
GUICHON EXPLORCO LIMITED

GEOLOGICAL AND GEOCHEMICAL SURVEYS

D.M. CLAIMS - KAMLOOPS MINING DIVISION, B.C.

N.T.S. 921/15W 50⁰5

50°56'N & 120°57'W

J. Ireland

December, 1979

TABLE OF CONTENTS

PAGE NO.

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS	l - 2
PROPERTY	2 - 3
GEOLOGY	3 - 7
STRUCTURE	8 - 9
GEOCHEMICAL SURVEY - COSTS	9 - 14
CONCLUSIONS	15
RECOMMENDATIONS	15
REFERENCES CITED	

APPENDIX - Sample Description and Assay Results

.

LIST OF ILLUSTRATIONS

1.	Map showing location of D.M. Claims scale 1:506,880
2.	Topographic map showing location of D.M. Claims scale 1:50,000
3a	Geological map of Claim D.M1
3b	Geological map of claim D.M2
3c	Geological map of claim D.M3 and D.M4
4a	Geochemical map of D.M1
4b	Geochemical map of D.M2
4c	Geochemical map of D.M3 and D.M4
5.	Geological map of D.M. Claims scale 1:10,000 Back pocket
6a	Geological and Geochemical map, Claim D.M1 " scale 1:4000
6b	Geological and Geochemical map, Claim D.M2 " " scale 1:4000
6C	Geological and Geochemical map, Claims D.M3 and -4 Back pocket scale 1:4000

GEOLOGICAL AND GEOCHEMICAL SURVEY OF THE D.M. CLAIMS, KAMLOOPS MINING DIVISION BRITISH COLUMBIA

·

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

Gold, mercury and arsenic occur in altered Triassic volcanics and sediments and in altered Tertiary volcanics at Deadman Valley, Kamloops Mining Division, British Columbia. Mineralization is associated with block and transcurrent faulting that released epithermal solutions during Tertiary volcanism and tectonism. Hematite mineralization is associated with carbonatization and de-silicification in the altered zones.

Three gold anomalies with values ranging from 25 ppb to 60 ppb $(10^{-9} \text{ g/Tonne})$ occur in the survey area. Mercury and arsenic anomalies occur as well defined, gradational zones around two of the gold anomalies located on claims D.M.-2 and D.M.-3. The third gold anomaly has no associated mercury or arsenic values that are anomalous. Anomalous mercury values exceed 10 ppm $(10^{-6} \text{ g/Tonne})$ and anomalous arsenic values exceed 50 ppm. Threshold anomalous values for gold, mercury and arsenic are 20 ppb, 500 ppb and 50 ppm respectively.

It is proposed that a more detailed geochemical

2/....

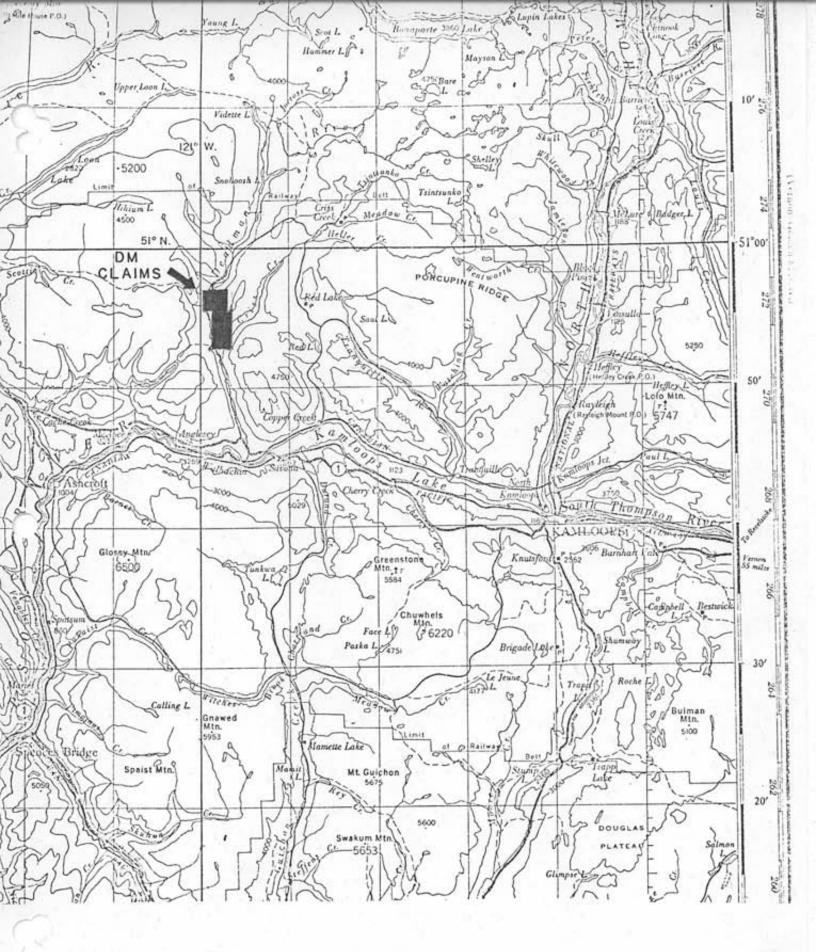


Figure 1; map showing location of D.M. claims

Scale 1:506,880 (1 inch equals 8 miles)

sampling program be employed over anomalous zones on claims D.M.-2 and D.M.-3. Trenching should be utilized in areas of poor outcrop exposure where practical. Open ground adjacent to claim D.M.-3 should be claimed and included in the sampling program.

PROPERTY

The D.M. gold prospect is located 20 kilometers $N20^{\circ}W$ from Savona, British Columbia and lies on the east side of Deadman River, north of Criss Creek. One claim extends west into the valley at the north end of the prospect (Figures 1 & 2). Latitude near the center of the claim area is 50° 56'N and longitude is 120° 57'W. Deadman River is a tributary of the Thompson River. The confluence of the two drainages is about 2.5 kilometers west of Kamloops Lake. Road distance to Savona from the D.M. claims is 35 kilometers.

The claims, D.M.-1, D.M.-2, D.M.-3, and D.M.-4 contain 70 units, all in good standing. Record numbers and dates are as follows:-

3/....

2 -

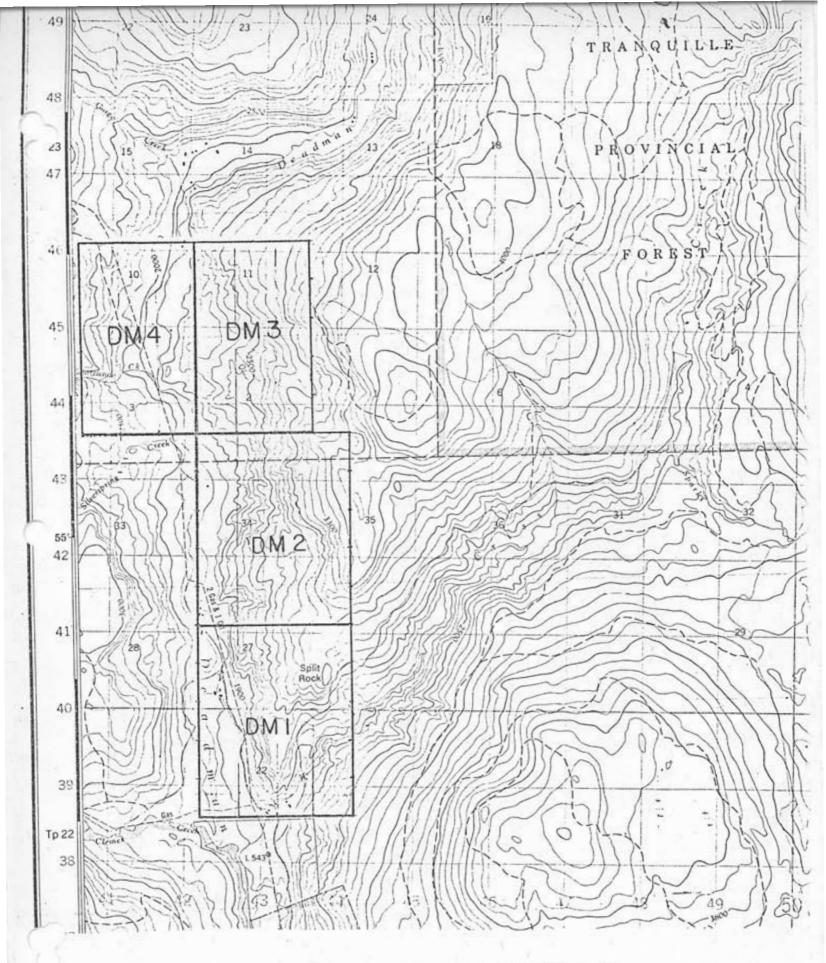
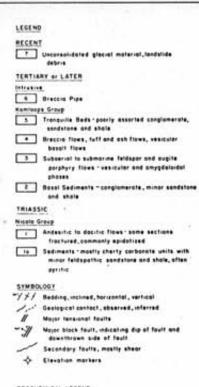


Figure 2; topographic map of D.M. claims

Scale 1:50,000

CLAIM NAME	RECORD DATE	RECORD NUMBER	NO. UNITS*
D.M. No. 1	Oct. 31, 1979	2214	20
D.M. No. 2	Oct. 31, 1979	2215	20
D.M. No. 3	Oct. 31, 1979	2216	15
D.M. No. 4	Oct. 31, 1979	2217	15

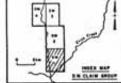
* Unit dimensions 500 meters X 500 meters.

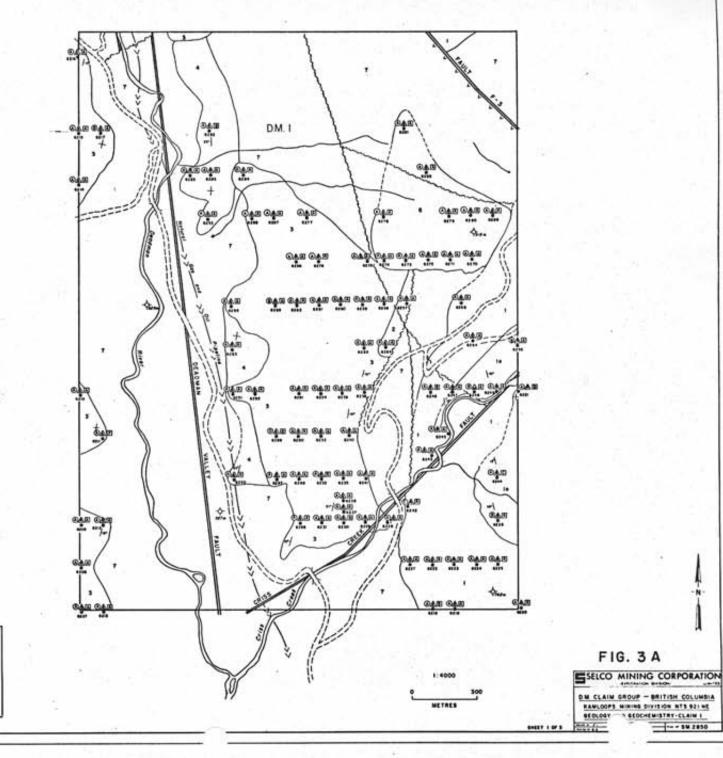

Much of the area was staked previously, but there is no record of assessment done on the claims, which were allowed to lapse. The D.M. claims were staked in 1979 for the account of Guichon Explorco Limited of Toronto. Geochemical and geological work was carried out in November and December, 1979.

GEOLOGY

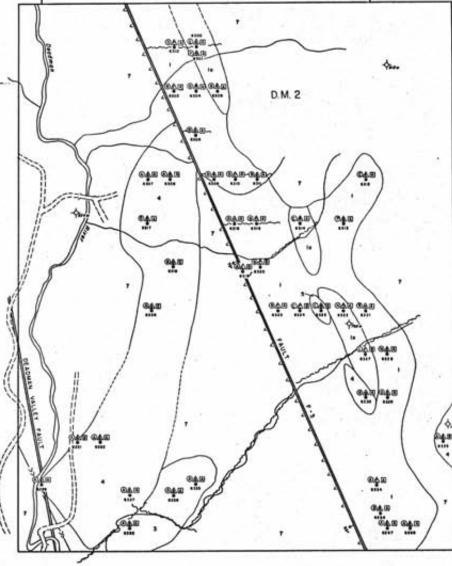
The oldest rocks in the claims area belong to the late Triassic Nicola group and include andesite, dacite and carbonate-chert-sandstone units. The volcanics (Unit 1) are submarine, often exibiting pillow structures in the andesites. They are often highly fractured and brecciated as a result of intense faulting. Epidotization and silicification is present to varying degrees in all the volcanics, occuring as erratic veinlets and as joint and fracture fillings.

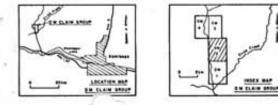
4/....


- 3 -



GEOCHEMICAL LEGEND


- GAB Geschemical values Sample location
- 4434
- Sample number
- Ha pab contour interval A -0 to 100, 8-101 to 500 . C - 501 to 1000, and every 1000 to P which is >10,000
- As pam contour interval every 50 from A to L and . M which is> 500
- Au ppb-contour interval every 5 from A to N



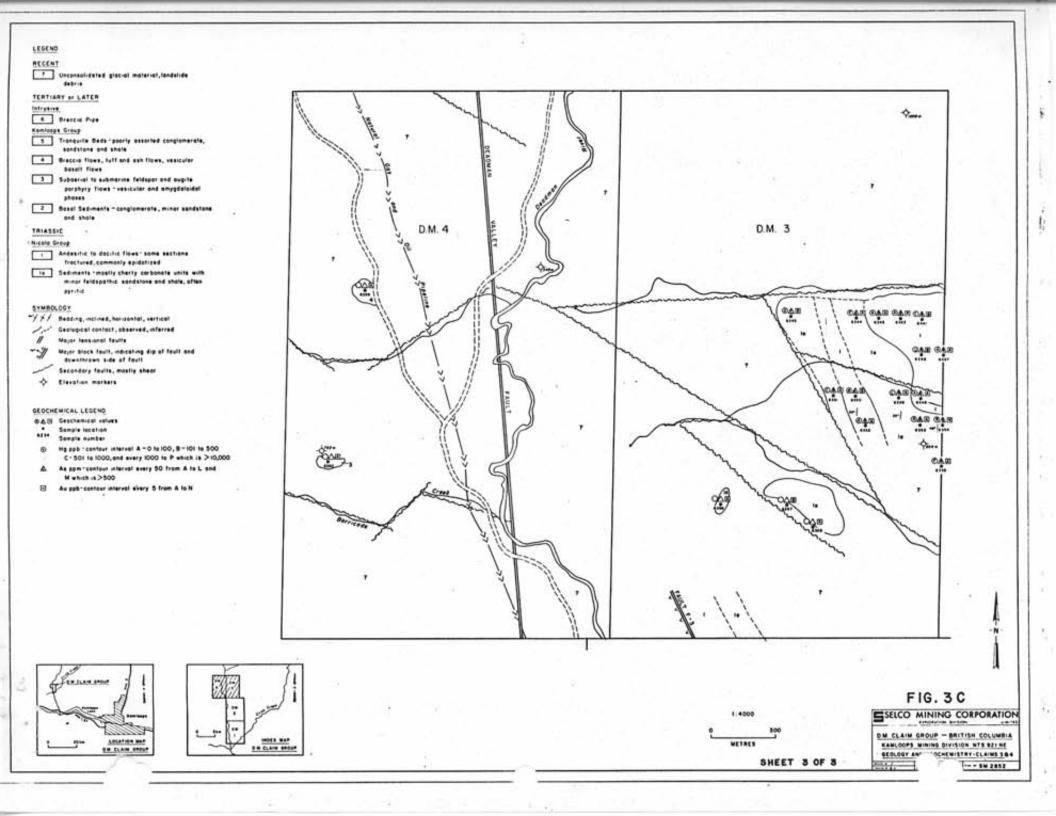


	FIG. 3 B
	SELCO MINING CORPORATION
	DW CLAIN GROUP - BRITISH COLUMBIA
	RAMLOOPS MINING DIVISION HTS \$21 NE
al-bran and	GEOLOGY / COCHEWISTRY-CLAIM 2
T 2 OF 3	
	T 2 OF 3

Brecciation is common along faults and fragments of Nicola volcanics are invariably cemented by carbonate, often containing visable cinnabar and/or hematite. Immediately adjacent to fault F-3 in claim D.M.-2, (Figure 3b), the volcanics have been subjected to epithermal solutions and carbonatization and de-silicification has occurred. Primary features have been largely obliterated but locally the alteration can be seen grading into unaltered volcanics. Hematite staining, occurring as sheets up to 2cm thick locally, is a highly visable feature of the epithermal activity on the volcanics, turning them to a bright scarlett.

Sediments within the Nicola group (Unit 1A) are characteristically cherty. Cherty carbonate units make up the greatest proportion of the sedimentary sequence, occurring in beds up to 50 meters thick. Discontinuous lenses of grey, pyritiferous, banded chert occur sporadically throughout the sedimentary sequence, often reaching thicknesses greater than 20 meters. Chert lenses also occur in the volcanic rocks of Unit 1. Variable thicknesses of quartzo-feldspathic sandstone occur at the base of Unit 1A, usually in direct contact with the volcanics. In the thicker sequences, the sandstone is often bracketed between carbonate and banded chert. Outcrops of sandstone are rusty weathering, due in part

5/....

- 4 -

to the porous nature of the rock and in part to the presence of finely disseminated sulphides. The matrix of the sandstone appears to be calcareous. Alteration is not a prevalent feature in the sedimentary units, and primary bedding features are well preserved. They strike north or slightly east or west of north and dip gently to moderately east. Variations in strike and dip are due to complex block faulting and subsequent transcurrent faulting.

The intense alteration observed in portions of the Nicola group is believed due to the release of meso-epithermal solutions during Tertiary tectonism and volcanism.

Tertiary volcanic and volcaniclastic units belonging to the Kamloops group unconformably overlie the Nicola group. At the contact, variable thicknesses of glaciallacustrine sediments (Unit 2) occur. The major component is a poorly sorted polymictic conglomerate containing cobbles and fragments of both Triassic and Tertiary volcanics and minor granitic fragments. Varicoloured, poorly consolidated sandstone and yellow shale occur in lesser amounts locally.

Interfingered with and overlaying Unit 2 is a thick sequence of subaerial and submarine volcanic rocks (Unit 3).

- 5 -

6/....

They range compositionally from augitic to feldspathic and are predominantly porphyritic. Augitic porphyry basalts occupy the lower sequence and phenocrysts up to 5^{mm} diameter have developed. Feldspar laths 1^{mm} to 3^{mm} long have formed in the upper, felsic porphyritic flows. Vesicles are common locally near the top of the flows which average 1 to 3 meters thick. Chalcedony is the most common infilling. Minor amygdaloidal basalt flows with zeolite infillings also occur locally, usually between the upper and lower flow sequences.

Unit 3 is overlain conformably by thick units of ash, tuff flows and breccia flows with occasional thin (1-3 M) vesicular basalt flows (Unit 4). This unit is poorly lithified and is very porous. Chalcedony and opal occur throughout the sequence as vesicle infillings and as sheetlike masses. Small amounts of malachite occur as dusty coatings on the chalcedony throughout the unit.

Unit 5, the Tranquille Beds, is exposed in only one locallity, near the center of claim D.M.-2. This unit, as exposed, is made up of clastic debris at the base, becoming progressively well sorted up sequence. Conglomerate composed of Tertiary volcanic cobbles tops the unit. Beds are 1 to 3 meters thick. The matrix of the Tranquille Beds is mostly white ash with a fair amount of sand.

7/....

- 6 -

The only intrusive found in the claims area is a breccia pipe (Unit 6), located on claim D.M.-1, at coordinates 1W+00E and 1S+00N. Locally known as Split Rock, the pipe forms a prominant topographic feature in the area. The breccia pipe intrudes both Nicola and Kamloops groups and is compositionally different from all other rocks in the area. It is a slightly vitreous, black to grey aphanitic rock that exhibits a sub-conchoidal fracture. A rusty, yellow zeolitic powder has been deposited along fractures and this acts as a binding agent. Individual breccia fragments are closely interlocked and range in size from 0.1 to 0.5 meters along the longest axis. The breccia pipe has been intruded by fine grained, mafic dikes and sills ranging in thickness from 0.1 to 2 meters.

Deep accumulations of Recent glacial debris, landslide debris and tallus (Unit 7) occur throughout the claims area. The Deadman Valley has the thickest accumulations, but considerable thicknesses of glacial material cover the east side of the valley as well. Best outcrop exposure occurs along fault scarps and road cuts.

8/....

- 7 -

STRUCTURE

At least three major transcurrent faults and many more subsequent tear and shear faults occur in the claims area. Block faulting and the development of graben structures has made interpretation of the geology more complicated.

The Deadman Valley fault strikes roughly north-south and is the largest of the three major faults. It appears to have originated from the intrusion during the Triassic of the Guichon batholith, located about 27 kilometers south of the D.M. claims. Study of faults subsequent to the Deadman Valley fault indicate it is a transcurrent fault. Deadman Valley seldom exceeds one kilometer in width except at the triple point of major faults. The fault divides about one half kilometer north of the D.M. claims, shifting east for one half kilometer, then resuming its north-south strike. The shift is believed due to a poorly exposed granitic intrusion that resisted the faulting.

The Criss Creek fault is the second major transcurrent fault occurring in the claims area. It strikes N60^OE from the confluence of the Deadman River and Criss Creek, located at the south end of claim D.M.-1. The north-west side has been downthrown and carbonatization and de-silicification

8 -

has occurred along shear zones that strike normal to the Criss Creek fault. Shearing is greatest in the sediments of Unit 1A, but is of limited aerial extent.

The third major fault observed in the claims area strikes across the north-east corner of claim D.M.-l and into D.M.-2 at an angle of $N45^{\circ}W$; it is designated Fault F-3. The fault dips 65° to 80° south-west with relative motion downthrown to the south-west, creating a well defined fault scarp. Shearing is extensive and well exposed east of the fault, with extensive epithermal alteration associated. Carbonatization, de-silicification, brecciation and cinnabarhematite mineralization are encountered along this fault in rocks of the Nicola group.

GEOCHEMICAL SURVEY

One hundred forty-nine rock and tallus samples were collected in the claims area and three rock samples, Nos. 6338, 6339 and 6340, were taken off the map area in the vicinity of Snohoosh Lake, located 20 kilometers north of the D.M. claims. Claims D.M.-1 and D.M.-2 are each 2500 meters northsouth by 2000 meters east-west; claims D.M.-3 and 4 are each 2500 meters north-south by 1500 meters east-west for a total area

10/....

• 9 –

sampled of 8.75 square kilometers. Samples were taken from outcrops and tallus slopes encountered during a grid sampling program. East-west lines were spaced 200 meters apart along a north-south baseline and samples, if any, were taken at 100 meter intervals - all traverse lines were chained and flagged every 100 meters. Ninety-one line kilometers were traversed.

Samples were bagged and shipped to Vancouver where analyses were done by Chemex Laboratories Limited, for mercury, arsenic, gold and silver (partial). Assay values of rock and tallus samples range from 10 parts per billion $(10^{-9} \text{ g/Tonne})$ mercury to greater than 10 parts per million mercury; from 0.1 parts per million arsenic to greater than 500 parts per million arsenic; and from less thatn 5 parts per billion $(10^{-9} \text{ g/Tonne})$ gold to 60 parts per billion gold. Silver never exceeded 0.4 parts per million and was omitted from the results. Distribution of values is shown below:-

1)	Greater than 10 x 10	0 ³ ppb Hg	2 samples
	9001-10,000 4001-3,000 3001-4,000 2001-3,000 1001-2,000 501-1,000 101-500 0-100		2 1 1 3 4 7 23 106
		TOTAL	149

- 30 -

11/....

)	Greater than	500	ppm	As	1	<pre>sample(s)</pre>
	$\begin{array}{r} 451-500\\ 351-400\\ 301-350\\ 201-250\\ 151-200\\ 101-150\\ 51-100\\ 0-50\\ \end{array}$				1 1 3 8 9 124	11 17 17 17 17 11 11 11
			TC	TAL	149	

3)

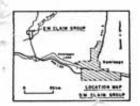
2)

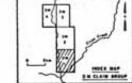
56-60	ppb	Au		1
31-35				1
26-30				1
21-25				1
11-15				3
6-10				17
0-5				125
		ſ	TOTAL	149

Mercury and arsenic were determined using atomic absorption and gold was determined by using a combination fire assay and atomic absorption method.

Three small gold anomalies occur. Anomaly one (30 ppb Au) is located on the west side of Deadman Valley at sample site 6211 (see Figures 3a and 4a) in the south-west corner of D.M.-1. There were no anomalous or elevated mercury-arsenic values associated with the gold anomaly. The sample was taken from red stained, gossan veined Tertiary basalts - some of which are prophyritic (Unit 3).

12/....

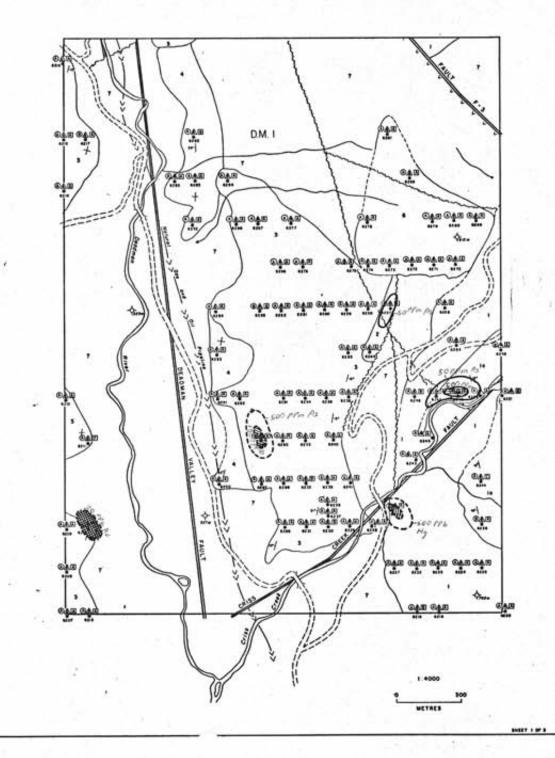
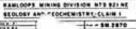


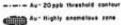


As - Highly enamalous zone

----- As- 20ppb threshold conteer

Contract Au - Highly enomalaus sans


FIG. 4A SELCO MINING CORPORATION DM CLAIN GROUP - BRITISH COLUMBIA

DESCRIPTION OF

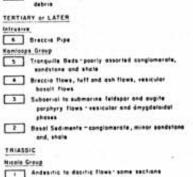
As - Highly memalous Jone

- As - 50 ppm threshold conteer

COD top - Highly anomalous some

ANOMALIES ---- He - 500 ppb threshold conteur

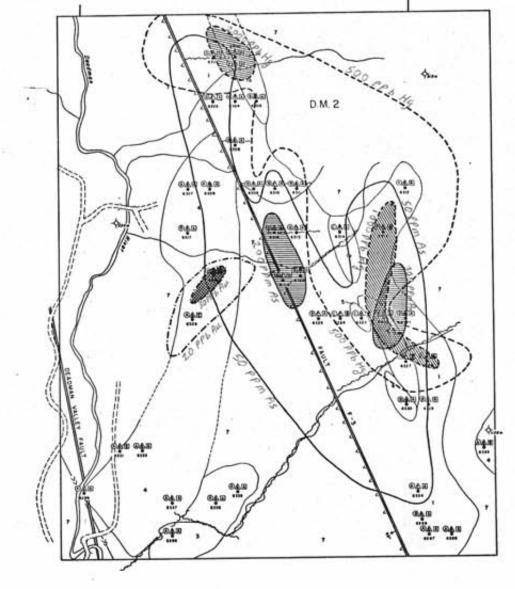
- Munch is >500 Au ppb-contour interval avery 5 from A to N
- 0 C - 501 to 1000, and every 1000 to P which is > 10,000 Δ As ppm-contour interval every 50 from A to L and
- Sample location 4234 Senate number Ing pob - contour interval A = 0 to 100, 8 = 101 to 500
- BAE Geothemical volune


Major block fault, indicating dip of fault and

GEOCHEMICAL LEGEND

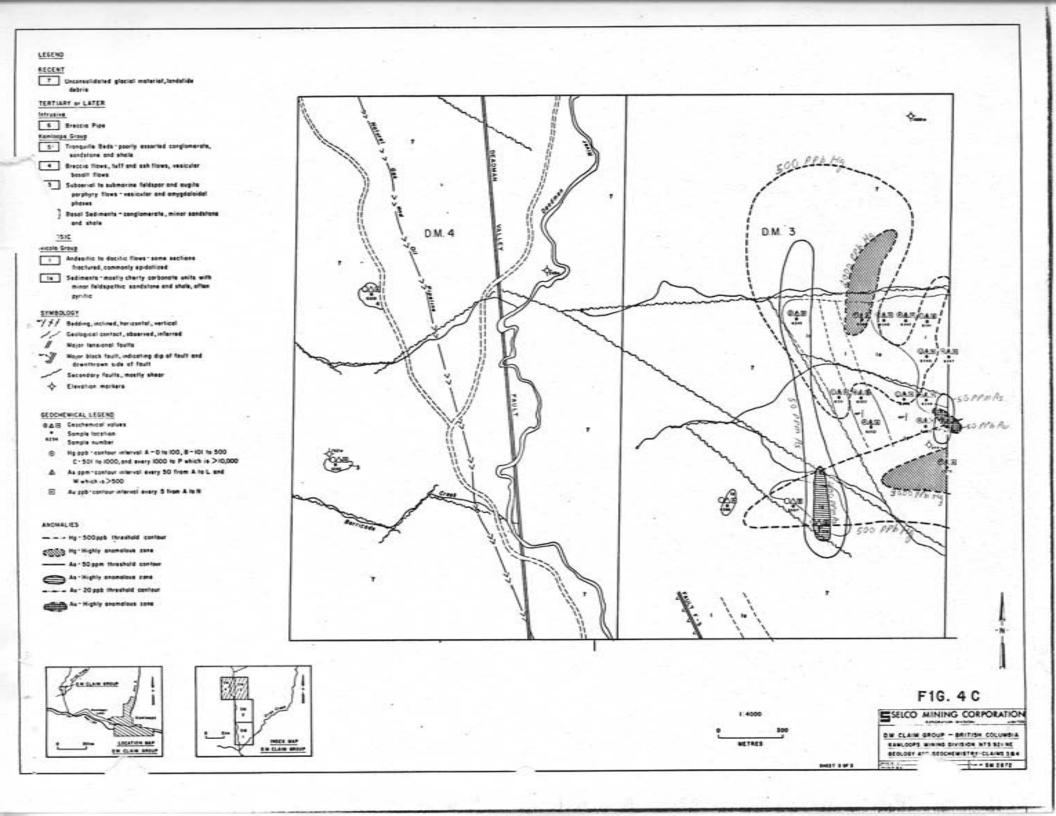
- Elevation marbers

downithrown aids al foult Secondary faults, mostly sheat


phones. 2 Besel Sedimente - conglamerate, minor sandstane and, shale TRIASSIC Nicola Group Andesitic to desitie flews: some sections fractured, commonly epidetized is Sediments - mostly cherty corbonate units with minor feldspathic conditions and shale, eften pyritiz SYMBOLOGY -"/ // Bedding, inclined, horizontal, vertical /... Geological contact, observed, inferred Major tensional faults 11

7 Unconsolidated glacist meterial, landslide

LEGEND RECENT


-1

F1G.4 B

SELCO MINING CORPORATION ON CLAIM GROUP - BRITISH COLUMBIA SEOLOS "ND BEOCHEWISTRY-CLAIN 2

1 4000 METRES -----

The second anomaly is located near the center of D.M.-2 at sample sites 6318 and 6326 (35 ppb and 25 ppb Au respectively). These samples were collected on a ridge of poorly exposed, deeply weathered rocks of Unit 4 (see Figures 3b and 4b). The anomalous zone is on the hanging wall of Fault F-3, about 250 meters west of the fault contact. Outcrops are highly altered, red stained and deeply weathered. Anomalous arsenic and mercury zones are associated with the gold anomaly (see Figure 4b).

Gold anomaly number 3 is located on the east boundary of D.M.-3 (see Figure 3c and 4c) at sample site 6354 (60 ppb Au). There are several threshold values (6-10 ppb Au) scattered around the anomalous zone. The sample was taken from a quartzo-feldspathic sandstone unit that weathers to a rusty red (Unit 1A). Anomalous arsenic and mercury zones are associated with the gold anomaly. This area is poorly exposed but appears to be highly sheared.

Two large mercury anomalous zones occur within the claim area. The largest (10 ppm Hg) is centered in and around highly altered members of Unit 1A located at sample site 6322 on D.M.-2. The anomalous zone occurs as an elongate lens 2100 meters long and 800 meters wide at its widest. The zone trends parallel to and about 200 meters east of Fault F-3.

- 12 -

13/....

A parallel zone of anomalous arsenic occurs between the mercury zone and the gold zone. It has a strike length of 2500 meters and is 1000 meters at its widest point. Arsenic values up to 500 ppm occur within this zone.

The second mercury anomaly is associated with gold anomaly No. 3 on D.M.-3. Values up to 5000 ppb Hg occur as a small halo 100 to 300 meters away from the gold anomaly. Arsenic is anomalous immediately adjacent to the gold anomaly and a second, elongate arsenic zone occurs 600 meters west, on the outer edge of the mercury zone.

Distribution of mercury and arsenic is structurally controlled but gold does not appear to have controls. Controls for gold might be determined if a more complete distribution pattern were developed. Anomalous threshold values of 20 ppb for gold, 500 ppb for mercury and 50 ppm for arsenic were calculated using figures obtained during a regional geochemical survey of S.E. British Columbia during the summer of 1979.

Estimated field cost of the Deadman claims exploration program to date are shown as follows:-

- 13 -

14/....

D.M. CLAIMS - COST STATEMENT

·

SAMPLING	41 days @ \$79.59 per day	\$ 3,263.19
(Geochemical)	41 days @ \$45.00 per day	1,845.00
ACCOMODATION	41 crew days @ \$22.56/crew day	924.96
FOOD	41 crew days @ \$27.29/crew day	1,118.89
SUPPORT		270.70
(Flagging		
sample bags, etc.)		
TRANSPORTATION		
Truck Rental	41 days @ \$24.39 per day	999.99
Vehicle Operation	41 days @ \$15.00 per day	615.00
SAMPLE ANALYSIS	154 Soil and Rock Samples (Au, Ag, Hg)	823.90
REPORT & DRAFTING	30 days @ \$45.00 per day	1,350.00
	17 days @ \$65.00 per day	1,105.00

\$12,316.65

!

CONCLUSIONS

Gold, mercury, and arsenic occur in altered Triassic volcanics and sediments of the Nicola group and in Tertiary volcanics of the Kamloops group. Three anomalous gold zones with values ranging from 20 ppb (10⁻⁹ g/tonne) to 60 ppb gold occur in the survey area. Two of the gold anomalies occur in the vicinity of a major block-fault system and are associated with anomalous mercury and arsenic zones. The mercury and arsenic anomalies are distributed in well defined zones around the gold anomalies. The mineralized areas are highly sheared and most of the host rocks have been carbonatized and de-silicified. Extensive hematite staining of the altered rocks exposed over much of the mineralized area indicates epithermal activity was prevalent in the vicinity of the fault.

RECOMMENDATIONS

A follow-up geochemical sampling program with trenching should be carried out over gold anomalies No. 2 and claim D.M.-2 and No. 3 claim D.M.-3. Targets should be centered around the gold anomalies with attention paid to the areal extent and zoning of mercury and arsenic anomalies, the alteration of volcanic and sedimentary rocks, and fracture patterns. Samples should be analyzed for gold, arsenic, and mercury.

Open ground east of claim D.M.-3 should be claimed , as soon as possible and included in the sampling program.

- 15 -

REFERENCES

CAMPBELL, R.B. and TIPPER, H.W.: Geology of the Bonaparte Lake Map Area; G.S.C. Memoir 363, 1972.

COCKFIELD, W.E., 1947: Map 886A, Geology of Nicola, sheet 92I/east half. Geological Survey of Canada.

JONES, A.G., 1959: Vernon Map - Area, British Columbia, G.S.C. Memoir 296.

Minister of Mines, B.C. Ann. Rpt. 1913, p. 195 Minister of Mines, B.C. Ann. Rpt. 1916, p. 265 Minister of Mines, B.C. Ann. Rpt. 1933, P. 182

CERTIFICATE

I, JAMES C. IRELAND of Capreol, Ontario do hereby certify:-

 That I am a junior geologist in the employ of Guichon Explorco Limited, of Toronto, Ontario.

- That I am actively pursuing an Honours Bachelor of Science degree at Laurentian University, Sudbury, Ontario.
- 3. That I have practised my profession for more than two years.
- 4. That I mapped geologically and sampled the area described herein, and interpreted the results of the survey.
- 5. That I was accompanied at all times during the survey by Robert Lucas, a junior geologist in the employ of Guichon Explorco Limited, Toronto, Ontario.
- That the results of the survey are correct to my knowledge.

James C. Ireland, Party Leader.

SUPERVISOR'S CERTIFICATE

I, HUGH SQUAIR, of 174 Tracina Drive, Oakville, Ontario hereby certify as follows:-

1. I am a geologist residing at the above address.

- 2. I am a graduate of the Universities of Saskatchewan and London (England) with Ba (1959) and Phd (1965) degrees in Geology and Mining Geology.
- I am registered as a member of the Association of Professional Engineers of the Province of Ontario.
- 4. I supervised the geological and geochemical work carried out on the D.M. Claim group by Mr. James Ireland and Mr. R. Lucas and attest that values presented and their spacial relationships to each other are correct within reasonable limits of error.
 - I hold no interest direct or indirect in the D.M. Claim group which is the subject of this report.

Toronto, Ontario May 16, 1980.

5.

£

Respectfubly submitted, , ulliz

Hugh Squair.

APPENDIX

TABLE 1 - Rock sample number, coordinates, claim location, description and assay results.

TABLE 1

NO.	•	NATES AND (METRIC)		AGE*	Au ppb	Hg dqq	As ppm	REMARKS
207	D.M1	5S+00N 4W+00E	Red to grey, slightly vesicular feldspar porphyry flows	Kám	< 5		4.5	-
5208	D.M1	5S+250N 4W+00E	Some as 6207-some augite porphyry flows	Kam	~5	40	2.0	
5209	D.M1	5S+100N 4W+00E	Gossan stained alte- red porphyritic vol- canics-shear zone	Kam	< 5	80	15	
5210	D.M1	3S+00N 4W+00E	Fresh augite porphyry flows	Kam	< 5	20	1.0	
5211	D.M1	4S+300N 4W+100E	Altered and gossan veined volcanics- basaltic	Kam	30	10	12	
5212	D.M1	5S+400N 4W+100E	Altered carbonate veined, deeply wea- thered volcanics	Kam	< 5	30	1.0	
5213	D.M1	5S+00N 4W+100E	Gossan stained por- phyritic volcanics	Kam	< 5	60	4.5	
5214	D.M1	2S+450N 4W+00E	Vesicular basalt- chalcedony infilling -magnetite rich	Kam	< 5	60	1.0	
5215	D.M1	1S+200N 4W+00E	Fresh augite porphyry basalt	Kam	< 5	100	1.0	
5216	D.M1	1S+400N 4W+00E	Red stained magnetite rich volcanics-deeply weathered		~ 5	70	1.0	
5217	D.M.~1	1S-200N 4W+100E	Same as 6216	Kam	5	240	1.0	
5218	D.Ml	5S+00N 1W+100E	Andesitic volcanics - epidote veining	Nicola	10	60	1.0	
5219	D.M1	5S+00N 1W+200E	Same as 6218 - some shearing	Nicola	< 5	50	1.0	
220	D.M1	5S+00N 1W+500E	Fracture zone in car- bonate veined, epi- dotized andesite	Nicola	< 5	50	1.0	
5221	D.M1	3S+00N 1W+500E	Dacitic porphyritic -sheared sections, quartz blebs	Nicola	10	20	4.0	
222	D.M1	5S+200N 1W+100E	Same as 6221	Nicola	< 5	50	1.0	
223	D.M1	5S+200N 1W+200E	Same as 6221-weathe- red, slightly gossanous	Nicola	< 5	50	1.0	
224	D.M1	5S+200N 1W+300E	Same as 6221-finer grained	Nicola	∠ 5	10	1.0	
	* Kan	1 represe	denotes "less than" hts rock of Terriary a esents rock of Jurassi	ge c or Cr	etaced	ous age	9	

TABLE 1

.

- 2 -									
	SAMPLE NO.		NATES AND (METRIC)		AGE	Au ppb	Hg ppb	As ppm	REMARKS
	6225	D.M1	5S+200N 1W+400E	Same as 6221-visable magnetite	Nicola		20	1.0	
	6226	D.M1	5S+400N 1W+400E	Shear zone in sand- stone and jasper units-Malachite	Nicola	< 5	170	29	
	6227	D.M1	5S+200N 1W+00E	Basalt flows	Nicola	<5	60	1.0	
	6228	D.M1	5S+400N 2W+400E	Feldspar and augite porphyry flows-vesi- cular to amygdaloidal	Kam	< 5	70	1.0	
	6229	D.M.~1	5S+400N 2W+300E	Same as 6228	Kam	< 5	50	4.0	
• ,	6230	D.M1	5S+400N 2W+200E	Thin vesicular basalt flows in breccia flows-malachite stains	Kam	< 5	40	1.0	
	6231	D.M1	5S+400N 2W+112E	Same as 6230	Kam	< 5	60	1.0	
	6232	D.M1	4S+100N 2W+100E	Deeply weathered feldspar porphyry volcanics	Kam	< 5	50	1.0	
,	6233	D.M1	4S+300N 2W+100E	Vesicular basalt- carbonate infilling	Kam	< 5	20	1.0	
	6234	D.M1	3S+00N 2W+100E	Vesicular, amygdaloi- dal and porphyritic flows-goasan stained	Kam	< 5	70	1.0	
	6235	D.M1	4S+300N 2W+200E	Slightly vesicular porphyritic flows- gossan veinlets	Kam	< 5	60	1.0	
	6236	D.M1	4S+050N 2W+200E	Porphyry basalt- gossan veinlets throughout	Kam	< 5	20	1.0	
	6237	D.M1	5S+450N 2W+200E	Vesicular basalt- highly fractured, gossan veinlets	Kam	< 5	60	1.0	
ļ	6238	D.M1	3S+00N 2W+300E	Feldspar porphyry flows-red and green stained-gossan vein- lets	Kam	< 5	50	1.0	
	6239	D.M1	3S+00N 2W+200E	Vesicular basalt- black to purple stained	Kam	<. 5	50	1.0	
	6240	D.M1	4S+300N 2W+250E	Shear zone-altered and gossan veined porphyry flows	Kam	< 5	- 30	1.0	
	6241	D.M1	4S+100N 2W+300E	Porphyritic flows, minor gossan staining	Kam	< 5	20	1,0	
	-	1		,	1	I .			l

• •

Ϊ.

- -

TABLE 1

.

- 3 -								
SAMPLE NO.		ATES AND (METRIC)		AGE	Au ppb	Hg ppb	As ppm	REMARKS
6242	D.M1	5S+460N 1W+00E	Shear Zone in Mafic volcanics-Malachite and carbonate	Kam	< 5	2900	50	
6243	D.M1	4S+180N 1W+100E	Andesitic flows- quartz-epidote veins	Nicola	۔ ج 5	. 70	1.0	
6244	D.M1	4S+100N 1W+400E	Water lain tuffs, argillites and impure limestone	Nicola	15	50	4.5	
6245	D.M1	4S+300N 1W+280E	Sheared, schistose andesites, dacites- silicified	Nicola	∠ 5	80	11	
6246	D.M1	3S+00N 1W+100E -	Slightly vitreous breccia (from pipe) friable matrix	Kam	10	50	, 11	
6247	D.M1	3S+00N 1W+200E	Shear zone-bleached andesite, tuff, sand- stone, impure lime- stone	Nicola	5	70	68	
6248	D.M1	3S+00N 1W+300E	Same as 6247-chert breccia	Nicola	5	240	500	
6249	D.M1	3S+00N 1W+400E	Carbonate-shattered zones, rusty sections	Nicola	< 5	20	32	
6250	D.M1	4S+100N 3W+200E	Ash and pebbly vol- canic tuff-thin por- phyry flows	Kam	∠ 5	80	1.0	
6251	D.Ml	3S+00N 3W+200E	Porphyry and vesicu- lar flows-deeply weathered	Kam	< 5	70	1.0	
6252	D.Ml	2S+300N 3W+100E	Vesicular basalt- minor malachite on agate	Kam	< 5	80	1.0	
62 53	D.M1	1S+00N 3W+00E	Breccia flows, ash flow and tuffs-some malachite	Kam	< 5	80	5.0	
6254	D.M1	3S+250N 1W+300E	Highly sheared, epi- dotized andesites	Nicola	< 5	60	5.0	
6255	D.M1	3S+200N 1W+500E	Siliceous carbonate, sandstone, pyritic chert	Nicola	< 5	140	17	
6256	D.M1	3S+400N 1W+250E	Schistose andesite, weakly.magnetic	Nicola	∠ 5	60	9.0	
6257	D.M1	3S+400N 1W+00E	White to grey volca- nic ash-highly fractured	Kam	< 5	- 70	58	
6258	D.M1	3S+400N 2W+400E	Vesicular feldspar porphyry flows-red stained	Kam	∠ 5	50	1.0	
·		, -, -,		1				ł

•

....

•

ТΑ	В	L	Е	1
_				

,				-				
			TABLE					
SAMPLE	COORDINA	חאג קייב						
NO.		METRIC)	SAMPLE DESCRIPTION	AGE	Au ppb	Hg ppb	As ppm	REMARKS
6259			Same as 6258-some bleached sections	Kam	< 5	50	1.0	- - -
6260			Same as 6258-some bleached sections	Kam	< 5	60	1.0	
6261	D.M1 2	3S+400N 2W+100E	Mafic, magnetite rich flows	Kam	< 5	40	1.0	
6262	D.M1 2	2W+00E	Vesicular augite por- phyry	Kam	< 5	40	2.0	
6263	$\int D \cdot M \cdot -1 2$	2W+300E	Feldspar porphyry flows-pink	Kam	< 5	40	1.0	
6264	D.M1 32	2W+400E	Conglomerate-poorly sorted, polymict-rusty weathering-some lami- nated sandstone units 12-30cm thick	Kam	< 5	30	1.0	
6265		3W+00E	Sandstone unit in vesicular basalt- purple to green	Kam	< 5	40	1.0	
6266	D.M2 1	N+400S W+400E	Epidotized and mine-	Nicola	< 5	30	1.5	
6267		N+400S W+300E	Shear zone-altered tuff-carbonate units- minute sulphides	Nicola	< 5	70	4.0	
6268		W+350s W+250E	Fault breccia-magne-	Nicola	< 5	110	11	
6269	D.M1 1	S+300N W+300E	Breccia pipe-aphanitic slightly vitreous- friable matrix		< 5	80	20	
6270	D.M1 1		Base of breccia pipe	Kam	< 5	40	1.5	
6271		S+100N W+200E	Same as 6270	Kam	< 5	20	1.0	
6272		W+100E	Same as 6270	Kam	< 5	60	4.0	
6273		W+00E	Shear zone-gossan stained-malachite + chalcedony-flows?	Kam	< 5	50	1.0	
6274		S+100N W+400E	Same as 6273-some small porphyritic dikes or flows	Kam	< 5	70	2.0	
6275	D.M1 2	W+325E	Red to grey feldspar porphyry flows-red breccia flow tops	Kam	< 5	60	1.0	
-								
-	. /	. u		 		 • · · ·		
	· .							•
``			·					

<u>TABLE 1</u> - 5 -

				- 5 -	-				
	SAMPLE NO.		NATES ANI (METRIC		AGE	Au	Hg ppb	As ppm	REMARKS
	6276	D.M1	2S+100N 2W+100E	Same as 6275-rusty veins throughout	Kam	< 5	50	1.0	
	6277	D.M1	2S+300N 2W+050E	Same as 6275	Kam	< 5	40	1.0	
	6278	D.M1	2S+300N 2W+400E	Breccía pipe-scoria- ceous zones, mafic fragments	Kam	< 5	50	1.0	
	6279	D.M1	2S+300N 2W+400E	Same as 6278	Kam	< 5	40	1.0	
	6280	D.M1	2S+300N 1W+200E	Same as 6278-top of pipe	Kam	< 5	70	1.0	
	6281	D.M1	1S+200N 1W+00E	Breccia pipe-cut by mafic dike	Kam	< 5	60	1.0	
	6 282	D.M1		Vesicular basalt flows rusty infillings	Kam	10	80	1.0	
	6283	D.M1	1S+00N 3W+100E	Breccia flows-thick units-weathered	Kam	< 5	60	1.0	
	6284	D.M1		Shear zone-red stained altered feldspar porphyry flows	Kam	< 5	50	1.0	
	6285	D.M1	1S+00N 1W+400E	Same as 6281-no dike visable	Kam	< 5	40	1.0	
	6286	D.M1	5S+400N 2W+00E	Stained breccia, flows -thin visicular basalt flows	Kam	< 5	60	1.0	
	6287	D.M1	4S+100N 3W+400E	Altered, silicified, grey volcanics, probably porphyritic	Kam	< 5	50	1.0	
	6288 、	D.M1	4S+100N 2W+00E	Red, aphanitic dike, disseminated magneti- te-carbonate veins	Kam	< 5	50	1.0	
	6289	D.M1	4S+300N 2W+00E	Porphyritic breccia flows, pyroxene and feldspar porphyry flows	Kam	10	1600	20	
4	6290	D.M1		Porphyritic breccia flows-some bleached zones	Kam	< 5	70	1.0	
	6291	D.M1	3S+00N 2W+00E	Feldspar porphyry flows-fresh	Kam	< 5	80	1.0	
	6292	D.M1	3S+00N 3W+300E	Porphyritic basalt- augite altered	Kam	< 5	70	1.0	
	6293	D.M1	3S+200N 3W+200E	Thick basaltic breccia flows-some zones bleached	Kam	< 5	70	1.0	
•	6294	D.M1	3S+400N 3W+250E	Bleached feldspar porphyry flows	Kam	∠ 5	50	1.0	
	-	.		 				-	. \$ 1

*

TABLE 1

			- 6		-			
SAMPLE NO.		NATES AND (METRIC)		AGE	Au ppb_	Hg ppb	As ppm	REMARKS
62 95	D.M1	3W+400E	Augite porphyry basalt -vesicular with opa- line infillings	Kam	< 5	40	1.0	
6296	D.M1		Bleached vesicular basalt-solution passa geways	Kam	< 5	_. 70	1.0	
6297	D.M1	2S+300N 3W+400E	Feldspar porphyry flows, vesicular basalt-some zones bleached	Kam	5	60	1.0	
6298	D.M1	2S+300N 3W+300E	Bleached augite porphyry flows	Kam	< 5	60	1.0	
6299	D.M2		Silicified breccia flows-zeolitic vein- lets	Kam	< 5	70	20	
6300	D.M2		Completely altered rocks; brecciated, veined, silicified, carbonatized	Nicola	< 5	4650	56	
6301	D.M2	5N+200S 3W+300E	Same as 6300-duplicate sample	Nicola	ج 5	10,000	120	
6302	D.M2	3W+200E	Deeply weathered vol- canics-hematite stained, silicified	Nicola	< 5	1300	120	
6303	D.M2	3W+200E	Hematite stained, highly altered breccia flows-some porphyritic	Kam	< 5	460	255	
6304	D.M2	3W+300E	Red stained, altered porphyritic flows, agglomerate; highly fractured	Kam?	< 5	400	23	
6305	D.M2	3W+400E	Conglomerate overlying mafic volcanic rocks, highly altered and sheared-hematite veining in volcanics	Kam	< 5	500	24	
6306	D.M2	3W+300E	Altered, hematite stained, de-silicified volcanics-sheared and veined	Nicola?	< 5	120	43	
6307	D.M2	3W+100E	Deeply weathered augi- te porphyry flows, breccia flows	Kam	< ⁻ 5	90	9.5	
6308	D.M2	4N+300S 3W+200E	Deeply weathered siliceous ash unit	Kam	< 5	- 70	90	
6309	D.M2	3W+400E	Breccia zone-epidoti- zed andesites grading to highly de-silici- fied zeolitized fault breccia along shears	Nicola	∠ 5	440	44	
-			breccia along shears about 3-5 meters wide hematite stained				Project.	

. 2, 1 • .

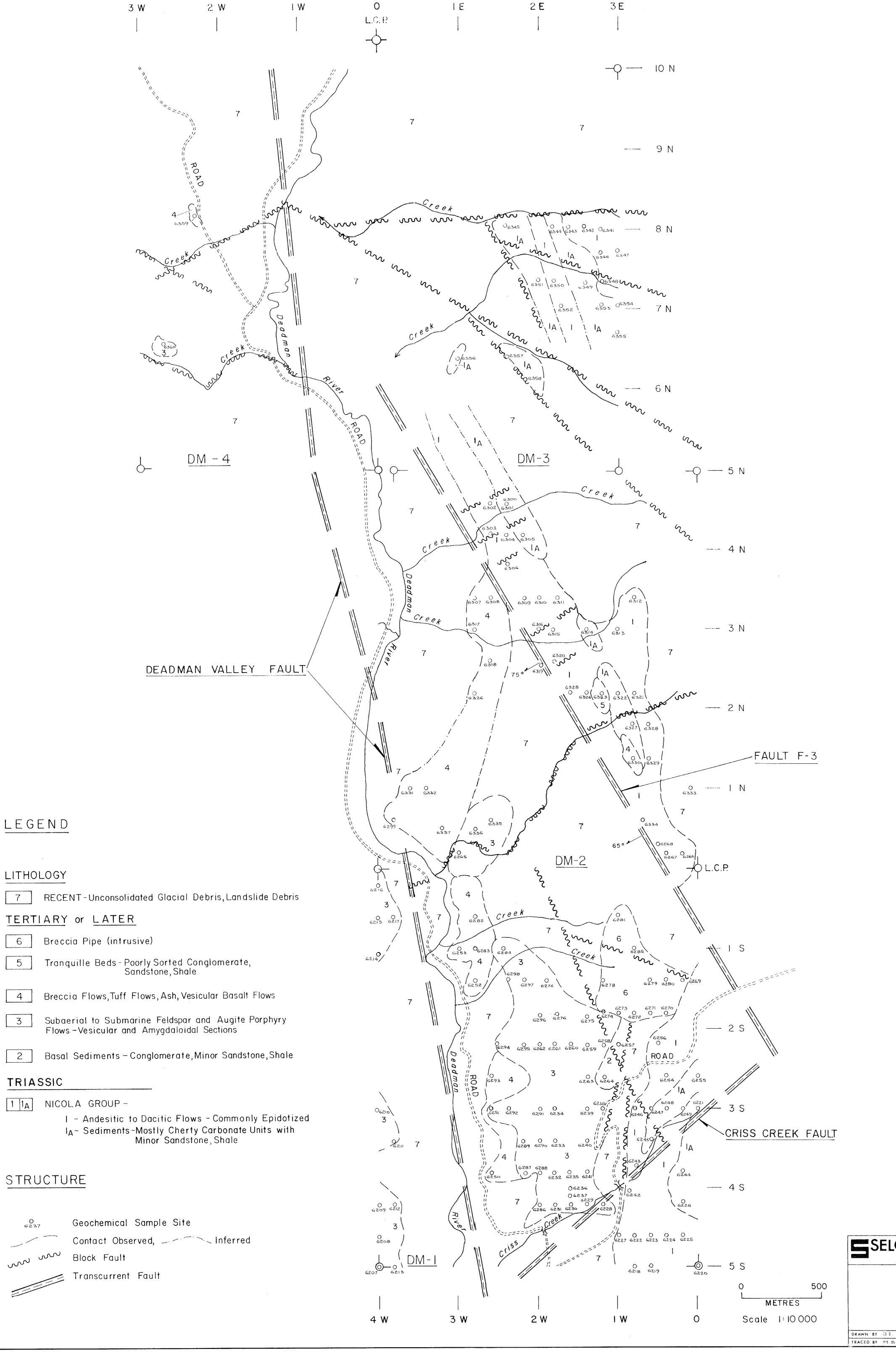
•

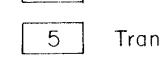
<u>TABLE 1</u>

			$\frac{\text{TABLE}}{-7}$					
SAMPLE NO.		NATES AND (METRIC)		AGE	Au ppb	Hg	As ppm	REMARKS
6310	D.M2		Breccia zone-same as 6309	Nicola		140	132	
6311	D.M2	2W+100E	Highly fractured and veined porphyritic volcanics	Kam?	< 5	400	12	
6312	D.M2	1W+100E	Silicified volcanics, some gossan stained zones	Nicola	< 5	2500	31	
6313	D.M2		Silicified breccia zone-volcanics	Nicola	< 5	10,000	94	
6314	D.M2	2W+300E	Hematite stained, silicified volcanic breccia-highly alte~ red	Nicola	< 5	900	24	
6315	D.M2	3N+00S 2W+100E	Same as 6314	Nicola	< 5	320	180	
6316	D.M2	3N+00E 2W+00E	Same as 6314	Nicola	< 5	160	360	
6317	D.M2	3W+100E	Purple, vesicular basalt, thin green flows, some breccia flows	Kam	< 5	180	10	
6318	D.M2	3W+200E	Red stained, gossanous deeply weathered and highly altered volca- nics	Kam	35	130	68	
6319	D.M2	2W+020E	Fault zone-breccia of highly altered vol- canics-fumarolic activity-hematite stained, carbonatized veined throughout	Nicola	10	60	500	
6320	D.M2	3N+200S 2W+100E	Same as 6319	Nicola	5	440	200	
6321	D.M2		Altered, rusty sili~ ceous volcanics	Nicola	5	130	310	
6322	D.M2		Fractured, veined, rusty banded chert	Nicola	< 5	10,000	200	
6323	D.M2		Conglomerate and flows breccia flows	Kam	10	800	70	
6324	D.M2	2W+300E	Breccia zone-hematite rich matrix-volcanics de-silicified	Nicola	10	740	130	
6325	D.M2		Tallus-hematite matrix in brecciated andesite		< 5	- 120	120	
6326	D.M2		Deeply weathered vesicular basalts	Kam	25 ₊	80	4.0	
-					-			
	•	• •		· · ·	•.	f I	. *·	E C

• •

.

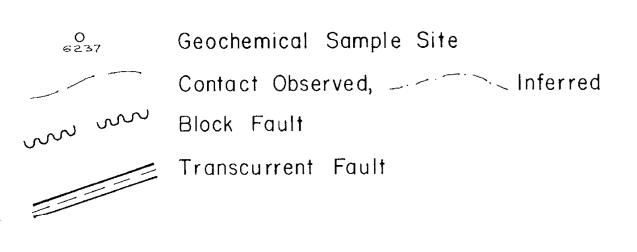

Г	A	в	L	F	5	1
-		_				_


	. ت <u>ت</u>			. *			
		$\frac{\text{TABLE}}{-8}$					
SAMP NO			AGE	Au ppb	Hg ppb	As ppm	REMARKS
6323		S Finely brecciated he- E matite stained zones in volcanics	Nicola	10	740	150	
6328		S Sheared and jointed E dacitic flows-hematite abundant	Nicola	ے 5	9750	17	
6329	D.M2 2N+300 1W+200	S Same as 6328 E	Nicola	5	120	36	
6330		S Amygdaloidal basalt- E carbonate infilling -some rusty zones	Nicola	<i>~</i> 5	310	85	
6333	D.M2 1N+00S 4W+200	Poorly consolidated E conglomerate and vesicular basalt	Kam	10	20	1.0	
6332	$2 D.M 2 \frac{1N+00S}{4W+300}$	Same as 6331	Kam	~ 5	40	2.0	
6333	B. D.M2 lN+00s lw+500	Amygdaloidal flows and E pillowed basalt flows -zeolite infilling	5 Kam	10	. 30	1.0	
. 6334		S Silicified, hematitic W volcanics-highly altered; carbonate veinin	Nicola	5	50	115	
6335	5 D.M2 ^{1N+200} 3W+200	S Siliceous quartz- E feldspar porphyritic flows	Nicola	< 5	40	1.0	
6330	5 D.M2 1N+250 3W+100	S Siliceous tuff	Kam	< 5	40	1.0	
633	D.M2 1N+250 4W+400	S Purple-red breccia E flows	Kam	< 5	40	1.0	
6338 6339 6340) Samples taker	n north of D.M claims	- off	map ar	ea		
634		N Altered, silicified W volcanics	Nicola	10	750	38	
6342		N Epidotized, fractured W flows, some porphyri- tic (pyroxene)		< 5	80	2.0	
634.		N Siliceous volcanic W flows and tuffs	Nicola	< 5	60	39	-
6344		N Altered and veined W (carbonate) rusty volcanics-and unalte- red equivalents	Nicola	5	2050	13	
634		N Brecciated carbonate W and argillite units -carbonate veining	Nicola	10	1050	115	

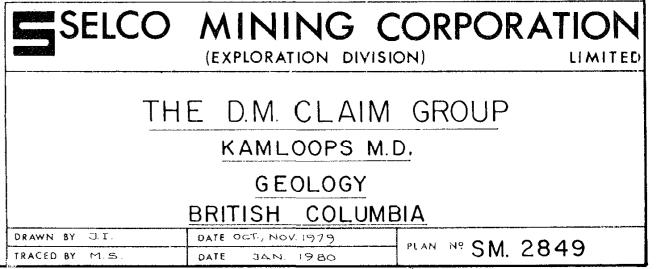
Т	Α	В	\mathbf{L}	Е	1
_		_		_	

.

	• •	A ., *		TABLE – 9		۰. ۱			
	SAMPLE NO.		ATES AND (METRIC)		AGE	Au ppb	Hg ppb	As ppm	REMARKS
	6346	D.M3		Breccia zone-silici- fied carbonate and volcanic rocks	Nicola	10	1050	13	
	6347	D.M3		Brecciated, pyritic volcanics	Nicola	< 5	80	7.0	
	6348	D.M3	3E+130W	Epidotized and sili- cified mottled vol- canics-pyritic	Nicola	5	60	13	
	6349	D.M3	3S+00N 3E+230W	Silicified, brecciated carbonate unit-pyritic old pits	Nicola	5	800	36	
- - -	6350	D.M3	3S+00N 3E+400N	Epidotized and silici- fied volcanics-sulphi- de blebs	Nicola	10	170	4. 0	
	6351	D.M3	2E+00W	Sedimentary unit-silt- stone-carbonate, brecciated zones	Nicola	5	800	20	
-	6352	D.M3	45+300N 3E+340W	Epidotized and silici- fied greenstones~ sulphide blebs	Nicola	5	90	17	
	6353	D.M3	4S+300N 3E+100W	Carbonate-chert unit in siliceous volcanics abundant pyrite	Nicola	< 5	70	23	
	6354	D.M3	45+300N 3E+00W	Quartzo-feldspathic sandstone unit in carbonate-chert unit of 6353-abundant pyrite	Nicola	60	150	85	
• •	6355	D.M3	3E+00W	Rusty weathering carbonate and sandy sediments	Nicola	5	3800	6.0	
	6356	D.M3		Brecciated argillace- ous sediments-minor sulhides	Nicola	5	100	31	
	6357	D.M3		Mineralized cherty sediments-tallus	Nicola	10	1550	31	
	,63 58	D.M3	5S+200N 2E+100W	Same as 6357	Nicola	5	470	250	
	6359	D.M4		Deeply weathered vesicular flows and ash	Kam	5	60	1.0	
	6360	D.M4		Acid vesicular and amygdaloidal volcanics	Kam	5	_ 40	1.0	
			• .						
	-								
	San ya ana ang sa San ya sang sang sang sang sang sang sang san	1 7					। 'ਛੋ-''' क		I
-	,				-				



- 4


TRIASSIC

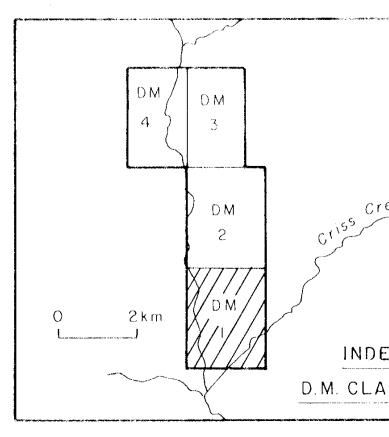
 $\begin{bmatrix} 1 & 1_A \end{bmatrix}$

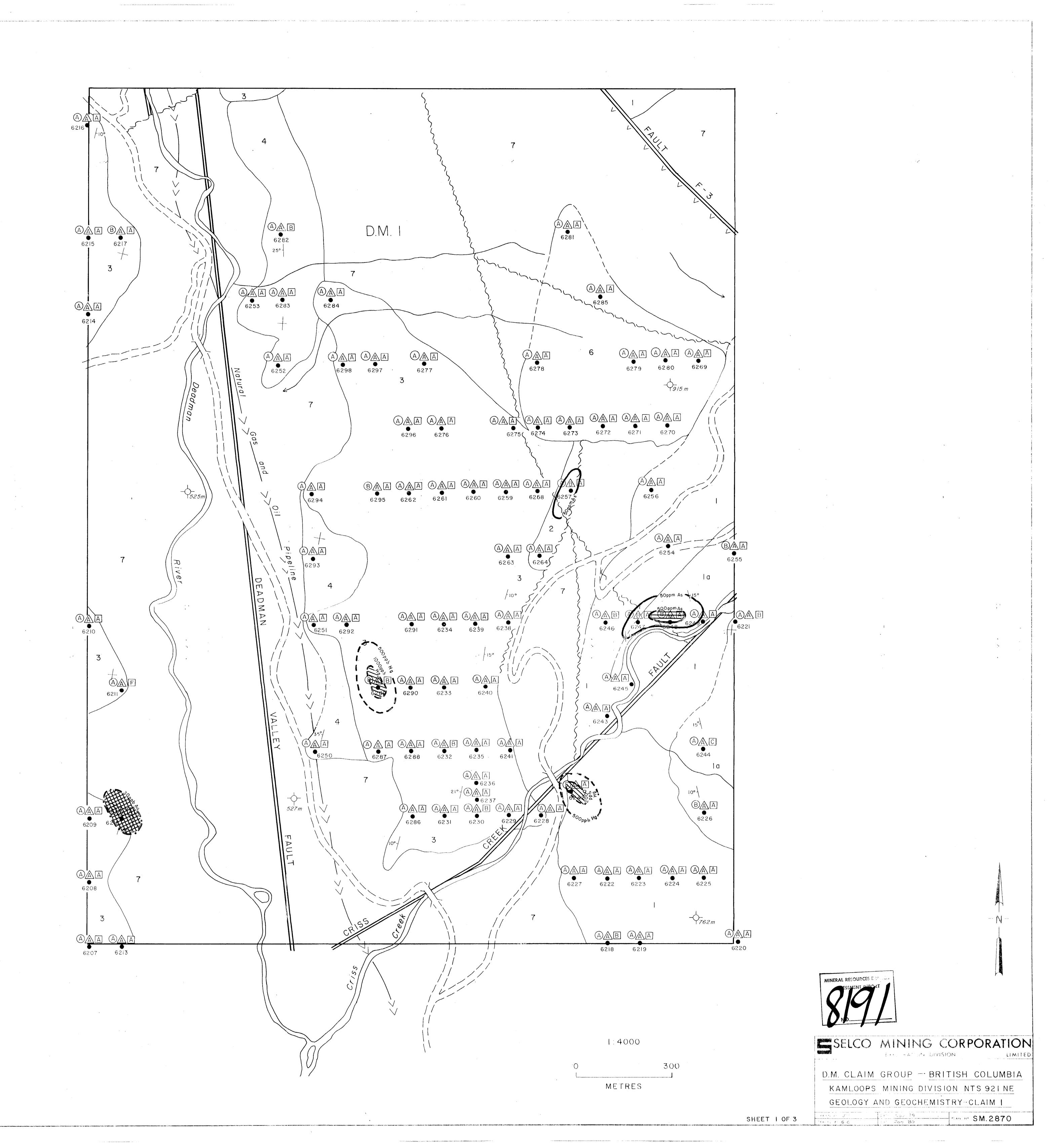
STRUCTURE

LEGEND)	
RECEN	ſ	
7	Unconsolidated glacial material,landslide debris	
TERTIA	RY or LATER	
Intrusiv	6	
6	Breccia Pipe	
Kamloop	os Group	
5	Tranquille Beds-poorly assorted conglomerate, sandstone and shale	
	Breccia flows, tuff and ash flows, vesicular basalt flows	
3	Subaerial to submarine feldspar and augite	
gar tar managana ana kanana su ana ana ana ana ang	porphyry flows -vesicular and amygdaloidal phases	
2	Basal Sediments — conglomerate, minor sandstone and shale	
TRIASS		•
Nicola G	Group	
	Andesitic to dacitic flows—some sections fractured, commonly epidotized	
Ια	Sediments - mostly cherty carbonate units with minor feldspathic sandstone and shale, often pyritic	
SYMBO	LOGY	
50° / / /	Bedding; inclined, horizontal, vertical	
	Geological contact; observed, inferred	
11	Major tensional faults	
10° K	Major block fault, indicating dip of fault and downthrown side of fault.	
cororal.	Secondary faults, mostly shear	1
	Elevation markers	۶.
· · · · · · · · · · · · · · · · · · ·		
GEOCHE	EMICAL LEGEND	
	Geochemical values	
8 6234	Sample location Sample number	•
\sim	1 and reaction interval $A \rightarrow 0$ to 1002 D m 101 to 500	

- A Hg ppb contour interval A = 0 to 100; B = 10i to 500
 C = 501 to 1000, and every 1000 to P which is > 10,000
 As ppm contour interval every 50 from A to L and M which is > 500
- H Auppb-contour interval every 5 from A to N

ANOMALIES


ŗ


!

Hg - 500 ppb threshold contour
MIT Hg-Highly anomalous zone
As - 50 ppm threshold contour
As-Highly anomalous zone
Au-20ppb threshold contour
🖽 Au-Highly anomalous zone

D.M. CLAIM GROUP Kamloops Lake Kamloops LOCATION MAP 20 k m 0 D.M. CLAIM GROUP

n dage, bespectively agree in the second party in a second second of the second second second second second sec

INDEX MAP D.M. CLAIM GROUP

LEGEND

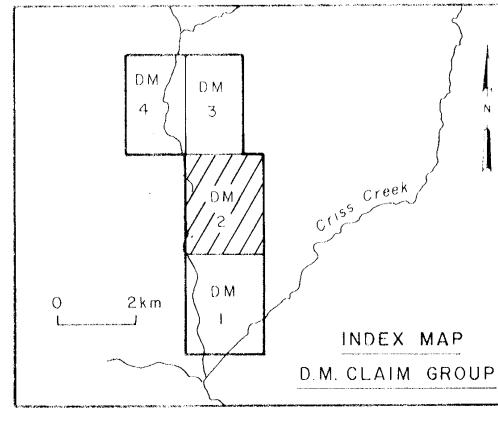
RECENT	
7	Unconsolidated glacial material, landslide debris
TERTIA	RY or LATER
Intrusiv	e .
6	Bréccia Pipe
Kamloop	os Group
	Tranquille Beds-poorly assorted conglomerate, sandstone and shale
4	Breccia flows, taff and ash flows, vesic llar basalt flows
3	Subaerial to submarine feldspar and augite
k, an	porphyry flows vesicular and amygdaloidal - phases
2	Basal Sediments — conglomerate , minor sandstone and shale
TRIASS	SIC
Nicola (Group
	Andesitic to dacitic flows some sections fractured, commonly epidotized
	Sediments mostly cherty carbonate units with minor feldspathic sandstone and shale, often pyritic
SYMBO	LOGY
50°////	Bedding; inclined, horizontal, vertical
	Geological contact; observed, inferred
11	Major tensional faults
70° K ()/	Major block fault, indicating dip of fault and downthrown side of fault
and and	Secondary faults, mostly shear
····	Elevation markers
GEOCH	EMICAL LEGEND
	Geochemical values
<u>لانا</u> ک <u>کر</u> ک	Sample location
6234	Sample number
	Hg ppb - contour interval $A = 0$ to 100, $B = 101$ to 500 C = 501 to 1000 and every 1000 to P which is ≥ 10.000

C = 501 to 1000, and every 1000 to P which is \geq 10,000 A As ppm-contour interval every 50 from A to L and M which is >500 .

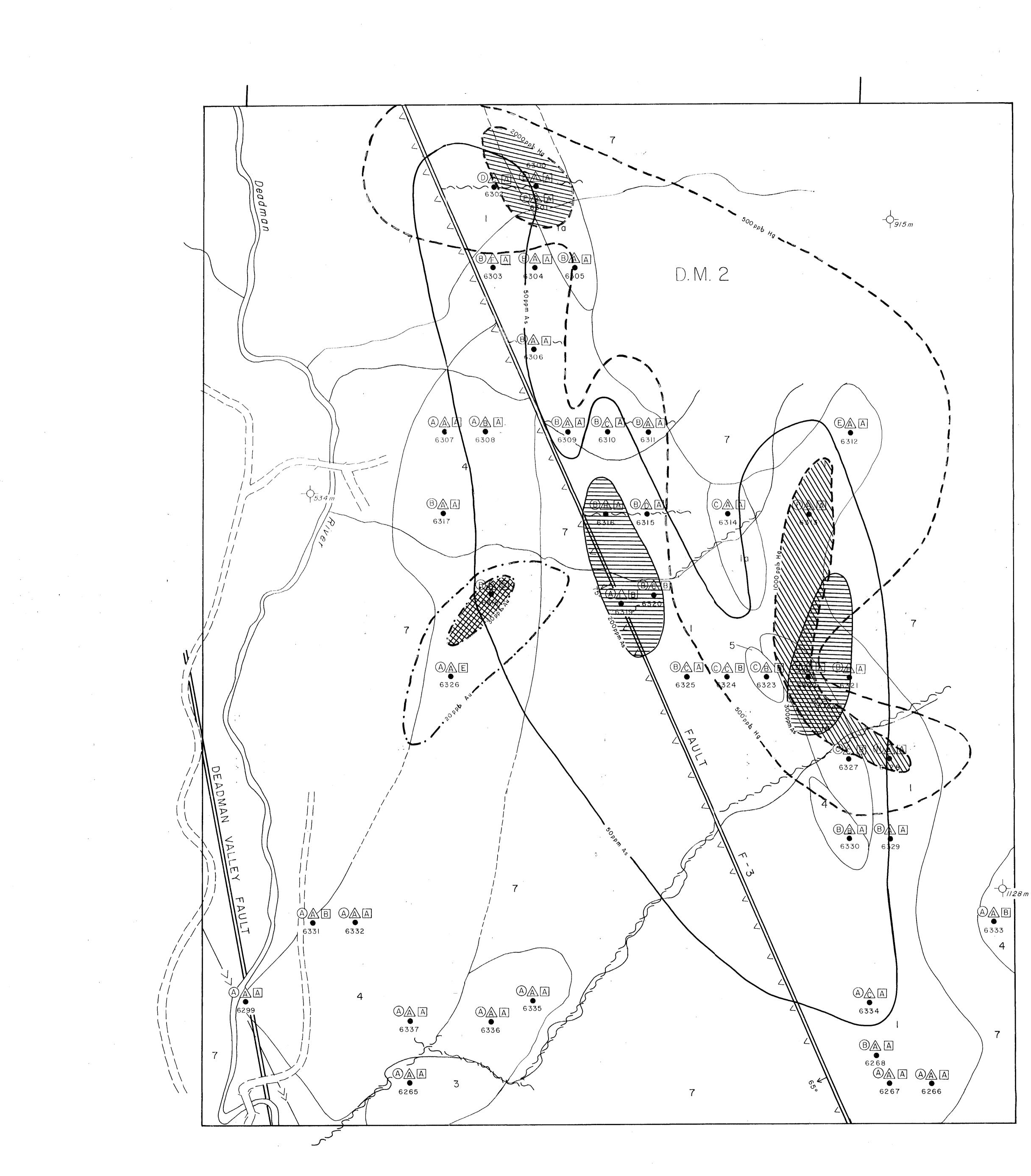
Au ppb-contour interval every 5 from A to N

ANOMALIES

i.


į

*


— — — Hg – 500 ppb threshold contour	
MTTT Hg-Highly anomalous zone	
As - 50 ppm threshold contour	
As-Highly anomalous zone	
Au-20ppb threshold contour	
Au-Highly anomalous zone	

D.M. CLAIM GROUP Kamloops Lake Kamloops LOCATION MAP 0 20 km D.M. CLAIM GROUP

INDEX MAP

1:4000 300 METRES

Matter and particulation control production reaction of the second control reaction of the second control of the second particulation of the second particula

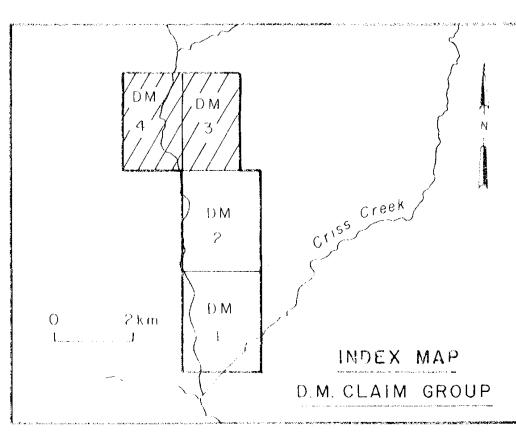
MINERAL RECOURCES BRANC

EXPLORATION DIVISION

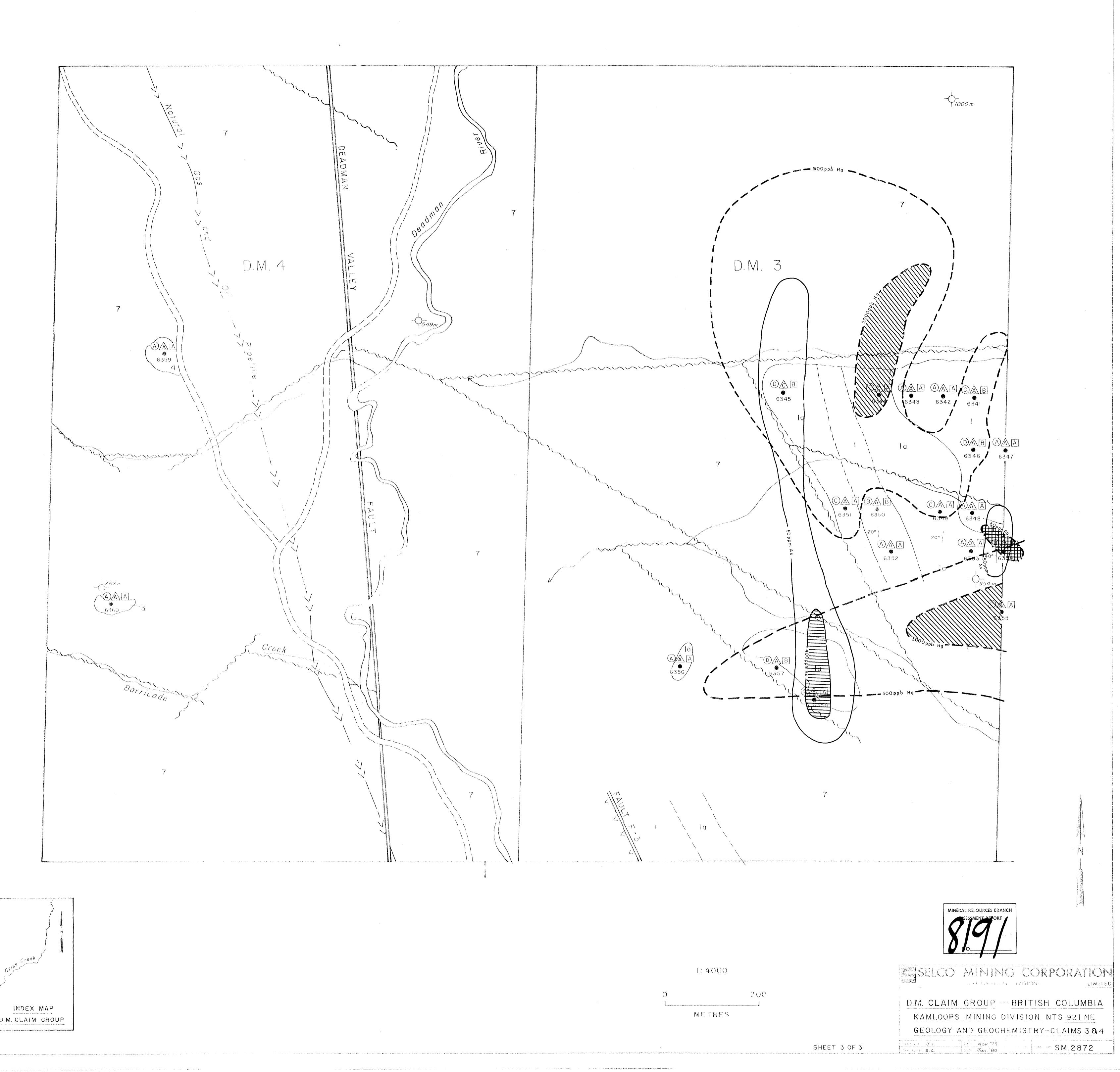
D.M. CLAIM GROUP - BRITISH COLUMBIA KAMLOOPS MINING DIVISION NTS 921 NE GEOLOGY AND GEOCHEMISTRY-CLAIM 2 нала в JI (нат. Nov. 79) на с. в S.C (газ. Jan. 80) Рам но SM. 2871

LEGEND

RECENT		
7	Unconsolidated glacial material,landslide debris	
TERTIA	RY or LATER	
Intrusiv	e	
6	Breccia Pipe	
Kamloop	os Group	
5	Tranquille Beds-poorly assorted conglomerate, sandstone and shale	
4	Breccia flows, tuff and ash flows, vesicular basalt flows	
3	Subaerial to submarine feldspar and augite porphyry flows -vesicular and amygdaloidal phases	
	Basal Sediments — conglomerate, minor sandstone and shale	
TRIASSIC		
Nicola Group		
	Andesitic to dacitic flows-some sections fractured, commonly epidotized	
	Sediments - mostly cherty carbonate units with minor feldspathic sandstone and shale, often pyritic	
SYMBO	LOGY	
50°/ / /	Bedding; inclined, horizontal, vertical	
	Geological contact; observed, inferred	
11		
10° K 1/	Geological contact; observed, inferred	
10° K 5// 5-//	Geological contact; observed, inferred Major tensional faults Major block fault, indicating dip of fault and	


GEOCHEMICAL LEGEND

AH	Geochemical values
∌ 62.34	Sample location
	Sample number
	Hg ppb-contour interval A -0 to 100, B-101 to 500 C-501 to 1000, and every 1000 to P which is >10,000
<u>C</u>	As ppm-contur interial every 50 from A to L and M which is>500
[H]	Au ppb-contour interval every 5 from A to M


ANOMALIES

——— Hg-500ppb threshold contour
MTT Hg-Highly anomalous zone
As-50ppm threshold contour
As-Highly anomalous zone
Au - 20 ppb threshold contour
Au – Highly anomalous zone

D.M. CLAIM GROUP Kamloops Lake Kamloops ~~~_] LOCATION MAP 0 20 k m D.M. CLAIM GROUP a all a fha na bha an an ann an 1997 ann an 1996 ann an

2.99 all for examples and and a set of the set of t

