Geochemical Orientation Survey

of the

BEAR CLAIMS, GROUP A

Located in the Omineca Mining Division (NTS 94D/2W)

at 56°07' North and 126°52' West

owned by Canadian Nickel Co. Ltd.

> written by Peter Peto, Ph.D.

on October 30, 1980

TABLE OF CONTENTS

	<u>TEXT</u>	PAGE
1.0.	INTRODUCTION	1
	Property, Location & Access	1
	Property Definition	1
	Property History	2
2.0.	PROPERTY GEOLOGY	2
3.0.	LITHOGEOCHEMICAL ORIENTATION SURVEY	2
4.0.	CONCLUSIONS & RECOMMENDATIONS	3
5.0.	ITEMIZED COST STATEMENT	4
6.0.	AUTHOR'S QUALIFICATIONS	5
	TABLES	
TABLE	1. Definition of Claims]
TABLE	2. I.C.P. Analysis of Bear Lake Rock Samples	ъ
	ILLUSTRATIONS	
FIGURE	E 1. Property Location Map	
FIGURE	E 2. Sample Location Map	in pocket
	APPENDICES	
APPENI	DIX A. Thin Section Rock Sample Descriptions	6

1.0. INTRODUCTION

This assessment report on the Bear, A Group, is based on a rock geochemical orientation survey conducted by Canico field crew on July 7, 1980. The purpose of the orientation survey was to determine whether a primary metal dispersion halo around the Bear Cu-Mo prospect could be delineated by chip sampling surface rocks. Previous work has indicated that higher molybdenite concentrations form an annular ring about the Bear Lake intrusion, whereas higher chalcopyrite concentrations appear to be restricted to the eastern intrusive contact. Also, an iron pyrite halo associated with Cu-Mo mineralization has not as yet been clearly identified. An orientation survey was therefore undertaken to establish a multi-element profile which might detect primary metal zonation patterns, and thus to better delineate the mineralized zone in the absence of a pyrite halo.

-]-

Property, Location and Access

The Bear claims are located 90 miles north of Smithers, on Tsyatut Spur west of Bear Lake at an elevation of 5,500 feet above sea level (Fig. 1). The claims lie three miles west of the Fort St. James to Dease Lake railway but are presently accessible only by helicopter or float-equipped aircraft.

Property Definition

This report concerns work done on Bear Group A situated in the southeast portion of the Bear claim block, or more specifically those claims listed in Table 1.

TABLE 1. BEAR GROUP A

<u>Claim Name</u>	Record No.	Month of Record
Bear 26	117514	September 18, 1972
Bear 28	117516	н н в
Bear 30	117518	n n n
Bear 41	117529	п н о
Bear 42	117530	t) 11 \$7
Bear 43	117531	11 13 11
Bear 44	117532	н а н

Claim Name	Record No.	Month of F	Recon	<u>rd</u>
Bear 45	117533	September	18,	1972
Bear 46	117534	н	н	u
Bear 48	117536	н	п	11
Bear 49	117537	11	It	11
Bear 50	117538	11	н	0

Property History

The property was discovered by Canico in 1972 during a regional exploration program for porphyry Cu deposits. A surface evaluation program consisting of grid preparation, geological mapping, lithogeochmical sampling, induced polarization and magnetometer surveys were conducted by Canico crews from July to August, 1973. A Canico drill crew with a BBS-1 drilled 3,804 feet in seven holes and 385 feet of supplementary winkie drilling in three holes from July 3 to September 7, 1974.

2.0. PROPERTY GEOLOGY

The Bear claims encompass a multiphase, mineralized plug, or dykes, belonging to the Kastberg intrusions, of probable Tertiary age, which has intruded Lower to Middle Jurassic volcaniclastics and flows belonging to the Hazelton Group. The Kastberg intrusion is about 5,000 feet long and 2,000 feet wide consisting of an outer elliptical shell of "syenodiorite", or more correctly, quartz monzodiorite, and a younger core of granite prophyry and aplite dykes. Molybdenite, chalcopyrite, and pyrite mineralization occurs as disseminations in tight fractures and quartz veinlets. Drill holes 54303, 54304 and 54308 yielded average grades of 0.25% Cu and 0.09% MoS₂.

3.0. LITHOGEOCHEMICAL ORIENTATION SURVEY

A total of 21 rock chip samples were collected at 100-metre intervals along a north trending line running along the ridge crest for some two kilometers (Fig. 2). Samples PPR-139 to 147 were collected from volcanic country rocks of the Hazelton Group (Units 2 and 3) whereas samples PPR-148 to 159 were collected along the Kastberg intrusion (Units 6a and b). Thin sections of selected samples were made for the purposes of recording changes in mineral alteration assemblages. These are listed and briefly described in Appendix A. Rock chip samples were submitted to Acme Analytical Laboratories Ltd. for multielement geochemical determination by plasma emission spectroscopy based on "induced coupled plasma" or I.C.P. Sample preparation consisted of digesting 0.5 grams of sample with three mls. of 3:1:3 nitric: hydrochloric: water solution for one hour at 90°C. The final volume of 10 mls. was then analyzed and results are listed in Table 2.

Thin sections indicate that samples PPR-140 to 149 have typical, propylitic alteration assemblages typified by chlorite + epidote <u>+</u> carbonate, whereas samples PPR-150 to 156 have typical phyllic alteration assemblages predominated by sericite + quartz. Samples PPR-157 and 158 suggest potassic alteration insofar as K-feldspar alteration envelopes are developed on mineralized fractures and primary hornblende phenocrysts are altered to biotite and epidote. The data thus suggest a broad alteration pattern with an epizonal propylitic envelope in volcanic rocks surrounding an intermediate zone of phyllic alteration coincident with marginal intrusive rocks, which in turn becomes a zone of potassic alteration coincident with hypogene Cu-Mo mineralization.

Table 2 also shows some broad, geologically controlled, element distribution patterns. Mo and Cu increase abruptly over the mineralized zone. Propylitic volcanic rocks with high Mg and Ca also have high transition element concentrations (Fe, Mn, Zn, Ni, Co, V) which are much lower in granitic rocks. Granitophile elements such as U, Th, La and Ba occur in greater concentrations within intrusive rocks. The monzodiorites appear to have higher Ti, U, Ag and possibly P concentrations than the younger monzogranites. These differences probably reflect primary compositional variations in rock types rather than epigenetic modifications, with the obvious exception of Cu and Mo. There also appears to be no systematic change in Fe concentration as might be expected if a pyrite halo were present.

4.0. CONCLUSIONS AND RECOMMENDATIONS

In the basis of the foregoing observations it is suggested that the Bear intrusion appears to show a classical porphyry alteration pattern but probably lacks a well-defined pyrite halo. Multi-element geochemical analyses are useful in defining differences rock types and confirm that Cu and Mo lithogeochemistry best delineate mineralized areas; however, Ag, Th and U may also be useful. -3-

It is recommended that drill core also be analyzed to establish compositional changes with depth. The claims require remapping, with particular emphasis on alteration assemblages, fracture patterns and subcrop distribution, with the purpose of determining the nature of the intrusive complex and delineating alteration zones of sufficient size to merit deeper probing by exploratory drilling.

- 4 -

5.0. ITEMIZED COST STATEMENT

Wages:	July 7, 1980			
	P. Peto 1	day @ \$162/day =	\$	162
	D. Dillon 1	day @ \$75/day =		75
	D. Arndt 1	day @ \$50/day =		50
	P. Magnussen 1	day @ \$50/day =		50
			\$	337
Accommo	dation & Food:			
	Room for 4 men for 5 da	ys (3 days standby) =	\$	391.80
	Food for 4 men for 5 da	ys =		90.35
Transpo	rtation:			
	Okanagan Helicopters -	July 7, 1980, 4 hrs. @ \$350/hr. =	\$1	,400
	Truck Rental 1	day @ \$30/day =		30
Geochem	ical Analysis:			
	21 samples @ \$7.75/samp	1e =	\$	162.75
Thin Se	ction Preparation:			
	13 samples @ \$5/sample	=	\$	65.00
Report	Preparation:			
·	2 days @ \$162/day =		\$	324.00
		TOTAL COSTS	\$2	,800.90

6.0. AUTHOR'S QUALIFICATIONS

I, Peter S. Peto, hereby certify as follows:

I am graduate geologist with B.Sc. and M.Sc. degrees from the University of Alberta, and a Ph.D. from the University of Manchester, England.

I am a registered member, in good standing, of the Geological Association of Canada.

I am currently employed as project geologist with Canadian Nickel Company Ltd. in the Vancouver district office.

I have been practising my profession intermittently since 1970 and continuously from 1975 to present.

I have prepared this work assessment report on the basis of work performed as an agent of Canico.

October 30, 1980

APPENDIX A. THIN SECTION ROCK SAMPLE DESCRIPTIONS

PPR-140: Crystal-lithic tuff showing a mottled, brecciated texture consisting of highly altered volcanic rock fragments (10%), crystal fragments (30%), set in a microcrystalline matrix (40%) secondary chlorite amygdules and epidote clots (20%).

PPR-141: Microgranite showing a fine grained, allotriomorphic-granular texture consisting of anhedral grains of alkali-feldspar (45%), quartz (50%) with interstitial muscovite and secondary clay (5%).

PPR-142: Ash tuff having rare plagioclase crystals (1%), and chlorite pseudomorphs after mafic crystals (1%) set in a granophyric matrix (75%) with patches of secondary quartz (15%) and microcrystalline clay aggregates (20%).

PPR-144: Crystal-lithic tuff consisting of albite (15%), orthoclase (5%) and basalt rock fragments (10%) set in a granophyric matrix (75%) with patches of secondary quartz, chlorite, sericite and opaques.

PPR-146: Crystal-lithic tuff or volcanic microbreccia consisting of feldspar crystals (10%) and rock fragments (30%), mostly basalt, trachyte(?) and tuff(?) set in a microcrystalline, granophyric matrix (40%) spotted with secondary aggregates (20%) of clay, carbonate, quartz, epidote and pyrite.

PPR-147: Alkali-olivine basalt (?) showing an amygdaloidal texture consisting of fine grained serpentine-carbonate-opaque pseudomorphs (5%) after olivine, and fine grained orthocalse phenocrysts (5%) set in a matrix (60%) composed of plagioclase microlites, interstitial opaques. Amygdules (30%) 1 to 10 mm across, consist of quartz mantled by carbonate, or of carbonate with minor clay.

PPR-149: Crystal-lithic tuff, showing a tuffaceous texture consisting of quartz and feldspar crystal fragments set in a sericite matrix composed of granophyre, feldspar microlites with secondary aggregates of epidote, carbonate, biotite(?), pyrite and chlorite.

PPR-150: Granite porphyry consisting of ovoid quartz phenocrysts (15%), blocky orthoclase (25%), chlorite pseudomorphs after biotite (5%) set in a microcrys-talline matrix (55%) composed of granophyre, secondary sericite, carbonate and pyrite.

PPR-151: Tuff consisting of fine to medium grained crystal fragments of albite (10%), orthoclase (20%), quartz (10%) set in a granophyric matrix (50%) with relict glass shards, patches of secondary quartz (10%) veinlets, sericite and opaques.

PPR-155: Granite porphyry consisting of medium to coarse grained phenocrysts of quartz, plagioclase, biotite and hornblende (altered to chlorite) phenocrysts set in fine grained granophyric matrix hosting secondary aggregates of carbonate, chlorite, sericite, quartz and pyrite.

PPR-156: Granite porphyry consists of medium grained phenocrysts of oligoclase (25%), orthoclase (10%), quartz (10%), biotite (2%), hornblende (3%) set in

a very fine grained granophyric matrix (50%) with amygdules composed of chlorite, sericite and quartz.

-7-

PPR-157: Quartz-monzodiorite shows a medium grained, hypidiomorphic-equigran ular texture consisting of blocky andesine (50%), interstitial orthoclase (15%) and quartz (10%), biotite flakes (5%) and hornblende (5%), with minor sphene, apatite, and magnetite.

PPR-158: Quartz-monzodiorite shows a fine to medium grained, hypidiomorphicgranular texture consisting of blocky andesine (50%), interstitial orthoclase (25%) and quartz (20%) with hornblende prisms (5%), biotite flakes (2%), secondary chlorite (1%) and accessory sphene, zircon, apatite, opaques.

TABLE 2 I.C.P. *ANALYSIS OF BEAR LAKE ROCK SAMPLES

SAMPLE	MO	CU	PB	ZN	AG	NI	<u> </u>	MN	FE	AS	<u> </u>	TH	BI	<u>V</u>	CA	Р	LA	MG	ВА	TI	В	AL	SB
PPR-139	2	15	13	91	0.3	14	16	728	3.37	13	4.3	0.4	1.6	88	2.29	0.097	9	2.02	33	0.14	5.4	2.45	8.6
PPR-140	2	136	9	1 34	0.3	5	18	630	3.36	16	3.9	0.5	2.0	86	0.87	0.08	5	1.97	31	0.15	6.4	2.24	9.5
PPR-141	1	22	3	15	0.2	3	2	105	0.99	4	3.0	1.3	1.6	15	0.31	0.02	6	0.22	23	0.02	3.7	0.45	1.8
PPR-142	1	71	6	22	0.1	1	2	105	0.94	7	3.2	2.6	1.5	14	0.26	0.07	7	0.09	57	0.01	5.0	0.79	0.8
PPR-143	2	6	18	233	0.2	12	19	886	4.62	15	0	2.4	1.0	132	0.99	0.09	11	2.11	71	0.08	8.5	1.60	9
PPR-144	1	33	8	52	0.1	2	4	587	1.86	4	3.0	3.6	1.5	21	0.71	0.04	17	0.06	212	0.02	5.2	0.71	2
PPR-145	2	12	19	90	0.3	44	24	984	4.27	12	1.5	0.6	1.1	111	1.19	0.08	10	2.55	105	0.17	15.4	2.72	9.6
PPR-146	2	14	8	61	0.2	4	4	950	2.25	8	1.6	5.2	1.7	31	1.77	0.05	16	0.45	193	0.03	7.4	0.87	4.3
PPR-147	2	3	16	174	0.3	85	20	981	4.32	17	0	1.2	0.9	165	3.94	0.08	11	2.32	61	0.07	7.4	1.49	9
PPR-148	2	5	12	190	0.3	7	19	1346	2.50	8	0.9	0.8	3.5	75	1.09	0.10	9	2.19	37	0.10	7.6	1.74	8.5
PPR-149	2	41	9	77	0.3	5	9	366	2.96	9	5.2	4.3	1.3	47	0.42	0.08	9	0.86	145	0.11	6.2	1.72	6.0
PPR-150	1	15	5	39	0.2	4	4	247	1.47	5	6.4	7.7	1.6	12	0.85	0.06	15	0.20	2.61	0.0	5.3	0.70	1.7
PPR-151	1	65	13	33	0.3	2	1	76	0.74	29	0.4	9.6	1.7	6	0.07	0.02	28	0.03	61	0.0	3.7	0.49	1.9
PPR-152	1	26	6	30	0.1	3	3	90	1.32	8	3.2	8.1	1.7	17	0.08	0.01	7	0.25	47	0.02	4.4	6.71	1.8
PPR-153	2	141	17	54	0.3	3	7	247	2.74	6	5.1	7.1	1.0	54	0.63	0.13	19	0.35	459	0.08	6.9	0.9	6.6
PPR-154	4	264	5	41	0.4	5	5	210	2.02	3	6.7	9.6	1.5	27	0.35	0.09	21	0.30	525	0.01	6.4	0.9	2.5
PPR-155	1	133	6	37	0.3	4	6	254	2.03	4	4.5	8.7	1.8	33	0.82	0.09	17	0.47	281	0.03	4.6	0.9	3.4
PPR-156	4	66	3	29	0.2	4	4	140	2.01	4	4.5	8.4	2.0	38	0.25	0.08	11	0.45	238	0.04	5.4	1.02	2.9
PPR-157	14	124	8	32	0.2	4	8	197	3.42	5	6.7	5.5	0	91	0.81	0.15	19	0.46	404	0.10	6.3	0.99	4.5
PPR-158	619	601	8	26	0.6	2	6	157	2.60	2	11.2	16.4	1.4	49	0.49	0.09	20	0.31	146	0.90	5.2 (0.90	4.2
<u>PPR-159</u>	28	1584	8	72	0.9	13	14	282	3.52	. 6	7.5	7.9	0.5	83	0.61	0.13	18	0.95	539	0.16	10.8	1.38	7

-8-

*Fe, Ca, P, Mg, Ti and Al are given in weight %, the rest are given in partsper million.

ELTON G	ROUP			
	•	:		
3	Bosic Volc	onic Flows' block- amygdaloidal,pill cross-cutting"fe majority of Cu. oc	-green to hematic mati lowed and flow - tong eeder zones" and gob courrences.	rix,relict pxs & olivine, ie structures; focings east; ibroic "domed complexes";
2	Volconicio 2o 2b	ostics:-intercalate flows; bedded Non-stratified,re Bedded "muddy" and sedimentary	ed lopilii, lithic tuffs, d to purple weathering tuffs;east focirigs;ea textures.	volcanic sediments and minor) ast dip 25°-45°; some sorting
F	Andesite :- la lb lc ld	dark green flows Fragmental, volca Porphyritic flows Hypobyssol sill w hematitic matrix Dyke like cross- feeder? zones to	and sills anic breccia and aggl with sausserifized ye ith augite and plagioc cutting basic to inte p 3; often with assoc	omerate allow-green plagioclase stats close pheno's;green to mauve rmediate volcanic units- iated cc-cpy sulph,mineralization
	Lava ton	gue bolls ond pill	lows	
	Volcanic (Volcanic	- fragmental agglom breccia	herate, blocks, pebble	s,lopilli tuff
KASTBER Tertio	RG INTRUS ry	SIONS	<i>y</i> .	
60 6b 6c	Bear Eoce	Acid Intrusive Cor 6a Syenodiorite qtz and apli ne 6b Quartz mon phenos; wei nearby dyke 6c Acid dykes -	nplex: e = mg equigranular i ite veins; diss'd py, d zonite porphyry = m.g akly min'd core to Be es = small dacite = rhyoliti	ntrusive body; abund.stockworks cpy & moly in fracts odjacent to 6b equigranular with large orthoclase ar complex and crass-cutting edykes
HAZELT	DN GROUP			
Lower	to Middle	Juros sic		
5	Redi	Pyroclastics and F flows - dacit	Tows . f.g.red hematiti te interstitiat carbona	c lithic, xtol tuffs ond intercolated te alt'n.
4	Pink	Crystol Tuff: pror 4a Welded tuff laminated; f	minent pink felds xtc f and ash flows near requent quartz balls	il tuffs and flows-rhyodecitic "fissure-vent" structures, well ; some diss'd cc~cpy sulphs
		4b Laminoted voriable pir	tuff-finely bedded" nk felds xtals.	varved"tuffs; distal unit of 4a;
		4c Acid volcan: 4d Pink feids m 4o-4c.	ics – rhyo-dacite flov nauve porphyry; mas:	ws and tuffs ; often with diss'd py sive flow-like ; lavo equivalent of
			6	Diamond Drill Holes
	Bed	ding, laminations	X X_Y	Scorp Line
	Clo	um Boundarv	TLTTTY	Ridge Crest Line
سد و در محمد محمد رو از از ۸۰ در «او			and and and a	Faults and Photo Linears
(^)	Clo	m Post	э - г-	Strike dip of bedding and flows
-	0.01			

Mapped Geological Contact