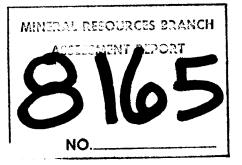
180-#388-#18165

FRENCH PEAK SILVER PROPERTY

METALLURGICAL STUDY

ON

UTE VEIN SYSTEM


Claims: SILVER GROUP - Silverado, Eldorado, Silver Iron, Mag Hi, Ute 5 - 8

> OMINECA MINING DIVISION 93M/7W 55°21'N 126°48'W

OWNER : SILVERADO MINES LTD.

OPERATOR : MOHAWK OIL COMPANY LTD.

WRITER : A.M. Homenuke, P. Eng. (Geol.)

Submitted: July 8, 1980

Tri-con Mining Ltd.

<u>CONTENTS</u>

I. INTRODUCTORY NOTES

.

Location and Access	I-1
Physical Features	I-1
Claims and Ownership	I-1
History	I-3
Economic Assessment	I-4
Present Work and Distribution	I-4
References	I-5
Cost Statement	I-6
Certificate of Qualifications	I-7

II. B.C. RESEARCH TEST REPORT

Summary	II-1
Introduction	II-2
Experimental Procedures	II-2
Conclusions and Recommendations	II-7
Appendix I - Chemex Assay Results	II-21

;

III. DAWSON METALLURGICAL LABORATORIES TEST REPORT

Letter of Discussion	III-1
Head Sample Assays	III-6
Concentrate Assays	III-7

FIGURES

FIG.	1	Location and Claims Map	I-2
FIG.	2	Sample Location on Geology Base	In Pocket
		Projected Flow Scheme	III-2

TABLES

1A	Conditions for Flotation Test No. 1	II-9
2A	Conditions for Flotation Test No. 2	II-10
3A	Conditions for Flotation Test No. 3	II-11
4A	Conditions for Flotation Test No. 4	II-12
5A	Conditions for Flotation Test No. 5	II-13
6A	Conditions for Flotation Test No. 6	II-14
1B	Test No. 1 - Interim Analyses	II-15
2B	Test No. 2 - Interim Analyses	II-16
3B	Test No. 3 - Interim Analyses	II-17
4B	Test No. 4 - Interim Analyses	II-18
5B	Test No. 5 - Interím Analyses	II-19
6B	Test No. 6 - Interim Analyses	II-20
	Dawson Test No. 1 - Tabled Results	III-3
	Dawson Test No. 2 - Tabled Results	III-4

I. INTRODUCTORY NOTES

LOCATION AND ACCESS

The Silver Group of mineral claims is located on the southeast slope of French Peak (FIG. 1) 10 km. west of the north end of Babine Lake and 65 km. northeast of Smithers.

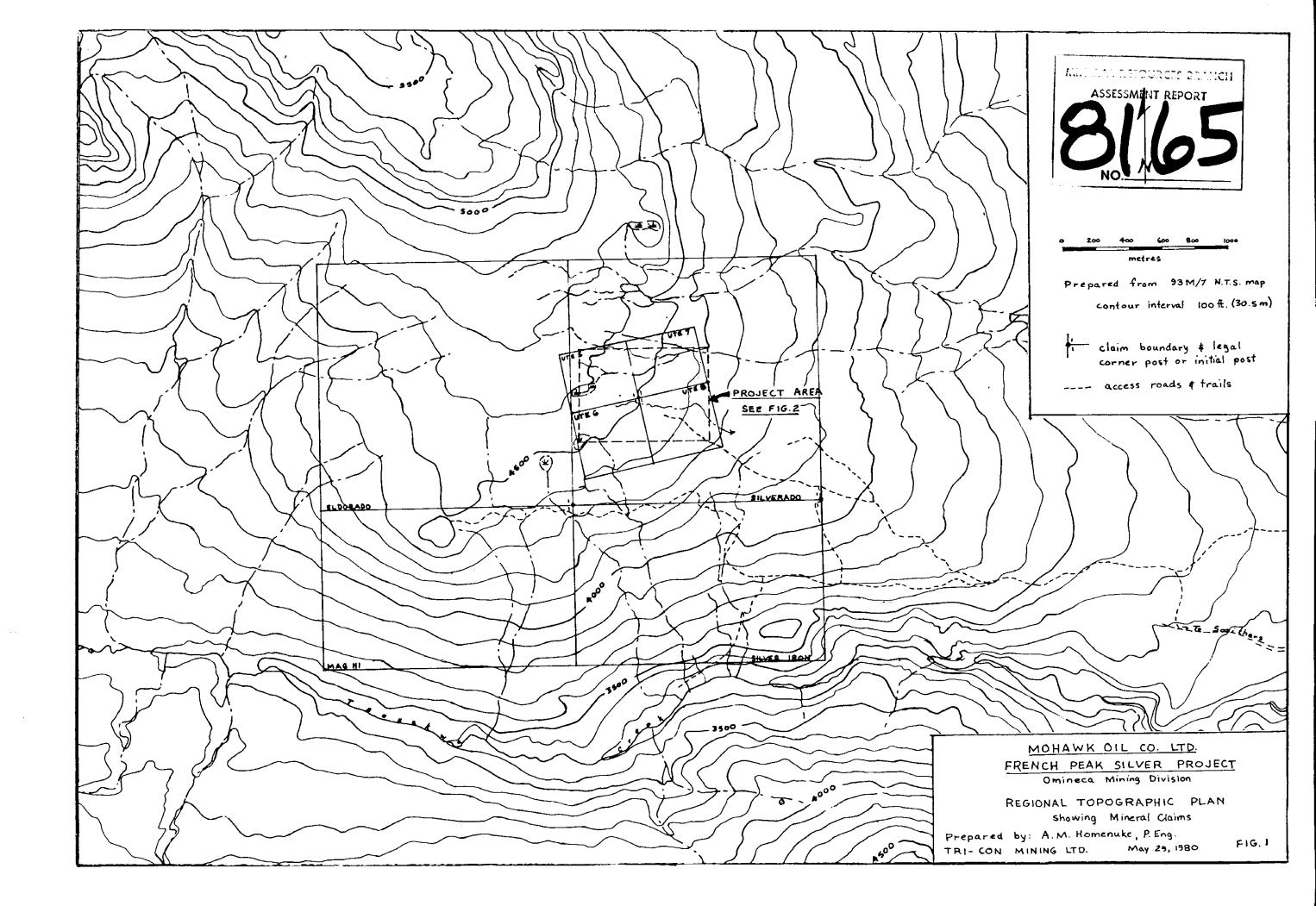
Access is by gravel road from Smithers along the route to Smithers Landing, the Nilkitkwa Forest Access Road and a 4-wheel drive road constructed in 1976, a total distance of 120 km.

PHYSICAL FEATURES

Elevation on the property ranges between 1000 m and 1500 m. Relief is gentle to the north and more abrupt to the south as Tsezakwa Creek, the major drainage in the area, is approached.

Outcrop is generally scarce, with the major exposures being in creek banks and topographic highs. Further exposures have been provided by trenches.

Rainfall is relatively low, but snowfall exceeds 1.5 metres most years and lasts from late October to May or June.


Vegetation consists mainly of subalpine fir with spruce in flatter areas and poplar and alder to the south. Old burnt areas are presently covered with a dense regrowth. Flat areas tend to be swampy.

CLAIMS AND OWNERSHIP

The Silver Group consists of the following mineral claims totalling 34 units (FIG. 1).

Name		Record No.	Record Date
UTE 5 - 8	(4)	104288-91	September 17
Silverado	(9)	298	May 26
Eldorado	(9)	299	May 26
Mag Hi	(6)	348	July 9
Silver Iron	(6)	349	July 9

The claims are presently under option to Mohawk Oil Company with a retained interest by Silverado Mines Ltd. (Silverado holds title)

HISTORY

The following list summarizes the history of the property.

- 1955 "High-grade" silver mineralization discovered by Rio Tinto Canadian Exploration Ltd.
- 1956 Rio Tinto carried out mapping, trenching, sampling, a self potential survey and 1737 feet of diamond drilling in 11 holes.
- 1964-5 S. Homenuke and H. Gilleland leased the property and shipped 22 tons of hand-sorted ore yielding over 6,000 oz. of silver and over 7,000 lbs. of lead.
- 1974 S. Homenuke and J. Sargent, now owners of the property, shipped 28 tons of hand-sorted ore. This shipment yielded 3423 oz. of silver, 2 oz. of gold, 8010 lbs. of lead, 2755 lbs. of copper and 1023 lbs. of zinc.
 - In July, the writer visited the property and did some preliminary geological and geophysical investigations. This work resulted in Can-ex Resources Ltd. (a private company) optioning the property.
 - In the fall, Rennicks Resources Ltd. (N.P.L.) optioned the property from Can-ex and through Tri-Con Exploration Surveys Ltd. carried out a program of mapping, sampling and EM-16 surveying. Some backhoe trenching was also done. Rennicks allowed the option to lapse due to commitments elsewhere.
- 1976 Aalenian Resources Ltd. (now Silverado Mines Ltd.) optioned the property and commenced a major diamond drill program. 30 holes were drilled totalling 2646 feet. Detailed mapping and magnetometer surveying were done on the main zone of interest. The main vein was indicated to be over 1500 feet long and silver mineralization was traced to a depth of over 200 feet. A small high-grade zone was detailed. Coppersilver mineralization was also discovered a mile to the south.
- 1977 The property was optioned to Mohawk Oil Co. Ltd.
- 1979 A petrographic study was done on drill core samples to attempt to unravel the relationship between lithology, structure and mineralization.
 - Late in the fall, an extensive line cutting program was started.
- 1980 A preliminary feasibility study was commenced to determine the viability of a smale scale mining operation. The metallurgical tests descrived in this report were part of that study.

I-3

ECONOMIC ASSESSMENT

The production record and drilling results indicated that the French Peak Silver Property might have potential as a high-grade silver producer. Further studies have shown that a small scale mining operation (20-40 ton per day) should be economically viable.

PRESENT WORK AND DISTRIBUTION

A feasibility study on the French Peak Property was commenced in February, 1980. Due to the complex nature of the ore, (tetrahedritegalena-chalcopyrite-sphalerite) it was decided to proceed on the basis of a bulk sulphide concentrate. The only sample immediately available was of high grade ore from the Ute Vein. However, as there was a pressing need for results, this sample (about 20 kg) was delivered to B.C. Research for extensive preliminary flotation tests. The results were very excouraging with over 97% recovery of silver values. The location of this sample is shown on Fig. 2.

As it was necessary to confirm these results, a crew was sent into the property to obtain a sample more nearly representative of anticipated mine ore. This sample (about 40 kg) was sent to Dawson Metallurgical Laboratories in Utah. The sample was taken from a pile of reject material from previous hand-cobbing operations. The area where the ore was mined is shown on Fig. 2.

The B.C. Research test results comprise Section II of this report and Dawson Metallurgical Laboratories' results Section III.

REFERENCES

- Homenuke, A.M., 1977, French Peak Silver Property, compilation Report (private report to Aalenian Resources Ltd.)
- Homenuke, A.M., 1980, French Peak Silver Project, Proposed Operating Plan (report prepared for Mohawk Oil Co. Ltd. and submitted to Ministry of Energy, Mines and Petroleum Resources for production approval)

; ,

COST STATEMENT

B.C. Research - Test and Report Sample submitted Feb. 27/80 Report received May 22/80	\$3,207.38
3 samples assayed for total content	219.00
Dawson Metallurgical Laboratories	
Fees	428.00
Assaying	360.00
Sample submitted April 9/80 Report received May 6/80	
Sample obtained for Dawson Test April 6, 1980	
2 men @ 1 day @ \$150/day each 4x4 Truck 1 day @ \$35.00/day 2 Snowmobiles @ \$20/day	300.00 35.00 40.00
A. Homenuke, P. Eng., fees Discussion with testing labs Feb. 27, April 9 Sample preparation April 9 Report preparation July 4 and 7, 1980	
Total 2 days @ \$350/d	ay 700.00
Copying, maps, secretarial	65.00
TOTAL COST	<u>\$5,355.18</u>

1

CERTIFICATE OF QUALIFICATION

I, ALEXANDER M. HOMENUKE, DO HEREBY CERTIFY:

1. THAT I am a member in good standing of the Association of Professional Engineers of British Columbia.

2. THAT I received the Degree of Bachelor of Science in Geological Engineering from the Colorado School of Mines in 1974.

3. THAT I received a Diploma of Technology in Mining from the B.C. Institute of Technology in 1969.

4. THAT I have been employed in various aspects of mining exploration for 11 years and am presently employed by Tri-Con Mining Ltd., of Suite 2580 - 1066 West Hastings Street, Vancouver, B. C.

5. THAT I presently reside at 29825 Harris Road, Mt. Lehman, British Columbia.

6. THAT this report is based on work supervised or conducted ' by myself and on independent testing.

Dated at Vancouver, B.C. this 7th day of July, 1980.

A.M. Homenuke, P. Eng. Geological Engineer

Project Report No. 204-499

-

· ,

FLOTATION TESTS ON A SAMPLE OF "FRENCH PEAK" SILVER ORE

i,

Prepared for:

Tri-con Mining Ltd. Box 12542 Suite 2580 1066 West Hastings St. Vancouver, B.C. V6E 3X2

_Prepared by:

Division of Applied Chemistry B.C. Research 3650 Wesbrook Mall Vancouver, B.C. V6S 2L2

May, 1980

SUMMARY

Initial flotation tests on "French Peak" silver ore indicate that grinding to 82% -65 mesh followed by conventional xanthate flotation produced silver recoveries in the range of 80 - >95% with silver grades in the 300 - 400 oz/ton range.

A test of unit cell operation on the -8 mesh fraction of crushed (-3/8") ore indicated unit cell recovery of $\sim 27\%$ of contained silver in a concentrate grading 313.8 oz/ton.

With or without a unit cell prefloat, a minimum of 12 minutes flotation time is required to obtain 80% silver recovery. In general, significantly increased recovery was obtained by up to 18 minutes of flotation time.

Laboratory reagent requirements (1b reagent/short dry ton of ore) were:

collector:	(sodium isopropyl xanthate (Dow Z-3))	0.7 1b/ton
frother:	(MIBC)	0.03 lb/ton
promoter:	(Cyanamid Aerofloat 31)	0.006 lb/ton

Adjustment of pulp pH to 11.5 required 3.6 lb/ton of lime $(Ca(OH)_2)$ and resulted in a slight decrease in concentrate iron content.

Use of sodium cyanide at 0.2 lb/ton reduced concentrate iron content to \sim 4% but slowed down flotation so that a minimum of 18 minutes flotation time was required.

The ore sample tested did not present any unusual problems.

INTRODUCTION

BACKGROUND

Tri-con Mining Ltd. is developing a high grade silver deposit ("French Peak Silver") located in the Babine Lake area of Northern B.C. The primary silver bearing mineral is tetrahedrite with secondary values in argentiferous galena. Auxiliary sulphide minerals include sphalerite, chalcopyrite, and pyrite.

On February 27, 1980, Mr. Alex Homenuke of Tri-con visited B.C. Research to discuss an initial program of flotation test work to establish conditions for recovery of argentiferous minerals. As a basis for testing, Mr. Homenuke provided a preliminary flow sheet involving primary (unit cell) flotation of the -8 mesh portion of crushed ore followed by closed circuit ball milling (to an unspecified top size) and secondary rougherscavenger flotation.

OBJECTIVES

Objectives of this test program are:

- to establish suitable conditions for recovery of argentiferous minerals (minimum 80% silver recovery) with maximum rejection of pyrite and non-sulphide gangue.
- to document the quality of initial (unit cell) and rougher-scavenger flotation products under specified conditions.

EXPERIMENTAL PROCEDURES

TEST MATERIALS

The ore sample supplied for test work was described as "...rejects from hand picking of a bulk sample...".

11-2

Flotation reagents (collectors, frothers) used were manufacturers' samples prepared as noted. Other chemicals used for pH adjustment and analysis were reagent grade. Vancouver city tap water (hardness \sim 5 ppm, pH 6.5) was used in all flotation tests.

COMMINUTION

The raw ore sample was passed through a jaw crusher for reduction to -3/8 inch. At this point, test samples of \sim 1 Kg were prepared by multiple splitting of the whole sample on a riffle. Individual test samples were screened on 8 mesh; oversize was ground for two minutes in a 12 inch diameter mill containing a mixed charge of 2 inch x 3/8 inch balls at 80 weight % pulp density before addition of -8 mesh material, and adjustment of pulp to 70 wt % solids. This combined charge was ground for a further eight minutes, discharged from the mill and transferred to the flotation cell.

FLOTATION

Flotation tests were conducted using a Denver D-2 lab flotation unit with a 2 ℓ cell. In the cell, pulp density was initially adjusted to ~38% with tap water, then - as noted for specific tests - pH was adjusted with weighed amounts of powdered lime (Ca(OH)₂). Potassium ethyl xanthate collector(Dow Z-3) and sodium cyanide were added as freshly prepared 10 g/ ℓ solutions. Frother (methyl isobutyl alcohol, MIBC) and promoter (Cyanamid Aerofloat 31) were with a microliter syringe; Aerophine 3418A collector (Test 6) was weighed into a watch glass and washed directly into the pulp.

Stage flotation time and reagent additions are noted in the results and discussion section.

Froth control was obtained by adjusting airflow rate at a rotor speed of 1,800 rpm.

11**-**3

Concentrate and tailing samples were vacuum filtered, oven dried at 105° C, weighed, and pulverized with a mortar and pestle before sampling and analysis.

ANALYTICAL PROCEDURES

For test control purposes, initial silver analyses were done on selected pulp samples by nitric acid digestion and background corrected atomic absorption-spectroscopy.

Samples selected for detailed analysis were submitted to Chemex Laboratories Ltd.

RESULTS AND DISCUSSION

GRINDING

Average particle size analyses of tests 2, 4 and 6 were as follows:

Mesh	Microns			
- <u></u>		<u>(interval)</u>	<u>(cumulative)</u>	<u>(cumulative)</u>
32	500	4.2	4.2	95.8
65	210	13.7	17.9	82.1
100	147	10.7	28.6	71.4
200	74	16.6	45.2	54.8
325	44	12.4	57.6	42.4
pan	-	42.4	100	-

The indicated desired grind was 100% -48 mesh, but single stage grinding to this fineness would have resulted in excessive production of slimes.

Grinding in closed circuit with a classifier would be expected to produce marginally better concentration results due to reduced losses of sulphide locked in coarse particles.

FLOTATION

Test conditions for the six flotations are presented in Tables 1A - 6A; interim analytical results and recovery data are presented in Tables 1B - 6B. Results of Chemex analyses on concentrates from Tests 2 and 3 are presented in Appendix 1.

Test 1

In this test, no pH adjustment was made and the first concentrate was drawn with only frother and promoter added to the cell. Concentrate grade (178 oz/ton) and weight recovery (4.9%) were low, indicating that silver minerals present are not the most susceptible minerals to flotation. The second concentrate (23.8 wt % of ore at 338 oz/ton) contained the largest portion of recovered silver.

Overall recovery (by interim analyses) was 90.0% in a concentrate grading 263 oz/ton Ag. Iron content of the total concentrate was $\sim 8\%$.

Test 2

In this test, -8 mesh crushed ore was slurried in the 2 ℓ cell and floated to model the proposed unit cell operation. The unit cell concentrate (Chemex Sample No. 2, Appendix 1) graded 313.8 oz/ton Ag with an iron content of 2.95%. Thus the unit cell recovery appears to be \sim 27% of contained silver at a grade of about 300 oz/ton based on the Chemex assays.

Note that recoveries and grades presented in Tables 1B - 6B are uniformly calculated from the interim analyses, since it is not possible to do a complete material balance based on the Chemex concentrate analyses.

At high silver levels, the interim results appear to be somewhat erratic compared to fire assays:

• • • •

	Silver		
Sample_	BCR Interim	<u>Chemex fire assay</u>	
Test 2 C-1 (Unit Cell)	362	313	
Test 2 blended concentrate	281	278	
Test 3 blended concentrate (C-1, 2, 3)	257	404	

However, in the absence of more extensive fire assay data, it is necessary to discuss most of the results in terms of the interim assays.

Overall recovery in Test 2 was 97.5% in a concentrate containing 281 oz/ton of silver and 8.1% iron. However after the second stage, cumulative silver recovery was 94.4% at a grade of 315 oz/ton.

Flotation of -8 mesh material resulted in some operating problems with the bench cell due to jamming of coarse material in the rotor.

Test 3

Tests 3 - 6 were done on ground pulp without pre-flotation of (fine) crushed ore - i.e. without modelling the unit cell portion of the proposed circuit. Four stages of flotation were used in Test 3 to determine limits on recovery under test conditions. The first stage resulted in 85.6% silver recovery at a grade of 292 oz/ton with 7% iron. The second stage produced a further 10% recovery with increased iron content, but the third and fourth stages produced minimal increments of recovery.

Test 4

Test 4 was procedurally the same as Test 3, but was done by a laboratory technician to check on effects of individual technique. Stage recoveries were lower (see Table 4B), but overall silver recovery in 3 stages was 92.9% at a grade of 244 oz/ton with 8.1% iron content.

Test 5

Test 5 was procedurally the same as Tests 3 and 4 except that sodium cyanide (0.2 lb/ton) was added initially to depress pyrite. Recoveries in stages 1 and 2 (see Table 5B) were appreciably lower than for Tests 3 and 4, but the cumulative 3 stage flotation resulted in 90.7% silver recovery at 227 oz/ton with an iron content of 3.9% - i.e. appreciably lower than for tests without added cyanide.

Test 6

Test 6 utilized a new commercial collector (Cyanamid Aerophine 3418A) which is claimed to be highly selective against pyrite. Satisfactory recoveries (see Table 6B) were obtained at iron levels between those obtained with Z-3 only and with Z-3 plus cyanide. Poor froth was observed throughout this test despite increased frother and promoter dosage. Response to a letter to the manufacturer indicated that glycol type frothers are required with this reagent.

CONCLUSIONS AND RECOMMENDATIONS

Test work clearly indicates that - for the sample tested - silver minerals are readily floated at a grind of 82% -65 mesh using potassium isopropyl xanthate (total dose 0.7 lb/ton of ore), MIBC (0.03 lb/ton) lime (3.6 lb/ton) and Aerofloat 31 (0.006 lb/ton). Indicated recoveries range from \sim 80% for six minutes flotation time to 90 - 95% for 12 minutes flotation time.

Use of sodium cyanide at a dosage of 0.2 lb/ton improves iron rejection, but appears to cause slower flotation. Thus, use of cyanide would only be recommended if iron rejection is critical and a flotation time of \sim 18 minutes is practicable.

Use of Aerophine 3418A cannot be recommended on the basis of current test work due to poor froth properties with MIBC frother.

•

. تەرى 1. 1.

R. O. McElroy Extractive Metallurgist Division of Applied Chemistry

TABLE 1A

CONDITIONS FOR FLOTATION TEST NO. 1

pH: initial 6.5 adjusted --final 6.5

(0 1b $Ca(OH)_2/dry$ short ton ore)

Stage		Reagents	Reagents Conditioning (1b/dry ton Time of ore) (min)	Flotation Time (min)	
Judge		of ore)		interval	cumulative
1	Z-3 Aerofloat 31 MIBC	0 0.002 0.01	1	5	5
2	Z-3 Aerofloat 31 MIBC	0.4 0.002 0.01	1	8	13
3	Z-3 Aerofloat 31 MIBC	0.2 0.002 0.01		6	19
4	Z-3 Aerofloat 31 MIBC				

TABLE 2A

CONDITIONS FOR FLOTATION TEST NO. 2

pH: initial 6.5 adjusted 11.5 final 10.1

 $(3.61b Ca(OH)_2/dry short ton ore)$

Stage		Reagents Conditioning (lb/dry ton Time of ore) (min)		Flotation Time (min)	
stage			interval	cumulative	
1	Z-3 Aerofloat 31 MIBC	0.3 0.002 0.01	1	6	6
2	Z-3 Aerofloat 31 MIBC	0.3 0.002 0.01	1	6	12
3	Z-3 Aerofloat 31 MIBC	0.2 0.002 0.01	1	6	18
4	Z-3 Aerofloat 31 MIBC				

TABLE 3A

CONDITIONS FOR FLOTATION TEST NO. 3

pH: initial adjusted final

6.5 11.5 10.6

 $(3.61b Ca(OH)_2/dry short ton ore)$

Chase		Reagents	Conditioning	Flotation	n Time (min)
Stage		(lb/dry ton of ore)	Time (min)	interval	cumulative
1	Z-3 Aerofloat 31 MIBC	0.4 0.002 0.01	1	6	6
2	Z-3 Aerofloat 31 MIBC	0.2 0.002 0.01	1	6	12
3	Z-3 Aerofloat 31 MIBC	0.1 0.002 0.01	1	6	18
4	Z-3 Aerofloat 31 MIBC	0.1 0.002 0.01]	6	4

TABLE 4A

CONDITIONS FOR FLOTATION TEST NO. 4

pH: initial 6.5 adjusted 11.6 (3.61b Ca(OH)₂/dry short ton ore) final 10.5

Staco		Reagents	Conditioning	Flotation	Time (min)
Stage		(lb/dry ton of ore)	Time (min)	interval	cumulative
1	Z-3 Aerofloat 31 MIBC	0.4 0.002 0.01	1	6	6
2	Z-3 Aerofloat 31 MIBC	0.2 0.002 0.01]	6	12
3	Z-3 Aerofloat 31 MIBC	0.1 0.002 0.01	1	6	18
4	Z-3 Aerofloat 31 MIBC				

TABLE 5A

CONDITIONS FOR FLOTATION TEST NO. 5

pH: initial 6.5 adjusted 11.5 final 11.3

 $(3.61b Ca(OH)_2/dry short ton ore)$

Stage		Reagents	Conditioning	Flotation	Time (min)
Jeage	;	(lb/dry ton of ore)	Time (min)	interval	cumulative
1	Z-3 Aerofloat 31 MIBC NaCW	0.4 0.002 0.01 0.2	1	б	6
2	Z-3 Aerofloat 31 MIBC	0.3 0.002 0.01]	6	12
3	Z-3 Aerofloat 31 MIBC	0.3 0.002 0.01	1	6	18
4	Z-3 Aerofloat 31 MIBC				

TABLE 6A

CONDITIONS FOR FLOTATION TEST NO. 6

pH: initial 6.5 adjusted 11.5 final 10.2

 $(3.61b Ca(OH)_2/dry short ton ore)$

Stage		Reagents	Conditioning	Flotation	n Time (min)
Stage		(lb/dry ton of ore)	Time (min)	interval	cumulative
1	Z-3 Aerofloat 31 MIBC Aerophine 3418A	0 0.006 0.02 0.3	1	8	8
2	Z-3 Aerofloat 31 MIBC Aerophine 3418A	0 0.006 0.02 0.2	1	6	14
3	Z-3 Aerofloat 31 MIBC Aerophine 3418A	0 0.006 0.02 0.1	1	6	20
4	Z-3 Aerofloat 31 MIBC				

TABLE 1 B

TRI-CON FRENCH PEAK FLOTATION TEST # 1

(Interim Analyses*)

	Wt.	Wt.		Silver		Cumu1	ative	I	ron
Sample	(g) (Cumulative	(%) (Cumulative	mg/g (oz/ton)	% of total	Cumulative % of	Conce	ntrate ade	%	Cumulative
	wt. (g))	wt. (%))		Ag	Total Ag	mg/g	oz/t		%
C-1	47.1 (47.1)	4.9 (4.9)	6.1 (178)	9.5	9.5	6.1	178	1.2	
C-2	181.3 (228.4)	18.9 (23.8)	11.6 (338)	69.6	79.1	10.5	305	6	
C-3	72.9 (301.3)	7.6 (31.4)	4.5 (131)	10.9	90*	9.0	263	16.5	7.8
C-4									
Tail	657	68.6 (100)	0.46 (13.4)	9.9	99.9	3.15	91.9	10.4	
Tota] Head**	958.3	100 (100)	 (92)		99.9				

*Nitric acid digestion; background corrected AA; estimated accuracy \pm 10% **forced balance

TABLE 2 B

TRI-CON FRENCH PEAK FLOTATION TEST # 2

(Interim Analyses*)

	Wt.	Wt.		Silver		Cumu1	ative	I	ron
Sample	(g) (Cumulative	(%) (Cumulative	mg/g (oz/ton)	% of total	Cumulative % of	Concentrate Grade		%	Cumulative
	wt. (g))	wt. (%))		Ag	Total Ag	mg/g	oz/t		%
C-1	75.9 (75.9)	8.5 (8.5)	12.4 (362)	31.3	31.3	12.4	362	2.5	
C-2	186.3 (262.2)	20.7 (29.2)	10.2 (297)	63.1	94.4	10.8	315	8.6	
C-3	42 (304.2)	4.7 (33.9)	2.3 (67)	3.1	97.5	9.65	281	15	8.1
C-4									
Tai)	594 (898.2)	66.1 (100)	0.1 (2.9)	2.5	100			9.7	
Total	<u>898.2</u>			•					
Head**			3.35 (98)						

*Nitric acid digestion; background corrected AA; estimated accuracy \pm 10% **forced balance

II-16

TABLE 3B

TRI-CON FRENCH PEAK FLOTATION TEST #3

(Interim Analyses*)

	Wt.	Wt.		Silver		Cumu 1	ative	I	ron
Sample	(g) (Cumulative	(%) (Cumulative	mg/g (oz/ton)	% of total	Cumulative % of	Concentrate Grade		%	Cumulative
	`wt. (g))) wt. (%))		Ag	Total Ag	mg/g	oz/t		%
C-1	252.8 (252.8)	27.0 (27.0)	10.0	85.6	85.6	10	292	7	
C-2	57.6 (310.4)	6.2 (33.2)	5.45	10.6	96.2	9.2	268	15.2	
C-3	16.2 (326.6)	1.7 (34.9)	2.2	1.2	97.4	8.8	257	13.2	
C-4	32.3 (358.9)	3.5 (38.4)	0.43	0.5	97.9	8.1	236	11.8	
Tail	576	61.6	0.11	2.1	100			8.7	44 19
Total	(934.9)	(100)							
Head**			3.2 (92.2)						

*Nitric acid digestion; background corrected AA; estimated accuracy \pm 10% **forced balance

II-17

TABLE 4B

TRI-CON FRENCH PEAK FLOTATION TEST #4

(Interim Analyses*)

	Wt.	Wt.		Silver		Cumula	ative	I	ron
Sample	(g) (Cumulative	(%) (Cumulative	mg/g (oz/ton)	% of total	Cumulative % of		ntrate ade	r	Cumulative
	wt. (g))	wt. (%))		Ag	Total Ag	mg/g	oz/t		×
C-1	197.0 (197)	20.9 (20.9)	10.55 (308)	72.3	72.3	10.55	308	5.6	5.6
C-2	95.5 (292.5)	10.1 (31)	5.6 (163)	18.6	90.9	8.93	260	14.8	8.6
C-3	26.4 (318.9)	2.8 (33.8)	2.2 (64)	2.0	92.9	8.38	244	12.9	8.1
C-4									
Tail	622.7	66.1 (99.9)	0.325 (9.5)	7.0				<u></u>	
Total	941.6								
Head**			3.05 (89)						

*Nitric acid digestion; background corrected AA; estimated accuracy \pm 10% **forced balance

II-18

TABLE 5 B

TRI-CON FRENCH PEAK FLOTATION TEST # 5

(Interim Analyses*)

	Wt.	Wt.		Silver		Cumu 1	ative	I	ron
Sample	(g) (Cumulative	(%) (Cumulative	mg/g (oz/ton)	% of total	Cumulative % of		ntrate ade	%	Cumulative
	wt. (g))	wt. (%))		Ag	Total Ag	mg/g	oz/t		%
C-1	176 (176)	16.7 (16.7)	7.4 (216)	48.8	48.8	7.4	216	2.4	2.4
C-2	76.7 (252.7)	7.3 (24)	10.0 (292)	28.8	77.6	8.2	239	4.4	3.0
C-3	58.1 (310.8)	5.5 (29.5)	6 (175)	13.1	90.7	7.8	227	8.6	3.9
C-4									
Tail	741.5	70.5 (100)	0.335 (9.8)	9.3				11.2	
Total	1052.3			 -					
Head**			2.5 (74)					9.0	

.

*Nitric acid digestion; background corrected AA; estimated accuracy \pm 10% **forced balance

TABLE 6 B

TRI-CON FRENCH PEAK FLOTATION TEST # 6

(Interim Analyses*)

	Wt. (g)	Wt.		Silver		Cumu 1	ative	I	ron
Sample	(Cumulative	(%) (Cumulative	mg/g (oz/ton)	% of total	Cumulative % of		ntrate ade	%	Cumulative
	wt. (g))	wt. (%))		Ag	Total Ag	mg/g	oz/t		%
C-1	184.6 (184.6)	19.4 (19.4)	10.5 (306)	67.0	67.0	10.5	306	2.8	
C-2	88 (272.6)	9.1 (28.5)	8.0 (233)	24.3	91.3	9.7	283	6.8	
C-3	31.4 (304)	3.3 (31.8)	3.8 (111)	4.1	95.4	9.1	265	17.4	
C 4									
Tail	658.2	68.4	0.2 (5.8)	4.6					
Total	962.2	100.2							
Head**			3.01 (88)						

*Nitric acid digestion; background corrected AA; estimated accuracy \pm 10% **forced balance

i

APPENDIX 1

.

.

CHEMEX ASSAY RESULTS

Chemex Sample No.	Description
1	Test 3 - blended concentrate
2	Test 2 - unit cell concentrate
3	Test 2 - blended concentrate

CHEMEX LABS LTD.

 212
 BROOKSBANK
 AVE

 NORTH
 VANCOUVER, B.C.

 CANADA
 V7J
 2C1

 TELEPHONE:
 985-0643

 AREA
 CODE:
 604

 TELEX:
 043-52597

.

ANALYTICAL CHEMISTS . GEOCHE	MISTS	REGISTERED	ASSAYERS			
CERTIFICATE	E OF AS	SAY		CERTIFIC	ATE NO. 67606	,
^{TO:} Tri-Con Mining Ltd.				INVOICE	NO. 35324	•
Box 12542, Suite 2580 1066 W. Hastings St.				RECEIVE	D March	6/80
Vancouver, B.C. V6E 3X2 A.Homewuke		O. McElroy C. Research		ANALYS	a April	9/80
SAMPLE NO. :	% Cu	% РЪ	% Zn	% (NA) As	% (NA Sb	.) .
1 French Peak Test #3	10.2	35.4	3.03	0.958	5.520	
2 French Peak Test #2	12.8	48.1	2.97	0.882	7.070	
3 French Peak Test #2	11.3	32.1	3.06	1.111	6.110	
	<u>% Fe</u>	% St02	%_Ca0	7 S	oz/ton Ag	ož/: Au
1 French Peak Test #3	8.98	5.62	1.42	19.1	404.28	0.1
2 French Peak Test #2	2.95	0.98	0.44	18.4	313.80	0.1
3 French Peak Test #2	8.40	6.72	1.54	18.8	278.52	0.0
		,				
······		• ••••••••••••••••••••••••••••••••••••				
			·			
				<u> </u>		

MEMBER CANADIAN TESTING ASSOCIATION

٠. lenton in · ----REGISTERED ASSAYER. PROVINCE OF BRITISH COLUMBIA

III. DAWSON METALLURGICAL LABORATORIES TEST REPORT i

DAWSON METALLURGICAL LABORATORIES, INC.

·

P. O. Box 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

May 6, 1980

Mr. A.M. Homenuke Vice President, Exploration & Development Tri-Con Mining LTD. Box No. 12542 Suite 2580-1066 West Hosting Street Vancouver, B.C. Canada V6E3x2

Subject: Results of Laboratory Bulk Sulfide Flotation Tests on French Peak Silver Ore Sample.

Dear Mr. Homenuke:

In accordance with our phone discussion and your letter of April 11, 1980, laboratory testing was conducted to develop a simple flow scheme for obtaining a bulk sulfide concentrate from the French Peak Silver Ore.

The following analyses were obtained on the sample received:

(oz/T		%	
Gold	Silver	Lead	Copper	Zinc
0.017	47.9	5.4	1.834	0.95

The results of the testing demonstrates that a high recovery of silver, lead and copper can be readily obtained with a straight forward circuit. After ball mill grinding the bulk concentrate was obtained with one stage of cleaning. The ultimate silver concentrate grade will be dependent on the total sulfide mineral relative to the silver content.

The results obtained in Test No. 1 are probably indicative of the results that could be anticipated and are summarized as follows:

Product	% Wt		Assay		Dis	stributio	n
		oz/T	a /	*		%	
		Ag	РЪ	Cu	Ag	Pb	Cu
Clean Conc	22.9	202.5	23.8	7.98	98.1	95.8	98.4
Rough Conc	30.0	155.84	18.47	6.14	98.9	97.4	99.2
Rough Tail	70.0	0.76	0.21	0.021	1.1	2.6	0.8
Head (calc)	100.0	47.28	5.7	1.859	100.0	100.0	100.0

May 6, 19 Tri-Con M Page -2-	80 Hining LTD.	
The proce	dure used is outlined as follows:	
		<u>Pounds per Ton</u>
1.	Ball Mill Grind - 61% minus 200 mesh	
	add - A 208 (American Cyanamid)	0.06
2.	Condition 5 minutes *	
	add - NaIPX (Sodium Isopropyl Xanthate)	0.10
	Frother Mix	0.10
	3 parts MIBC (methyl isobutyl carbinol)	
	1 part F65 (polypropylene glycol)	
3.	Rougher Flotation 12 minutes	
	Stage add - NaIPX	0.10
	Frother Mix	0.10
4.	Cleaner Flotation 7 minutes	
	Stage add - NaIPX	0.03

* Would not be needed in operation - xanthate can be added to ball mill with A 208.

Based on the size of the ball mill (3'x3' Denver) and a bank of 8 - No.8Denver Sub - A Flotation Machine (2.75 ft³/cell) it appears that your plant will be limited to 20 tons/day. Testing indicates a grind work index of 11 kwhr per ton which relates to 13 hp per ton with an 80% minus 150 mesh grind. With 10 hp required to run the mill this gives 19 ton/24 hrs. At 30 per cent solids to rougher flotation a flow of 9 gpm would be obtained at 20 tons/day. A balance of five cells for rougher flotation and three cells for cleaner flotation would give about the required time at this feed rate.

A coarser grind coupled with shorter flotation time would allow for an increased throughput. An optimum balance of recovery and feed tonnage will have to be established during operation of the plant.

If there are any questions or we can be of further service, please contact us.

Very truly yours, DAWSON METALLURGICAL LABORATORIES, INC.

Harmel a Dawson

Harmel Dawson, President

enclosures

HAD-cac

DAWSON METALLURGICAL LABORATORIES, INC.

P. O. Box 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-432
DATE	4/23/80
BY	HAD

.

TEST NO1		-		Tri Con		Company					_				
Р	relimina	ary bulk	c sulfide	e flotati	ion.	<u> </u>			<u> </u>						
PRODUCT	Weight	WEEK			ASSAY			1	UNITS			Di	STRIBUTIC)N	
······			Au	Ag	РЪ	Cu		Ag	Pb	Cu	Ag	Рb	Cu		
C1 Conc	229.2	22.9	.050	202.50	23.8	7.98		46.373	5.45	1.827	98.1	95.8	98.4		
<u>Cl Tail</u>	70.7	7.1		5.33	1.2	0.214		.378	.09	.015	0.8	1.6	0.8		
Ro Tail Sand	415.3	41.5		0.Z0	0.1	0.025		.291	04	.010	0.6	0.7	0.5		
<u>Ro Tail Slime</u>	289.9	28.5		0.84	0.4	0.018		. 239	,11	.005	0.5	1.9	0.3		
Head (calc)	1000.1	100.0		47.28	5.7	1.857		47.281	5,69	1.857	100.0	100.0	100.0		
Ro Conc	<u> </u>	30.0	<u></u>	155.84	18.47	6,14		46.751	5.54	1.842	98.9	97.4	99.2	P.s	<u> </u>
Comb Tail		70.0		0.76		0.021		. 530	.15	.015	1.1	2.6			
															· · ·
<u></u>															
OPERATION		ВМ	Cond	Ro	Ro	Ro		C1	C1	_ · ·	Deslime			GRIN PROD	
TIME		10	5	4	4	4	÷	3	4		Ro Tai			Flot	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
REAGENTS - LBS. PER TON	<u> </u>							1 1			over	~		Feed	
Ore		1000									200M		MESH	*	*
Water		1000											+10		
<u>A-208</u>		0.06											+14		
NalPX			0.10		0.05	0.05			0.03				+20		
MIBC-F65(3-1)			0.10	0.05	0.05	0.05							+28		
							····	<u> </u>					+35		
								<u> </u>					+48		
				<u> </u>				┨─────┤					+65 +100	<u>3.0</u> 7.3	<u> </u>
											<u> </u>		+150	$\frac{7.3}{11.8}$	
MACHINE			1000					1000					+200	$\frac{11.8}{17.0}$	
R.P.M.			800					800					+325	-16.5	
рН		7.6											-325	44.4	******
% SOLIDS														100.0	
TEMPERATURE															

REMARKS:

DAWSON METALLURGICAL LABORATORIES, INC.

P. O. Box 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-432
DATE	4/23/80
BY	HAD

1

DDODU/CT		PERCENT						[······				
PRODUCT	Weight	WESH		 	ASSAY	<u> </u>		r	UNITS		D	STRIBUTH	· · · · ·	<u> </u>
<u> </u>			Au	Ag	РЬ	Cu		Ag	Pb	Cu	Ag	РЬ	<u>Cu</u>	┢
Cl Conc	204.6	20.6	Tr.	232.2	27.6	8.69	and the second	47.833	5.686	1.790	97.1	. 92.6	the second s	4
Cl Tail	70.7	7.1		8.54	1.8	0.36		.606	.128	.026	<u> </u>	2.1		
Ro Tail Sand	346.3	34.8	··	0.90	0.4	0.04		. 313	.139	.014	0.6	2.3	1	_
Ro Tail Slime	372.2	37.5		1.32	0.5	0.04	l	.495	.188	.015	1.1	3.0	0.8	╞
lead (calc)	993.8	100.0		49.25	6.1	1.84	5	49.247	6.141	1.845	100.0	100.0	100.0	
lo Conc		27.7		174.87	21.0	6,55	6	48,439	5.814	1.816	98.3	94.7	98.5	╀─
Comb Tail		72.3		1.12	0,45	0.04		.808	.327	.029	1.7	5.3		L
														┢
													GAIN	
PERATION		BM	Cond	Ro	Ro	Ro		<u>C1</u>	C1				PRO	
ME		15	5	4	3	4		3	4				Flot	Γ
AGENTS - LBS. PER TON													Feed	
re		1000										MESH	*	
later		1000										+10		
-208		0.06										+14		
alPX			0.05		0.05	0.05			0.03			+20		Γ
IBC-F65(3-1)			0.10	0.10					0.05			+28		
												+35		
												+48		
												+65	0.5	Γ
· · · · · · · · · · · · · · · · · · ·												+100	3.1	Γ
											•	+150	7.8	
ACHINE			1000					1000				+200	15.5	
P.M.			800					800				+325	54.6	
<u> </u>			7.5				- N - 14-1					-325	100.0	
SOLIDS														—

Appreciable Sulfide locking in Cl. Tl.

III-4

Project No. P-432 Tri-con Mining Ltd. French Peok Silver Ore Projected Flow Scheme 20 Tons 1004 Crushed Ore Bin Feeder 1.66 -70 0.71 3'x3' BallMill - 10Hp <u>Pump</u> - 11/2× 11/4" S.R.L. 2.49-48 Spigot - Cyclone 2.65-14 0.83-30 1.94-9-1.19 #8 DENVEN SUB A Flototion Machines -2.75f+3/cell 0.25-15 1.42-6-0.8 Rough. Cone. 0.19-40 Toiling <u>Clean. Conct.</u> Legend: Tons /hr - Toolids Tons Woter/Ar - gpm - ft 3/min Filter Dawson Met. Lobs Inc. 5/5/80 2.0 Dawson

III-5

III-6

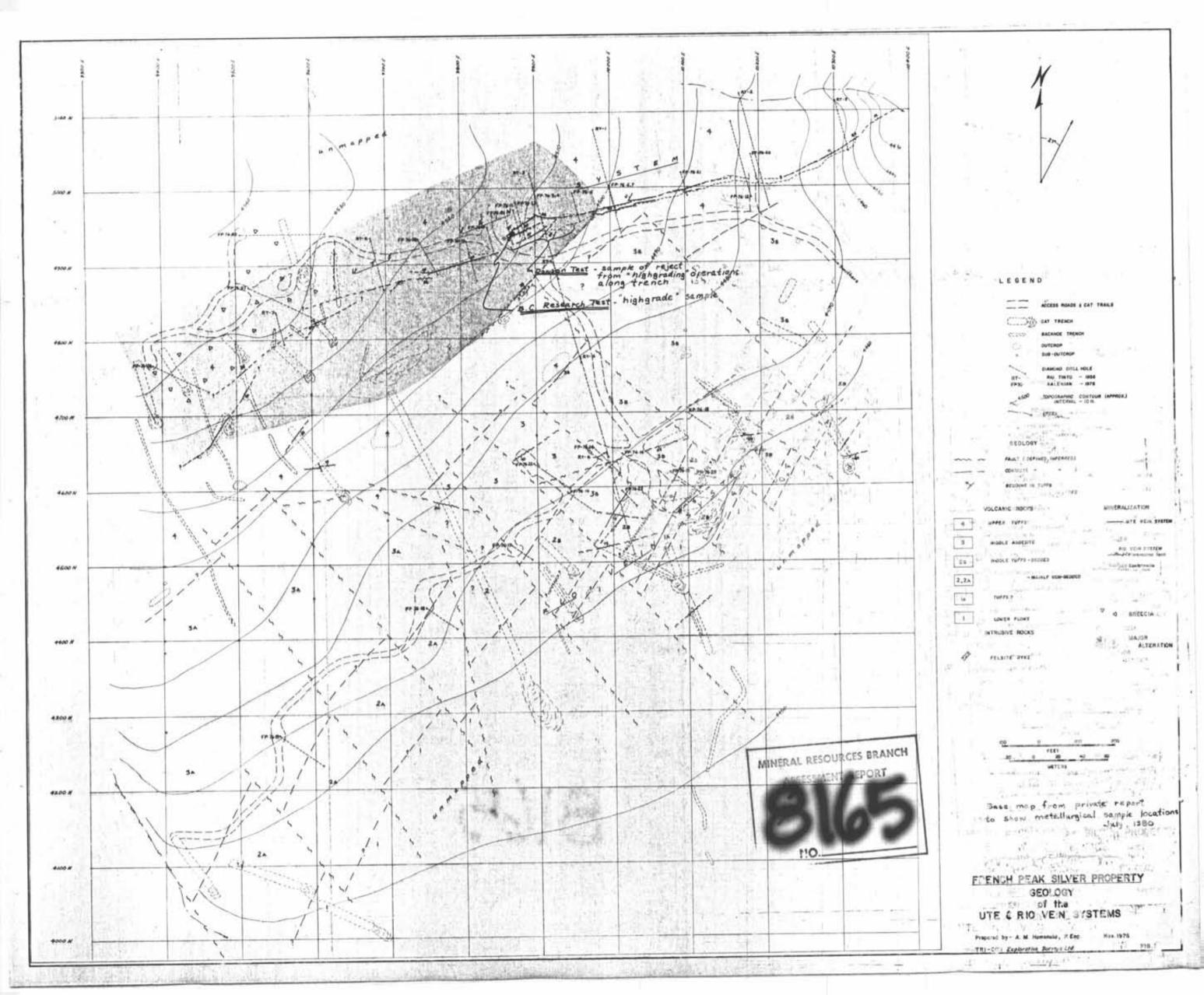
÷

Telephone 363-33 Mine	Tr Co		ing	IDS			G. I JAN	ASSA YANT L, L P. WILLIA 1ES G. ST A. S. JOLL P. O Salt Lake (ARSEN, F MS, Vice I	FICE, President President Secretary asurer 8 84110	Inc.
NUMBER	GOLD Ozs. per Ton	SILVER Ozs. Per Ton	LEAD Per Cent	COPPER Per Cent	INSOL. Per Cent	ZINC Per Cent	SULPHUR Per Cent	IRON Per Cent	LIME Per Cent	Per Cent	Per Cent
Head Sample Original	0.017	47.9	5.4	1.834		0.95					
Remarks Charges \$							Di	E G	R.	the	

.

•

ASSAY REPORT UNI_N ASSAY OFFICE, Inc.


Telephone 363-3302

Hand Sample Serial 1462-1469

1

BRYANT L. LARSEN, President G. P. WILLIAMS, Vice President JAMES G. STRATTON, Secretary A. S. JOLLIFFE, Treasurer P. O. Box 1528 Salt Lake City, Utah 84110 (801) 363-3302

							Sa	P. O. t It Lake Ci	30x 1528 ity, Utah 8	4110	
	RESULTS P	ER TON OF	2000 POUN	DS	Apr 28	, 1980		(801) 3	363-3302		
NUMBER	GOLD Ozs. Per Ton	SILVER Ozs. Per Ton		X XXXXIII X X XXXXXX	INSOL. Per Cent	X2000X Per Cent	Per Cent	IRON Per Cent	LIME Per Cent	Per Cent	Per
			Au Ozs	Ag per Ton		РЪ	Cu				
Test l Cln C	one		0.050	202.50		23.8	7.98				
Test l Cln T	ail			5.33		1.2	0.214				
Test 1 Ro Ta	il Slim	es		p. 84		Q.4	0.018				
Test 1 Ro Ta	11 Sand			p. 70		0.1	0.025				
Test 2 Sulf	Cln Con	с	Trace	232.3		27.6	8.69				
Test 2 Cln T	a <u>1</u> 1			8.54		1.8	0.362				
Test 2 Ro Ta	il Slim	es		1.32		0.5	0.041				
Test 2 Ro Ta	11 Sand			p.90		0.4	0.041				
									-		
)
	-										
									P		
Remarks	<u> </u>	×#	<u>n</u>			Krey	. A1	IJ_		· · · · · · · · · · · · · · · · · · ·	
Tharges \$					· · · · · ·						

