-grained (primary ?) biotite $\stackrel{+}{=}$ hornblende are found in and about the granite dykes.

The biotite hornfels is very magnetic and weakly to moderately fractured and veined except over numerous, narrow, intensely fractured zones occurring throughout the section.

Fine-grained, blebbly and crystalline pyrite, chalcopyrite and pyrrhotite are found admixed throughout the hole as disseminations in matrix, veinlets and fractures. The aggregate total of sulphides in the hole would average 6% - 8%. Pyrite and pyrrhotite predominate in the upper 20m of the hole with trace accessory chalcopyrite. Chalcopyrite and pyrrhotite have sympathetically

5 - 21

.

LEGEND FOR CAT DRILL HOLE CROSS - SECTIONS

GEOLOGY - ROCK TYPE

FINE GRAINED ANDEBASALTIC FLOW OR DYKE

AUGITE PORPHYRY

AUGITE - FELDSPAR PORPHYRY, AGGLOMERATIC?

VOLCANICLASTIC - SANDSTONE, TURBIDITE

SYENITE PORPHY DYKE

HORNFELSED VOLCANICLASTIC

GEOLOGY - STRUCTURE

////// SHEAR ZONES

AVA FLOW BRECCIA

PORPHYRY

ALTERATIONS

	CHLORITE ALT. OF MAFICS	KSPAR VI AND DYK	EINS ES	EPIDOTE VEINS. AND ENVELOPES	EPIDOTE PERVASIVE
D BLANK	NIL	Tr. 1/m	etre	NIL	NIL
	WEAK	minor veins + d	lykes 1-2 ·	0-2%	WEAK
	•	3-4/1	metre	2-5%	
	MODERATE	5-6/r	netre	5-10%	MODERATE
		7- 8/n	nétre	10-25%	
	INTENSE	Intense floodi	ing or dyke -	25%	INTENSE
ALTERATIONS	BIOTITE		<u>MINE</u> % Py, Po,c	PALS	STRUCTURE VEINS/METRE FRACTURES/METRE
I BLANK	NIL		NI	L	0 - 5
ब	WEAK		Tı	:	6 - 10
	•	•	Tr	1/2%	11 - 15
	MODERATE		1/2 -	1%	16 -20
E 4			· 1 -	2.5%	21 - 25
	INTENSE		2.5 -	5%	26 - 30

15

variable concentrations from 1 to 2% in the interval 20m to 38m. From 38m to the end of the hole, pyrite ($\stackrel{+}{-}$ pyrrhotite + trace chalcopyrite) is the dominant sulphide.

Assuming the granite dykes and k-feldspar veins occur in fracture systems that are directly related to the source intrusions, such an intrusion would lie either laterally, to the northeast, or at depth to the southwest based on the following geometry:

DIAGRAMETRIC CROSS SECTION OF STRUCTURE IN CDH 79-7

Facing North West

Since we know monzonite outcrops northwest of the hole it is assumed the source intrusion of dykes and veinlets in hole CDH 79-7 is located (in a belt?) west of Trench #3.

iii) Discussion of Results:

The widespread occurrence of disseminated and vein concentrations of magnetite and specularite and of fracture fill tourmaline, in the upper trench area, indicate a hypothermal environment of deposition. The abundance of magnetite, specularite, native copper and cuprite in gold bearing veins and a relative paucity of iron and copper sulphides suggest iron-coppersilver-gold rich, sulphur-poor solutions circulated in the upper conduit system of the volcanic pile. Holes CDH 79-3, 4, 5, drilled on magnetite veins encountered only minor sulphides. Holes 1 and 2 drilled in the vicinity of the syenite porphyry exposed in the upper trenches contained concentrations of up to 5% disseminated pyrite with lesser pyrrhotite and copper. The sulphides are associated with intervals of k-feldspar and epidote fracture-fill veining and with syenite dykes. The higher concentrations of sulphides indicate the proximity of sulphur bearing intrusions (exposed in nearby bedrock).

The high sulphide concentrations cored in holes CDH 79-6, 7, reflects the pervasive biotite, and chlorite alteration, k-feldspar veining, granite dykes and floodings; all testify to the close proximity of an intrusive source rock. The nearby outcrop of monzonites cut by wide spaced fractures containing pyrite, chalcopyrite and minor epidote, found on line 61N, 94E is a possible source rock. The granite dykes in hole 7 may be small scale, quartzk-feldspar rich contact phenomena of the monzonite or an indication of a separate granitic source; as yet undefined in the area.

Certainly, the magnetite-pyrrhotite rich biotite hornfels exposed in Trench #3 and drilled in CDH 79-6 and 7 adequately explains the linear magnetic high which crosscuts the southern claims area. The question of multiple intrusion; for example, a monzo-diorite edge

ļ

phase to an as yet undefined, granitic mass, remains.

As regards the assay data of core from the drilling program, a quick look at the results in Appendix 3 supports the following notes:-

ļ

a) In hole 1 the calcite healed breccia at 4m contains minor silver and gold values associated with chalcopyrite and pyrite. The area of k-feldspar veining from 15m - 18m contains little economic sulphide. The syenite dyke contains much copper as chalcopyrite and higher than background (60 ppb) gold values in the interval from 21m to 24m. The interval 27m - 30m contains 420 ppm copper indicating the presence of chalcopyrite in the section, which probably occurs in veins and bands at 27m.

b) Hole 2 contains little in the way of economic precious or base metal content.

c) Hole 3 definitely intersected the "No. 1" vein in the 11m -13m area or more particularly in the 11.8m to 12.4m interval since copper (9500 ppm) and gold (120-220 ppb) values are very anomalous in these zones. The drill samples were analyzed by geochemical assay and results should be taken as a crude indication only of true available values. The difficulty of poor recovery in the zone of interest also limits the validity of the analyses.

d) Hole 4 also intersected the "No. 1" vein in the sample interval 11.1m - 12m with a possible extension from 12m to 13.1m as evidenced by anomalous copper (1030 - 3100 ppm) and gold e) The results from hole 5 indicate the "B-5" vein was not intersected and either pinches out or dips less steeply to the southwest.

f) The results of chip samples across the "B-5" vein (sample 47-153) and the "No. 1" vein (sample 47-154) indicate highly anomalous values in copper and gold. These reults appear to approximate the values obtained during detailed sampling by Croydon Mines.

g) A chip sample of massive sulphide occurring in Trench #3 metavolcanic rock, returned anomalous values in copper (10,000 ppm), silver (5 ppm) and gold (1,060 ppb). The result is perhaps significant in that it implies the gold (and silver?) is bound with chalcopyrite, pyrrhotie and pyrite in a sulphide rather than with an oxide (magnetite) phase. Again, the results are biased by sampling and analytical method and should be regarded as an indication only.

h) Analyses of core from CDH 79-6 and 7 confirm in a general way the sympathetic nature of copper and gold values. Anomalous results were obtained for copper and gold in hole 6 from 1m to 3.4m (720 ppm, 110 ppb) and in hole 7 from 3m - 6m (440 ppm, 80 ppb), 15m - 18m (260 ppm, 50 ppb), 21m - 24m (374 ppm, 410 ppb) and from 48m to 52.1m (270 ppm, 50 ppb).

The level of copper-gold values is uneconomic in the area tested. Core recovery was generally good in the intervals analyzed

ļ

but some allowance must be made for analytical method in assessing the tenor of gold values.

ŧ

6. CONCLUSIONS:

The CAT claims host hypothermal occurrences of copper, silver and gold mineralization. Copper-gold $\frac{+}{-}$ silver mineralization exhibits sympathetic variation in two areas of investigation. In the upper trench area copper-gold $\frac{+}{-}$ silver occur predominantly in an oxide phase in magnitite, quartz, tourmaline, specularite veins. Drilling in holes CDH 79-3 and 4 confirm the persistence of the "No. 1" copper-gold-silver vein to a vertical depth of 9.5m. Grade continuity of vein surface assays at depth are suggested but are not confirmed by the drilling program, due to poor core recovery and geochemical analytical technique.

In the lower trench area copper-gold mineralization occurs with pyrite and pyrrhotite in a sulphide phase. Drilling in Trench #3 indicates the presence of 1 - 6% disseminated chalcopyrite, pyrite and pyrrhotite in magnetite rich, biotite hornfelsed volcanics intimately intruded by k-feldspar veinlets and granite dykes. The prevalent sulphide phase indicates proximity to: a) monzonite intrusion located nearby to the west in outcrop or b) granitic intrusion located at depth to the southwest.

The prominent, northwest linear, magnetic anomaly in the southern claims area is caused by magnetite-pyrrhotite rich biotite hornfels in apparent contact with monzonite intrusion.

Drilling in the upper trench area in 1977 and 1979 indicates that CAT Hill is underlain by weak to moderately propylitically altered, andebasaltic flows and volcanic clastics. Moderate potassic and chloritic alteration of augite porphyry is noted in contact areas of syenite porphyry. It is most likely that hypothermal minealization on the CAT claims find a source in a granitic mass lying southwest of the Trench #3 area, which has a monzo-diorite contact phase with the local Takla volcanics.

ļ

The copper-gold mineralization at the CAT claims may indicate the presence of an as yet undefined "porphyry" source. Structural considerations in CDH 79-7 suggest that such a source rock may lie west and south of the Trench #3 area.

7. RECOMMENDATIONS:

The economic potential of the copper-gold magnetite veins is limited to a very small recovery operation and is not of interest to BP. It is recommended that the BET 1 option be allowed to lapse.

The economic potential of the sulphidized contact zone has been drill tested, over a small area, with low grades of copper and gold in selected core assays.

Further trenching and drill testing of the contact zone will be expensive due to conditions of heavy timber and variable but commonly deep fluvial overburden. It is recommended that further work in the zone be restricted to geophysical techniques such as Induced Polarization.

The "porphyry" copper-gold potential of the valley areas surrounding CAT Hill remains untested. An I.P. survey is recommended for the valley areas, particularly the area west and south of Trench #3. APPENDIX 1 STATEMENT OF COSTS 1

STATEMENT OF COSTS FOR CAT-BET CLAIMS

÷ş

1)	LABOUR:		Subtotals
	M. Bradley (Proj. Geol.):	July 27-31; Aug. 3,6-19,22,24,29; Sept. 1-30; Oct. 1-5,9,10; Nov. 26-30; Dec. 4,5 71 days 0 \$110/day	\$ 7,810.00
	B. Clark (Geol.):	July 24; Aug. 27,28,31; Sept. 1-3,5,7,9-11,13,15,8-26 28-30; Oct. 1-11	3,895.00
	J. Lemay (Asst.):	July 24,26-31; Aug. 1-13,15-23,28-30 32 days @ \$55/day	1,760.00
	N. McGarry (Asst.):	July 24,26-31; Aug. 1-13 20 days @ \$55/day	1,100.00
	S. Hoffman (Geochemist):	Aug. 22 1 day @ \$132/day	132.00
2)	FOOD AND ACCOMODATION:		
	M. Bradley	55 man days	
	B. Clark	36 " "	
	J. Lemay	30 " "	
	N. McGarry	15 " "	
	S. Hoffman	<u>1</u> " "	
		<u>137</u> man days x \$15/man day	2,055.00
3)	CONTRACTORS :		
	a) Bulldozer:- (Nielson	Equipment Rentals Ltd.)	
		lar: \$65.00/hour plus 10 gallons/hour fuel @ 1.30/gallon	
	Mobilization - Demo Construction of Tot Trenching:	biliazation: 14 hours e-Trail: 15 hours 22 hours 51 hours @ \$65.00/hour 51 hours x 10 gal/hour x 1.30/gallon	3,315.00 663.00

b) <u>Slashing</u> :- (Nielson Equipment Rentals Ltd.)	<u>Subtotals</u>
Straight Time 40 man hour x 8.00 Overtime 5 man hour x 12.00 4% Holiday Pay Cost plus 25% Asst. for Slasher 19 hours - 3.00/hour Power Saw Rental \$2.00/hour x 45 hours	\$ 320.00 60.00 15.20 98.80 57.00 90.00
c) <u>Drafting</u> :- (L. Glaser)	
20 hours x 9.00/hour	180.00
d) <u>Drilling</u> :- (Drilcor Industries Ltd.)	
 i) Coring 444.5 feet @ \$17.25/foot 258.0 feet @ \$16.75/foot ii) Standby Time: 5.5 hour @ \$35.00/hour iii) Moving Time: 90.0 hour @ \$25.00/hour + 15% iv) Waterline: over 1,000' at \$200 plus \$0.25/foot over 1,139' v) Core Boxes: 34 @ \$6.65 + 4% sales tax 	7,668.00 4,322.00 193.00 2,588.00 485.00 235.00
4) <u>RADIO TELEPHONE</u> : (B.C. Telephone Co.)	
July: \$34.16; Aug: \$219.98; Sept: \$226.45; October: \$45.57	526.00
5) TRAVEL AND TRANSPORTATION:	
a) Fixed Wing Aircraft: \$862.00 b) Taxi and Bus: 119.00 c) Truck Rental (Red Hawk Rentals Ltd.)	- - -
<pre>tax + \$60.00/mo. insurance. Aug. 1 - Oct. 9/79. 1,755.00 d) Meals (during Mobilization and Demobilization) 320.00 e) Accomodation (during Mobilization and Demobilization) 284.00 f) Gasoline 765.00 g) Freight (Mobilization-Demobilization and Supply) 1,234.00 Subtotal: \$5,339.00</pre>	

·*****

Claim 20%

A _ 4

6)	HELICOPTER: (Northern Mountain Helicopters)	Subtotals
	5.5 hours @ \$330.00/hour plus fuel = 2,060.00	
	Claim 50%	\$1,030.00
7)	MATERIALS & SUPPLIES:	
	Topofil string, flagging, cedar lathes, lumber and miscellaneous office supplies Propane fuel	228.00 32.00
8)	RENTALS:	
	Magnetometer (Phoenix Geophysics) July 22 - Sept. 19 (\$11.00/day)	679.00
	E.M.16 (Geonics Limited) July 20 - Sept. 27 (\$93.00/week)	850.00
9)	ANALYTICAL SERVICES:	
	a) <u>Geochemical Assay</u> (Rossbacher Laboratory Ltd.)	
	32 Geochem. Assay for Cu/Ag @ \$1.50/sample; Au @ \$2.50/sample;	160.00
	rock preparation @ \$1.00/sample 1 Geochem. Assay for Sn	2.00
10)	REPRODUCTION:	
	Maps and Report Text	100.00
	Grand Total:	\$41,717.00

APPENDIX 2

STATEMENT OF QUALIFICATIONS

ł

STATEMENT OF QUALIFICATIONS

I, Michael D. Bradley of #1007-1111 West Hastings Street, in Vancouver, in the Province of British Columbia, Do Hereby State:

- That I am a graduate of the University of British Columbia, Vancouver,
 B.C., where I obtained a B.Sc. degree in Physics-Geology in 1973.
- That I obtained an M.Sc. degree in 1975 from Scripps Institute of Oceanography, La Jolla, California.
- 3. That I am a member in good standing of The Canadian Institute of Mining and Metallurgy and the Prospectors and Developers Association.
- 4. That I have been active in mineral exploration since 1968.
- 5. That I have practiced my profession continuously as a staff geologist for BP Minerals Limited, since 1975

chael D. /Bradley BP Geologist

April 13, 1979 Vancouver, B.C.

List of Qualifications - W.R. Clark

BSc 1976	The University of British Columbia (Geology)
1977/1978	Unclassified studies in Earth Science at the University of British Columbia
Since 1974	Actively involved in mineral exploration
	Member of the Northwest Mining Association

April 13, 1980 Vancouver, B.C.

4

, † .

APPENDIX 3

ASSAY DATA OF SELECTED DIAMOND DRILL CORE FROM HOLES CDH 79-1 to CDH 79-7 AND OF SELECTED OUTCROP

1

١

					·····		
 Sample No.	Hole	No.	Interval	Cu (ppm)	Ag (ppm)	Au	(ppm)
47-9072	CDH	79-1	3-6m	440	1.0	70	
47-9076	н	n	15-18	40	0.6	10	
47-9078	п	n	21-24	1530	0.8	60	
47-9080	п	\$1	27-30	420	0.4	20	
47-9084	CDH	79-2	3-6	226	0.6	10	
47-9088	11	ti -	15-18	30	0.4	10	
47-9092	11	н	27-30	108	0.6	10	
47~9096	u	63	39-42	140	0.4	10	
47-9100	11	н	51-54	10	0.6	10	
47-9107	CDH	79-3	9-11.8m	610	0.4	220	
47-9108	U	11	11.8-15.0	2830	0.4	60	
47-9109	n	N	15.0-18.0	896	0.4	10	
47-9113	CDH	79-4	6-9.Om	298	0.4	60	
47-9114	н	ŧ١.	9-13.1	920	0.4	10	
47-9118	CDH	79-5	9-12m	108	1.2	20	
47-9121	Bi -	11	18-21	276	0.4	10	
47-9122	13	11	21-23.2	290	0.4	10	
47-9123	CDH	79-3	11.8-12.4m	9500	0.4	120	
47-9124	CDH	79-4	11.1-12.Om	3100	1.4	6200	
47-9125	CDH	79-4	12-13.1	1030	0.4	1200	
47-9126	CDH	79-6	1-3.4m	720	0.6	110	
47-9128	CDH	79-7	3-6m	440	0.6	80	
47-9132	U	11	15-18	260	0.6	50	
47-9133	11	p	18-21	190	0.6	10	
47-9134	11	IT	21-24	374	0.4	410	
47-9137	11	**	30-33	86	0.6	10	
47-9139	11	11	36-39	316	0.6	20	
47-9143	11	11	48-52.1	270	0.6	50	

TRACE ELEMENTS (PPM)

÷.

.___

.

Sample No.	Description	Cu	Мо	Ni	Ag	W	F	Au(PPB)
	TRENCH #3:							
47-150	Limonite Fracture Zone.	540	2	40	0.2	0	470	10
47-151	Metavolcanic	80	1	36	0.2	0	510	10
47-152	Gossan in Fracture Zone.	2260	1	44	1.2	0.	350	400
47-153	Magnetic vein at CDH 79-5	1040			0.6			330
47-154	Magnetic vein at CDH 79-3,4	2126			3.8			41000
47-155	Metavolc. + FF Tourmaline near CDH 79-5	700			0.8			50
47-156	Massive py-po-cp in metavolc Trench 3	10000			5.0			1060

.

77

APPENDIX 5

ŧ

,

MAPS

Figure: 1	•	CAT CLAI	MS Regional	Loca	itio	n Ma	p.
2	2.	CAT-BET	CLAIMS Locat	ion	Map	(1:	50,000)
3	3.	Geology Roads an	Map of the (d Diamond Dr	CAT (nill	CLAI Hol	MS s es (howing Trenches 1:12,000)
4	1.	1979 Dia Area, No	mond Drill H orthern CAT (lole CLAIN	Loc 1S (atio 1:1,	n Map Trench 200)
Ę	5.	Southern (1:2,400))	- Gr	roun	ıd E.	M16 Survey
. 6	5.	Southern (1:2,400	CAT CLAIMS	- Gi	roun	nd Ma	gnetic Survey
7	7.	Detailed	I Ground Mag	netio	cs -	• Tre	ench 3 (1:305)
8	3.	Geology	of Trench 3	(1:	305))	
9	9.	Summary	Geological	Log	-	CDH	79-1
1(Ο.	It	13	н	-	CDH	79-2
11	1.	H	11	11	-	CDH	79-3
1:	2.	D	п	11	-	CDH	79-4;6
1:	3.	н	n	U	-	CDH	79-5
14	4.	11	31	11	-	CDH	79-7

.

ł

APPENDIX 4

1

DETAILED GEOLOGICAL LOGS FOR DIAMOND DRILL HOLES CDH 79-1 to CDH 79-7

;

	-	-
- 1	•	-3
1		

7				-	DRILL	LUG	Logged by		Clark.				SHEE	<u>, I IN</u>	<u>v.</u>
						N	ORTH		EAS	ST	ELEV	ATION -	•	A	
	CAT	PROPI	ERTY	0.0	DINATES								2		
LUCATION	DTED		DATE CONDIE		I I I I I I I I I I I I I I I I I I I		1					TOTAL DEPTH	ног	F NO	- I
DATE STA			DATE COMPLE		SURVEYS	-			•		1000 0120		D.0	<u>-</u>	4
							ll		l			l			
DEPTH	CO	RE	4						ALTERA	TION	MINEDA		516		JRE
From To	Length	%Rec	;	·····•• <u>·</u> ·····························		<u></u>			ALIENA			LIZATION	F	V/m	r/1
	2 m	89	8.1 m chr	ysocolla	on fracture 35	1					Sulphid	e nil.	40° 70°	12	9
			8.4 m 1 c	m shear 7	0° minor chrysocol	la + epid	ote					1 [°]	_50°		
								8	.9 - 9.0 m	weak diss.	Ir. Cu	as chrysocol	ago°		
			9.9 m - 1	2.3 m chr	vsocolla often see	n on frac	tures.	e	pidote alte	rations.			60°	8	11
		(8)	9.8 - 10.	0 m Inte	nsely fractured.	····			usty fractu	res.			40°		
											- 			┟───┤	
	2 m	62	10.4 - 12.	3 m more	limonite on fractu	res.					Sulphid	e nil.	50°	14	14
	-		10.4 - 11.	0 m minor	native Cu ^I cuprid	te					Cu as c	rysicolla +	70°		
			11.1 - 11.	6 m area	of target vein poo	r recover	y material	1	1.1 - 12.3	m some	native	Cu ⁺ cuprite?	15°		ļ
	-		from vein	walls wit	h magnetite and ep	idote are	present.	e	pidote in v	eins and		·	70°	9	16
		(2)	11.6 - 12.	3 m some	epidote in fractur	es + mino	r native Cu	u f	ractures.				25		
			on Tractur	es - cupi							+				
	1.1	89	12.2 - 12.	3 m Inte	nsely fractured						Sulphid	e nil.	15°		
											-		45°	18	16
			12 9 m chr	vsocolla	on fracture.	•					Tr. cu	as chrysocol	1a25°		
				93000110							+ nativ	ve Cu ±'	60°		
		(3)	•								cuprite	• •			
										· .					
2 1															ļ
ND OF															
OLE						NRTH EAST ELEVATION ATES HOLE SIZE TOTAL DEPTH 1 SURVEYS HOLE SIZE TOTAL DEPTH 1 ITHOLOGY ALTERATION MINERALIZATION racture 35 ^o Sulphide nil. Tr. Cu as chrysocolla inor chrysocolla + epidote 8.9 - 9.0 m weak diss. Epidote alterations. .olla often seen on fractures. sepidote alterations. Sulphide nil. .vg fractured. Tr. Cu as chrysocolla + Sulphide nil. .olla often seen on fractures. Sulphide nil. Cu as crysicolla + .vg fractured. rusty fractures. Sulphide nil. .vg cuprite //ractures. Sulphide nil. .vg cuprite //ractures. Sulphide nil. .vg cuprite //ractures. Sulphide nil. .vg cuprite III.1 - 12.3 m some epidote in veins and .vg fractured Sulphide nil. Tr. cu as chrysocolla + .vg fractured Sulphide nil. Tr. cu as chrysocolla + .vg fractured Sulphide nil. Tr. cu as chrysocolla + .vg fractured Sulphide nil. Tr. cu as chrysocolla + .vg fractured Sulphide nil. Tr. cu as chrysocolla + .vg fractured Sulphide nil. Tr. cu as chrysocolla +									
			- · · · ·		-										
			•	* • 4	• s ∌										ľ

				•		DRILL	LUG	Logged	by Bil	l Clark.					SHEE	1 11	<u> </u>
							N	ORTH			EAST		ELEV	ATION	ļ ,		
		AT F	PROPE	RTY .	co-0	RDINATES	-		÷		•				! '		
DATE	STARTE	D		DATE COMPLE	TED			[Ī	HOLE SIZE	TOTAL DEPTH	HOLE	NO	•
		•				Strike of Hole	Azimuth	50 ⁰		Plunge	51 ⁰	N.E.	I-EX.	13.1 m	D.D	.н.	4
DEP	тн	co	RE	1		· ·			L.,						STR	υςτι	JRE
From	To	Length	%Re			LITHOLOGY				ALTE	RATIO	N	MINERA	LIZATION	F	v/m	F/'
Om .	6.5 m	2 m	85 (9)	Large tur fragments sandstone dark grey up to 15 wide and Moderatel is magnet 01 m 15 - 1.1	bidite? co of augito composed to black cm wide, au made most y fracturo ic. dyke 30° m dykes ~	parse grained sand e porphyry grading of volcanic mater colour. Sedimen ugite porphyry dyk ly of quartz -feld ed. Weak limonit augite porphyry. 80% of rock conta	stone with down to a ials. Ge ts are cut esVein spar -pink e on fract cts 35° to	fine g nerally by num s are <u></u> feldsp ures.	3 cm rained a erous, 1 mm ar. Rock	weak per alterationear dyk .69 chlorite 1.0 - 1. chlorite	vasive on. Bes on in s es. m moder altera 5 m mod altera	chloriț t ed. ate tion. erate tion.	e Sulphide	nil.	30° 80° 70° 55° 55°	3	16
		2 m	97 (7)	0 - 3.2 m 2.6 - 2.8 3.2 - 4.0	coarse g m dyke 4 m medium	rained 5° n grained		-		2.8 - 2. chlorite	9 m mod altera	erate tion.	Sulphide	nil.	20° 10° 40° 65° 40° 30° 60°	4	12
		2 m	85 (7)	4.0 - 4.3 4.3 m 4 4.3 - 6.0 5.2 m 2 5.3 - 5.6 5.7 m 2	m coarse cm wide au m mediur cm augite m intens cm Augite	grained ugite porphyry dy n + fine grained porphyry dyke ~ 3 sely fractured porphyry dyke	ke 60° 0° .			5.1 - 5. alteratio caused b Feldspar Alteratio epidote	2 m wea on of m y pink veins. on is p + pink	k orango atrix quartz robable feldspa	Sulphide	nil.	10° 30° 40° 10° 10° 20°	9 8	13
6.5 m	13.1 m	2 п	96	6.0 - 6.5 appears to Black to diameter a fractured - pink, a feldspar.	m fine gr o be ∼90° dark grey and compri and compri . Veins few veins Rock is	augite porphyry. augite porphyry. ise ~ 3.5% of rock ∠ 2 mm wide visua of chrysocolla + magnetic. Minor	ct is not Phenos 2 Modera lly quartz milk quar limonite	seen bu 5 cm te inte and fe tz and/o on fract	t in nsely ldspar or tures.	Generall Pervasiv alteratio	y weak e chlor on.	- ite	Sulphide Tr. cu as	nil. chrysocolla	30° 60° 55° 60° 85°	8	11
			(8)	7.2 m chi	rysocolla	on Fracture 20°	•	•	•••		•						

P FORM NO. 75-1

۰.

.

				DRILL	LOG	Logged	by Bil	Clark.					SHEE	TN	10.
					N	ORTH	<u></u>		EAST		ELEV	ATION			
LOCATION	САТ	CLAI	MS CO-O	RDINATES							. ·		3	}	
DATE STAF	RTED		DATE COMPLETED								HOLE SIZE	TOTAL DEPTH	HOLI	E NO).
				SURVEYS									D.[D.H.	
DEPTH	CC	RE						AL 77					STR		URE
From To	Length	%Rec		LITHOLOGY				ALI	ERATIO	N	MINERA	LIZATION		∨⁄m	F/
	2 m	66									Sulphides	nil	10°	7	20
													75°		
			16.8 - 16.9 m Ir	tensely fractured.				a series					65°		
			17.2 - 20.4 m Ir	tensely fractured.			·			•			20°		14
		(1)						}					50°	2	
													Pu		
	2 m	12			,						Sulphides	nil	80°	3	8
	2										ourphraes		Ĩ		
		(1)												0	0
												<u></u>			-
	1.5	n 10													
			20.4 - 21.5 m no	core recovery							Sulphides	nil	85°	4	a
			2 2										β5°	ľ	-
													0 1 0	0	0
										· · · · · · · · · · · ·	<u> </u>		<u>– ž č</u>	<u></u>	+
END OF HOLE															
					te en en										
				· · ·											
			د.												ł
									•						
				•				1							1 -

	$\mathbf{\nabla}$	· · · ·		•		DRILL	LUG Logge	a by bii	i tiark.	الالور الباري والمروا المواجعة على م				Shee	<u> </u>	
Γ							NORTH			EAST		ELEV	ATION .	2		3
ļ	LOCA	TION	CAT	PROF	CO-O	RDINATES		······································			<u> </u>		TOTAL DEPTH	NOIE	NO	
╞	DATE	STARTE	•		DATE COMPLETED	. SURVEYS				•		HOLE SIZE	IVIAL DEPTR	D.D	.н.	3
	DE	ртн	COF	E						RATIO	·	MINERA		STRU	JCTU	RE
m	From O m	<u>To</u> 20.4 m	Length 2 m 2 m	<u>% Rec</u> 77 (3) 57	8.0 - 8.4 m Inten 8.1 - 9.5 m all ve 8.2 - 8.4 m fine 8.2 m chrysocolla 8.7 - 8.9 m core r 9.9 - 10.9 m Inte 11.3 m minor chrys 11.9 - 12.4 m quar	sely fractured ans have pink-red fe grained black dyke? seen on a fracture e-drilled (dropped c ensely fractured.	ldspar ore) spar veins.	Rock	8.1 - 8.2 bleaching epidote a with quan feldspar 9.8 - 10 Intense of alteration 10.9 - 1 to intense alteration	2 weak g + mind associa rtz-red veins. .7 m mod chlorite on 1.7 m mod chlorite on 2.4 m m	or ted derate e oderate rite inor	<pre>////////////////////////////////////</pre>	e in veins as chrys-	60° 40° 35° 35° 70° 10° 50° 40° 70° 60°	16 6	16 14 14
2 m			2 m	(0) 30	is rusty, same chr target vein. No First quartz vein 12.0 - 13.6 m Int	rysocolla fractures,p recovery of veins or .5 cm 70°. ensely fractured	ossible edge other wallro	of ck.	epidote.	•		Py nil Tr. cu as + minor cp	chrysocolla in quartz	20°	5	11
m			•	(0)	13.0 - 13.2 m chry target vein. Som copper.	vsocolla on fractures ne epidote in small v	, could be pa eins with the	rt of				vein 12.1	m	40° 40° 25° 40°	8	13
·			2 m	29	14.0 m chryocolla 14.9 m chrysocolla 15.0 - 16.4 m inte 15.8 m S ome chunks	on one fracture a on one fracture 20° ensely fractured a of epidote with mag	netite. Core	from n?	-		· · ·	Sulphides Tr. cu as	nil chrysocolla	60° 50° 80°	4	5 9
16 m 75-1				(i)			ver							•		

				<u></u> .	•				ogged b	γ UIII	OF GEIXE						1 11	<u> </u>	
								N	ORTH			EAST		ELEV	ATION .				
	LOCA	NOITA	CAT P	ROPE	RTY .	CO-01	RDINATES			•						1			3
	DAT	E STARTE	D		DATE COMPLET	ED				•				HOLE SIZE	TOTAL DEPTH	HOLE	NO		
	Septem	ıber	19	79	September	1979	. SURVEYS Strike of Hole	Azimuth	252 ⁰		Plunge	49 ⁰	W	I-EX	21.5 m	D.D	.H.	3	
	DE	PTH	COF	٦E												STRU	JCTU	IRE	Groph
0 m	From	Tļo	Length	%Rec			LITHOLOGY			•	ALT	ERATIO	N	MINERA	LIZATION	F	v/m	F/'m	Log
	0 m	20.4 m	2 m	68 (3)	Dark grey t Augite phen Rock. Fra magnetic, m are ~ 1 m which can b veins. Mi fractures t .8 m: 1 cm 3 cm chlori	o black os <u>4</u> 5 c ctures m ore in a m wide a e pink o nor limo hroughou quartz-f te alter	augite porphyry vo m in diameter. Co oderate to intense ltered sections. nd composed of qua r red. There are nite + black man t the hole. eldspar-magnetite- ed envelope.	lcanic flo mprise ~3 . Rock i Most veins rtz ± Fel some mino ganese sta pyrite vei	w? rocl 5% of s very dspar r calcin ins on n 30°, w	k. te ith	Generall chlorite of both matrix.	ly a wea e altera phenos	k tion and	<∽1% pyri	te in a vein.	85° 60° 15° 70° 80° 40°	_4 _3	14	
. 2 m	1		2 m [°]	62					· · · · ·					Sulphides	NII	65° 50° 50°	5	9	
-				(5)	of porphyry contact. 3.5 m 2 cm	fine g , could 20° fine g	rained dyke? look be vol derived sed rained black dyke?	s much lik iment at a 20°	flow	×						70° 40° 45° 50°	7 ,	8	
4 m 6 m			2 m	108	5.2 - 5.3 m chlorite al 5.5 - 5.6 m not.seen.	dark g teration dark g	rey green fine-gra rey-green, fine-gra	ined dyke? ined dyke?	30° mo contac	oderate cts	4.1 - 4. chlorite with mir around r quartz v	.3 m Mod e altera nor epid red feld veins.	erate tion ote spar-	Sulphides	Nil	20° 35° 25° 80° 30° 40° 15° 70°	10	9	· · · · ·
- m			2 m	68	6.1 m 3 cm veins with	zone co 1· mm to	ntaining small qua 5 mm breccia fragm	rtz-red fe ents of ho	ldspar ost rock	. 45°			- <u>1999</u> - 1992 - 199 - 1992 -	<~1% pyri	te in vein	. 55° 50° 60° 80° 55° 40°	9	6 9	
P FORM NO. 75+1						• •	r		• .			т.							
	1	1	b	1	1									3		1 .	ł	}	11

W		DRILL LOG			Logge	d by BII							ET NO	<u>).</u>				
												EAST		ELEV	ATION	ļ _		
1004		CAT	CLAI	MS	00											/		/
	E STARTE	CAT CLAIMS CO-ORDINATES							1	1		T	1	HOLE SIZE		ног	F NO	1
	E STARTED DATE				1	SURVI	EYS									D.I	D.H.	2
DE	РТН	COF	RE													STF	RUCTU	RE Gr
From	To	Length	%Rec	·		LITHOL	OGY				ALT	ERATIO	N	MINERA	LIZATION	F	V∕m	F/ m L
		2 m	50		•									Sulphides	nil	80° 25°	6	10
	61.0 m - 62.0 m inter 61.0 m l cm qtz-felo						ractured light gr	een vei	n 20°						70° 25° 80°			
	(1) $61.9 - 62.1 \text{ m light gree}$ + minor qtz + calc. 2 m 53 63.0 - 64.0 m lntensely 63.3 - 63.8 m weak epide					ght green v c.	eins with	n epidote	e altera	ition	}		····.			80° 70°	8	23
													60°	9	13			
Ň						tensely fra	ctured.											
				63.3 - 63 light gre	.o m we en veins	• •	alteratio	on assoc	lated WI	. tn	·····				199 .	25°	8	18
END OF HOLE					<u></u>		<u> </u>											
														•	•			
													· .					
				•														

· · · [NORTH			EAST		ELEV	ATION				
	1004	TION				CO-OF										4		6	
	DATE	STARTE	ED		DATE COMPLE	TED	SURVEYS				•			HOLE SIZE	TOTAL DEPTH	HOLE D.D	NO.	7	
26 m	DE	этн	co	I RE			<u> </u>	I	I	1						STR	UCTU	RE	Gr. Flool
	From	То	Length	%Rec			LITHOLOGY				ALIE	RATIO	N	MINERA	LIZATION		V/m	F/ m F	ber m
28 m			2 m	104	27.0 - 27 27.5 - 29	7.2 m Int).3 m Hig	ensely fractured h in granite floo	ding						2% Py Tr. % Po Tr. % cp		50° 55° 50° 30° 15°	12	8	6 7
30 m			2 m	88 (8)	28.1 - 28 29.2 - 29	3.8 m Int 9.4 m Int	ensely fractured ensely fractured						-	4% Py Tr. % Po Tr. % cp		40° 50° 50° 60° 50°	14	19 19	6
22			2 m	89 (6)	30.5 - 30 31.2 m 3 31.9 - 32	0.6 m Int 3 cm Brec 2.0 m Int	ensely fractured cia 1 mm frag. c ensely fractured.	alcite	nealed 50'	2	31.3 - 3 chlorite shearing with cal fracture	2.3 ble rich z 40° cite he d	eached cone ealed	1% Py 1 1/2% Po 1 1/2% cp		50° 30° 60° 50° 40°	15 25	17 14	4
32 m			2 m	-98-	33.8 - 3	4.1 m G	ranite Flooding		• • • • • • • • • • • • • • • • • • •			του 7. Το του 7. Το του 1. Το το του 1. Το	•••	2% Py Tr. % Po Tr. % cp		50° 50° 35° 45° 65°	20	8 9	3
		-	. 2 m	87	34.0 m 34.5 - 3 34.9 - 3	2 cm epid 4.7 m G 5.1 m I	ote veins with son ranite Flooding ntensely fractured	ne py +	cp 35°					Tr. % Py 1% Po 1 % cp		50° 60° 5° 65°	13 113	9	5
36 m																			

*

¥.*

- U	7						DRILL	LUG	Logo	jea by t	SITI GIAIK	•						<u>. </u>	
								NOR	тн			EAST		ELEVA	TION	}			
						<u> </u>	DUNATES	-								3		6	5
		STADIE	<u> </u>		DATE COMPLET		RUINATES					[HOLE SIZE	TOTAL DEPTH	HOLE	NO.		
-	DATE	STARTE	<u> </u>		DATE COMPLE		SURVEYS									D.C).Н.	7	7
			<u></u>								 		l			ISTR	исти	RE	l Gr
	DEP	TH _	COR	E	4		LITHOLOGY				ALTE	RATIO	N	MINERAL	IZATION	F	V/m	F/m	FI
	rom	То	Length	Vo Rec													-7111		126
			2 m	78	16.2 m	.5 cm qua	artz – calcite vein	ı banded 30°						2% Py		ບ່ິນ			
					16.6 - 16	5.8 m li	ntensely fractured							Tr. % Po		70 80°			l
														Tr. % cp		35°			
				(1)								•				80°			
				(4)	17.4 m 1	1.5 cm (Granite Dyke 45°				17.9 -	8.0 m	High			50-			
1										•	in epido	ote, ass	ociated	15% Py		45°	16	12	,
			2 m	98	13.0 - 18	8.3 m li	ntensely Fractured				oranite	artz ve	ins +	Tr. % Po		30°		()	
											gramer			1/4% CD		4っ 5.0 °			
						_		1 - 0						174% CP		50°	12	10	
				(7)	13.1 and	19.2 m	1.5 cm granite dyk	ke 45°								° خ خ		10	
-								······································			+		<u></u>						t
			2 m-	87										3% Py		μυ°	10	5	
														1% Po		50°			
				(-)										1% cp	•	45°	3	ś	
				()															
-					1	<u></u>											-,	11	
			2 m	93	22.1 - 2	2.3 m G	ranite Flooding 40°	,						1/2% Py		85°	'		
									,					2% Po		50°			
														1 1/2% c	р	60°	11	10	
				(6)	22 0 - 2	4 a m l	ntense chlorite alt	teration min	or							50°		10	
1			_		23.3 - 24	10° F	and with an laite										+		┥
			2 m	99	snearing	IU' h	eared with carcite							1 1/2% P	У	50°	14	13	
														1 1/2% F	0	10°			
		•					•				24.7 -	24.8 m	zone	1 1/2%	ם	50°			
			·		25.4 m	5 cm Gra	nite Flooding 45°				of epid	ote alt °	era-	,	F .	40°	12	8	
											tion /0								
				(10)														
																	1		
1											1								
	0P		•		DRILL	LOG	Logge	d by B	ill Clark.				SHEE.	<u>T N</u>	<u>).</u>				
----------	----------	------------	------	----------------	----------------------	--------------	----------	--------	------------	---------	-----------	-------------	--------------	------------	-----------	-------------			
ſ						N	IORTH			EAST	ELEV	ATION	_						
					O-ORDINATES								2			6			
	DATE STA	RTED		DATE COMPLETED							HOLE SIZE	TOTAL DEPTH	HOLE	. NO					
					SURVEYS								D.D	.н.	7	1			
ŀ	DEPTH	cc	RE				<u></u>						STR	UCTU	RE	Gr. Floo			
6 m	From To	Length	%Rec		LITHOLOGY				ALT	ERATION	MINERA	LIZATION	F	V/m	F/m	per			
		2 -		E 8 - 6 lum (Pronite Flooding						3% Pv		ا ج ۱		1				
		Z m	99	6.4 - 6.8 m 0	Granite Flooding						1% Po		600	14	17	4			
													35°		ļ				
-					· · ·					•	11. % CP		50°		1				
			(7)	77 - 91 - 1	ntoncoly fronturod				ł				50°	10	13				
8 m				7.7 - 0.1 11 1												<u> </u>			
		2 m	02	$8\mu = 91m$	ntensely fractured						12 Pv		50°	1.0	23	2			
		2 11		J. 1	intensery mactured						Tr. % Po		10°			-			
											Tr. % cp		60°		ĺ				
													70°		l				
•			(2)							··· -			10°	7	13	4			
IU m					·····	•			-) = °		<u> </u>	-			
		2 m	95								3% Py		20	9	15	4			
											1% Po		ا رو اربا						
			(6)								Тг. % ср		50°	111	1	2			
12 m										· • ·				<u> </u>	<u> </u>	<u> </u>			
		2 m	79	12.4 - 12.6 m	Granite Flooding sub	vertical					3% Py		25°	12	11	2			
											1% Po		°دو	1					
											Tr. % cp		40°						
			(4)										٥°	12	14	3			
14 m				14.0 m calcite	fractures and veins	are post	intrusiv	 e			2% Py		10°			1			
				* *		p ~~~					Tr. % Po		40°	17	13	ŝ			
											Tr. % cp		45°	,	ŀ				
													٥0°	,					
1.			(15)										20°	, - , ·	1.	6			
io m													20	Ľ/	10				

	U						DRILL	LOG	Logged	by Bil	1 Clark.					SHEE	ET NO).	
ſ					-	т	rench 3	N	ORTH			EAST		ELEV	ATION -		1.		
	LOCA	TION	CA	Т	;		ORDINATES	60 +	78		99	+ 74		Not k	nown.	1	I		6
	DATE	E STARTE	D		DATE COMPLE	TED							1	HOLE SIZE	TOTAL DEPTH	HOL	E NO.		
ſ					October 1,	1979	SURVEYS Strike of Hole	N	30 ⁰	Е	Plunge	70 ⁰		I-EX	52.1 m	D.	D.H.	7	
ŀ	DE	PTH	CORE	 :			·	A	1 <u></u>			<u></u>				STR	RUCTU	RE	âr.
) m [From	То	Length 9	/oRec			LITHOLOGY				ALTE	RATIO	N	MINERA	LIZATION	F	V∕m	F/	ger
	.8 m	52.1 m	2 m	49 (0)	Meta Volc green roc appears t and or fl grained g (original feldspar volcanic fractured veins (v C have calc Sulphides found mos fracture magnetite 08m ca	anics or k with s o be hor oodings ranite. ly phenc 4 mm i dykes ir except 0.5 cm w ite and are up tly in r fillings + Po, g	Volcanic derived s econdary biotite an infelsed from many s (up to 10 cm) of a Host rock seems t os?) of corroded loo n diameter which ma sediments. Rock where recovery is p vide) are present. there are a few sul to 6% in the forms et like disseminati . Rock magnetic fr ranite less magneti	sediments? ad chlorit small dyke pink to r to have bl oking quar ay represe is modera ooor. A Many fra of py-po- ions and a om fine-g c.	Dark g e in ma s (~ O.) ed medin ebs in p tz or nt some tely few quan cturs cture f cp and a a few rained	grey trix 5 cm) um blaces rtz ills. are	Chlorite and biot due to h and poss thermal Minor ep found wi veins an flooding in and n coarser	altera ite in ornfels ible hy alterat idote o th quan d grani . Bio ear gra grained	ation matrix sing vdro- tion. often tz ite otite anite is	1% Py 1% Po Tr. % Cp		70° 10° 50°	1	5	1
m			2 m	83	.9 - 2.7 3.3 - 6.5	m Inter m Inte	esely fractured ensely fractured.		п					4% Py 1% Po Tr % Cp		30° 59°	6	16	5
m				(2)												80°	10	18	2
			2 m	91										3% Py		30	° 8	25	4
n				(1)		19	99									10 35 65 45	。 。 11	19	2

	07							DRILL	LOG	Logged	by Bil'	Clark.					SHEE	INC	l.,	
									N	ORTH			EAST		ELEV	ATION				
	1004	TION	САТ	PRO	PERTY	CO-OF	DINATES	•									3		3	
	DATI	E STARTE	D		DATE COMPLE	TED	T								HOLE SIZE	TOTAL DEPTH	HOLE	NO.		
							SURV	EYS	A-tmuth	2250		Plunge	500	SW			D.D	.н.	5	
		סדע			· · · · · · · · · · · · · · · · · · ·	<u> </u>	STRIKE C	nore i	AZIMULI		·	<u>riunge</u>		<u></u>			STR	JCTU	RE Grop	h
	From	То	Length	%Rec			LITHOL	OGY				ALTI	ERATIO	N	MINERA	LIZATION	F	V/m	7 m Lo	1
18 m			2 m	63	18.6 - 18 18.9 m on 19.0 - 19	.8 m Aug e bleb of .7 m Inte	ite porphy py near a ensely fra	yry dyke a pink ve actured	35° in						Minor py	seen	30° 60° 20°	9 1	7	
• • • •				(2)								19.9 - 20 + pink al edge of c dyke.).2 m ep teratio prange s	oidote on on syenite			50° 60°	8	8	
20 m										. <u></u>	<u></u>				 					
			2 m	62	20.2 - 20 20.2 - 20	.3 m Gra dyk .8 m Int	vel fragmo e. Drill ensely fra	ents of o gauge. actured.	range alto	ered sye	nite				Sulphide	nil	30° 70° 45°	7	6	
			-	(1)			•										30° 70°	6	8	
22 m			1.2m	33	22.9 - 23 like core	.2 m lnt . Red a	ensely fra ltered syd	actured p enite + 1	oor recov ath felds	ery look par porp	s hyry.				Sulphide	nil	40° 30°	6	16	
				(0)						<u></u>						· · · · · · · · · · · · · · · · · · ·				-
	23.2m END O HOLE	F			Target v	ein not s	een becau	se of poo	or recover	y? or no	ot hit?									1
		• .						-												
							•													

Ľ	2	3	
•	2	,	

							N	ORTH			EAST		ELEV	ATION _		•	-	3
LOCAT	ION				CO-OF	RDINATES												•
DATE	STARTE)		DATE COMPLET	ED	SURVEYS Strike of Hole	Azimuth	2350		Plunge	50 ⁰	SW.	HOLE SIZE	TOTAL DEPTH	HOLE D.C	: NO).H.	5	;
DEP ⁻ From	гн _то	COF Length	E %Rec			LITHOLOGY	1	LL_		ALT	ERATIO	N	MINERA	LIZATION	STR F	UCTU V倫	JRE F/m	_Gri
		2 m	90 (6)	8.1 m minor 8.6 - 23.2 lath rich f porphyry dy 8.6 - 8.9 m 8.9 - 9.0 m 9.4 - 9.5 m	py-cp-p m mostly eldspar kes. Feldspa Fine gr Augite	o in 1 mm wide qua flow breccia? we - augite porphyry ar - Augite porphyry ained volcanic den porphyry dyke 70	artz veins Ided toget with some ry dyke 15 rived sand D°.	her by augite ° stone.		7.0 - 8. chlorite 9.6 - 9. quartz -	5 m mode altera 7 m:man feldsp	erate tion. y pink ar vein	Minor py- quartz ve	cp-po in ins.	60° 80° 50° 40° 30°	8 7	9	
		2 m	92 (7)	10.7 m: 2 m 11.0 - 11.2 11.8 and 12	nm wide q 2 m: Inte 2.0 m:2 m	uartz vein with m nsely fractured. m wide quartz vein	inor py-po ns with mi	-cp 35° nor py-c	p-po 30°	10.9 - 1 pink qua veins at some epi flooding	1.3 m m rtz-fel 15° dote an	any dspar with d pink	Minor py-c quartz vei	:p-po in ns.	60° 60° 70° 60° 25° 50° 40°	10	13	
		2 m	62 (3)	12.0 - 12.5	5 m Inte	nsely fractured				12.4 - 1 quartz-f 20° with and pink 13.5 - 1 chlorite	2.6 m P eldspar some e floodi 3.6 m m altera	ink veins pidote ng. oderate tion.	Sulphide r	nîl	40° 25° 70° 50° 40°	12	20 10	
		2 m	90 (3)	14.0 m: 2 m 14.5 m: 1 n 14.9 m: 1 n 15.4 - 16.8	nm wide q nm wide c nm wide c 3 m Inte	uartz vein with m quartz veins with quartz veins with ensely fractured.	inor py + cp 35° py 35°	ро		14.9 - 1 alterati with pin	5.0 m e on asso k flood	pidote ciated ing.	Minor py-c quartz vei	p-po in ns	35° 70° 40° 25° 45° 35° 30°	9	16 29	
		2 m	46	\$	•	•				16.2 - 1 laths go A one cm seen ∼ 2	6.8 m s ing pin pink v 0°.	ome k. ein	Sulphide r	ni 1	35° 10° 30°	10 5	25 13	

is.

							N	ORTH			EAST		ELEV	ATION	,			~
LOC	ATION	CAT F	ROPE	RTY	CO-OF	RDINATES									I			3
DA	TE STARTE	D	_	DATE COMPLE	TED	SURVEYS Strike of Hole	Azimuth	2350		Plunge	500	sw	HOLE SIZE	TOTAL DEPTH 23.2 m	HOLE D.C	NO. 1.H.	. 5	
D From	DEPTH To	CO Length	RE %Rec			LITHOLOGY	12111021			ALTE		1	MINERA	LIZATION	STR F	UCTU V∕m	IRE F/m	-Gro
0 m	23.2m	2 m	60 (2)	A mess of rock - wel with some derived sa rocks magr 0 - 5.9 m Feldspar a 0 - 1.0 m	dark grey lded toget augite ph andstone a netic. flow brec augite por Intensel	y green to black a her by 1 mm Felds henos. Mixed wit and small augite p ccia? welded toget phyry. y fractured.	gglomerati par lath r h fine gra orphyry dy her by lat	ic looki ich roc ained vo /kes. A ch rich	ng k lcanic ll	Weak to pervasiv alterativeins <u>+</u> pink F Rock mod intensel	moderate e chlor on. Mo 2 mm qua eldspar erate te y fract	e ite st artz o ured.	Sulphides	nil.	60° 45° 35° 80° 65°	5 7	19 17	
		2 m	80 (6)	3.3 m 2 -	1 mm wide	e quartz veins con	taining po	о-ру-ср		3.6 - 3. altered pink qua	8 m som pink by rtz-felo	e laths small dspar v	Minor po- eins.	py-cp in vein	s 70° 35° 40° 20° 55° 30° 70°	6 7	7 7	
		2 m	72 (5)	5.9 - 8.6	m Fine gr	ained volcanic de	rived sand	lstone.		4.4 m 4 epidote ocolla. 4.6 m 5 Intensel altered related feldspar	cm dis + minor cm wid y chlor zone 40 to some	s. chrys- e. ite pink	Sulphides	nil.	60° 60° 55° 20° 50°	8	12	
		2 m	73 (3)	6.2 - 7.4		ely fractured.				6.8 - 7. altered quartz-f 7.4 - 7. epidote ing of m	l m som pink by eldspar 7 m som + a pin atrix b	e laths small veins. e k flood y pink	Sulphides	nil.	85° 15° 70° 40° 60° 45° 30°	6	17	

07	•					DRILL	LOG	Logge	ed by B	ill Clark.					SHEET	NO.	
							!	NORTH			EAST		ELEV	ATION			
LOCAT	TON	CAT	PROP	ERTY	co-0	RDINATES	60)+83		99 [.]	+70		Not K	nown.	 		1
DATE	STARTE	D	(DATE COMPLE	TED					•			HOLE SIZE	TOTAL DEPTH	HOLE	10.	
						Strike of Hole	N	22 ⁰	E	Plunge	70 ⁰		I-EX	3.4 m	D.D.H	. 6	5
DEPT	тн	COR	E												STRUC	TURE	G
From	То	Length	%Rec			LITHOLOGY				ALTE	RATION	1	MINERA	LIZATION	F V/	n F/	mp
No core?		1 m	50 (1)	Meta volca and chlori small dyke Host rock of quartz moderately few small calcite. and is fou fracture. magnetite	anic? Da te in ma es or flo seems to or felds fractur quartz v Sulphid und mostl Rock i and Po	rk grey green rock trix appears to be odings of a pink m have many blebs. par ≤ 4 mm in diam red except where re reins present. Fr le is up to 8% in t y in a net-like di s very magnetic fr	with sec hornfels edium gra (origin eter. F covery is actures of he forms ss. with om fine-g	condary b ed from ined gra ally phe cock is poor. often hav of py-po some in grained	iotite many nite. enos?) A ye o-cp	Chlori and bio matrix felsin possib therma Epidot associ granit	te alter otite ir due to g and le hydro l altera e often ated wit e floodi	horn- born- born- bo- bation. th	Diss in ne small frac ~2% Po ~5% Py ~1/2% Cp	ts and in tures	10° 70° 8 70°]
		1.4m	30 (1)	1 - 2 m 1 At 3.0 m 3 3.0 - 3.4	Intensely 30 cm of m Inten	fractured. core material sely fractured.		· · · · · · · · · · · · · · · · · · ·					Diss in ne small frac ~ 2% Po ~ 4% Py ~1/2% Cp	ts and in tures.	80° 60° 4 45° 2	7 5	
END OF HOLE																	
-19	9				•												

	<u>.</u>						DRILL	LUG	Logged b	A RITT	clark.					SHEE	. I _ INC	<u>ر</u>	
								NC	DRTH			EAST		ELEV	ATION				
		TION	CAT	CLAIM	S	<u> </u>	DOINATES									6		7	
	LUCA	TAPTE	~		DATE CONDIE		I	 T					но	E SIZE	TOTAL DEPTH	HOLE	E NO.		
	DATE	JIANIE	0		DATE COMPLE		SURVEYS				•					D.1).н. 7	2	
	DEF	РТН	co	RE	 			<u> </u>	I			l			L	STR	UCTU	RE	Groph
	From	То	Length	%Rec			LITHOLOGY				ALTE	RATION		MINERA	LIZATION	F	V∕m	F/m	Log
48 m			2 m	50	48.0 - 48.	3 m Inte	ensely fractured (gravel)					Su	phides	nil	40°	7	12	
																60°			
				(2)	48.8 - 50.	l m Inte	ensely fractured		•							10°	7	23	
50 m					40.7 - 64.0	J m mino	or nematite on trac	ctures is b	ecoming	notic	able.					70°	2		
-			2 m	30							50 8 - 5	6 4 minor		ace by		70°		<i>'</i>	
						· · · · · · · · ·	i	· ···· ···· ····		• •	epidote	hematite		•		30°		-	
52 m				(2)					· · ·		flooding	of matrix		Inhides	nil	60-	4	$\frac{2}{11}$	
			2 m	19	52.0 - 60.0	um inte	ensely fractured						50	i pintaes		70°			
					1											200	11	2	
				(0)	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		···· ·· ·· ··	····· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				10			
54 m.							·····	· · · · · · · · · · · · · · · · · · ·		·····									
			2 m	11		•		· · ·					Su	lphides	nil	70°	2	,	
																20°	2	4	
																	2	5	
56 m				(0)													_	┝──┤	
			2 -	20									Su	lphides	nil			.5	
			2 11	20	1											100		[]	
							·-										1		
F9				(0)		• • • • • •	·····			• •		· · · · · · · · · ·				70°	4	8	
20 m			+									<u></u>				100			
			2 m	32									Su	lphides	nil	10-	2	111	
																45°	-	[··]	
						•									•	15°			
																800	,]		
																P	4	15	
				(0)															
				(0)							1								
······································							•												
	L			1	1						1							1/	

• \$

			CAT CI	ALMS			· · ·		NORTH			EAST		ELEV	ATION	5	-	7
	LOCA	TION				C0-0	RDINATES			1		r			· · · · · · · · · · · · · · · · · · ·			
	DATI	E START	ED		DATE COMPLET	TED	SURVEYS							HOLE SIZE	TOTAL DEPTH	HOLE D.D	NO.	2
m	DE From	PTH To	CO Length	RE %Rec			LITHOLOGY				ALTE	RATION	1	MINERA	LIZATION	STR F	UCTU V/m	₹E Gi 7/m
			2 m	63							38.2 - 41 epidote + alteration of matrix	.5 m wea feldspa n or flo	ak ar poding	Sulphide r	111	80° 55° 25° 50° 35°	5	6
				(2)	39.7 - 40.2	2 m Inte	ensely fractured.							~~ · ·		/0° 40°		
		•	2 m	93	40.7 - 46.9)m inte	ensely fractured.				40.5 - 40 epidote with mino py $\sim 45^{\circ}$.).7 m ln Floodin or hemat	tense g ite +	<1% py mos	tly diss.	45° 75° 60° 60°	17	:5
2				(3)		•	•									35° 30°	11	9
2 11			2 m	30				<u></u>	də <u>199</u>					≪l% py dis	S	80° 25°	6	3
4 m				(0)				•								80° 30°	4	4
			2 m	24										Trace cp.	seen	30°	3	6
<u> </u>				(0)	T											35° 15°	4	3
σm			2 m	75		•				·· ·····	46.8 - moderat	46.9 m e perva	sive	Sulphides	nil	40° 50° 15°	8	2
8 m				(2)			- -				epidote of matr 47.8 - moderat epidote alterat	altera ix. 48.3 m e perva + feld ion of	tion sive spar matrix	and lath-li	ke crystals.	60° 85°	10	0

12

															<u> </u>		<u></u>	<u></u>	
ELEVATION	1	ELE	ļ'	F	E	EL	ELE	<u>_EVA</u>	<u>/ATI</u>	<u>. TIO</u>	<u>10 N</u>	<u>N</u>			4	t.			-7
		i ·			•	•	•									4			/
							S175	75		TOT			DER	DTU	+		E N/		
SIZE IVIAL DEPTH	HULL .	HOLE SIZE	- HOLE	HULL .	HULE SI	ULE 512	SILE	<u> </u>	- <u> -''</u>	1017			DEP	Pin	- "			J.	2
																0.0	J. 		-
				1											1	STR	IDCT	URE	G
INERALIZATION	MII	MINEF	MII	MIN	MIN	MINE	NER	ERAL	ALIZ	.IZA	ίaτ	TIC	ON	1		F	Vm	F/1	m '
po diss.	< <u>-</u> 1%	<- 1% po	4 ⁻ 1%	4 ⁴ 1%	<< 1% p	1% po	po c) dis	iss	·s.	•				8 6 6 1 8	30° 50° 50° 10°	10	21	
· .		··· •					•	<u></u>					and the second		6	50°	ļ		
diss po + py + cp	~~1%	<<1% dis	<<1%	<i>~</i> <1% (<<1% d	<1% di	diss	ss p	ро	io +	+ f	ру	y +	⊦ cp	> 4 1 2 R	15° 10° 25°	9	18	
					· .										מיטיסיכ	55° 50° 55°	13	20	
py + cp + po stly diss some in ins	< 1% mos vei	<pre>< 1% py mostly veins</pre>	<1% mos vei	< 1% mos vei	<pre>< 1% p most vein</pre>	-1% py mostl veins	py + stly ins	' + ¢ ¦y d' ;	cp dis:	p + ss	+ r s s(po som	o me	in	אַרואַר	70° 50° 75° 20°	7	11	
	-														7	70°	10	15	
Iphides nil	Sul	Sulphi	Sul	Sul	Sulp	Sulph	lphi	nide	les	s ni	nil	1			517	50° 75°	5	13	
															7 81	75° 35°	4]]	
5 py in epidote eins	~ 1% vei	∠ 1% py veins	4 1% vei	~ 1% vei	∠ 1% p veir	<pre>- 1% py vein</pre>	py ins	y in s	in e	epi	pid	dot	te	:		35° 30° 50°	, , ,	5 : 8	;
	e ?			?												50° 75° 25° 80°	, 8 ,	3 15	
	e ?		2 2	?													75° 25° 80°	75° 25° 80°	75° 8 15 25° 80°

.

								N N	ORTH			EAST		ELEV	ATION				_
		T 1011	CAT C	LAIMS	:	<u> </u>										د ا			1
┝		TION			DATE CONDIE									HOLE SIZE	TOTAL DEPTH	HOLE	E NO.	4	
-	DATE	SIARIE	0		DATE COMPLE	TED	SURVEYS				•					D.0	о.н.	2	
								1				1			<u> </u>	ISTR	UCTU	RE	Γ
	DEI	ртн	COF	RE			LITHOLOGY				ALTI	ERATIO	N	MINERA	LIZATION	F	V/m	=/ m	ľ
Ļ	From	To	Length	%Rec	·									<< 1% py +	po in veins	35°			F
			2 m	71	-									+ diss.	po in torno	65°	10	14	
																40°			
				$\langle \alpha \rangle$							-					20°	14	23	
				(2)	19.8 - 20.4	im Inte	nsely fractured (gravel)											ł
			2 m	50						-	20.0 - 2	1.3 m m	oderate	∠ 1% po +	py diss	80°	4	11	ļ
							· · ·				chlorite	altera	tion 2 +	•		60°			
											+ minor Feldspar	?	1 +			15°		11	
				(2)							•					40°		11	
ŀ							<u> </u>					<u></u>		19 00 +	ny mostly in	55°	,†		
			2 m	6/							23.8 - 2	4.4 m w	eak	fractur	e fillings	50°	10	15	
											shearing	calcit	e -	some di	55.	20°	Ż		
						•					Chlorite	altera	tion	- NO	· •	150		11	
				(2)							moderate	weak e	pidote			40°			
ļ	<u>.</u>		<u> </u>	(2)							+ hemati	te. Fl	ooding. k	+	······································		<u>.</u>		•
	-								-10		alterati	on of a	ugite	$\sim 1\%$ po -	cp-py mostly idote in veir	150° 15 120°	21	9	
	•		2 m	102	24.4 - 28.	.4 m matr	ix black higher i	n magneti	te		phenos +	floodi	ng to	some di	ss.	409			
				.							25.6 - 2	+ reids 6 m alt	par eration			35	11	17	
											of augit	e pheno	s to			75			
					-	•					epidote	+ minor	pink						
		· .		(8)							feldspar	• 					<u> </u>		-
ſ					T											70°		15	
			2 m	94	-									∠ 1% po +	cp-py mostly.	15			
														diss.		35	•		
														1	•	75	8	16	
																20		``	
			1								-					r.			
				(5)															
					1		•												

'n.

.

┝			0.05			I			<u> </u> l			I	I	RUC	TURE	<u> </u>
\mathbf{F}	From	To	Length	%Rec	Lī	THOLOGY			ALTE	RATION	MINE	RALIZATIO	N F	Vh	1 F/ π	JGro
			2 m	93 (2)	6.1 - 6.7 m Intensely 7.3 - 7.8 m Intensely	fractured fractured	·			· · · · · · · · · · · · · · · · · · ·	<pre>41% py r some in </pre> <pre> </pre>	nostly diss veins. liss. n veins wi	• 60 20 70 50 70 35 50	° 11 ° 7 ° 7	27	
			2 m	47 (3)	9.0 m 1 cm red, hemati 8.8 m - 9.3 m Intense	ite-rich vein w ly fractured	vith epidote^	۰10°		····· ····	<1% py	diss + vein	s 60	° 9 4	13	
			2 m	69	10.1 - 10.6 m lathlike some kind of alteratio 11.6 m 1 cm calcite v	e crystals show on vein~20°	v up well, pos	sibly	10.6 m Intense e alteratio	cm pidote on of matr	<1% py	in veins +	diss. 70 60 55	° 8	16	
				(0)		·· ·· · · · · · · · · · · · · · · · ·							70	0 1	1 18	
			2 m	64						· · · ·	∠1% py	in veins +	diss. 50 50 70 65	。 。	18	
				(0)			• •••• ••• ••• ••••			· ···· ·· · ·· ·			60 60	° 8 8	3	
			2 m	34	14.0 - 14.3 Intensely 15.6 - 16.5 m Intense	fractured			· · · · · · · · · · · · · · · · · · ·		∠1% py	diss	1 0 50 70	。 。 。 。	+ 7	
			2 m	50	16.1 - 17.4 m many sma hematite pink k-spąr? 16 9 9 - 17.2 m large ca	all calcite vei alcite vein wit	ins with mino th pink k-spa	r? no			≪ 1% py	diss	1 7 6	0° 6 5° 6	5 8 3 15	
				(1)	17.0 - 17.4 m Intenso 17.5 - 17.8 m 2 cm o	ely fractured calcite vein 10)°						2	ט״		

	سي بعد از مگر اين گهان کا						A	IORTH			FAST		FIFV	ATION			
							1						he he he V		1		7
LOCA	ATION (CAT F	ROPE	RTY	<u> </u>	RDINATES											/
DAT	E STARTE	D		DATE COMPLE	TED	Vertical Hole				_			HOLE SIZE	TOTAL DEPTH	HOLE	E NO.	
						SURVEYS							I-EX	64.0 m	D.0).н .	2
DE	EPTH	CO	RE												STR	UCTU	E Gro
From	То	Length	%Rec			LITHOLOGY				ALT	ERATIO	N	MINERA	LIZATION	F	V/m F	7m L
0 m	64 m	2 _. m	47	Dark grey phenos are Grain size textural o There are feldspar. Most veins some epido also a few to intense	green - e ≤ 5 mm e of phene changes to some 1 mm Rock i and fra ote and fra ote and h w small que. Rock	black augite porphy in diameter and cor os vary greatly and o rock. Often roo m size lath like co s moderate to inter cture fillings are ematite in the larg uartz veins. Frac is strongly magne	yry flow mprise ~ d there a ck looks rystals t nsely fra calcite. ger ones, cturing i tic.	rock? 35% of re quick tuffaced hat may ctured. Rich there a s modera	augite rock. k ous. be with are ate	Generall moderate alterati phenos a Some epi tion ± h some of calcite	y weak chlori on of a nd matr dote al mematite the lar veins.	to te ougite ix. tera- e with oger	≪1% di fine grai	ss py very ned.	40°° 15°° 70°° 75° 50°	11 1	5
		2 m	74	0 - 1.4 m 0 - 22.4 r	Intensel n very mi	y fractured. nor limonite seen o	on fractu	res.					∼1% diss fine grai	py very ned	45° 10° 60° 70° 50° 40°	8 1	0
			(4)						•	3.8 - 4 epidote materia ture fil	m minon + pink in fra lings.	ac-			50°		
		2 m	83	4.4 - 4.9	m Inten	sely fractured				5.2 - 6 fracture with pir feldspar	.5 epido es + ve nk minen r? + m	ote in ins ral K- inor	<pre>~ 1% py v < 1% po d < 1% cp i < epidote</pre>	eins + diss iss + veins n veins with	20° 50° 50° 50° 50°	13 2	2
			(3)	70		7				flooding with ep present 5.3 - 5 flooding	g of man idote, py with ep .6 vein g are in 10°	trix yrite pidote. s + ntense					

The second seco second sec

	SP								Logge	ea by bi	III CIARK					1		
					1				NORTH			EAST		ELEV	ATION .	1		
•		TION	CAT	CLA	IMS	CO-OR	DINATES			÷						5		5
	DATE	STARTE	D		DATE COMPLETE	D	1							HOLE SIZE	TOTAL DEPTH	HOLD	NO.	
			·				. SURVEYS									D.0	э.н.	1
	DE	РТН	CO	RE	<u></u>				<u></u>		A 1	DATIO		MINERA	LIZATION	STR	UCTU	RE Gros
24 0	From	T <u>o</u>	Length	%Rec			LITHOLOGY			·	ALI	LRAIIO	N	MINERA			V/II	F/ III LO
, iii , C			2 m	43	34.0 - 34. 34.4 - 36.	2 m bred 7 m Inte	cciated flow c ensely fractur	contact? red	•		33.9 - bleach of hema matrix	35.8 m ing . A atite ir , and in	weak lot the preg-	1% Py fin	e grained dis	s.30° 70° 50°	13	18
- -	•				34.2 ₪ 2	CIII DI E		Le veni 70			nated v Stronge calcite	vith cal est near e veins.	cite.			45° . 25°	2	Ц
36 m			(2)		•		· · · · · · · · · · · ·		•	· · · · · · · ·		۰. 	·····			10°		
	36.7 n		.7 m	50	• * •						• • • •				•. •	60°	2	12
•	End of Hole		(0)				• •			-			•	•				
	•				Note: Fro des	om examin cribed	ning split con in log.	re chlorite a	lteration	is stro	onger thai	n that						•
•					: Mas . 26	sive su - 28.	lphide (py + d	cp) vein is f	ound as c	ave belo	w the 2 r	neter se	ection			'		
					•	•	•		•									
•								•					•					
•						•			•	•			• • • •					
							•											
						•	•		•	••••			•					
FORM NO. 75-1																		

. [- · -					MALL .										
	LOCA	TION	CAT	CLAI	MS CO-0	RDINATES			,								<u> </u>	
	DATE	STARTE	D		DATE COMPLETED								HOLE SIZE	TOTAL DEPTH	HOLE	NO	1	
			•			. SURVEYS									D.D	.H. I		
	DE	ртн	COF	E											STR	JCTU	RE G	oph
26 m	From	T <u>.</u> o	Length	%Rec		LITHOLOGY				ALT	ERATIO	N	MINERA	LIZATION	F	<u>v/m</u>	F/'m 1	-09
	•		2 m (5)	66	26.5 m 2 cm band rock is sheared to 27.0 m 1 cm wide 27.1 m 1 cm wide 27.0 - 27.5 m Int 27.1 - 27.4 m heal or from drilling? 27.4 - 27.8 m Flo 27.7 - 27.8 m Pos because of alterat	of pyrite with so p contact 40° piece of a pyrite piece of a chalco ensely fractured. ed with calcite w w contact fine gr sibly a fine grai	ome chalcop e band, cav opyrite ban veins, some rained Phe ined dyke -	yrite 70 e? d, cave? clay fa nos. can't t	ult ell	27.1 - 3 pervasiv alterati by a lig brown bl augite p	1.0 m w we chlor on over ht gree eaching bhenos a	veak ite lain en g of and to	∼ 2% Py + large vel	⊦3% cp in ins	50° 40° 25° 50°	8	7	
28 m			2 m		28.3 m 4 cm fine 29.3 - 29.7 m 2 c	grained dark gre m subvertical ca	een dyke? lcite vein -	60° ∨ug.		a lesser rix. 1 appears epidote, a pervas of calci Rock is netic. 2 weakly 1	extent his col to be c hemati ive imp te. Bl weakly 28.3 -	mat- our lue to te and oregnation eached mag- 29.1 m d.	Sulphide on	nil.	80° 65° 70° 1.5° 10° 60°	16 8 [°]	10 12	•
•	0 m	18.7 r	m 2 m (7)	80	30.3 - 31.0 m 2 c with some epidote 31.0 - 36.7 m ~1 minor cp.	m calcite vein s and hematite. % py diss in fra	ubvertical, cture fill	vug to + very	exture.	31.0 - pervasiv alterat	36.7 m v ve chlo ion.	weak rite	← 1% py t diss.	fine grained	25° 60° 85° 70° 70°	14	10	· .
32 m			2 m	79		•				32.6 - bleachin in matr minor p	32.9 m ng hema ix some yrite	weak tite	1% py diss in s tr. ep. d	fine grained small veins diss.	45° 50° 20° 35° 20° 50°	8	13	
34 m олм но. 75-1			(6)		•			•	•		•	•			30° 30°	14	13	,

		•	۸ - -			•	NO	RTH		EAS	51	ELEV	ATION .		2	
Ļ	LOCA		AT C	LAIMS	co-c	RDINATES			:)	
-	DATE	STARTE	2		DATE COMPLETED	SUBVEYS						HOLE SIZE	TOTAL DEPTH	HOL	E NO).
			•			. SURVETS								D.1	D.H.	1
	DE	ртн	COF	RE	·								· · · · · · · · · · · · · · · · · · ·	STF	RUCT	JRE
3 m 🖵	From	T,o	Length	%Rec		LITHOLOGY				ALTERA	TION	MINERA	IZATION	F	V/m	F/m
1			2 m	34								diss. Pvr	tine graine	1/0°	5	13
.]	8.7 m	20.] m			Fine grained cont flow contact? or veins. Magnetic	act ~1% Augite phe dyke contact? A f but not as strong	enos. Bott few small ca as regular	com of alcite porphy	·y.	18.7 - 20.1 fresh, weak alteration (m Fairly [·] chlorite of matrix.			75° 30° 75°		
•	•		(0)		· · ·	· · · · · · · · · · · · · · · · · · ·				•	•			70° 20°	4	19
m +	20.1 m	23.0 m	2 m	15 .	Altered syenite p phenos of K-spar?	orphyry? Rusty rec and 1 mm phenos c	d rock conta of black alt	ining cered he	mm orn-	Altered sye Rusty red co	nite? plour -	~ 5% ру	Tr. ep.	35°	3	8
					blend? Rock is ~	50% phenos. Weal	kly magnetic			hematite. feldspar ph	looding of		•	50°		
					21 - 22 m Dyke? (Talc - chl. seri	Alteration? 10°-me cite)? altered rock	edium green, k containing Pock is pot	soft, 25%		ground mass 21 - 22 m S	/enite?			65°		
u m			(0)		magnetic.					sericite?	+ pyrite.					.
			2 m	•30	•		•	•				~ 5% ру	Tr. ep.	350	8	8
	23.0 m	36.7 m			Dark green to bla diameter. Most	ck augite porphyry of unit is moderate	, phenos <i>l</i> ely fracture	imm in ed with	· .	23.0 - 23.9 60° chlorit	m sheared e altered,			30°		
					some Intense Frac magnetic, most ve	turing. Rock is g ins are calcite and	generally ve d 1 mm wi	ery ide.	d	all phenos ~10% pyrit	destroyed, e with				ł	
m			(2)		contacts. Pheno	s generally ~ 35 -	40% of rock	<.		aligned wit direction.	n shear			60°	6	5
			2 m	73	23:9 - 24.8 m 5 There appear to b	- 25% augite phenos e 3 cm fragments p	s. Flow co resent.	ontact?	•.	23.9 - 27.1 Pervasive c	m weak nlorite	Sulphide	nil.	65° 40°		
					·/····	, , , , , , , , , , , , , , , , , , ,		•		alteration.			••••	40° 80°	/	
										• •				60° 40°	9	
6 m			(3)		25.9 - 27.1 m flo	w contact? Quick (changes in S	of au	jite					5°		ļ

	<u>×</u>			•							_	<u> </u>	-
							NORTH	EAST	ELEVATION	•			-
	1004	TION	CAT	CLAIM	S CO-O					2			5
		STADTE	<u></u>		NATE COUPLETED				HOLE SIZE TOTAL DEPTH	HOIF	NO		-
╞	DATE	. SIARIE			DATE COMPLETED	. SURVEYS			HOLE SIZE TOTAL DEPTR	n v L č	н.	1	
•			•										
	DE	PTH	COR	E	•					STRU	ICTU	JRE	G
8 m	From	To	Length	%Rec	·	LITHOLOGY		ALIERATION	MINERALIZATION	F	<u>/m </u>	F/'1	Ļ
			2 m	83	8.8 m 1 cm calci	te vein 10°		•	Sulphide nil.	70° 70°	11	13	
	•		(5)		9.8 - 10.9 m Inte	ensely fractured				40° 40° 50°	9	11	
0 m .			2 m	62 ·	· · · · · · · · · · · · · · · · · · ·	<u></u>			< 1% cp on fracture	10° 30°	9	12	
	•	•	(3)							20° 75° 60° 75°	7	11	
2 m -			2 m	[.] 96				12.3 - 18.3 m Red - orange veins about	<pre></pre> <24 1% pyrite with orang red veins.	25°	9	12	
•						•		every half meter with specularite [±] epidote [±] py. Veins cut core at 25°.		70° 60° 40° 40°	10	16	
1/1 m -			. (9)		•	· · · · · · · · · · · · · · · · · · ·				50°			-
· · · · ·			2 m	84	14.3 - 14.7 m hi red-orange veins.	gh in specularite +	minor pyrite - no		~ 1% Pyrite with specularite and orange-red veins and	50° 40° 40°	9	14	
			(7)			•	· · · · · · · · · · · · · · · · · · ·		∠<1% cp.	65° 30° 40° 20°	12	9	
16 m										55°			•
			2 m	86					specularite and orange-red veins	80° 25°	12	9	
0. 7.5.+1			(7)		18.0 - 23.0 m li	ntensely fractured				25°	9	11	

1						٠	Ċ	RILL	LOG	Logge	d by Bil	Clark.					SHEE	T NO	•
						, .	•]	N N	ORTH			EAST		ELEV	ATION	1 1		5
• • • • • • • • • • •	LOCAT	ION	CAT C	LAIMS		CO-OR	DINATES												
•	DATE	STARTE	D		DATE COMPLE	TED	Vertical	Hole							HOLE SIZE	TOTAL DEPTH	HOLE	NO.	
			•				. SURVE								1-EX-	36.7 m	D.D	.x.	ļ
	DEP	тн	COF	E			LITHOLD) GY					RATIO	N	MINER		STRI	JCTUF	E Grc
0 m	From	1,0	Lengin	Vorec										· · ·				<u>v/ [r</u>	
		18.7 m	2 m	36	Dark green diameter - intensely probably ha most veins there are a	to black most of u fractured as large q are ~l a few oran	augite por init is mod portions. quantities mm in diam age - red v	phyry, p lerately Rock i of fine neter and veins whi	henos \sim 4 fractured s very ma grained m composed ch tend t	mm in with so gnetic a agnetite of calo o be a	ome and e - cite,	Rock is probably chl. alt There ar red vein with spe	fairly some m eration e some s assoc cular h	fresh, inor orange- iated ema-	Sulphide	nil.	10° 60° 30° 30°	2	8
2 -			(0)		little lim Very weak of rock. 0 - 1 m li	/ and have limonite o ntensely f	e some epid on fracture ractured.	lote + sp es. Phe	ecular he nos gener	matite. ally 35	- 40%	tite and dote. epidote augite p	second Some we alterat henos i	ary epi ak ion of n place	s.				
. 2 11			2 m	64		•		•		•	-			·	Sulphide	nil.	30° 50°	3 1	2
4 m	ŭ l		(4)		3.2 - 7.8 r	n Intense	ely fractur	red									25° 50° 30°	3 1	1.
		•	2 m	23	4.0 - 5.0 m diameter th originally sulphide ma not seen.	n calcite ney are bl Augite-Po ostly pyri Top cont	healed bre eached a m prphyry. te with mi act minera	eccia fra nedium gr Breccia inor chal alized.	gments 3 een and p contains copyrite.	cm to l robably 7% dis Conta	mm in ss. acts		•		~ 5% dis ≪ 1% dis	s. pyrite s. chalcopyri	te 30°	6	7
6 m			(1)		5.0 - 5.4 r py, has min and calcite	n Bottom nor epidot e veins an	contact is ce, lots of nd minor cp	s mineral F fine gr D.	ized with ained spe	5% d culavite	iss e							3	6
		• .	2 m	28	•		•			. :	• .			•	Sulphide	nil.	25° 25°	3	4
•		·	(2)				JQ				•					•	35°	3	5
8 m					•									• ••••••••••••••••••••••••• •					
BP FORM NO. 75-1				.							•	1			ł				

1

• . .

.

-							NORT	, <u>,,,</u> ,		EAST	ELEV	ATION				
			د ۸ م	r			NUNT	1		<u></u>			6		6	
	LOCA DATE	TION STARTE	D		DATE COMPLETED	SURVEYS					HOLE SIZE	TOTAL DEPTH	HOLE D.D	NO. .H.	7	
	DEI	ртн	COF	RE					A 1 T		MINERA		STRU			<u>ir.</u> Flood
	From	То	Length	%Rec		LITHOLOGY			AL1				700			er m
46m			2m	89	46.5 - 47.2m inte 47.7 - 48.1m Gran	ensely fractured. ite flooding.					2% Py 1% Po Tr.%(Sp.	40 ⁰ 10 ⁰ 50 ⁰ 70 ⁰	10	16	4
				(7)									50 ⁻ 50 ⁻	8	13	6
48m			2m	89	48.3 3cm epidote calcite	vein with minor Py calcite-chlorite sh	<pre>/ + magnetite neared vein 4</pre>	+ 0 ⁰			2% Py Tr. % Tr. %	Po Cp	40° 40° 60° 50°	10	14	3
50m	-			(2)	49.7 - 50.8m Inte 49.9 - 50.6m High	nsely fractured. in granite floodir	ng.						55 70 ⁰	10	16	4
							· · · · · ·									
50m			2.lm	90	50.5 - 50.6m 3cm	epidote-Py-magneti enselv fractured.	te-calcite ve	ins 20 ⁰			3% Py 1% Pc 1/2 %	Cp.	15° 40° 15° 70° 40°	12	18	9
				(2)	, , , , , , , , , , , , , , , , , , ,								45 ⁰ 30 ⁰	14	17	7
52m	52.1 End o Hole.	f														
FORM NO. 75-1	1				[l			

.

ŝ

							DRILL	LOG	Logg	jed by	BIII CIA	rk.	·		SHEE	.1 N	0.	
		·····						N	ORTH			EAST	ELEV	ATION				
	LOC	ATION	CAT			co-or	RDINATES								5			6
	DAT	E STARTE	ED		DATE COMPLE	TED							HOLE SIZE	TOTAL DEPTH	HOLF	E NO	1.	
							SURVEYS								D.C).H.		7
	DI	ЕРТН	CO	RE]				.			TEDATION			STR	UCTI	JRE	<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
	From	То	Length	%Rec			LITHOLOGY					TERATION	MINERA	LIZATION		V/Ft	F/FI	per-
			2m	95	36.2 - 36	.6m Inten	isley fractured.			x			1/2% P	y	50 ⁰	12	16	2
							·						Tr. %	°o	60		10	
					37.3 - 37	.5m Grani	te flooding.						1/4% C	þ	55			
.					37.7 - 39	.Om Inten	sely fractured.			,					70	a	16	5
30m				(5)	3/./ - 39	.Zm High	In granite floodi	ng.								Ľ	<u> </u>	
			2 m	75	28 5m 1 5	cm Enidot	e-calcite-magneti	c-ov-quari	tz-chlor	ite			2% Py		100	7	17	3
				15		(on edg	jes).						1% Po		600			
													1% Cp		800	,		
														•	500	9	11	6
40m			1											•	-			
			2m	95									2% Pv		700	10	10	2
				1			· · ·						1% Po		350			
					40.8 - 41 41.0 - 41	.Om Inter .3m Grani	isley fractured.		۹.					ſ'n	60°	>		
				ŀ									11. 0	CP	25	1		
10				(7)				•							70°	واد	12	5
42m		1	2m	05									2 % D		350	·		
			2111										5% Fy		80 ⁰		Ь	5
					42.9 - 43	3.0m Gran' 3 4m Inter	ite flooding. nslev fractured.							6 -	40 50 [°]	,		
													IF. 6	ср.	40 ⁰	5		
				(7)	43.7m 5c	cm Zone v	with 30% py + epic	lote 40							30 ^C	, 8	111	2
44m							· · · · · · · · · · · · · · · · · · ·	··· ·	- <u> </u>							, 	+	
÷.,			2m	95	44.2 - 44	4.8m High	in granite flood	ing.					3% Py		60	א <u>וי</u> ג	13	5
													1% Po		70 ^C	,		
													1/4% C	p	45 ⁰	י גר		
				(7)											60 45	· 9	12	3
FORM NO. 75-1	1	1		$+$ \cdots							1							

LEGEND

INTRUSIVE ROCKS Jurassic or Older (Hogem?)

8	Fine grained granite, minor quartz monzonite
7	Symile porphyry - minor alteration
6	Syenite pophyry - modstrongly metasomatize
5	Hornblende diorite - altered in west

Syenite	porphyry -	minor alteratio	n
Syenite	pophyry -	mod strongly	metasomatized
Hornbler	nde diorite	- altered in we	st

VOLCANIC ROCKS Upper Triassic (Takla)

E	4	
[3	
Ľ	2	
Γ	1	٦

197

Augite	andebasalt	porphyry

Andesitic ash tuff

Andesitic lopilli tuff and minor breacio

Andebosaltic aggiomerate

SYMBOLS

Foult	
Joint strike and dip	
Strike of vertical joint	
Tension fracture strike and dip, vertical	
Vein or dyke	
Shear zone showing dip	
Outcrop area	
Contact observed , inferred , gradational	
Diamond drill hale	
Geodetic survey monument	
Bedrock sample number	
Magnetite, py - Pyrite	
	Fault Joint strike and dip Strike of vertical joint Tension fracture strike and dip, vertical Vein or dyke Shear zone showing dip Outcrop area Contact observed, inferred, gradational Diamond drill hole Geodetic survey monument Bedrock sample number Magnetite, py – Pyrite

NOTES: A Sp He as fracture fill and knots and vugs in narrow shear zone also Ma, cp, bo-cc (minor) in quartz-colcite veins/numerous in area.

> B Au with minor cp in 1 wide Mt-quortz vein. Grodes up to 16 oz Au/ton

BP Minerals Limited

GEOLOGY MAP OF THE CAT CLAIMS SHOWING TRENCHES, ROADS & DIAMOND DRILL HOLES

SCALE 1: 12000		(1"= 1000')	NTS 94C 3	510 3
DWG No	80-80	DATE April 1980	PROJ 505	10 3
To accom	pany report	BPVR 79-35		

.

SCALE 1:2400		NTS	94 C 3	FIG 5
DWG No 80 - 82 DATE	April 1980	PROJ.	505	J
To accompany report: BPV	R 79-35			

TOTE TRAIL

AREA OF TRENCHING

O--- DIAMOND DRILL HOLE SITE

METERS 0 24 48 72 96 120

