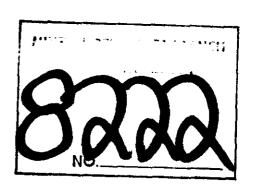
DIAMOND DRILL REPORT

ON THE

BROWN GROUP

CARIBOO MINING DIVISION


93 B 8W, 9W

(LATITUDE 50°30', LONGITUDE 122° 18')

OWNER AND OPERATOR

GIBRALTAR MINES LIMITED

McLEESE LAKE, B.C.

Author: G.D. Bysouth

Submitted: 31 July 1980

TABLE OF CONTENTS

		PAGE
1.0	INTRODUCTION	1
2.0	MINERAL CLAIMS	3
3.0	DRILL PROGRAM	
	3.1 Objective	4
	3.2 Results	4
	3.3 Interpretation	4
4.0	STATEMENT OF EXPENDITURES	6
5.0	CONCLUSION	8

FIGURES

Figure 1	Area Location Map	(In Text)
Figure 2	Brown Group Claim Location Map	(In Pocket)
Figure 3	Drill Hole Location Map	(In Pocket)

APPENDICES

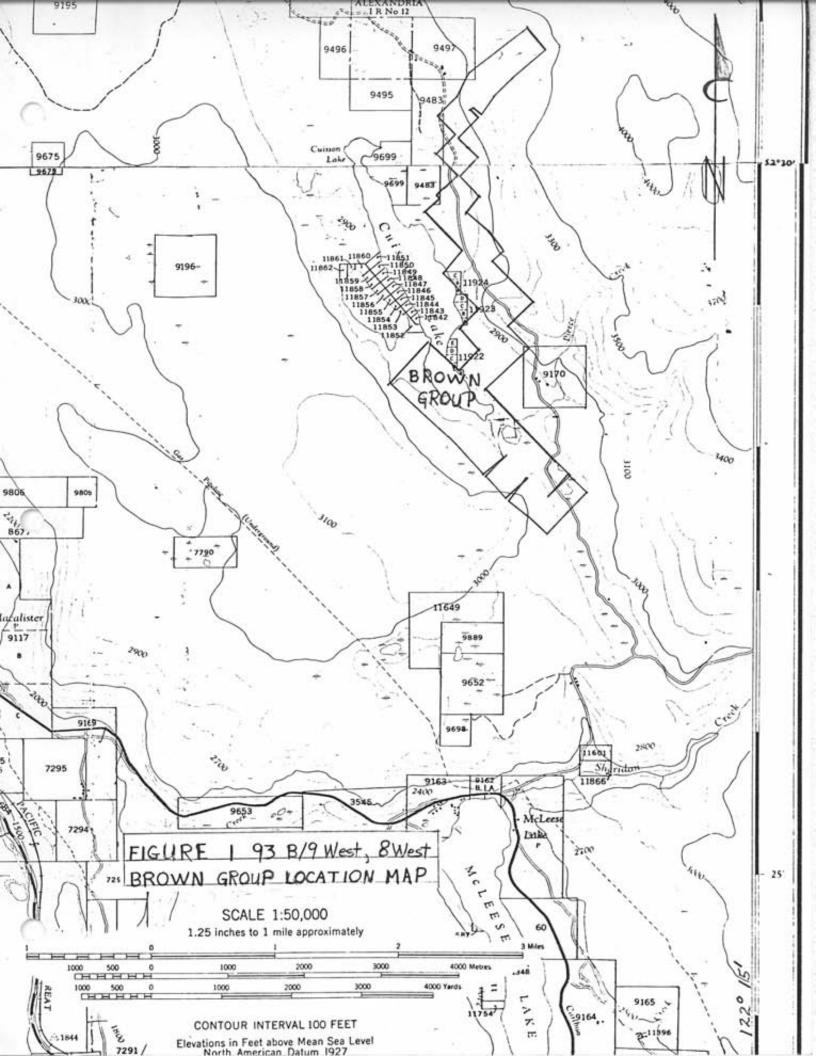
I.	Statement of Qualifications	9
I.	Statement of Qualifications	10
II.	List of Abbreviations	11
III.	Drill Log: Hole 80-8 Drill Log: Hole 80-9	(In Pocket)

1.0 INTRODUCTION

The Brown Group lies approximately 1 mile (1.61 km) south-southwest of the Gibraltar Mines concentrator. It lies mainly to the east of Cuisson Lake and extends approximately 1.5 miles (2.4 km) northeast of the northern tip of the lake. Elevations range from 2900 feet to about 3700 feet. Access is via a two-wheel drive road which links the claims to the Gibraltar Mines Road at a point about 3 miles (4.8 km) by road from the plant site. The general location of the group is shown in Figure 1.

This group shares a common history with the adjacent "Pink Group" which lies on its western boundary. The following is quoted from a "Diamond Drill Report of the Pink Group" submitted by G.D. Bysouth on July 11, 1980.

"The property was first staked in 1928 by the Hill Brothers. Mineralization found in a shear zone was tested with a trend and open cut 75 feet in length. A chip sample across the heaviest mineralization gave 25 feet of 2.0% copper, but no gold or silver.


From 1954 to 1956, Sunset (Kimaclo Mines Limited) staked 100 claims in this area and in the Pollyanna area on Granite Mountain. They drove the "Sunset Adit" into the shear zone along Granite Creek at a point about 1 mile (1.6 km) east of the north end of Cuisson Lake. The adit ran for a distance of 110 feet at S35°E. They tested the area around the adit with a pack sack diamond drill. Chip sampling of open cuts west and east of the portal yielded 23 feet of .87% copper and 23 feet of .20% copper respectively. A sample taken of the hanging wall above the shear assayed 12.5 feet of 1.43% copper, and one across the shear yielded 2 1/3 feet of 1.96% copper.

In 1958, Sunset (Major Mines Limited) took over 72 claims in this area. They did 3,000 feet (937.5m) of diamond drilling in 10 holes and carried out a geological mapping program over the area.

In 1967, McPhar Geophysics Limited carried out an I.P. Survey for Cominco Limited which outlined a small anomaly at the northern end of the Pink Group", and the Brown Group.

"Gibraltar Mines have held some claims in the area since 1962. In 1969 they drilled 15 N.Q. wireline holes as part of a larger program designed to test the extensions of the Granite Lake and Gibraltar East orebodies. Gibraltar Mines Limited was working under an agreement with Duval Corporation and Canadian Exploration Limited until 1971 when all interests reverted to Gibraltar." The claims presently in the Brown Group were grouped in 1971 and some of them have been taken to lease. Figure 2 shows a detailed location map of claims and leases in the Brown Group, all of which are owned by Gibraltar

^{1.} G.D. Bysouth, Gibraltar Mines Ltd., Diamond Drill Report on the Pink Group, Cariboo Mining Division 93B8, July 11, 1980.

Mines Limited.

This report covers a drill program designed to test the southerly extension of the mineralized zone indicated by 1969 drilling in the Pink Group and the adit and to test for a possible peripheral porphyry system.

J.T. Thomas was contracted during the period March 4 to March 8, 1980 to drill two vertical N.Q. wireline diamond drill holes totalling 892 feet (271.95m). Core is stored at Gibraltar Mines plant site.

2.0 MINERAL CLAIMS

Claims and leases of the Brown Group are shown in Figure 2. Information on them is tabulated below.

CLAIM NAME R	ECORD NO.	LOT NO.	LEASE	ANNIVERSARY DATE
AL 5	28451	_	-	July 2, 1990
8	28454	_	_	ti.
EV 13	31066		-	October 19, 1990
14	67	-		11
15	31739	-		January 17, 1990
16	40	_		11
18	42	-	-	11
20	44	-	-	11
PAN 2	25792	4149	M-64	October
STU 2 FRACTION	52929		_	July 18, 1990
3 "	30	-	-	ับ
4 11	31	_	-	11
6 "	53211			August 12, 1985
Z 2 Fraction	34969	3601	M-39	July
ZEPHYR 2	25575	3601	M-39	11
4	77	3601	M-39	11
6	79	3601	M-39	11
8	81	3601	M-39	11
FLO 2 FRACTION	43173	-	_	August 3, 1990
VAL 3	33851	_	_	March 18, 1985
5	53	_	_	11 1
6	54	_	_	11
VAL 35	53212	_	-	August 12, 1985
36	53213	_		11 1
37	52917	-	-	July 18, 1985
38	53214	_	_	August 12, 1985
39	52918	_	_	July 18, 1985
40	53215		-	August 12, 1985
41	52919	_	-	July 18, 1985
42	53216	-	_	August 12, 1985
43	52920	_	-	July 18, 1985
44	53217	_	-	August 12, 1985
45	52921	_	-	July 18, 1985
46	53218	-	-	August 12, 1985
47	52922	-	_	July 18, 1985
48	53219	-	_	August 12, 1985
49	52923	-	_	July 18, 1985
50	53220	-	-	August 12, 1985

All of these claims belong to Gibraltar Mines Limited and adjoin to the north, east and west, two-part claims and unit claims, all owned by Gibraltar Mines Limited. The southern edge of the property is bounded by crown land.

3.0 DRILL PROGRAM

3.1 OBJECTIVE

The purpose of this drill program was to test the southerly extension of a mineralized zone in the Pink Group indicated by the 1969 drilling and the adit zone and to check out the possibility of a peripheral porphyry system. A McPhar Geophysics anomaly also covers the area.

3.2 RESULTS

The drill hole locations are shown in Figure 2. Results from the 1980 drill program in the adjacent Pink Group, submitted in a "Diamond Drill Report" for assessment purposes on July 11, 1980, suggest that a narrow (approx. 180' wide) zone of mineralization, striking 304° azimuth and dipping 60° NE passes about 100 to 150 feet to the north of D.D.H. 80-8. Neither of the two holes drilled in this program hit this system. Grade intersected at the bottom of D.D.H. 80-9 is believed to be another system of mineralization, though further drilling is required to test this theory.

Limonite is noted to 110 and 66 feet in holes 80-8 and 80-9 respectively. Copper oxides are present in only minor amounts.

Diamond drill logs are included in the pocket of this report. All copper values reported here and in the logs are for total copper, all molybdenum reported is MoS2, and silver is given as ounces per ton.

Hole 80-8 was cased to 20 feet. No significant copper mineralization was intersected. Two 10-foot assays for molybdenum between 270 and 280 feet, and between 450 and 460 feet graded .044% MoS2 and .042% MoS2 respectively.

Hole 80-9 was cased to 10 feet. Between 250 and 380 feet, a 130-foot zone of .24% copper was intersected. Molybdenum values were generally low except for a 50 foot zone of .011% MoS2 at the bottom of the hole. Three random 10-foot samples averaged .020 oz/ton silver.

3.3 INTERPRETATION

According to other drill results, the adit zone strikes 304° azimuth and dips 60° northeasterly. Intersecting south-dipping structures of the same strike do, however, provide some southerly extensions of the zone, and hole 80-8 was situated to test whether or not these were significant. Since only very low pyrite-chalcopyrite concentrations were encountered, the concept of a southward-extending body can be ruled out.

Hole 80-9 was situated to test for porphyry-type mineralization south of the adit zone. The pyrite-chalcopyrite mineralization encountered, even though below ore grade, does suggest the presence of a significantly large sulphide body. The 130 feet of .24% copper intersected at the bottom of the hole could, in fact, represent the low-grade halo of better mineralization. Although mineralization was confined mainly to shear zones, there was a strong indication of increasing vein-and stockwork-type ore control towards the bottom of the hole - this may indicate a trend towards porphyry-type mineralization.

4.0 STATEMENT OF EXPENDITURES

MARCH, 1980 DIAMOND DRILLING, BROWN GROUP

a)	Site Preparation TD 20 C Bulldozer February 15 2.25 hours @ \$57.75/hr. \$ 1	29.94
b)	Drilling Costs Moving: Flatbed Rental \$180.00 Drill Company Charges 423.16 \$603.16	
	Drilling: 80-8 \$ 7,084.00 80-9 5,404.00	
	\$12,488.00 \$12,488.00 Materials: 1,938.42 \$15,029.58 \$15,0	29.58
c)	Vehicle Costs 4x4 1980 Suburban March 4-8 5 days @ \$17.20/day	86.00
đ)	Assay Costs 90 assays @ \$4.40/assay 3	96.00
e)	Miscellaneous Costs 45 core boxes @ \$4.60/box	57.00
f)	Personnel Costs Core Logging and Supervision G. D. Bysouth March 5-7 24 hours March 10-11 16 hours	
	40 hours @ \$19.60/hr. \$784.00 Core Logging M. R. Schaumberger March 24-25 16 hours @ \$10.67/hr. 170.72	
	Field Work and Organizing E. Oliver Feb. 15 4 hours March 4 8 hours March 7 8 hours 20 hours @ \$13.23/hr. 264.60	
	C. Johnston Feb. 15 4 hours March 4 8 hours March 7 8 hours 20 hours @ \$10.87/hr. 217.40	

Core Splitting E. Oliver	March 6 March 10-11 March 14	
C. Johnston	March 6 March 10-11 March 14	8 hours 16 hours 8 hours 32 hours @ \$10.87/hr. 347.84
W. Raven	June 10	8 hours @ \$ 9.23/hr. 73.84
R. Riedel	June 9-10	16 hours @ \$ 6.67/hr. 106.72 \$2,388.48 2,388.48
		TOTAL DRILLING COSTS \$18,287.00

5.0 CONCLUSIONS

 $\,$ Hole 80-8 rules out a significant southern extension of the adit zone.

 $\,$ Hole 80-9 suggests the presence of a porphyry-type body, and more drilling is required to test this.

Submitted by,

Garry D. Bysouth Senior Geologist

GIBRALTAR MINES LIMITED

lay D. Beprett

APPENDIX I

STATEMENT OF QUALIFICATION

I, Garry D. Bysouth, of Gibraltar Mines Limited, McLeese Lake, B.C., do certify that:

- 1. I am a geologist.
- 2. I am a graduate of the University of B.C., with a B.Sc. degree in geology in 1966.
- 3. From 1966 to the present I have been engaged in mining and exploration geology in B.C.
- 4. I personally supervised this drill program, logged the core and assessed the results.

Garry D. Bysouth

APPENDIX I

STATEMENT OF QUALIFICATIONS

- I, Madeline R. Schaumberger, of Gibraltar Mines Limited, McLeese Lake, B.C. do certify that:
 - 1. I am a geologist.
 - 2. I am a graduate of the University of B.C. with a B.Sc. in Geological Science in 1978.
 - 3. From 1978 to the present I have been engaged in mining and exploration geology in B.C. and the N.W.T.
 - 4. I personally logged some of the core from this drill program and assisted in the assessment of the results.

Madeline R. Schaumberger

APPENDIX II

ABBREVIATIONS USED IN DRILL LOGS

cal calcite carb. carbonate chlorite chl. chalcopyrite ср crenulated cren. dissem. disseminated epidote ep foln. foliation grained grn. lim. 1imonite malachite mal. magnetite mag. pyrite ру quartz-sericite-py QSP qtz quartz rock rx. sericite ser. strong str. stkwk stockwork wk weak

${\tt BIBLIOGRAPHY}$

G. Bysouth, Gibraltar Mines Ltd., Diamond Drill Report, Pink Group, Cariboo Mining Division 93B8, July 16, 1980.

HOLE No. 80-2. of 8 GRID_ GRAPHIC LOG ROCK TYPES & ALTERATION ASSAY RESULTS Setimotad L to Core Feliation Width of Vein Foliation Alteration Footage Structure Veins A to Cor Sample Number % Core Footage Blocks. Estimated Recovery Plog ... Grade Mo. Cu Mo. Cu. links 1/4 BOYL 70 str 8tz-lim 1/2 977 38 76 80 80 .002 ,09 14 +2 8+3+2 5012 MINE PHASE QUARTZ DIORITE 613 cr1-64 2 == 6 (Fresh) 60 80 97789 .004 .10 86 90 90 10 sts (cp) WK. 54- 64 - MADE 1/2/2 \$+3-CL1-pg-17m 100 1/2 Voe 847- Py chl-py-lux-lin-Mack 2000 1/4+ 1/1-1 80 96 60 97790 .08 80 .006 WK 10 10 40 lim - Winolint . Minda 1041 720 x 2-72" 74" 7100 Py + hal. chil-cp lini - mal chil-lini - mal gt3-chil (cp) 70 90 104 80 .11 8000 400 Ten. WK Irm - Maon 110 7 30 ling - Mno-1/4 1/2+1/4 9/5 6/5-12- + 9/5 16002 y ... Y ... 4: . . 114 70 116 60 50 109 ,006 be WK Foult 29 1/4 6+3-41-ch COYC 99 124 50 70 977 93 .09 80 002 gts-cp-chl Mod 1/4 1/20 = 2 sta-carb lim - maon chl-ep-ry
qtz-chl
qtz-chl
chl-ep-pied,
chl-pied-ep - 50 134/6 40 977 97 80 80 85 .06-1 Mod tim hir

HOLE No. 80-8 SHEET No. 3 of 2

		RGU	K TY	PES	a A	LTERATION		LOG	9		e y	· ·				Estimotad		ASS	AY RES	ULTS	
		ř.		:			Con		Veins Z to Corr Axis	£	107	9 201			:	Core	Sample	Number		%	
5	Piog	- Sp	Metic	į	Hard		Z to Care Foliation	Feets	2 7 7	Width	Min		E	Footage Blocks.	Compo	Recovery %	Cu.	Mo.	Cu.	Mo.	Estimated Grade
							80 WK		30 4 20 10 Y 2 10 * 22 20 7.	1/2 × 2 × 1/2 + 2 × 1/2	gtz (cp) + gts-PY gtz-ckl = 2 etz-ckl er sty			14e	80	85	977	25	.07	,004	
Ō						SHEARED RUARTL DIORITE -ep banding 20-30-10 Ep 35 Yro-2" Donds // fo folm	90 5tr		90 90 90 90 x 2	21"	ep(pr) ep some with lim free! et = -al-pr gts - mal ep = - gts			155/6	30	60	977	96	,08	.002	
						// fa folm	qo str		10	Yes	2/3-P/			16=/6	80	85	777	97	.08	.005	
						MINE PHASE QUARTZ	E o Mod		80 A 2 - 90 - 80 - 70 - 70 - 90 - 90	1/2	\$13-77 42 ap ap ep 613 613			176	70	95	977	98	5	.003	
							80 WK	190	70 70 70 70 70 70 70 70 70 70	% % % % % % % % % % % % % %	chl-py cp ep		17	184	70	90	777	99	.04	.003	
						sheared ep-banaed bartschiorite	માં ^{મુ} ં	200	81	/L 2" 1/10 1/10 1/10 2" 1/20 x 4 3" 3/8	91 3 ep ro ep ep ep ey 4 gts-ep gts-py			196	60	90	978	00	.07	.062	
						•	80 Nod		8 × 2 8 × 2 10 ? 14 ? 14 ? 16 × 3	1/10 × 3 1/20 × 2 1" 1" 6" 1/10 × 2 + hle	8t3-py x3 pyx2 ep chi-py (cp) st3-chi (ruse1) st3-ser-py st2-chi-ep st3-pyx2 + cp.		27	206	70	80	279	0/	, /2	.003	

GRID __

80-8

HOLE No. 80 SHEET No. 44 of 4

			-			-											SHEE	No. =	0	f	•
		ROC	CK TY	PES	8 ALTE	RATION		GRA:	0	(E)		*			11	Estimated		ASS	AY RES	ULTS	
		2			1		Con	-		5 # 5	9	92			•	Core	Sample	Number		%	
5	Plog	x-sp	Metic	Teater	Herdn		L to Corr	Attendion Footogs	Veins Veins Z. to Co.*	Width	# e	Series	66	Footega Blocks.	Compo	Recovery %	Cu.	Mo.	Cu	Mo.	Gre
8							70 Mod.	221	70 X D	1"+3" 1842 144 120 11" 100 11" 11" 11" 11" 11" 11" 11" 11	P1 cp-gt xx2 st3-pyx2 st3-py st5-py st5-py st5-py cp pyx2 cp cp cp			216	80	90	978	oz	.06	.004	
ノ							Go Mod.	230	70 + 60 70 × 3 40 40 × 2 50 40×2 40 40×2	1/4+ /2 1/0 - 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0	6t3 42 6p + pys- 6p + gts-py 6p - gts (py) 8ts-chl (py)			226	80	85	978	03	.04-	,002	
							70 Nod	240	# 4" + 1 = 3	1" nle x3 1/4 1/4 1/4	broken 30=e + hen 99 + hoon hanks gts-ch1-yry (op) gts-cp			234	70	70	978	04	,05	.004	
							70 wk		30 70 70 70 70 70 70 70 70 70 70 70 70 70	//	\$tz-py \$t-57-ch1 bx \$t-57-ch1 bx \$t-57-ch1 bx \$t-67-ch1. 3-ne \$t-67-ch1.	wedge Shaped ato vew	1 of s ty	244	80	90	978	51	.04	.006	
-							70 M.d	240	70 70 30 60 × 3	2	8t3 - en 8t3 - en 8t3 - ser - py ep 313 - py - cp + sts - ser - py en chi - py chi - py	S-bet		256	85	90	16	201	.07	.004	
							80 Med	270	50 00 70 10 x 4 10 x 4 70 x 3 70 x 3 1017 10 x 2	1/4" / /** /** /** /** /** /** /** /** /**	ep-gts \$13- P7 \$13- P7 \$13- SEP-PY X 3 \$13- SEP-PY X 3 \$13- P7 + EP T \$13-PY \$13- PY P7 \$13- SEP-PY-CP \$13- SEP-PY-(cp) EL			2.4%	75	8 5	162	02	•12	.004	
					Br (:	TOTE-GTZ ECCIA ZONE 273-201 Yanim cantris	?	280	70 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8-	1/6 1/10 1/1052	6+3- Py (4) 9+3- Ser- Py (4) 8+3- Ser- Py (4) 8+3- Ser- Py -6			276	80	85	16 =	٥3	.14	.044	

GRID_

HOLE No. 80: . of 8 GRID_ GRAPHIC ROCK TYPES & ALTERATION LOG ASSAY RESULTS L to Core Foliation Veins L to Core Estimated Foliation Footoge Sample Number % Core Footage Blocks. Estimated Recovery Cu. Grade % 70 70 70 70x3 70x3 70 Sts- PYX2 Epidote Flooding ep py x 3 gre. py x 3 ep-gre- ser-(py)-(cp)) 12.X3 284 65 286 80 MINE PHASE 162 24 .12 206 QUARTZ DIORITE EP XZ EPXZ EPXZ EPXZ EPXZ Y/L Y 3/2 - 319 - Massine 1 12 epidote lensos 80 296 85 forming up to .05 16205 .004 10-17/ 17-00/x2 50% of rak 242-5er-py 3t2-ep-(py)-((cp))-2r 2t2-chl 2p-5er-gte chl-ep-(p) py-(hl x3 ap-chl-(py) 306 35 65 16206 .06 .006 310 ota - che. stz-Pyl almas 1./. massive 2 8+2-py ++2-che-py-90 Cp. 16207 004 45 316 20 0/2ep-chl-ser-(cp)-py ehl-py ep-so-gt= ep-gt= gt=-chl-ep-py=p 1/10 7 80 40 324 16208 .07 .005 325-331-dl-epbx etz-che- cpy)-(cp) 74 330 90 × 4 Sheared ephanded sta-py XY 5/3 Gty- divide 330 - 340 90 80 90 10 80 x 3 900 hle Alex3 3/2-ser-h(-1py) ((a)) 20 75 334 16209 .08 ,005 Sti Symcpy v3 Taro him X 2 59 XZ-8+2- PY-LP earh gauge 110 1/8 346 50 80 . 11 004 16210 8/2- cht- py 1/20

FORM 130-LSD. 2

HOLE No. 80-1 . SHEET No. 6 _ of 8 GRID_ ROCK TYPES & ALTERATION GRAPHIC LOG ASSAY RESULTS L to Core Foliation Foliation Veins to Cors Estimated Structure Footoge Somple Number Core Mofic Plog Footage Blocks. Estimated Recovery Cu. Mo. Grade % Cu Mo. 8/2- Py-(ep) 8/2- Py-(ep) 8/2- Str-py-(ep) x2 48 55 x 2 6 x 3 6 x 2 6 x 2 75 x 2 VY Vaxz 10 X3 10 XZ stz-CP 16211 70 85 .13 .006 356 otz-py-cp x3 Yzox2 130X3 ore-chl-py-cpyz 1/10x2 tz-Pyx 3 ceps) xz Frasy3 76 + 60 70 60 60 80 80 x2 2+1 1/10 7 --- py 1/4 1/4 1/8 1/8 x Z ote-ser-chl-py ote-py ote-copy z 16212 .12 .004 364 85 60 40 12 50 12 9/2-50x-py XZ Y4 x2 8/2-501-101-60)XZ 1/2-501-101-60) 1/2-501-101 1/2-601-101 1/2-611-101 1/2-611-101 1/2-611-101 1/10×2 2 1 10 7 376 80 60 40 12 16213 .18 .000 YZXZ 4452 1/ 30x 2 1/10 8/2-chl-cp-(mo) of z- Ser- py

chi- ep

frz - py / z

frz - chi- ep - (pp)

fr atz-ser-py 1/20×3 70 2 16214 256 65 85 1/20 X2 wk .11 .008 1/1014 \$120x2 70 14 75 316 50 85 16215 .006 hie 400 60 x 3 1/16/3 1/6 42 See we. 14 8. 1 406 16216 .23_ -006 1/272 + VEXZ 70 90 6019 12 - Sep - 64 - 17 - (4) 7447 15 14 12 1/2 .07 1.004 416 75 V2 V8 162 17 FORM 130-150 2

HOLE No. 80-

_		ROC	K TYP	ES &	ALTERATION		GRAPH LOG	ic .		60	:	T		Estimated		ASS	AY RES	ULTS	
				: :		i co	50 5		4.5	to all	ž.		•	Core	Somple	Number		%	or property
110	5	Ř.	N N	Texto Horda		L te Core	Attaction Feetegs	Veins Z to Co Axia	Width	Minero	Remort	Footage Blocks.	Compo	Recovery %	Cu.	Mo.	Cu.	Mo.	Estimate Grade
							1 1 1 7 3 9	125 125 125 125 125 125 125 125 125 125	1/2 1/2 1/3 1/4 1/2 1/2 1/4 1/4	12-chl-py)-ep) 12-chl-py)-ep 13-chl-py-ep 14-chl-py-ep		42.5	SO	90	165	18	.07	.006	
							440	\$ 653 65 to 4 25 65 to	1/4	the epoche py-epond	1-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	43 6	80	90	162	19	.09	.00 6	
								155 15 15 15 15 15 15 15 15 15 15 15 15	14 hie 18 x 3 hie by 2018 1/1. 1/1 x 2.	otz-ch-py-cp x 3 otz-ch-py-cp x 3 otz-ch-py-cp x 3 otz-ch-py-cp x otz-ch-py-cp x otz-ch-py-cp x	Feliation tolds and theys	\$ 525	£0	8.5	162	20	.09	,004	
							460	130 130 130 130 130 130 130 130 130 130	9/8 10 10 10 10 10 10 10 10 10 10 10 10 10	The property of	w.h.c.a.u.	954	70	85	162	21	./2	.042	
							470	SE S	111 177 18 18 18 XZ	12-cht-py-cp-mo, 172-cht-py-cp-mo 172-cht-py-cp-mo 172-cht-py-cp-mo 172-cht-py-cp-mo 172-cht-py-cp-mo 172-cht-py-cp-mo 172-cht-py-cp-mo 172-cht-py-cp-mo 172-cht-py-cp-mo		493	70	P5	162	22	.12	.008	
							46.	150 150 150 150 150 150 150 150	hle	1/2 - py - cp - (ma) 1/2 - py - cp - (ma) 1/2 - py - (cp) - (ma)	No Money?	474		85	162	જ્ઞ	.06	. 008	
			1				490		1/16 1/16 y 2 1/45 hlors 22 1/4	\$12-py-c/5-mo \$13-py + X" enoclose -> QSV = \$13-py + \$17 \$13-py \$13-py \$13-py \$13-py	·1	436	40	80	162	24	.09	-004	

HOLE No. 80 - 80 SHEET No. 8 - of 5 ASSAY RESULTS Satimoted Sample Number Core Estimated Recovery Grade Cu. 10 16:25 14-.004 . 15 .016 162 50 60

L to Core
Foliation
Foliation
Attention
Footage O'Y
Footage ROCK TYPES & ALTERATION chl-py ++ 8ts-py + 8ts-ser-py 8ts 30 X3 C0 - 10 C 4 50 X2 1 × 50 × 4 40 eld, carb chl-tr Str 10 sta-cer-py-cp

GRID ____

HOLE No. 80-9

GRID_ 47,718.00 (N) LATITUDE NaN LOGGED BY GDB. GIB WEST 00 CORE SIZE_ BEARING_ LOCATION 12-LF-112.00 (E) SCALE OF LOG__ 1"= 10" 3861 DATE Marchiotiliano DATE COLLARED Mar 7 1980 DEPARTURE_ LENGTH_ .96° 3.130.00 DATE COMPLETED MAY 8, 1950 APPYOR REMARKS ELEVATION_

_		RO	CK TY	PES 8	ALTER	ATION	1.	LOG	٠	-	e 0	•				Estimated			AY RES		
							S to		Veins Veins Axis	Width of Vein	=	2 .	ŧ			Recovery	Sample	Number		•	Estimatel
5	9 0	K-3pe	100	1	Horda		L to Core Foliotion	Featoge	2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	* >	Hing	S	£	Footage Blocks.	S du s	%	. Cu.	Mo.	Cu.	Me.	Grafe
_						ising To															
25	45 pale gran		15 - 2 6 chl.		<u>_</u>	INE PHASE DIORITE	70 Mod	10	200 4 200 2 200 10 200 10 200 6 45 0 2 200 4 6	hiere hiere hiero hie ze hie z +	low xA mmost male as tim x b lim x b lim - mal		Limonite To 66'	16	30	80	778	25	¥	<i>≈</i> †	
•		MIN	VERAL KUSE	RESO.	JRCES BRA	ANCH	80 Modt	30	10 × 4 60 × 3 80 × 4 7 20 80 7 30	hick 4 Yexa Vioxt XA hick	lim - mal x 4 lim x 2 mnox x 4 mnox x lim + mal + a 5 lim gta-chl - lim lim			24	40	90	978	05	18	3	
_		5	3	0	6	0	go Mod	12	7 405 2 405 2 50 22	Viex = hlex = Yiox = Yes - hless	lim xx lim (xho2) xx lim x4			9.6	80	q <i>5</i>	ीन इ	-7	,06		
							70 Med	90	70 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1/4 1/10 x 5 1/10 x 2 1/10 x 1/4	\$75-11mm \$57-12m \$57-1			46	70	95	978	68	.09	.0-2	·
									2 90 - 80 - 80 - 80 - 60 - 72	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ets-lim cht-ep-lim ets-ser-lim ets-lim ests-tr by ep sere			56	70	90	97809		13	.014	

HOLE No. 80- - 80-9 SHEET No.2 _ of _6

ROCK TYPES & ALTERATION GRAPHIC LOG ASSAY RESULTS L to Core
Foliation
Alteration
Footage Estimated Structure Wieth Sample Number % Core Estimated Recovery Cu. Ma. Cu Mo. Grade % 1 to 2 5 ep + mal x3 1/20 X3 1/20- Wexz 9013 80 70 x 4 8ts-lim-Py Y20x2+ /4 15 780 .3+ 780 .3+ 8042 95 197810 1/2 sta-lim Med. 80 .001 66 1 + 1/10 + 1/10 hie + 4 1/4 + 1/2 50 CS YLD X 3 1/4 09 1/4-1" × 4 8+3- cel - 4-634 Med 74 95 140 70 STI - chi- lim 197811 .10 1/2 006 8tz-41-ep- += 30-e HIERL elel-pyx+ 24. 8+2-(14) 9011 YEXZ 80 1/4 443 gl3-04(44) 80 62 95 13 86 20 WK. 1206 8/3-14-611 6+3-4-1-P1 14003 Hers chi-pyes 4-/8 /2-95 70 978131 70 96 .05 1162 312-64(cc)+ ct1-64. Hod A6063 1/2+ /100 L 70 8+3-17 \$13 17 \$13 17 \$13 × 3 \$13 × - 90 - 70 x 3 - 90 - 90 3/4 ec only as this Coatings 1×2+74×2 Y+ 10x3 70 85 106 97814 80 12 007 (8012+5 M.d. 1/4 + 2 Bonz 1/2 170 1/8 62 1/0 82 2" 1/4 cal- + (cp) x2 Ets-ell(cp)) 70 873 - 64 - 64 874 - 64 - 64 875 - 64 875 - 64 - 64 875 - 64 - 64 875 - 64 - 64 875 - 64 - 197815 10 - 10 x 6 116 98 .10 riled 80 .000 # 60 927 2 K 1 sta-lim Cougal 3/4 .06 004 80 \$ 13 - EEV - PY 126 80 90 WK. 130

GRID_

HOLE No. Boo - of 6

		RO	CK TY	PES	8 A	LTERATION		GRAP	HIC								SHEET		-		
		70			-			LOC	·	5	6	E				Estimated			AY RES	ULTS	
		50	2	5			To C	1100	Veins Veins Z. to Care Axis	W	1 2	2 2	ŧ			Core	Sample	Number		%	Estimo
5	=	* *	Mofic	1	ž		Z to Corr	Foot Foot	vo		i	Series	e.	Footage Blocks.	00 E E	Recovery %	Cu.	Mo.	Cu.	Mo.	Grode
						MINE PHASE QUARTZ DIORITE (140 -	70 NK	140		1/4 * 2 1/10 1/2 * 1/4 * 1/10 1/4 * 1/10 1/6 * 2	Stranger Chi-py Stranger Chi-py Stranger Chi-py Stranger Chi-py Stranger Chi-py			136	70	90	97817		·c 8	.005	02/4
2						plag is grey rather from pale green -	70 WE		70 5 70 5 4 70 5 70 70 70 70	Yes	\$17- P1- CP (Mo) \$13- P1- CP (Mo) \$13- P1- CP (Mo) \$13- P1- CP (Mo) \$13- P1- CP (Mo)			146	80	95	478 18		05	065	
							70 WK	(50	7: 10 10 4:	ži.	\$ = - carb		· · · · · · · · · · · · · · · · · · ·	156	30	65	97819		.05	008	,020
								140	-60 45 46 -70 * 5 -70 * 5	1/0 1/6 1/8 1/2-1/4-2 2.	64-64 64-64 64-64 64-64			164	70	85	97820		-ري	.004	.018
			-	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		170	5: 5: 7: 10	hie hie hie	extention of the children	*					110.				
,								180	70 70 40 80	." 1/6 3/4	64 - chl (vuga 1) 67 - Ser - p - y 67 - Ser - p - y 67 - P - y 67 - p - y 67 - p - p - y 67 - p - p - y 67 - p - p - y 68 - p - p - p - y 68 - p - p - p - p - p - p - p - p - p -		1	176	20	85	97821		·03	1662	
								140	17	Yes No. No. No. No. 24 Yes	py cp-py cp-chl-py chl-ry chl-py-cm			?	.60	90	47 32 2		·06	ce 2	
									70	1" 15. 3" 16.12 19. 10.12 10.1				196	70	85	47823		.05	.003	

HOLE No. _80= 8 SHEET No. _4 _ of _4 GRID_ ROCK TYPES & ALTERATION GRAPHIC LOG ASSAY RESULTS L to Core
Foliation
Alteration
Footage
Structure Estimoted Veins L to Cor Sample Number A9 Core % Footege Blocks. Recovery Grade Cu. Cu. Mo. 3+2-c47-b4 (ch)
2+2-c47-b4 x +
2+2-c47-b4
c41-b1-cb
c41-b1-cb \$0 70 50 80 90 = 4 1/2 - 1/2 -70 70 95 .09 .068 WK 206 97824 gto ((4)) gto-chl IK 214-217 - Sheared with epochly bands 4/5 gts gts-ser-py ((cp)) ~ 40 % ep. as K-3" 3+ 95 60 216 .07 :002 \$\$ - 00. 6t3 (40) Chl-Py 13 6t3-ch 6t3-ch 4t3-chl-Pa 6013 1/2 × 2 # 90 170 80 90 47826 1002 16 226 8t3-ch - Py (+p) Stapp Drillers labelled this 95 197827 -> 286 .09 603 gts-ser-py-cp as 246 and the next 256 de. - 50 CP the blocks gtz-ser-py-cp are corrected 95 97828 95 246 15-Ser -17-Er 490 004 .022 chi- py rr. Y1063 chi-py chi-cp (s chi-cp)(Wo) 70×2 1/2 × 2 5/3 - Cp (Ma) 160 80 256 16:26 .004 98 .21 413- ep gtg-ser-py (cp) ets .28 413 95 16327 90 .007 266 sts- py (4) sts-ser- py (4) sts-chl- (cp) FORM 130-150 2

HOLE No. 80-9 SHEET No. 5 of 6

	-	RO	CK T	YPES	8 ALTER	ATION		iù	No. PH	ici					-		SHEET	No	5	of6_	-
						ATTON	- 1		LOG		5				-	Estimated		ASS	AY RE	SULTS	
Sec		Spar	2	į	e e		Z 10 Core	Foliation	9 9	Veine Z to Co Axes	W day	zile z				Core	Sample	Number		%	AST
. 012	Pog	, ×	1	F	ž		7	E SE		7	1/20 23	Pf-(c4)x3	 Real Park	Footage Blocks.	Compo	Recovery %	Cu.	Mo.	Cu.	Mo.	07/1
							80 WK		280	3 s to	1/2 // 1/2 · · · · · · · · · · · · · · · · · · ·	\$13.50	Footage blocks -There is now a	296 276	75	95	16228		.23	.008	-
_						77	70 NK		290	50 50 50 70 50 70	1/20 22 1/20 25 1/2 1/2 1/2 1/2 1/2 1/2	chi py 12 chi py 12 chi py 12 chi py 13	-20° Forrestion on Footage blocks recorded in log.	284	80	90	16339		-16	.0/0	
							70 WK		300	10 × 2 45 45 10 × 3 10 × 3	120 - 12 120 - 12 120 - 12 120 - 12	\$ts (50) = 2 \$ts (50) = 2 \$ts - chl - cerb - cep} voyey \$ts - chl - cerb - cep} voyey \$ts - chl - cep(60) \$ts - chl - (cep)		296	60	95	16230		-29	.014	
							70 W4		310	60 73+30 10 10 40+23 45 60 60 60 60 70	1" + Y= 1" + Y= 14" 1" + Y= 14" 1" + Y= 14" 16" 16" 16" 16" 16" 16" 16" 16" 16" 16	9t3-5er-py 9t3-(cp) 9t3-5cr-py (cp) + py-cp 9t3-5cr-py-cp 9t3-5cr-py-cp 9t3-5cr-py-cp) 9t3-5cr-py-cp)		306	70	90	1623/		-25	.009	
1							. 80		310	50 50 10 + 1 10 + 10 70 50	// 6 // 6 // 6	6+3-64 8+3-64-84 1-64-84-64 6+3-564-64 6+3-564-64 6+3-564-64	12	316	80	95	16232		-/ 3	.035	
						ŭ	80 WK		330	80 91 50 70 80 71 71 80	Via Viore Vio	\$15-chi-py-ep \$15-chi-py-ep \$15-chi-py-ep \$15-ser-py (cp) \$15-ser-py-cp \$15-cp-py chi-ry er		326	80	90	14233		,23	009	
									1111	10 Xt 70 Xt 70 10 50 + 70X + 10A3 4. X1 50 13	1/2 x2 1/2 x2 1/2 x2 1/2 x2 1/2 x2 1/2 x2 1/3 x3 8"	\$ 13 - 641 - (10) vuggy \$ 13 - Py(cp) > 2 \$ 15 - Ser- P! \$ 16 - (cp) (1 Ma)) \$ 13 - cp + giz - chl - Pyx + \$ 15 - chl - py (cp) x 2 \$ 15 - ser - py (cp) x 2 \$ 15 - ser - Py (cp)		334	80	95	16.734		.31	-007	

GRID __

HOLE No. 80-9 GRID_ SHEET No. _4 . of _6_ ROCK TYPES & ALTERATION GRAPHIC LOG ASSAY RESULTS L to Core
Foliation
Foliation
Alteration Estimated Veins Z. to Cor Axis Structure Sample Number Core Estimated Recovery Grade Cu. Cu % ets-ser-py-cp

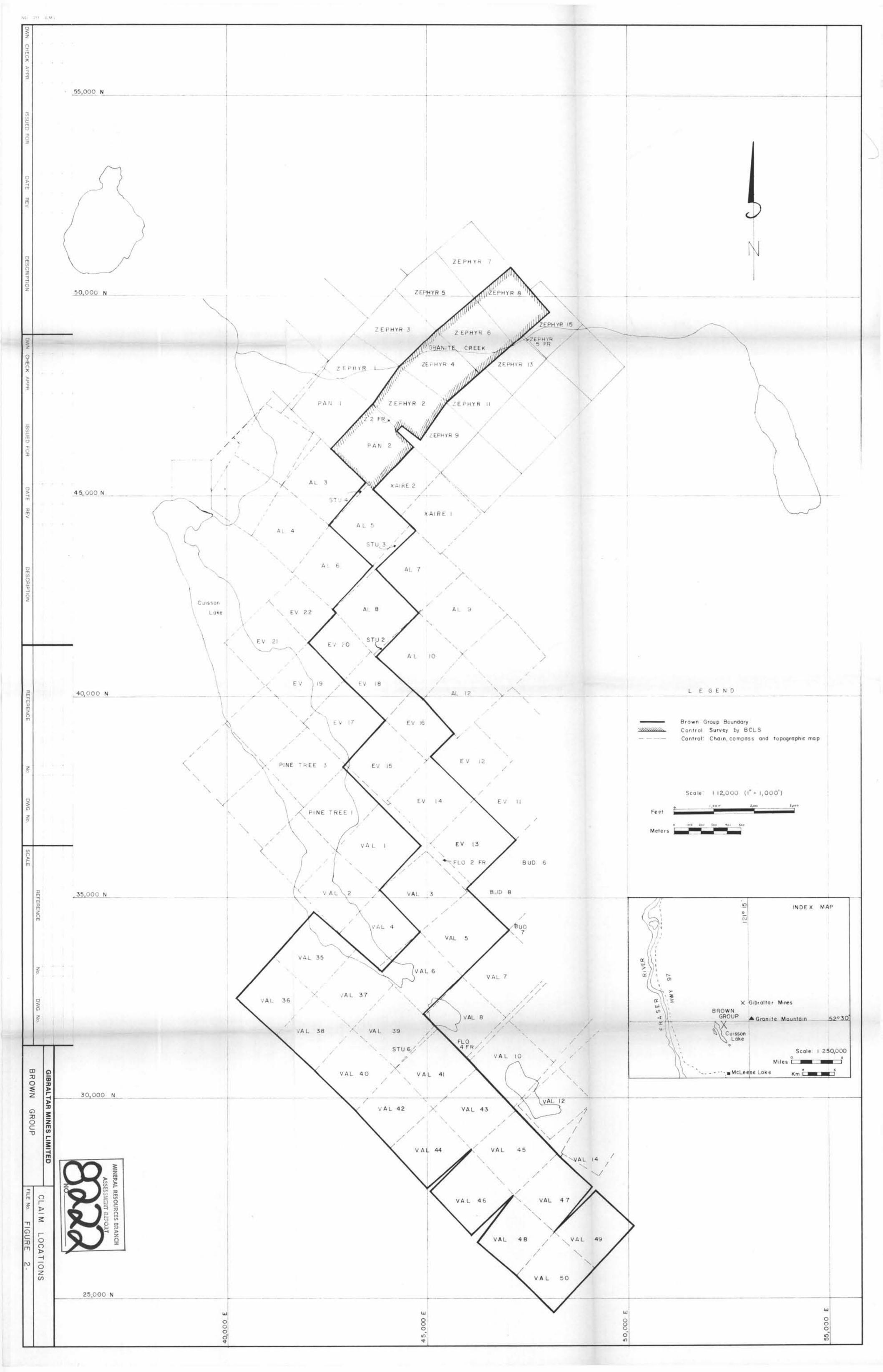
yg

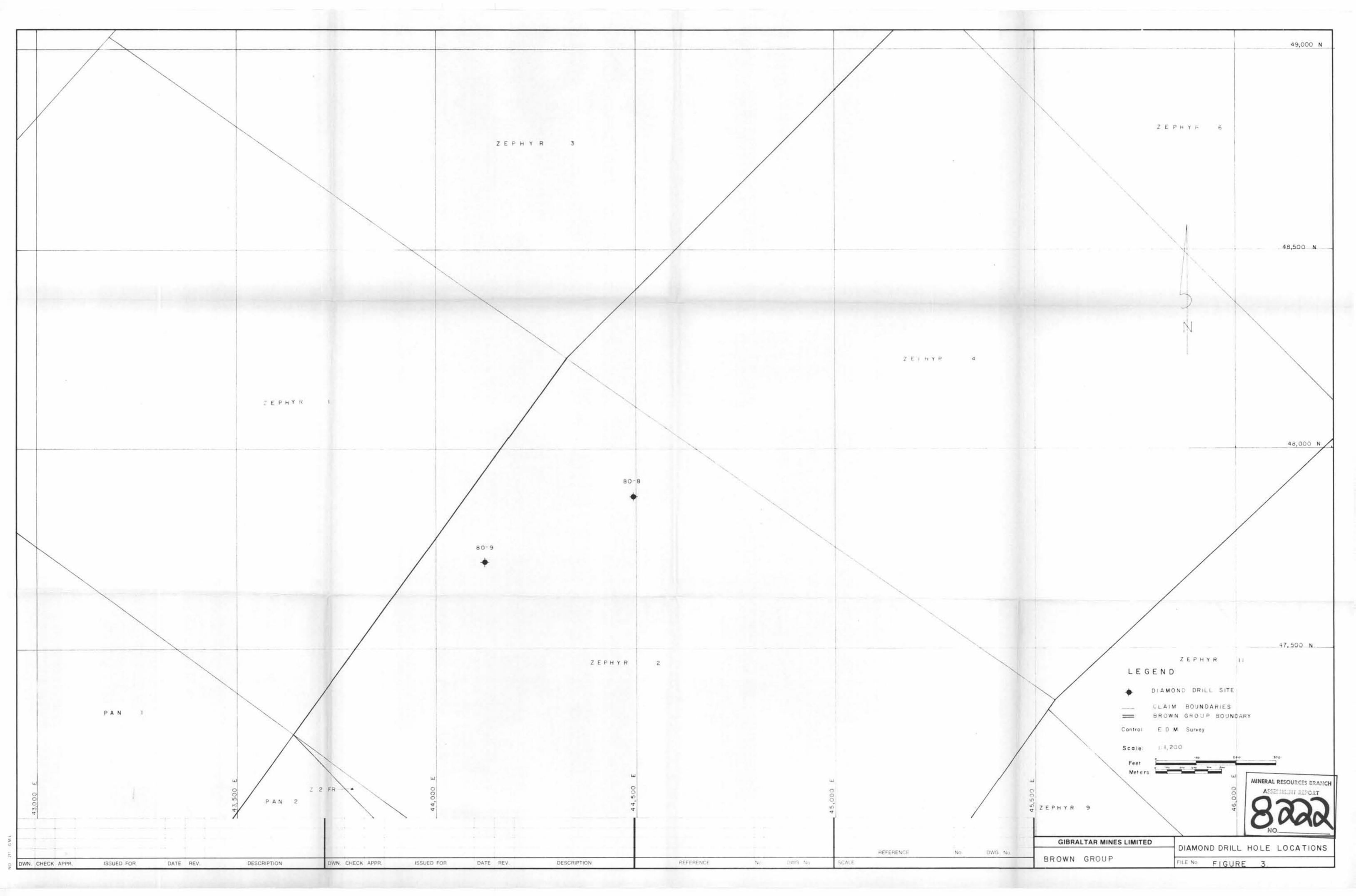
ets-cp x 4

ets-cp

ets-cp

ets-py(cp)


py(ce) x 4


ets-ser-py

ets-ser-py

ets-ser-py

ets-ser-py \$0 × 4 Yzox 4 80×6 1/20- Yes 80 80 70 85 Mad. Box 4 346 .34 ,015 Yror4 16235 10 Year 6/3 chl-pys gts-chl-(ugy) 1 30 70 39+6× f 30 90 356 70 Mod -17 16236 .004 Corc Vuggy 813-CH- PY 613-64- PY (PA = 613-64- PY (PA = 613-564- PY-EP = 613-564- PY-EP 50 Core 40504 50 70 366 .23 70 16237 315-sex-py (cp) chl-py-cp x 2 ats-ep Str 2 70 20 € 3 -oto 20" hlexa 8t3- py-(px 3 8t3- 5er- py-(ep) 8t3- 5er- py-(ep) 8t3- 6t4- py 8t3- (cpX py) wyggy enl- py 70 4 3 4 4 6 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 /h. . . . " Y10 7 10 Y4 376 90 16238 50 -30 -014 70 Wod-Ste 150 1/8 3+2-11 (mo) x 2 3+3-021-04 3+3-021-04 2+3-021-04 2-11-04-05 2-11-04 2-11 1002 1/4 22 1/0 1/1002 65 .18 210 16237 384 40 80 Mineralization oppears confined to chi-ser, ser, chi-ep. . Shear zones which cut the normal foln at a small angle. Rx. between the shears is barren except for validay gts vems

